6 Alternatives

6.1 Introduction to Alternatives

The California Code of Regulations (CCR) Section 15126.6(a) (State CEQA Guidelines) requires EIRs to describe “… a range of reasonable alternatives to the project, or to the location of the project, which would feasibly attain most of the basic objectives of the project but would avoid or substantially lessen any of the significant effects of the project, and evaluate the comparative merits of the alternatives. An EIR need not consider every conceivable alternative to a project. Rather, it must consider a range of potentially feasible alternatives that will avoid or substantially lessen the significant adverse impacts of a project, and foster informed decision making and public participation. An EIR is not required to consider alternatives that are infeasible. The lead agency is responsible for selecting a range of project alternatives for examination and must publicly disclose its reasoning for selecting those alternatives. There is no ironclad rule governing the nature or scope of the alternatives to be discussed other than the “rule of reason.” This section of the State CEQA Guidelines also provides guidance regarding what the alternatives analysis should consider. Subsection (b) further states the purpose of the alternatives analysis is as follows:

Because an EIR must identify ways to mitigate or avoid the significant effects that a project may have on the environment (Public Resources Code [PRC] Section 21002.1), the discussion of alternatives shall focus on alternatives to the project or its location which are capable of avoiding or substantially lessening any significant effects of the project, even if these alternatives would impede to some degree the attainment of the project objectives, or would be more costly.

The State CEQA Guidelines require that the EIR include sufficient information about each alternative to allow meaningful evaluation, analysis, and comparison with the project. If an alternative would cause one or more significant effects in addition to those that would be caused by the project as proposed, the significant effects of the alternative must be discussed, but in less detail than the significant effects of the project as proposed (CCR Section 15126.6[d]).

The State CEQA Guidelines further require that the “no project” alternative be considered (CCR Section 15126.6[e]). The purpose of describing and analyzing a no project alternative is to allow decision makers to compare the impacts of approving a project with the impacts of not approving the project. If the no project alternative is the environmentally superior alternative, CEQA requires that the EIR “…shall also identify an environmentally superior alternative among the other alternatives." (CCR Section 15126[e][2]).

In defining “feasibility” (e.g., “… feasibly attain most of the basic objectives of the project …”), CCR Section 15126.6(f) (1) states, in part:

Among the factors that may be taken into account when addressing the feasibility of alternatives are site suitability, economic viability, availability of infrastructure,
general plan consistency, other plans or regulatory limitations, jurisdictional boundaries (projects with a regionally significant impact should consider the regional context), and whether the proponent can reasonably acquire, control or otherwise have access to the alternative site (or the site is already owned by the proponent). No one of these factors establishes a fixed limit on the scope of reasonable alternatives.

In determining what alternatives should be considered in the EIR, it is important to consider the objectives of the project, the project’s significant effects, and unique project considerations. These factors are crucial to the development of alternatives that meet the criteria specified in Section 15126.6(a). Although, as noted above, EIRs must contain a discussion of “potentially feasible” alternatives, the ultimate determination as to whether an alternative is feasible or infeasible is made by the lead agency’s decision-making body, here the SMUD Board of Directors (Board). (See PRC Sections 21081.5, 21081[a] [3].)

6.2 Considerations for Selection of Alternatives

6.2.1 Attainment of Project Objectives

As described above, one factor that must be considered in selection of alternatives is the ability of a specific alternative to attain most of the basic objectives of the project (CCR Section 15126.6[a]). Chapter 2, “Project Description,” articulated SMUD’s project objectives for the proposed Solano 4 Wind Project, which is repeated below:

- Contribute to a diversified energy portfolio that will aid in the continued improvement of air quality in the Sacramento Valley Air Basin by decreasing reliance on fossil fuel combustion for the generation of electricity, and reduce SMUD’s exposure to price volatility associated with electricity and natural gas.

- Assist SMUD in achieving the Board of Directors’ directive of using dependable renewable resources to meet SMUD’s RPS obligations. This goal is consistent with Senate Bill 100, which was signed into law in 2018.

- Develop an economically feasible wind project that will deliver a reliable supply of up to 91 MW of electrical capacity at the point of interconnection.

- Accommodate the long-term viability of agricultural use within the Montezuma Hills.

6.2.2 Summary of Project Impacts

Sections 3.1 through 3.11 of this Draft EIR address the project-specific environmental impacts of the project. Potentially feasible alternatives were developed with consideration of avoiding or lessening the significant adverse impacts of the project. Many of the significant impacts can be mitigated through application of existing regulations or inclusion of mitigation measures. Despite compliance with existing regulations governing
protection of environmental resources and application of all feasible mitigation, project construction and operation would result significant unavoidable impacts in the following category:

Air Quality

- Construction emissions of criteria air pollutants and ozone precursors (significant unavoidable)

6.2.3 Alternatives Considered but Not Evaluated Further

State CEQA Guidelines Section 15126.6(c) provides the following guidance in selecting a range of reasonable alternatives for the project. The range of potential alternatives for the project shall include those that could feasibly accomplish most of the basic objectives of the project, and could avoid or substantially lessen one or more of the significant effects. The EIR should also identify any alternatives that were considered by the lead agency, but were rejected during the planning or scoping process.

The following describes alternatives considered by SMUD but not evaluated further in this Draft EIR, and a brief description of the reasons for SMUD’s determination.

Offsite Alternatives

Offsite alternatives are generally considered in EIRs when one of the means to avoid or eliminate the significant impacts of a project is to develop it in a different available location. Such alternatives are especially appropriate where a proposed project would put a site to uses different than those contemplated in the governing general plan, which presumably reflects land use policies reached after much deliberation and public involvement, and also in instances where there is an ample supply of similarly situated land that could be developed for a project.

The Solano County General Plan designates the site for Agriculture. Commercial wind farms are a permitted use in the agricultural designation. The project site is also located in a “wind resource area,” as identified on the California Wind Project and Wind Resource Areas map produced by the California Energy Commission 2018. Conditions suitable for the sustained winds necessary to operate are found in limited locations in the state.

The Wind Resource Area contains eight separate commercial wind energy projects operating 607 WTGs. Siting the project at the current location would maximize use of existing infrastructure including electrical transmission systems with adequate capacity to accommodate additional load and land that is accessible by existing roadways. The project site represents the only available major land area that is reasonably capable of attaining the project objectives. Therefore, alternative locations for the project are not considered feasible and, thus, these alternatives are not evaluated further in this Draft EIR.
Alternative Technologies

Various technologies are available to produce renewable energy resources, including solar, wind, and nuclear energy. The primary project objective is to support California’s renewable energy and greenhouse gas emission reduction laws and goals and SMUD Board directives by constructing and operating a wind energy facility. Most of the other project objectives are similarly focused on developing wind energy facility while minimizing environmental effects and minimizing land use conflicts.

Nuclear energy is a non-fossil fuel (non GHG-producing) energy resource, and unlike solar or wind energy, production of nuclear energy does not depend on the availability of sun or wind. Nuclear energy was produced at the decommissioned Rancho Seco Nuclear Generating Station from 1975 until 1989, when it was closed by public vote. Developing a nuclear energy facility at the project site would be infeasible because use of nuclear power was already voted down once; it is a controversial technology due to public perception around safety and uncertainties over the disposition of spent fuel; it is relatively expensive to build and operate (compared to most if not all technologies); and there is overall doubt that it would ever be approved even if considered due to these factors. Diablo Canyon, the last nuclear power plant built in California, was completed in 1986, over 30 years ago, and is the last operating commercial nuclear power plant in the state; PG&E, its owner and operator, plans to close it. In short, nuclear power plants do not appear to have an immediate future in California. Finally, due to their footprint, number of employees, and operating characteristics including safety risks, they would likely result in greater impacts compared to the proposed project.

6.3 Alternatives Selected for Detailed Analysis

6.3.1 No Project Alternative

State CEQA Guidelines Section 15126.6(e) (1) requires that the no project alternative be described and analyzed “to allow decision makers to compare the impacts of approving the project with the impacts of not approving the project.” The no project analysis is required to discuss “the existing conditions at the time the notice of preparation is published…as well as what would be reasonably expected to occur in the foreseeable future if the project were not approved, based on current plans and consistent with available infrastructure and community services” (Section 15126.6[e][2]).

Under this alternative, the project would not be constructed on the project site, and as a result, none of the permits or approvals that would be required by SMUD and various permitting agencies for the project would occur. The existing WTGs on Solano Phase 1 would continue to generate approximately 15MW although increased maintenance needs would result in higher costs to operate over time. This alternative would not go as far toward meeting the objectives identified in Section 6.2.1, "Attainment of Project Objectives."
Environmental Analysis

Aesthetics

Under the No Project Alternative, the project site would continue to support operation of existing WTGs associated with Solano Phase 1. This alternative would not result in any change related to the visual character or quality of the site or lighting or glare. Overall aesthetic impacts of this alternative would be less than the project. (Less)

Air Quality

Under the No Project Alternative, the proposed project would not be constructed and the existing WTGs would continue to operate on the site. Construction emissions of criteria air pollutants, ozone precursors, and toxic air contaminants (TACs) would not increase above existing levels. This alternative would avoid the project’s short term significant air quality impact. (Less)

Biological Resources

Under the No Project Alternative, the proposed project would not be constructed and the existing WTGs would continue to operate on the site. This alternative would not result in new impacts to biological resources. Overall, impacts to terrestrial biological resources would be less compared to the project. (Less)

Archaeological, Historical, and Tribal Cultural Resources

Under the No Project Alternative, the proposed project would not be constructed and the existing WTGs would continue to operate on the site. Because no earth-disturbing activities would occur, there would be no potential for disturbance to known or unknown resources. Impacts to archeological, historical and tribal cultural resources would be less than the project. (Less)

Geology and Soils

Under the No Project Alternative, the proposed project would not be constructed and the existing WTGs would continue to operate on the site. Therefore, the No Project Alternative would have no impact associated with geological hazards or soil erosion. All of the existing site conditions described in Section 3.5.2, “Environmental Setting,” would remain. The No Project Alternative would not create any conditions to increase those existing hazards or reduce the risks to people, structures, or the environment. Overall, the No Project Alternative would result in less geology and soils impacts compared to the project. (Less)

Greenhouse Gas Emissions and Energy

Under the No Project Alternative, the proposed project would not be constructed and the existing WTGs would continue to operate on the site. Construction emissions of GHGs
would not be generated by the project and GHG emissions would remain at existing levels. The No Project Alternative would have no impact associated with energy demand. The fundamental purpose of the project is to reduce GHG emissions produced in, or to support beneficial uses in, the Sacramento region. Under the No Project Alternative, GHG emissions associated with power generation would not be reduced to the degree identified by SMUD Integrated Resources Plan and policy directives to rely on renewable resources to meet 50 percent of SMUD’s load by 2030.¹ Thus, the No Project Alternative would generate greater GHG emissions compared to the project. (Greater)

Hazards and Hazardous Materials

Under the No Project Alternative, the proposed project would not be constructed and the existing WTGs would continue to operate on the site. The use of hazardous materials onsite would continue as existing WTGs are maintained. Under either development scenario, SMUD would continue to follow all existing hazardous material and emergency response plans currently in place. The No Project Alternative would result in continued operation of WTGs. Under the proposed project, fewer WTGs would operate on the site compared to existing conditions, so the No Project Alternative would result in greater hazards or hazardous materials impacts compared to the project. (Greater)

Hydrology and Water Quality

Under the No Project Alternative, the proposed project would not be constructed and the property would existing WTGs would continue to operate on the site. Therefore, the No Project Alternative would not degrade water quality or alter the project site’s existing drainage pattern. Overall, the No Project Alternative would result in less hydrology and water quality impacts compared to the project. (Less)

Land Use

Under the No Project Alternative, the proposed project would not be constructed and existing WTGs would continue to operate on the site. The No Project Alternative would be compatible with existing uses and no conflicts with regulatory plans or policies adopted for the protection of environmental resources would occur. Impacts under the No Project Alternative would be similar to those of the project (Similar)

Noise

Under the No Project Alternative, no new facilities would be constructed and existing onsite operations would not change. Therefore, no construction activities would take place and there would be no increases in short-term construction related noise at nearby

¹ SMUD has committed to achieving a 90% reduction in the electricity portfolio for GHG emissions by 2050, relative to 1990 levels. In addition, SMUD is also committed to help the Sacramento region more broadly reduce GHG emissions outside of the electricity sector.
sensitive receptors. Overall, the No Project Alternative would result in less noise impacts compared to the project. \(\text{Less}\)

Transportation and Traffic

Under the No Project Alternative, the proposed project would not be constructed and the existing WTGs would continue to operate on the site. The No Project Alternative would not require heavy truck trips to haul project components and does not generate construction related vehicle traffic. However, vehicle trips would still be required as the WTGs age and increasingly more maintenance activity occurs to keep them running. Traffic would not increase above existing levels and, therefore, pavement conditions along area roadways would not be degraded. Overall, the No Project Alternative would result in less transportation and traffic impacts compared to the project. \(\text{Less}\)

6.3.2 Reduced Turbine Height Alternative

SMUD contracted with Black & Veatch to conduct an assessment of options for repowering and expansion of the Solano Wind project (Black and Veatch 2018). This effort included preparation of preliminary layouts, energy production assessments, conceptual civil and electrical plans, capital and operational cost estimates, and studying vertical wind profiles on site.

Using property boundary information and the wind resource data obtained for the site, Black & Veatch developed project layouts at Solano 4 East and West, for the GE, Vestas, and Siemens turbine options. Layouts were developed with the aid of the Openwind® optimizer to maximize energy production based on changes in wind resource and wake loss across the site and adherence to required setbacks dependent upon turbine height. Turbine spacing was chosen in view of the rotor diameter of the turbine model and wind resource with focus on maximizing use of existing roads and infrastructure to reduce construction costs.

WTGs considered during the first phase of the study included use of GE Energy model GE2.3-116 (turbine height of 138 meters) which is rated at a capacity of 2.3 MW. Under the Reduced Turbine Height Alternative, a total of 27 WTGs would be placed on the property (13 at Solano 4 east and 14 at Solano 4 west) in a configuration similar to that of the proposed project. Total capacity for the Reduced Turbine Alternative would be 62 MW compared to the 91 MW for the proposed project.

The Reduced Turbine Height Alternative would attain most of the objectives identified in Section 6.2.1, “Attainment of Project Objectives,” because it would involve construction and operation of a wind energy facility. However, as noted above, even the larger proposed project does not yield the full current unfulfilled need for solar energy in SMUD’s service area, so a reduction in scale would need to be offset by an additional project or projects. Moreover, the project objectives related to supporting California’s renewable energy and greenhouse gas emission reduction laws and goals and SMUD Board
Strategic Directive 9, would be achieved at a lesser degree under this alternative due the reduced amount of renewable energy that would be generated compared to the project.

Environmental Analysis

Aesthetics

Under this alternative, the visible elements of the WTG facility would be reduced in height (138 meters tall with hub height of 80 meters) compared to the proposed project which could install 150 meter WTGs with a hub height of 105 meters. Smaller structures are less visible at distance and are compatible with the surrounding wind energy projects that utilize older, smaller WTGs. Under either development scenario, impacts to nighttime views would be minimized through incorporation of ADLS technology that activates aircraft warning lights only when an aircraft is detected. Therefore, overall visual impacts under this alternative would be less than those of the project. *(Less)*

Air Quality

Selection of the Reduced Turbine Height Alternative would introduce 27 WTG compared to the 22 WTG for the project. As such, all construction activities and resulting criteria air pollutants would be similar to, but slightly greater than, those of the project.

Under either development scenario, construction activity would emit NO\textsubscript{x} and PM\textsubscript{10} at levels that could exceed YSAQMD and BAAQMD daily emissions thresholds for these pollutants. Similar to the project, implementation of Mitigation Measure 3.2-1 would reduce construction-related exhaust and dust emissions but not below the threshold and this impact would remain at significant levels. On an operational basis, neither the Proposed Project nor Reduced Turbine Height Alternative would conflict with an adopted plan or policy adopted for the purpose of environmental protection. Thus, assuming the implementation of Mitigation Measure 3.2-1, short-term construction air quality impacts would be similar to, but slightly greater than, the project. *(Similar, but slightly greater)*

Biological Resources

The Reduced Height Alternative would result in construction of 27 smaller, WTGs than the 22 WTGs proposed by the project. Therefore, the Reduced Turbine Height Alternative would result in more ground disturbance than would the project. Placement of a greater number of tall structures in the area may increase the chances for protected birds to hit obstacles while flying. Direct and indirect effects to waters and jurisdictional resources could result from grading, trenching, pile driving, and creation of impervious surface adjacent to wetlands and non-wetland waters under either development scenario. Potential indirect effects include potential changes in hydrology through modification of surface flows or perched groundwater flows, penetration of the hardpan, shading of wetlands, and reduced water quality caused by erosion and siltation or herbicide use (chemical runoff or drift). Implementation of the mitigation measures identified in Section 3.3, “Biological Resources,” would apply to this alternative, but like the project, would not
reduce impacts on biological resources to less-than-significant levels. Overall, impacts to biological resources would be greater compared to the project.

Archaeological, Historical, and Tribal Cultural Resources

Under this alternative, a greater number of WTGs would be constructed on the project site. This alternative may result in greater disturbance to unknown archaeological sites because additional roadways would be required to access the additional WTGs and more foundations would be created compared to the project. Because earthwork and ground-disturbing activities would occur under this alternative, implementation of Mitigation Measures 3.4-1, 3.4-2, and 3.4-3 would apply, and would reduce impacts to less-than-significant levels. Overall, impacts under this alternative would be greater than those of the project since more land disturbance would likely occur.

Geology and Soils

Implementation of this alternative would involve grading and other ground-disturbing activities similar to the project, but over a slightly larger footprint. Therefore, this alternative would have similar impacts associated with geological hazards and soil erosion compared to the project. Implementation of Mitigation Measures 3.5-1 through 3.5-3 would apply to this alternative, and would reduce these impacts to less-than-significant levels. Overall, this alternative would result in more geology and soils impacts compared to the project.

Greenhouse Gas Emissions and Energy

Under this alternative, a greater number of WTGs would be constructed on the project site compared to the project. As such, all construction activities and resulting GHG emissions would be similar to, but slightly greater than, the project. A reduction in the annual generation capacity of the facility would also result in a reduction in avoided GHG emissions. Thus, while this alternative would result in a slight reduction of construction-related GHG emissions, the reduction would be smaller than the amount of GHG avoided emissions lost through the reduction of wind energy capacity compared to the proposed project. Potential impacts of climate change on this alternative would be the same as the project because the site would be unchanged in location and the same County policies are in place to respond to the effects of climate change. Thus, GHG impacts under this alternative would be less than significant.

Hazards and Hazardous Materials

Implementation of this alternative would involve the storage, transport, and handling of hazardous materials; exposure of or disturbance to contaminated soils or asbestos containing materials; and exposure of people or structures to a significant fire risk, similar to the project. Implementation of Mitigation Measures 3.7-1a through -1d, -2a through -2d, and -3a through -3c would apply to this alternative, and would reduce these impacts to less-than-significant levels.
The Reduced Turbine Height Alternative would introduce structures that exceed the 200 foot threshold. Both development scenarios would be subject to review by the FAA under Part 77 and must implement lighting and other physical measures applied during this process to avoid posing an obstacle to aviation by intruding into flight patterns or interfering with operation of radar equipment. The FAA found the proposed project was not a hazard to aviation, and while WTGs may be detected by radar sensors, this would not cause an unacceptable adverse impact on ATC operations. The placement of more WTGs on the project site may increase radar interference compared to the proposed project as the density of WTGs is greater than for the project. Overall, the Reduced Turbine Height Alternative may result in greater hazards or hazardous materials impacts compared to the project. (Greater)

Hydrology and Water Quality

Implementation of this alternative would involve grading and movement of soil, which could result in erosion and sedimentation, and discharge of other nonpoint source pollutants in stormwater runoff that could degrade local water quality. Installation of the WTGs under either development scenario would not alter existing onsite drainage patterns. Implementation of Mitigation identified for the proposed project would reduce these impacts to less-than-significant levels. Overall, this alternative would result in similar hydrology and water quality impacts compared to the project. (Similar)

Land Use

The Reduced Turbine Height Alternative would be sited on land designated for agricultural use. WTGs are permitted in the agricultural designation and would be compatible with the existing grazing and farming occurring on neighboring parcels and no conflicts with regulatory plans or policies adopted for the protection of environmental resources would occur. Impacts under this alternative would be similar to those of the project. (Similar)

Noise

The Reduced Turbine Height Alternative would require slightly more heavy truck trips to deliver components to the site as more turbines would be placed on the site compared to the project. As such, all construction activities would be slightly greater to the proposed project and, therefore, construction noise impacts would be slightly greater. Under either development scenario, noise impacts are less than significant, so the slight increase in construction noise impacts is not substantially greater than those for the project. Therefore, overall impacts under this alternative would be similar to those of the project. (Similar)

Transportation and Traffic

The Reduced Turbine Height Alternative would require slightly more heavy truck trips needed to haul more WTGs than those for the project. Operational trips would be similar
since the O&M activity would not change. As such, all construction activities would be similar but slightly greater to the proposed project and, therefore, construction-related increases to vehicle traffic on the surrounding roadway network and resulting degradation of pavement conditions would be similar. Implementation of Mitigation Measures 3.10-2a and -2b would apply to this alternative, and would reduce these impacts to less-than-significant levels. Overall, this alternative would result in similar transportation and traffic impacts compared to the project. (Similar)

6.4 Comparison of Alternatives

Table 6-1 summarizes the environmental analyses provided above for the project alternatives.

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Project</th>
<th>No Project Alternative</th>
<th>Reduced Turbine Height Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesthetics</td>
<td>Less than significant (with mitigation)</td>
<td>Less</td>
<td>Less</td>
</tr>
<tr>
<td>Air Quality</td>
<td>Significant and unavoidable</td>
<td>Less</td>
<td>Similar</td>
</tr>
<tr>
<td>Biological Resources</td>
<td>Less than significant (with mitigation)</td>
<td>Less</td>
<td>Greater</td>
</tr>
<tr>
<td>Archaeological, Historical, and Tribal Cultural Resources</td>
<td>Less than significant (with mitigation)</td>
<td>Less</td>
<td>Greater</td>
</tr>
<tr>
<td>Geology and Soils</td>
<td>Less than significant (with mitigation)</td>
<td>Less</td>
<td>Greater</td>
</tr>
<tr>
<td>Greenhouse Gas Emissions and Energy</td>
<td>Less than significant</td>
<td>Greater</td>
<td>Greater</td>
</tr>
<tr>
<td>Hazards and Hazardous Materials</td>
<td>Less than significant (with mitigation)</td>
<td>Greater</td>
<td>Greater</td>
</tr>
<tr>
<td>Hydrology and Water Quality</td>
<td>Less than significant (with mitigation)</td>
<td>Less</td>
<td>Similar</td>
</tr>
<tr>
<td>Land Use</td>
<td>Less than significant</td>
<td>Similar</td>
<td>Similar</td>
</tr>
<tr>
<td>Noise</td>
<td>Less than significant (with mitigation)</td>
<td>Less</td>
<td>Similar</td>
</tr>
<tr>
<td>Transportation and Traffic</td>
<td>Less than significant (with mitigation)</td>
<td>Less</td>
<td>Similar</td>
</tr>
</tbody>
</table>

Source: Compiled by AECOM in 2019

6.5 Environmentally Superior Alternative

CCR Section 15126.6 suggests that an EIR should identify the “environmentally superior” alternative. “If the environmentally superior alternative is the ‘no project’ alternative, the EIR shall also identify an environmentally superior alternative among the other alternatives.”
The No Project Alternative is the environmentally superior alternative, as all of the significant impacts of the project would be avoided. However, the No Project Alternative would not meet any of the project objectives because a wind energy facility would not be constructed on the project site.

The Reduced Turbine Height Alternative would result in the introduction of WTGs on the property that could result in significant impacts to biological resources, including special-status species and their habitat. Because this alternative would involve construction of a greater number of WTGs compared to the project, all construction activities and resulting impacts associated with air quality, GHG emissions, and transportation and traffic be similar to, or slightly greater than, the project. The GHG emissions that would be reduced from lesser construction would not be sufficient to offset the avoided GHG emissions associated with less capacity (assuming this capacity is otherwise provided by a non-renewable resource). Further, because this alternative would be constructed on the project site, impacts associated with aesthetics; archaeological, historical, and tribal cultural resources; geology and soils; hazards and hazardous materials; and hydrology and water quality would be similar to, or slightly greater than, the project.

This alternative would meet most of the project objectives. However, reducing the height of the WTGs would result in a project that produces a smaller amount of energy (62 MW compared to the 92 MW for the proposed project) at a higher price. This would result in reduced ability to comply with California’s renewable energy and greenhouse gas emission reduction laws and goals and SMUD Board Strategic Directive 9. For these reasons, the proposed project is the environmentally superior alternative.