Water Quality Monitoring Report - 2021

Sacramento Municipal Utility District

Hydro License Implementation • June 2022

Upper American River Project

FERC Project No. 2101

Powering forward. Together.

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

This Page Intentionally Left Blank

TABLE OF CONTENTS

1.0 INTRODUCTION AND BACKGROUND	.1
2.0 MONITORING OBJECTIVE	.1
3.0 STUDY AREA	.2
4.0 SAMPLING FREQUENCY AND LOCATIONS	.4
5.0 METHODS	11
5.1 IN SITU PARAMETERS	11
5.2 BACTERIA	14
5.3 METALS BIOACCUMULATION	16
6.0 RESULTS	18
6.1. IN SITU PARAMETERS	18
6.1.1. Riverine Sites	18
6.1.2. Reservoir Sites	23
6.2. BACTERIA	28
6.3. METALS BIOACCUMULATION	29
6.3.1. Loon Lake Reservoir	29
6.3.2. Gerle Creek Reservoir	30
6.3.3. Union Valley Reservoir	30
6.3.4. Ice House Reservoir	30
6.3.5. Camino Reservoir	31
6.3.6. Slab Creek Reservoir	31
6.3.7. Metals Bioaccumulation Summary	31
7.0 CONCLUSIONS	35
8.0 LITERATURE CITED	39

LIST OF TABLES

Table 4-1. S	Sampling Frequency for <i>In situ</i> Parameters and Bacteria	4
Table 4-2. <i>II</i>	<i>n situ</i> Water Quality Sampling Locations and Dates for SMUD Upper American River Project Reservoir Sites	7
Table 4-3 <i>. II</i>	<i>n situ</i> Water Quality Sampling Locations and Dates for SMUD Upper American River Project Riverine Sites	8
Table 4-4. <i>II</i>	<i>n situ</i> Water Quality Sampling Locations Not Sampled for SMUD Upper American River Project Riverine and Reservoir Sites	9
Table 4-5. E F	Bacteria Sampling Locations and Dates for SMUD Upper American River Project Sites, 2021	10
Table 4-6. N L	Metals Bioaccumulation Sampling Locations and Dates for SMUD Jpper American River Project Reservoir Sites	10
Table 5-1. <i>li</i>	<i>n situ</i> Water Quality Parameters and Measurement Methods	11
Table 5-2. N	Measurement Quality Objectives Criteria for <i>In situ</i> Parameters	14
Table 5-3. E	Bacteria Analytical Methods and Field Hold Times.	15
Table 5-4. T E	Farget Fish Species, Size Ranges, and Numbers by Location for Metals Bioaccumulation Sampling	17
Table 5-5. N	Metals, Method Detection and Reporting Limits for Fish Tissue Analyses, 2016 and 2021	17
Table 6-1. <i>II</i>	<i>n situ</i> Water Quality for UARP Riverine Sites	20
Table 6-2. E	Bacteria Counts for UARP Reservoir Sites.	29
Table 6-3. F	Fish Tissue Metals Concentrations in UARP Reservoirs.	33
Table 7-1. <i>II</i>	<i>n situ</i> pH Measurements below Basin Plan Instantaneous Minimum Objective (6.5 s.u.) for UARP Riverine Sites, 2015–2021	35
Table 7-2. F	Percentage of Fish Tissue Samples Greater Than OEHHA Methylmercury Advisory Tissue Levels	37

LIST OF FIGURES

Figure 3-1. Study area for SMUD Upper American River Project <i>in situ</i> and bacteria monitoring.	3
Figure 4-1. <i>In situ</i> water quality, bacteria, and metals bioaccumulation sampling locations for SMUD Upper American River Project – upper sites	5
Figure 4-2. <i>In situ</i> water quality, bacteria, and metals bioaccumulation sampling locations for SMUD Upper American River Project – lower sites	6
Figure 5-1. Example of mid-reservoir <i>in situ</i> water quality sampling site at Loon Lake Reservoir	12
Figure 5-2. Example of an <i>in situ</i> water quality sampling site on the South Fork American River downstream of Camino Powerhouse	13
Figure 5-3. Example of a bacteria sampling site in Junction Reservoir.	15
Figure 6-1. <i>In situ</i> water temperature, dissolved oxygen, turbidity, and pH at Union Valley Reservoir and Ice House Reservoir sites R-IS-8-UVR and R-IS- 11-IHR during May 2021	25
Figure 6-2. <i>In situ</i> water temperature, dissolved oxygen, turbidity, and pH at Loon Lake Reservoir and Union Valley Reservoir sites R-IS-1-LL and R-IS-8- UVR during October 2021	27
Figure 6-3. Fish tissue mercury concentrations in UARP reservoirs, August 2021	34
Figure 7-1. Average fish tissue mercury concentration in UARP reservoirs, 2016 and 2021	38

LIST OF APPENDICES

Appendix A *In situ* Vertical Profile Data for UARP Reservoir Sites
Appendix B *In situ* Vertical Profiles for UARP Reservoir Sites
Appendix C Bacteria Results for UARP Reservoir Sites
Appendix D Metals Bioaccumulation Results for UARP Reservoir Sites
Appendix E *In situ* Field Data Sheets
Appendix F *In situ* Field Calibration Sheets
Appendix G Analytical Laboratory Bacteria Reports
Appendix H Field Collection Methods for Metals Bioaccumulation Sampling
Appendix I QA/QC Summaries for Metals Bioaccumulation Sampling

Acronyms and Abbreviations

Acronym	Definition				
	Advisory Tissue Level				
°C.	degrees Celsius				
CDFW	California Department of Fish and Wildlife				
	cold freshwater habitat				
cfu	colony forming units				
dw	dry weight				
EPA	United States Environmental Protection Agency				
FERC	Federal Energy Regulatory Commission				
FL	fork length				
hr	hour				
m	meter				
mm	millimeter				
MDL	Method Detection Limit				
mg/L	milligram per liter				
mL	milliliter				
MLML	Moss Landing Marine Laboratory				
MPN	Most Probable Number				
MPSL	Marine Pollution Studies Laboratories				
MRL	Method Reporting Limit				
MQO	Measurement Quality Objective				
NTU	Nephelometric Turbidity Unit				
OEHHA	Office of Environmental Hazard Assessment				
% Sat	percent saturation				
QA/QC	quality assurance and quality control				
RWQCB	Regional Water Quality Control Board				
SFAR	South Fork American River				
SFWQO	Sport Fish Water Quality Objective				
SM	standard methods				
SMUD	Sacramento Municipal Utility District				
SPWN	spawning, reproduction and/or early development				
S.U.	standard unit of pH				
SWAMP	Surface Water Ambient Monitoring Program				
SWRCB	State Water Resources Control Board				
UARP					
ug/g	microgram per gram				
	microsiemens per centimeter				
USES					
WW					
I YSI	reliow Springs Instruments				

1.0 INTRODUCTION AND BACKGROUND

This Water Quality Monitoring Report (Report) addresses monitoring requirements set forth in Sacramento Municipal Utility District's (SMUD) Water Quality Monitoring Plan (Plan) (SMUD 2021a). The requirements for this Plan are found in State Water Resources Control Board (SWRCB) Condition 8.J, and U.S. Forest Service (USFS) 4(e) Condition 31.10, located in Appendices A and B, respectively, of the Federal Energy Regulatory Commission's (FERC) Order Issuing New License for the Upper American River Project (UARP), dated July 23, 2014. The Plan was developed by SMUD (SMUD 2015) in coordination with the Consultation Group and Resource Agencies stipulated in the license (FERC 2014). The Plan was revised in 2015 (Revision 1), 2016 (Revision 2), and 2021 (Revision 3). Revision 3 of the Plan reduced the bacterial monitoring frequency at several sites to occur only during even years (i.e., 2022, 2024, 2026...) since no exceedances of 2018 Basin Plan objectives for the recreational water contact (REC-1) designated beneficial use were identified at these sites during the 2015–2020 monitoring period (SMUD 2020, 2021b, SWRCB 2018).

This Report describes the results of the seventh year (2021) of water quality monitoring of basic *in situ* parameters and bacteria for the UARP. This report also describes the results of the second year (2021) of metals bioaccumulation monitoring for the UARP; sampling for metals bioaccumulation was last conducted in 2016.

SMUD owns and operates the UARP, which is licensed by FERC. The UARP (FERC Project No. 2101) lies within El Dorado and Sacramento counties, primarily within lands of the Eldorado National Forest. The UARP consists of three major storage reservoirs (Loon Lake, Union Valley, and Ice House) with a combined capacity of approximately 379,000 acre-feet, eight smaller regulating or diversion reservoirs, and eight powerhouses. The UARP also includes recreation facilities containing over 700 campsites, five boat ramps, hiking paths, and bicycle trails at the reservoirs.

2.0 MONITORING OBJECTIVE

The objective of the 2021 monitoring program was to perform *in situ* water quality and bacteria monitoring in reservoirs and stream reaches, as well as to assess potential bioaccumulation of metals of resident fish within specific UARP reservoirs, in order to meet the objectives and rationale of SWRCB Water Quality Certification Condition 8.J.

The rationale for water quality monitoring, as described by the SWRCB Water Quality Certification, is as follows:

Water quality monitoring is important for determining compliance with state and federal water quality standards and examining long-term trends in water quality. The frequency of monitoring for any compound can be reduced if shown to be at background or non-detect levels for a statistically significant period of time.

3.0 STUDY AREA

The study area included UARP reservoirs and diverted stream reaches. All UARP reservoirs (Rubicon, Buck Island, Loon Lake, Gerle Creek, Ice House, Union Valley, Junction, Camino, Brush Creek, and Slab Creek) were included in the monitoring program; the relatively small Robbs Peak Forebay (30 acre-feet) was not included. [Note: Rockbound Lake, although hydraulically associated with the UARP, is not a UARP reservoir and is not included within the FERC-defined UARP boundary.] The diverted stream reaches included in the monitoring program represented all streams and rivers downstream of UARP reservoirs (Figure 3-1).

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

Figure 3-1. Study area for SMUD Upper American River Project in situ and bacteria monitoring.

4.0 SAMPLING FREQUENCY AND LOCATIONS

Year 7 (2021) sampling frequency for *in situ* water quality was consistent with winter, spring, summer, and fall monitoring periods designated in the Plan (SMUD 2021a) (Table 4-1). Required bacteria monitoring in 2021 was conducted by sampling the middle elevation UARP reservoir sites (Union Valley, Junction, Ice House, and Slab Creek) during the 30-day period surrounding 4th of July. Fish tissue sampling for metals bioaccumulation was conducted through one period during August at UARP reservoirs identified in the Plan (Table 4-1).

Туре	2021 (Year 7) Frequency				
In situ reservoir	Once in spring – May				
In site reservoir	Once in fall – October				
	Once in winter – February				
In aitu rivarina	Once in spring – April				
<i>In situ</i> riverine	Once in summer – August				
	Once in fall – November				
Bacteria	Five samples within 30 days – around 4 th of July				
Metals bioaccumulation	Once in August				

 Table 4-1. Sampling Frequency for In situ Parameters and Bacteria.

Specific sampling locations within reservoirs and diverted stream reaches varied depending on the water quality parameter or constituent of interest. As specified in the Plan, *in situ* monitoring occurred at 15 representative reservoir locations (Figure 4-1 and Figure 4-2, Table 4-2) and 19 representative stream reaches (Figure 4-1 and Figure 4-2, Table 4-3). Several riverine sites could not be safely sampled during the winter, spring, and fall survey periods due to snow accumulation, and one reservoir site could not be sampled during the fall survey period due to low water surface elevation (Table 4-4). Bacteria sampling occurred at five locations in 2021, the first year in which the updated bacterial monitoring schedule in Revision 3 of the Plan was implemented (Figure 4-2, Table 4-5; SMUD 2021a). All bacterial monitoring locations (i.e., 15 sites in eight reservoirs) will be surveyed 2022. Fish tissue sampling for metals bioaccumulation occurred in six reservoirs (Figures 4-1 and 4-2, Table 4-6), consistent with the Plan (SMUD 2021a). Individual metals bioaccumulation sampling locations within each reservoir are identified in Appendix H.

Figure 4-1. In situ water quality, bacteria, and metals bioaccumulation sampling locations for SMUD Upper American River Project – upper sites.

Figure 4-2. In situ water quality, bacteria, and metals bioaccumulation sampling locations for SMUD Upper American River Project – lower sites.

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

			2021
SMUD Site			<i>In situ</i> Survey
Name	Site ID	Location	Sample Date
R-4C	R-IS-1-LL	Loon Lake, upper reservoir (northeast body)	5/25, 10/19
R-4B	R-IS-2-LL	Loon Lake, mid-reservoir (west body)	5/25, 10/19
R-4A	R-IS-3-LL	Loon Lake, near dam	5/25, 10/19
R-5	R-IS-4-GC	Gerle Creek Reservoir, mid-reservoir	5/26, 10/22
R-6C	R-IS-5-UVR	Union Valley Reservoir, Robbs Powerhouse tailrace zone	5/19
R-6D	R-IS-6-UVR	Union Valley Reservoir, Jones Fork Silver Creek arm	5/19, 10/18
R-6B	R-IS-7-UVR	Union Valley Reservoir, mid-reservoir	5/19, 10/18
R-6A	R-IS-8-UVR	Union Valley Reservoir, near dam	5/19, 10/18
R-7C	R-IS-9-IHR	Ice House Reservoir, upper lake body	5/18, 10/20
R-7B	R-IS-10-IHR	Ice House Reservoir, mid-reservoir	5/18, 10/20
R-7A	R-IS-11-IHR	Ice House Reservoir, near dam	5/18, 10/20
R-8	R-IS-12-JR	Junction Reservoir, mid-reservoir between arms	5/26, 10/22
R-9	R-IS-13-CR	Camino Reservoir, mid-reservoir	5/26, 10/22
R-11B	R-IS-14-SC	Slab Creek Reservoir, upper-reservoir	5/20, 10/21
R-11A	R-IS-15-SC	Slab Creek Reservoir, mid-reservoir	5/20, 10/21

Table 4-2. In situ Water Quality Sampling Locations and Dates for SMUD Upper American River Project Reservoir Sites.

SMUD			2021 In city Survey
Name	Site ID	Location	Sample Date
2	IS-1-RR	Rubicon River outflow from Rubicon Reservoir	8/11
5	IS-2-LRR	Little Rubicon River outflow from Rockbound Lake	8/11
6	IS-3-LRR	Little Rubicon River outflow from Buck Island Lake	8/11
7	IS-4-GC	Gerle Creek outflow from Loon Lake	8/9, 11/16
14	IS-5-GC	Gerle Creek inflow to Gerle Creek Reservoir	8/9, 11/16
15	IS-6-GC	Gerle Creek outflow from Gerle Creek Reservoir	4/27, 8/9, 11/16
18	IS-7-SFRR	S.F. Rubicon upstream of Gerle Creek confluence	8/9, 11/16
19	IS-8-SFRR	S.F. Rubicon downstream of Gerle Creek confluence	8/9, 11/16
16	IS-9-GCC	Gerle Creek Canal inflow to Robbs Forebay	4/27, 8/9, 11/16
25	IS-10-SFSC	S.F. Silver Creek outflow from Ice House Reservoir	2/11, 4/27, 8/9, 11/16
27	IS-11-SFSC	S.F. Silver Creek inflow to Junction Reservoir	2/11, 4/27, 8/9, 11/18
29	IS-12-SC	Silver Creek outflow from Junction Reservoir	2/11, 4/27, 8/9, 11/18
32	IS-13-SC	Silver Creek inflow to Camino Reservoir	2/11, 4/27, 8/9, 11/18
34	IS-14-SC	Silver Creek outflow from Camino Reservoir	2/11, 4/27, 8/9, 11/18
38	IS-15-SFAR	South Fork American River (SFAR) upstream of Camino Powerhouse	2/10, 4/28, 8/10, 11/18
41	IS-16-SFAR	SFAR downstream of Camino Powerhouse	2/10, 4/28, 8/10, 11/18
40	IS-17-BC	Brush Creek outflow from Brush Creek Reservoir	4/28, 8/10, 11/18
60	IS-18-SFAR	SFAR upstream of White Rock Powerhouse	2/10, 4/28, 8/10, 11/19
43	IS-19-SFAR	SFAR downstream of Slab Creek Reservoir	2/10, 4/29, 8/9, 11/19

Table 4-3. In situ Water Quality Sampling Locations and Dates for SMUD Upper American River Project Riverine Sites.

Table 4-4. In situ Water Quality Sampling Locations Not Sampled for SMUD Upper American River Project Riverine and Reservo	ir
Sites.	

SMUD Site			Reason Not Sampled for 2021 In situ				
Name	Site ID	Location	Survey				
	Winter						
2	IS-1-RR	Rubicon River outflow from Rubicon Reservoir	Snow accumulation				
5	IS-2-LRR	Little Rubicon River outflow from Rockbound Lake	Snow accumulation				
6	IS-3-LRR	Little Rubicon outflow from Buck Island Lake	Snow accumulation				
7	IS-4-GC	Gerle Creek outflow from Loon Lake	Snow accumulation				
14	IS-5-GC	Gerle Creek inflow to Gerle Creek Reservoir	Snow accumulation				
18	IS-7-SFRR	S.F. Rubicon upstream of Gerle Creek confluence	Snow accumulation				
19	IS-8-SFRR	S.F. Rubicon downstream of Gerle Creek confluence	Snow accumulation				
16	IS-9-GCC	Gerle Creek Canal inflow to Robbs Forebay	Snow accumulation				
40 IS-17-BC		Bruch Crock outflow from Bruch Crock Boost voir	Restricted access due to construction				
		Brush Creek outliow from Brush Creek Reservoir	activity				
		Spring					
2	2 IS-1-RR Rubicon River outflow from Rubicon Reservoir		Snow accumulation				
5	IS-2-LRR	Little Rubicon River outflow from Rockbound Lake	Snow accumulation				
6	IS-3-LRR	Little Rubicon outflow from Buck Island Lake	Snow accumulation				
7	IS-4-GC	Gerle Creek outflow from Loon Lake	Snow accumulation				
14	IS-5-GC	Gerle Creek inflow to Gerle Creek Reservoir	Snow accumulation				
18	IS-7-SFRR	S.F. Rubicon upstream of Gerle Creek confluence	Snow accumulation				
19	IS-8-SFRR	S.F. Rubicon downstream of Gerle Creek confluence	Snow accumulation				
	Fall						
231	R-IS-5-UVR	Union Valley Reservoir near Robbs Powerhouse	Low water surface elevation				
2	IS-1-RR	Rubicon River outflow from Rubicon Reservoir	Snow accumulation				
5	IS-2-LRR	Little Rubicon River outflow from Rockbound Lake	Snow accumulation				
6	IS-3-LRR	Little Rubicon outflow from Buck Island Lake	Snow accumulation				

Table 4-5. Ba	acteria Samplin	g Locations an	d Dates for SMU	D Upper American	River Project Sites,
2021.	-	-			

Reservoir	SMUD Site Name	Site ID	Location	2021 Sample Dates
Union Valley	R-6H	Bac-7-UVR	At Fashoda Beach	6/22, 6/29, 7/6, 7/13, 7/20
(swim areas)	R-6F	Bac-10-UVR	Near Yellowjacket Campground	6/22, 6/29, 7/6, 7/13, 7/20
Other UARP Locations	R-8B	Bac-11-JR	Junction Reservoir, near boat launch	6/22, 6/29, 7/6, 7/13, 7/20
Ice House Reservoir (beach locations)	69 Bac-13-IHR		East of boat launch and picnic area	6/22, 6/29, 7/6, 7/13, 7/20
Other UARP locations	R-11C	Bac-15-SCR	Slab Creek Reservoir, near boat launch	6/22, 6/29, 7/6, 7/13, 7/20

Table 4-6. Metals Bioaccumulation Sampling Locations and Dates for SMUD Upper American River Project Reservoir Sites.

Reservoir	SMUD Site Name	Site ID	Locations ¹	2021 Sample Dates
Loon Lake Reservoir	80	M-1-LL	Various	8/2
Gerle Creek Reservoir	81	M-1-GCR	Various	8/5
Union Valley Reservoir	82	M-1-UVR	Various	8/5, 8/17
Ice House Reservoir	83	M-1-IHR	Various	8/29
Camino Reservoir	84	M-1-CR	Various	8/3
Slab Creek Reservoir	85	M-1-SCR	Various	8/4

¹ Electrofishing and gill-net placement locations are described in Appendix H.

5.0 METHODS

5.1 IN SITU PARAMETERS

A multi-probe Sonde (Yellow Springs Instruments [YSI] EXO2 [winter, spring, and fall sampling events] or YSI ProDSS [summer sampling event]) was used for measurement of *in situ* water quality parameters, including water temperature, conductivity, dissolved oxygen, pH, and turbidity (Table 5-1).

Table 5-1. In situ Water Quality Parameters and Measurement Methods.

Parameter	Method	Units	Reporting Resolution
Water temperature	EPA 170.1	degrees Celsius (°C)	0.1
Conductivity	SM 2510-B	microsiemens per centimeter (uS/cm)	1.0
Dissolved oxygen	SM 4500-O(G)	milligrams per liter (mg/L)	0.1
рН	SM 4500-H	standard unit of pH (s.u.)	0.1
Turbidity	SM 2130B	Nephelometric Turbidity Unit (NTU)	0.1
Secchi depth (Secchi disk)	USGS	meter (m)	0.1

EPA = U.S. Environmental Protection Agency

SM = Standard Method

USGS = United States Geological Survey

Reservoir *in situ* water quality monitoring was conducted by watercraft to access midreservoir areas (Figure 5-1). At each reservoir site, a vertical water column profile was collected for all *in situ* water quality parameters at one-meter depth intervals. For bottom water samples, the Sonde was drawn back 0.5 meter (m) from the sediment layer before taking a reading. Prior to taking each reading, the Sonde was allowed to stabilize (typically requiring no more than 90 seconds to two minutes, as needed). Water transparency was measured at reservoir stations with a standard 7.9-inch-diameter Secchi disk.

Figure 5-1. Example of mid-reservoir *in situ* water quality sampling site (R-IS-1-LL) at Loon Lake Reservoir.

At riverine sites, Sonde readings were obtained where sufficient stream turbulence provided good lateral and vertical mixing of the water, and as near as possible to the stream thalweg (Figure 5-2). Prior to taking each reading, the Sonde was allowed to stabilize (typically requiring no more than 90 seconds to two minutes, as needed) such that there was little variability in parameter readings at each location.

Figure 5-2. Example of an *in situ* water quality sampling site (IS-16-SFAR) on the South Fork American River downstream of Camino Powerhouse.

For both reservoir and riverine *in situ* monitoring, Sonde calibration was conducted prior to the start of each sampling day, and a post-sampling calibration check was conducted following each sampling day, using standard solutions and recorded on calibration logs (Appendix F). Comparisons between post-sampling and post-calibration values were made and Measurement Quality Objective (MQO) codes (Accept, Qualify, Reject) were assigned to each parameter. MQO criteria for each *in situ* parameter are provided in Table 5-2.

Other data gathered at each monitoring station included date, time, site name, sampling location, collector's name, weather conditions, and any other pertinent observations related to the monitoring station. Following each field event, data were added to a

database template provided by SMUD, for eventual transfer into SMUD's master database. All *in situ* water quality sampling was conducted in compliance with the approved Plan (SMUD 2021a).

Measurement Quality Objectives (MQO)							
Parameter	Units	Accept	Qualify	Reject			
Dissolved Oxygen	% Saturation	≤ 5%	> 5% and ≤ 10%	> 10%			
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%			
pН	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5			
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%			

Table 5-2. Measurement Quality Objectives Criteria for *In situ* Parameters.

NTU = Nephelometric Turbidity Unit s.u. = standard unit of pH

uS/cm = microsiemens per centimeter

5.2 BACTERIA

Bacteria grab samples were collected near reservoir shorelines in shallow water, and in particular at swim areas/beach locations (Table 4-5, Figure 5-3). Samples were collected in sterilized bottles supplied by the analytical laboratory. Field sampling personnel wearing sterile gloves filled each sample bottle by direct immersion in the reservoir. Immediately after collection, samples were placed on ice for transport to the analytical laboratory within the required field hold time (Table 5-3).

Figure 5-3. Example of a bacteria sampling site in Junction Reservoir (Site Bac-13-JR).

Analyte	Method	Units	MDL	Hold Time
Escherichia coli	SM9223B (Quantitray)	MPN/100 mL	1.0	8 hr
Fecal coliform	SM9221E (MPN 15 or 25)	MPN/100 mL	1.8	8 hr

Table 5-3, Bacteria	Analytical Metho	ods and Field	Hold Times

hr = hour

MDL = method detection limit

mL = milliliter

MPN = most probable number

SM = Standard Method

Field-based Quality Assurance/Quality Control (QA/QC) for bacterial samples was assured by accurate and thoroughly completed sample labels, field sheets, chain of custody, and sample log forms (Appendix G). Sample labels included sample identification code, date, time, preservative, client name, collector's name, reservoir name, sampling location, and analysis/sample type. All sample labels were cross-checked by a second field technician before delivering samples to the analytical laboratory.

5.3 METALS BIOACCUMULATION

Fish tissue samples were collected by Moss Landing Marine Laboratory (MLML) Marine Pollution Studies Lab (MPSL) on August 3–5 and 17, 2021 and analyzed at MPSL in Moss Landing, in accordance with protocols of the SWRCB Surface Water Ambient Monitoring Program (SWAMP). Fish collection was conducted by boat using hook and line, gill netting, and electrofishing. Target species included brown trout (*Salmo trutta*), black bass (*Micropterus* spp.), rainbow trout (*Oncorhynchus mykiss*), and Sacramento pikeminnow (*Ptychocheilus grandis*) (Table 5-4). An attempt was made to collect a minimum of three individuals per species. Field collection methods are provided in Appendix H.

Physical characteristics were recorded for each individual fish, including: weight, total length (TL), fork length (FL), and presence of any abnormalities. Each fish was individually tagged, wrapped in aluminum foil, placed in a labeled zipper-closure bag, and stored on dry ice for the duration of the trip. At the analytical laboratory, samples were stored in an ultra-cold freezer at -20 °C until they were processed for analysis.

Fish tissue samples were analyzed in accordance with the *General Protocol for Sport Fish Sampling and Analysis* (CEPA 2005) and with methods comparable to those used at the MPSL. Fish were dissected following MPSL-105 (MPSL 2021a). Metals samples (copper, lead, and silver) were digested using EPA 3052 (EPA 1996, MPSL 2021b), and analyzed using EPA 200.8 (EPA 1994, MPSL 2021c). Mercury samples were analyzed using EPA 7473 (EPA 2007, 2022).

Method detection limits (MDLs) and method reporting limits (MRLs) are shown in Table 5-5 and Appendix I. In August 2017, the U.S. Environmental Protection Agency (EPA) altered the approach for determining MDLs and MRLs (40 CFR Part 136, Revision 2), resulting in different MDLs and MRLs for 2021 fish tissue analyses of mercury, copper, lead, and silver compared with those used for 2016 fish tissue analyses and indicated in the Plan (SMUD 2017, SMUD 2021a) (Table 5-5). The MDL and MRL for mercury in 2021 fish tissue analyses were each less than the corresponding limit used in 2016 and indicated in the Plan, while the MDLs and MRLs for copper, lead, and silver were higher in 2021 than in 2016.

Table 5-4. Target Fish Species,	Size Ranges,	and Numbers by	Location for Metals
Bioaccumulation Sampling.			

Reservoir (Site Name)	Species Common Name	FL (range, in mm)	Number of Fish Collected
Loon Lake Reservoir (M-1-LL)	Rainbow Trout	179	1
Gerle Creek Reservoir	Rainbow Trout	174	1
(M-1-GCR)	Brown Trout	208–332	11
	Brown Trout	501	1
Union Valley Reservoir	Lake Trout	407	1
(M-1-UVR)	Rainbow Trout	313–414	16
	Spotted bass	172–360	10
Ice House Reservoir (M-1-IHR)	Rainbow Trout	214–355	4
Camino Reservoir	Brown Trout	182–320	6
(M-1-CR)	Rainbow Trout	139–252	6
	Brown Trout	360	1
Slab Creek Reservoir (M-1-SCR)	Rainbow Trout	342	1
	Sacramento Pikeminnow	376–440	9

FL = Fork Length

mm = millimeter

Table 5-5. Metals, Method Detection and Reporting Limits for Fish Tissue Analyses, 2016 and 2021.

		MDL (ug/g ww)		MRL (ug/g ww)		MDL (ug/g dw)		MRL (ug/g dw)	
Metal	Method	2016 ¹	2021						
Mercury	EPA 7473 ²	0.004	0.003	0.012	0.010	0.016	0.012	0.047	0.039
Copper	EPA 220.8 ³	0.06	0.36	0.20	1.07	0.34	1.34	1.00	4.02
Lead	EPA 220.8 ³	0.002	0.02	0.005	0.05	0.01	0.07	0.03	0.20
Silver	EPA 220.8 ³	0.003	0.02	0.01	0.07	0.02	0.09	0.06	0.27

dw = dry weight

EPA = U.S. Environmental Protection Agency

MDL = method detection limit

MRL = method reporting limit

ug/g = microgram per gram

ww = wet weight

¹ From the Water Quality Monitoring Plan (Revision 3) (SMUD 2021a)

² Total mercury is a proxy for methylmercury in fish (Weiner *et al.* 2007).

³ Digestion and analysis of total copper, total lead, and total silver.

6.0 RESULTS

6.1. IN SITU PARAMETERS

6.1.1. <u>Riverine Sites</u>

Detailed *in situ* water quality dates and measurements for UARP riverine sites can be found in Table 6-1. Field data sheets for the February (Winter) sampling event are provided in Appendix E. Field data for the April (Spring), August (Summer), and November (Fall) surveys were recorded on a field tablet using ArcGIS Survey123 software; these data records are also provided in Appendix E. Several riverine sites were not sampled during the 2021 February (Winter), April (Spring), and November (Fall) sampling events due to safety issues associated with snow accumulation or restricted access (Table 4-4).

February (Winter) In situ Water Quality Sampling Event

During the February sampling event, water temperatures ranged from 3.1 to 7.5 degrees Celsius (°C) and were variable by site. Riverine dissolved oxygen ranged from 10.9 to 12.2 milligrams per liter (mg/L) (83 to 100% saturation), with no measurements falling below the Basin Plan minimum concentration of 7.0 mg/L for cold freshwater habitat (COLD) and spawning, reproduction, and/or early development (SPWN) designated beneficial uses (CRWQCB 2018). pH at riverine sites ranged from 6.8 to 7.6 standard units (s.u.), with no measurements falling below the Basin Plan instantaneous minimum pH objective (6.5 s.u.) and no exceedances of the instantaneous maximum objective (8.5 s.u.) (Table 6-1).

Typical of granitic watersheds, conductivity at the riverine sites was low, ranging from 7 to 42 microsiemens per centimeter (uS/cm) (Table 6-1).

Turbidity measurements during the January sampling event were low, ranging from 0.4 to 0.8 Nephelometric Turbidity Units (NTUs) (Table 6-1).

April (Spring) In situ Water Quality Sampling Event

During the April sampling event, water temperatures (5.0 to 14.6°C) exhibited a greater range and were generally higher than temperatures measured during the winter sampling event. Dissolved oxygen ranged from 10.2 to 11.4 mg/L (89 to 100% saturation) across all accessible riverine sites, which is well above the Basin Plan minimum concentration of 7.0 mg/L for COLD and SPWN. pH ranged from 7.0 to 7.6 s.u., with no measurments falling below the Basin Plan instantaneous minimum objective (6.5 s.u.) and no exceedences of the Basin Plan instantaneous maximum objective (8.5 s.u.) (Table 6-1).

Conductivity at the riverine sites was low, ranging from 7 to 30 uS/cm during the May sampling event (Table 6-1).

Turbidity measurements were low, ranging from 0.1 to 0.9 NTU (Table 6-1).

August (Summer) In situ Water Quality Sampling Event

During the August sampling event, water temperatures ranged from 8.5 to 23.3°C and were variable by site. Riverine dissolved oxygen during the August sampling event ranged from 7.0 to 11.2 mg/L (80 to 104% saturation), with zero measurements falling below the Basin Plan minimum concentration of 7.0 mg/L for COLD and SPWN. pH ranged from 6.4 to 8.1 s.u., with one measurement falling below the Basin Plan instantaneous minimum (6.5 s.u.) and no exceedences of the instantaneous maximum objective (8.5 s.u.). Measured pH below the Basin Plan instantaneous minimum objective occurred at Site IS-4-GC (6.4 s.u.) (Table 6-1).

Conductivity at the riverine sites was low, ranging from 7 to 56 uS/cm in August (Table 6-1).

During the August sampling event, turbidity measurements were low, ranging from 0.0 to 0.9 NTU (Table 6-1).

November (Fall) In situ Water Quality Sampling Event

Water temperatures during the November sampling event ranged from 3.6 to 11.1° C. Riverine dissolved oxygen ranged from 9.7 to 11.5 mg/L (80 to 96% saturation), with no measurements falling below the Basin Plan instantaneous minimum concentration of 7.0 mg/L for COLD and SPWN. Riverine pH ranged from 5.4 to 7.5 s.u. with six measurements falling below the Basin Plan instantaneous minimum pH objective (6.5 s.u.) and no exceedances of the instantaneous maximum objective (8.5 s.u). Measured pH below the Basin Plan intantaneous minimum occurred at sites IS-4-GC (5.4 s.u.), IS-6-GC (6.4 s.u.), IS-9-GCC (6.4 s.u.), IS-12-SC (6.4 s.u.) and IS-17-BC (6.4 s.u.) (Table 6-1).

Conductivity at the riverine sites was low, ranging from 7 to 48 uS/cm during the November sampling event (Table 6-1).

Turbidity at riverine sites was low, ranging from 0.1 to 3.3 NTU. Only two sites (IS-17-BC and IS-19-SFAR) exhibited turbidity greater than 1.0 NTU (Table 6-1).

	2021			Dissolved	Dissolved		
	Sample	Water	рН	Oxygen	Oxygen	Conductivity	
Site ID	Date	Temperature (°C)	(s.u.)	(mg/L)	(% sat)	(uS/cm)	Turbidity (NTU)
			-	Winter		-	
IS-1-RR							
IS-2-LRR							
IS-3-LRR							
IS-4-GC							
IS-5-GC							
IS-6-GC							
IS-7-SFRR							
IS-8-SFRR							
IS-9-GCC							
IS-10-SFSC	2/11	3.6	7.1	10.9	83	7	0.7
IS-11-SFSC	2/11	3.1	7.2	11.8	88	10	0.4
IS-12-SC	2/11	3.1	6.8	11.5	86	9	0.8
IS-13-SC	2/11	5.1	7.0	11.9	93	11	0.5
IS-14-SC	2/11	6.0	7.3	11.7	94	16	0.4
IS-15-SFAR	2/10	5.9	7.6	12.1	97	42	0.7
IS-16-SFAR	2/10	5.7	7.1	11.5	91	28	0.7
IS-17-BC							
IS-18-SFAR	2/10	7.5	7.6	12.0	100	36	0.6
IS-19-SFAR	2/10	5.3	7.3	12.2	97	24	0.8
				Spring			
IS-1-RR							
IS-2-LRR							
IS-3-LRR							
IS-4-GC							
IS-5-GC							
IS-6-GC	4/27	5.0	7.1	11.4	90	7	0.3
IS-7-SFRR							
IS-8-SFRR							
IS-9-GCC	4/27	6.1	7.0	11.3	91	8	0.1
IS-10-SFSC	4/27	6.4	7.0	11.0	89	7	0.4
IS-11-SFSC	4/27	9.7	7.3	10.5	93	12	0.3
IS-12-SC	4/27	7.4	7.3	11.0	91	10	0.3

Table 6-1. In situ Water Quality for UARP Riverine Sites.

June 2022 Water Quality Monitoring Report

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

	2021			Dissolved	Dissolved		
	Sample	Water	рН	Oxygen	Oxygen	Conductivity	
Site ID	Date	Temperature (°C)	(s.u.)	(mg/L)	(% sat)	(uS/cm)	Turbidity (NTU)
IS-13-SC	4/27	9.9	7.4	11.1	98	12	0.4
IS-14-SC	4/27	9.2	7.4	11.3	98	13	0.2
IS-15-SFAR	4/28	10.6	7.4	10.8	97	30	0.5
IS-16-SFAR	4/28	11.5	7.4	10.9	100	25	0.5
IS-17-BC	4/28	8.3	7.3	10.9	93	16	0.4
IS-18-SFAR	4/28	14.6	7.6	10.2	100	30	0.9
IS-19-SFAR	4/28	10.9	7.3	10.8	98	24	0.5
	•		9	Summer			
IS-1-RR	8/11	20.8	6.9	7.7	86	16	0.1
IS-2-LRR	8/11	23.3	7.0	7.0	82	17	0.0
IS-3-LRR	8/11	21.9	6.8	7.0	80	11	0.0
IS-4-GC	8/9	11.1	6.4	8.9	81	7	0.1
IS-5-GC	8/9	14.8	6.8	8.5	84	11	0.0
IS-6-GC	8/9	15.5	6.8	8.3	83	12	0.1
IS-7-SFRR	8/9	16.0	7.2	8.3	85	14	0.0
IS-8-SFRR	8/9	15.8	7.1	8.5	86	14	0.1
IS-9-GCC	8/9	20.2	7.2	8.0	88	15	0.1
IS-10-SFSC	8/9	8.5	6.8	9.9	84	8	0.1
IS-11-SFSC	8/9	22.2	7.3	7.6	87	13	0.0
IS-12-SC	8/9	11.3	6.9	9.4	86	10	0.1
IS-13-SC	8/9	18.1	7.2	8.6	91	14	0.1
IS-14-SC	8/9	12.9	7.2	9.9	94	11	0.0
IS-15-SFAR	8/10	22.5	8.1	9.0	104	56	0.0
IS-16-SFAR	8/10	9.7	6.7	11.2	99	11	0.0
IS-17-BC	8/10	13.1	7.1	9.6	92	19	0.9
IS-18-SFAR	8/10	18.0	7.3	9.5	100	20	0.2
IS-19-SFAR	8/9	13.5	7.3	10.0	95	15	0.1
				Fall			
IS-1-RR			-				
IS-2-LRR			-				
IS-3-LRR							
IS-4-GC	11/16	7.8	5.4	9.7	82	7	0.4
IS-5-GC	11/16	6.3	6.4	10.4	84	13	0.2
IS-6-GC	11/16	8.2	6.4	10.0	84	7	0.3

June 2022 Water Quality Monitoring Report

	2021 Sample	Water	рН	Dissolved Oxvgen	Dissolved Oxvgen	Conductivity	
Site ID	Date	Temperature (°C)	(s.u.)	(mg/L)	(% sat)	(uS/cm)	Turbidity (NTU)
IS-7-SFRR	11/16	6.4	6.7	10.4	85	13	0.1
IS-8-SFRR	11/16	7.0	6.6	10.3	85	11	0.2
IS-9-GCC	11/16	8.3	6.4	10.2	86	8	0.3
IS-10-SFSC	11/16	8.7	6.6	10.0	86	12	0.8
IS-11-SFSC	11/18	3.6	6.8	11.5	87	12	0.3
IS-12-SC	11/18	4.8	6.4	10.3	80	11	0.5
IS-13-SC	11/18	7.6	6.7	10.9	91	14	0.3
IS-14-SC	11/18	8.1	7.2	11.0	93	20	0.2
IS-15-SFAR	11/18	7.1	6.8	11.5	95	46	0.7
IS-16-SFAR	11/18	8.0	6.6	11.0	93	36	0.6
IS-17-BC	11/18	11.1	6.4	9.9	90	20	3.3
IS-18-SFAR	11/19	10.0	7.5	10.0	96	48	0.7
IS-19-SFAR	11/19	9.4	7.3	10.4	90	43	1.3

= degrees Celsius °C

s.u. = standard unit of pH

mg/L = milligrams per liter

% sat = percent saturation

uS/cm = microsiemens per centimeter

NTU = Nephelometric Turbidity Unit "-" Indicates that data were not collected due to site inaccessibility. See Table 4-4.

6.1.2. <u>Reservoir Sites</u>

In situ water quality data for selected UARP reservoir sites are presented in Figures 6-1 and 6-2 as representative of vertical profiles at other similar sites. Data for all sites are presented in Appendices A and B. As noted in Section 5, *in situ* water quality parameters were collected as part of Spring and Fall *in situ* sampling events in 2021, consistent with the Plan (SMUD 2021a). One sampling location at Union Valley Reservoir, Site R-IS-5-UVR, could not be sampled during the fall sampling event due to low water surface elevation (Table 4-4).

May (Spring) In situ Water Quality Sampling Event

During the May (Spring) sampling event, reservoir water temperatures ranged from approximately 11 to 18°C in surface waters to 6 to 14°C in bottom waters (Figure 6-1 and Appendix B, Figures B-1 through B-8). The onset of thermal stratification was apparent in all UARP reservoirs. In Loon Lake, surface water temperatures at the more shallow Site R-IS-1-LL were consistent from the surface to approximately 7 m, at which point temperatures decreased by approximately 2°C in the bottom waters. A small thermocline (i.e., a temperature change of more than 1°C per 1.0 m of depth) was located at 11 m at the deeper Site R-IS-2-LL, and at Site R-IS-3-LL water temperatures decreased by 1°C between the surface and bottom waters (Appendix B, Figures B-1 and B-2). Gerle Creek Reservoir exhibited a thermocline near the surface between 1 and 2 m, beneath which water temperature decreased gradually with depth (Appendix B, Figure B-2). The deep Union Valley Reservoir exhibited a thermocline ranging from 5 to 20 m depending on the site (Figure 6-1 and Appendix B, Figures B-3 and B-4). The thermocline was most clearly defined between 7 and 15 m at the deep Site R-IS-8-UVR nearest the dam (Appendix B, Figure B-4), with vertical temperature differences extending closer to the reservoir bottom at the other three more shallow sites. In Ice House Reservoir, the thermocline was located between 6 and 14 m at the deep Site R-IS-11-IHR nearest the dam. The more shallow Site R-IS-9-IHR exhibited a gradual and fairly consistent decline in temperature with depth, whereas the shallow Site R-IS-10-IHR exhibited a thermocline at approximately 6 m (Figure 6-1 and Appendix B, Figures B-5 and B-6). In Junction Reservoir, surface warming was apparent, along with a more gradual decrease in water temperatures and a developing thermocline between 4 and 5 m (Appendix B, Figure B-6). In Camino Reservoir, water temperature decreased gradually between the surface and 4 m, with a slightly greater decrease in temperature near the bottom between 4 and 5 m (Appendix B, Figure B-7). In Slab Creek Reservoir, the thermocline was located between 3 and 5 m, although temperatures continued to decrease gradually at depths below this point (Appendix B, Figures B-7 and B-8).

In Union Valley, Ice House, and Gerle Creek reservoirs, dissolved oxygen concentrations increased slightly (0.3 to 1.4 mg/L) within the thermoclines before decreasing gradually with depth (Appendix B, Figures B-2 through B-4 and B-6). Dissolved oxygen concentrations in Loon Lake, Junction, Camino, and Slab Creek reservoirs were generally consistent with depth. Dissolved oxygen concentrations were

above 7.7 mg/L at all reservoir sites during the May (Spring) sampling event, which is greater than the Basin Plan instantaneous minimum concentration of 7.0 mg/L for COLD and SPAWN designated beneficial uses. pH values generally showed little variation among reservoirs and with depth, ranging from 5.6 to 7.6 s.u (Appendix A, Table A-1). pH values at R-IS-8-UVR decreased slightly (0.7 s.u.) within the thermocline before stabilizing with depth (Appendix B, Figure B-4). Ten sites (R-IS-1-LL, R-IS-2-LL, R-IS-3-LL, R-IS-4-GC, R-IS-6-UVR, R-IS-7-UVR, R-IS-8-UVR, R-IS-9-IHR, R-IS-11-IHR, and R-IS-12-JR) exhibited pH values that fell below the Basin Plan instantaneous minimum pH objective (6.5 s.u.). There were no exceedances of the instantaneous maximum pH objective (8.5 s.u). Turbidity levels were very low and were generally consistent with depth (less than or equal to 0.8 NTU) across all reservoir monitoring sites (Appendix A, Table A-1).

Figure 6-1. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Union Valley Reservoir and Ice House Reservoir sites R-IS-8-UVR (top) and R-IS-11-IHR (bottom) during May (Spring) 2021.

October (Fall) In situ Sampling Event

During the October (Fall) sampling event, surface water temperatures across all reservoir sites ranged from approximately 10 to 15°C and bottom water temperatures ranged from 8 to 15°C. Most sites exhibited little to no variation in water temperature with depth, indicating that the reservoirs were generally well mixed (Figure 6-2 and Appendix B, Figures B-9 through B-11 and B-13 through B-15). Thermal stratification was observed at Union Valley Reservoir, Ice House Reservoir, and Slab Creek Reservoir at sites R-IS-8-UVR, R-IS-9-IHR, R-IS-11-IHR, and R-IS-14-SC, where thermoclines were located at depths of 26 m, 17 m, 17 m, and 2 m from the surface, respectively (Figure 6-2 and Appendix B, Figures B, Figures B-12, B-13, and B-15).

Dissolved oxygen, pH, and turbidity at all reservoir sites were generally consistent with depth: exceptions occured at sites R-IS-8-UVR. R-IS-9-IHR. R-IS-11-IHR. and. R-IS-14-SC. At sites R-IS-8-UVR and R-IS-11-IHR, dissolved oxygen concentrations and pH decreased along with decreases in water temperature within the thermoclines (Appendix B, Figures B-12 and B-13). Dissolved oxygen concentrations increased slightly (1.5 mg/L) within the thermocline at Site R-IS-14-SC (Appendix B, Figure B-15). At Site R-IS-9-IHR, dissolved oxygen concentrations showed a dramatic decrease below the thermocline, decreasing from 5.9 to 0.6 mg/L, the lowest concentration across all sites (Appendix A, Table A-2), while pH decreased from 5.9 to 5.4 s.u. and turbidity increased from 0.4 to 1.5 NTU within this zone (Appendix B, Figure B-12). Dissolved oxygen concentrations fell below the Basin Plan instantaneous minimum concentration of 7.0 ma/L for COLD and SPAWN designated uses below the thermoclines of sites R-IS-8-UVR, R-IS-9-IHR, and R-IS-11-IHR (Appendix B, Figures B-12 and B-13). Loon Lake (Site R-IS-1-LL), Union Valley Reservoir (Site R-IS-8-UVR), Ice House Reservoir (sites R-IS-9-IHR, R-IS-10-IHR, and R-IS-11-IHR), Junction Reservoir (Site R-IS-12-JR), Camino Reservoir (Site R-IS-13-CR), and Slab Creek Reservoir (Site R-IS-15-SC) all exhibited values below the Basin Plan instantaneous minimum pH objective (6.5 s.u.), either throughout the water column or in the deeper portions of the water column (Appendix B, Figures B-9 and B-11 through B-15). There were no exceedences of the instantaneous maximim pH objective (8.5 s.u.). Turbidity levels were low (less than or equal to 2.0 NTU) (Appendix A, Table A-2).

Figure 6-2. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Loon Lake Reservoir and Union Valley Reservoir sites R-IS-1-LL (top) and R-IS-8-UVR (bottom) during October (Fall) 2021.

6.2. BACTERIA

Instantaneous fecal coliform counts ranged from less than the MDL (i.e., 1.8 most probable number per 100 milliliters [MPN/100 mL]) to greater than 1,600 MPN/100 mL during the 2021 Independence Day sampling event (Appendix C, Table C-1). Only one of the samples exceeded the 2018 Basin Plan instantaneous maximum objective of 400 MPN/100 mL (CRWQCB 2018), which was cited in the Plan and used for comparisons in prior monitoring years. The fifth sample at Site Bac-15-SCR during the Independence Day sampling event exhibited an instantaneous fecal coliform count greater than the maximum allowable count for a 15-tube laboratory analytical test (1,600 MPN/100 mL). During collection of the fifth sample at Site Bac-15-SCR, a large amount of avian fecal matter was observed near the shoreline. The instantaneous fecal coliform count for the fifth sample event at Site Bac-15-SCR was treated as double the maximum allowable count (3,200 MPN/100 mL) for the calculation of the geometric mean at this site. Although not precisely known, the relatively higher count for this sampling event is unlikely to have resulted in a geometric mean value that exceeded the 2018 Basin Plan objective (200 MPN/100 mL) for Site Bac-15-SCR because the required sample result associated with a geometric mean exceedance of 200 MPN/100 mL would be at least 4.4 x 10¹⁰ MPN/100 mL, a value which is eight orders of magnitude greater than any fecal coliform sample reported at a UARP site.

Fecal coliform geometric mean counts in 2021 were well below the 2018 Basin Plan objective of 200 MPN/100 mL for REC-1 designated beneficial use (CRWQCB 2018). The lowest fecal coliform geometric mean count (0.9 MPN/100 mL) was calculated for samples from Union Valley Reservoir (Site Bac-10-UVR), and the highest fecal coliform geometric mean count (50.0 MPN/100 mL) was calculated for samples from Junction Reservoir (Site Bac-11-JR) (Table 6-2).

Instantaneous *Escherichia coli* (*E. coli*) counts ranged from less than the MDL (i.e., <1.0 MPN/100 mL) to 195.6 MPN/100 mL during the 2021 Independence Day sampling event (Appendix C, Table C-1). The fifth sample at Site Bac-15-SCR during the Independence Day sampling event, which exhibited an elevated instantaneous fecal coliform count (>1,600 MPN/100 mL) and was associated with proximal avian fecal matter, did not exhibit elevated E. coli counts (Appendix C, Table C-1). There is no 2018 Basin Plan instantaneous objective for E. coli.

The lowest *E. coli* geometric mean count (0.9 MPN/100 mL) was calculated for samples from Union Valley Reservoir (Site Bac-10-UVR), and the highest *E. coli* geometric mean count (25.3 MPN/100 mL) was calculated for samples from Junction Reservoir (Site Bac-11-JR) (Table 6-2). There is no 2018 Basin Plan geometric mean objective for *E. coli*.

Site ID	Fecal Coliform Geometric Mean ^{1,2}	<i>E. coli</i> Geometric Mean ¹						
Bac-7-UVR	1.0	1.6						
Bac-10-UVR	0.9	0.9						
Bac-11-JR	50.0	25.3						
Bac-13-IHR	3.3	1.7						
Bac-15-SCR	7.5	2.6						

Table 6-2. Bacteria Counts for UARP Reservoir Sites.

MPN/100 mL = most probable number per 100 milliliters

-- = not sampled in 2021

¹ Method detection limit (MDL for fecal coliform = 1.8 MPN/100 mL. MDL for *E. coli* = 1.0 MPN/100 mL). Individual results less than the MDL were treated as 0.5 x MDL for the geometric mean calculations. Individual results greater than 1,600 MPN/100 mL (maximum allowable count for a 15-tube laboratory analytical test) were treated as 2.0 x 1,600 for the geometric mean calculations.

² The 2018 Basin Plan REC-1 water quality objectives for fecal coliform are 200 MPN/100 mL expressed as the geometric mean of five samples collected over 30 days, and no more than ten percent of the total number of samples collected during any 30-day period shall exceed 400 MPN/100 mL (CRWQCB 2018).

6.3. METALS BIOACCUMULATION

Metals bioaccumulation data for UARP reservoirs are presented in Table 6-3, Figure 6-3, and Appendix D. Results for mercury were compared with the Office of Environmental Health Hazard Assessment's (OEHHA's) methylmercury Advisory Tissue Level (ATL) of 0.07 ug/g wet weight and ATL of 0.44 ug/g wet weight¹ (Klasing and Brodberg 2008), where total mercury is a surrogate for methylmercury in fish tissue (Weiner et al. 2007). OEHHA's ATLs are California's current screening values for determining the potential impairment of a body of water due to the presence of pollutants in sport fish tissue (Davis et al. 2009). Results for mercury were also compared with the SWRCB Sport Fish Water Quality Objective (SFWQO) of 0.20 ug/g methylmercury wet weight. The SWRCB Water Quality Objectives were established for the reasonable protection of people and wildlife that consume fish and these objectives apply to all the inland surface waters, enclosed bays, and estuaries of the State that have applicable beneficial uses (SWRCB 2017). There are no existing advisory levels for copper, lead, or silver.

6.3.1. Loon Lake Reservoir

One individual of one fish species (rainbow trout) was collected from Loon Lake Reservoir. The rainbow trout fish tissue sample from Loon Lake Reservoir exhibited a total mercury concentration of 0.03 micrograms per gram wet weight (ug/g wet weight), which was below OEHHA's methylmercury ATL of 0.07 ug/g wet weight and ATL of 0.44

¹ OEHHA's methylmercury ATLs include (Klasing and Brodberg 2008): 0.070 ug/g wet weight – OEHHA would begin to consider advising children and women of child-bearing age to limit consumption to two meals or fewer per week; and 0.44 ug/g wet weight – OEHHA may recommend no consumption by children and women of child-bearing age.

ug/g wet weight, as well as the SFWQO of 0.20 ug/g methylmercury wet weight (Table 6-3, Figure 6-3).

Copper, lead, and silver concentrations were below the MDLs for all fish sampled (Table 6-3).

6.3.2. Gerle Creek Reservoir

Two fish species (rainbow trout [n=1] and brown trout [n=11]) were collected from Gerle Creek Reservoir. Fish tissue samples exhibited total mercury concentrations ranging 0.04–0.16 ug/g wet weight. Brown trout exhibited a higher average total mercury concentration (0.09 ug/g wet weight) than rainbow trout (0.04 ug/g wet weight) (Table 6-3). Half of the samples collected from brown trout exhibited total mercury concentrations greater than OEHHA's ATL of 0.07 ug/g methylmercury wet weight. No samples were greater than OEHHA's ATL of 0.44 ug/g methylmercury wet weight (Figure 6-3, Appendix D, Table D-1).

Copper, lead, and silver concentrations were below the MDLs for all fish sampled (Table 6-3).

6.3.3. Union Valley Reservoir

Four fish species (brown trout [n=1], lake trout [*Salvelinus namaycush*; n=1], rainbow trout [n=16], and spotted bass [*Micropterus punctulatus*; n=10]) were collected from Union Valley Reservoir. Fish tissue samples exhibited total mercury concentrations ranging 0.01–0.85 ug/g wet weight. The highest average total mercury concentration across species belonged to spotted bass (0.18 ug/g wet weight) (Table 6-3). Just over one third of samples, including all eight spotted bass samples, one lake trout sample, and one brown trout sample, exhibited total mercury concentrations greater than OEHHA's ATL of 0.07 ug/g methylmercury wet weight. One spotted bass sample was greater than the SFWQO of 0.20 ug/g methylmercury wet weight and OEHHA's ATL of 0.44 ug/g methylmercury wet weight, exhibiting a tissue concentration of 0.85 ug/g methylmercury wet weight (Figure 6-3, Appendix D, Table D-1).

Copper, lead, and silver concentrations were below the MDLs for all fish sampled (Table 6-3).

6.3.4. <u>Ice House Reservoir</u>

One fish species (rainbow trout [n=4]) was collected from Ice House Reservoir. Fish tissue samples exhibited total mercury concentrations ranging 0.01–0.03 ug/g wet weight, and the average total mercury concentration was 0.02 ug/g wet weight (Table 6-3). No tissue samples were above the SFWQO of 0.20 ug/g methylmercury wet

weight, OEHHA's ATL of 0.07 ug/g methylmercury wet weight, or OEHHA's ATL of 0.44 ug/g methylmercury wet weight (Figure 6-3, Appendix D, Table D-1).

Copper, lead, and silver concentrations were below the MDLs for all fish sampled (Table 6-3).

6.3.5. Camino Reservoir

Two fish species (brown trout [n=6] and rainbow trout [n=6]) were collected from Camino Reservoir. Fish tissue samples exhibited total mercury concentrations ranging 0.02–0.07 ug/g wet weight. Brown trout had a slightly higher average total mercury concentration (0.04 ug/g wet weight) than rainbow trout (0.03 ug/g wet weight) (Table 6-3). No tissue samples were above the SFWQO of 0.20 ug/g methylmercury wet weight, OEHHA's ATL of 0.07 ug/g methylmercury wet weight, or OEHHA's ATL of 0.44 ug/g methylmercury wet weight (Figure 6-3, Appendix D, Table D-1).

Copper, lead, and silver concentrations were below the MDLs for nearly all fish sampled. One rainbow trout exhibited a lead concentration of 0.02 ug/g (Table 6-3).

6.3.6. Slab Creek Reservoir

Three fish species (brown trout [n=1], rainbow trout [n=1], and Sacramento pikeminnow [n=9]) were collected from Slab Creek Reservoir. Fish tissue samples exhibited total mercury concentrations ranging 0.07–1.15 ug/g wet weight. Sacramento pikeminnow had the highest average total mercury concentration across species (0.52 ug/g wet weight) (Table 6-3). Just over 90% of samples, including all nine Sacramento pikeminnow samples and the only brown trout sample, exhibited total mercury concentrations greater than OEHHA's ATL of 0.07 ug/g methylmercury wet weight. Four Sacramento pikeminnow samples exhibited total mercury concentrations exceeding OEHHA's ATL of 0.44 ug/g methylmercury wet weight, and eight Sacramento pikeminnow samples exhibited total mercury concentrations exceeding 0.000 of 0.20 ug/g methylmercury wet weight (Figure 6-3, Appendix D, Table D-1).

Copper, lead, and silver concentrations were below the MDLs for all fish sampled (Table 6-3).

6.3.7. Summary

Fish tissue mercury concentrations varied by reservoir and species. Concentrations were higher than the OEHHA ATL of 0.07 ug/g methylmercury wet weight in Gerle Creek, Union Valley, and Slab Creek reservoirs (Figure 6-3). No fish exhibiting methylmercury concentrations greater than 0.07 ug/g wet weight were sampled at Loon Lake, Ice House, or Camino reservoirs (Table 6-3). Every Sacramento pikeminnow and 80% (8 of 10 samples) of spotted bass sampled in 2021 exhibited total mercury

concentrations greater than 0.07 methylmercury ug/g wet weight (Figure 6-3, Appendix D, Table D-1). No rainbow trout exceeded 0.07 ug/g methylmercury wet weight and nearly one third had total mercury concentrations less than the MRL (Figure 6-3). Generally, only the larger brown trout (>250 mm FL, 42% of total) exceeded the ATL of 0.07 ug/g methylmercury wet weight (Appendix D, Table D-1). Four Sacramento pikeminnow from Slab Creek Reservoir and a single spotted bass from Union Valley Reservoir exhibited total mercury concentrations greater than the ATL of 0.44 ug/g methylmercury wet weight (Figure 6-3). Nine fish exceeded the SFWQO of 0.20 ug/g methylmercury wet weight (Figure 6-3).

Copper, lead, and silver concentrations in 2021 were below MDLs for nearly all fish sampled (Table 6-3, Appendix D, Table D-1).

Location	ion Common Samp		Number of Fish	Mercury (Hg (ug/g ww)		g) Copper (Cu)) (ug/g ww)		Lead (Pb) (ug/g ww)		Silver (Ag) (ug/g ww)		
	Name	Date	Sampled	Range		Avg ¹	Range		Rai	nge	Range	
Loon Lake Reservoir (M-1-LL)	Rainbow Trout	8/2	1	0.025	0.025	0.025	<0.36	<0.36	<0.02	<0.02	<0.02	<0.02
Gerle Creek Reservoir (M-1-GCR)	Brown Trout	8/5	11	0.042	0.160	0.088	<0.36	<0.36	<0.02	<0.02	<0.02	<0.02
	Rainbow Trout		1	0.039	0.039	0.039	<0.36	<0.36	<0.02	<0.02	<0.02	<0.02
	Brown Trout	8/5, 8/17	1	0.160	0.160	0.160	<0.36	<0.36	<0.02	<0.02	<0.02	<0.02
Union Vallev	Lake Trout		1	0.120	0.120	0.120	<0.36	<0.36	<0.02	<0.02	<0.02	<0.02
Reservoir (M-1-UVR)	Rainbow Trout		16	0.007	0.023	0.011	<0.36	<0.36	<0.02	<0.02	<0.02	<0.02
(Spotted Bass		10	0.040	0.851	0.177	<0.36	<0.36	<0.02	<0.02	<0.02	<0.02
Ice House Reservoir (M-1-IHR)	Rainbow Trout	8/3	4	0.006	0.032	0.020	<0.36	<0.36	<0.02	<0.02	<0.02	<0.02
Camino	Brown Trout	0/0	6	0.019	0.068	0.038	<0.36	<0.36	<0.02	<0.02	<0.02	<0.02
Reservoir (M-1-CR)	Rainbow Trout	8/3	6	0.015	0.049	0.029	<0.36	<0.36	<0.02	0.02	<0.02	<0.02
	Brown Trout		1	0.071	0.071	0.071	<0.36	<0.36	<0.02	<0.02	<0.02	<0.02
Slab Creek Reservoir	Rainbow Trout	8/4	1	0.069	0.069	0.069	<0.36	<0.36	<0.02	<0.02	<0.02	<0.02
(M-1-SCR)	Sacramento Pikeminnow		9	0.127	1.150	0.521	<0.36	<0.36	<0.02	<0.02	<0.02	<0.02

Table 6-3. Fish Tissue Metals Concentrations in UARP Reservoirs.

ug/g = microgram per gram ww = wet weight

¹ Results less than the method detection limit (MDL) were treated as 0.5 x MDL for the calculation of averages.

Figure 6-3. Fish tissue mercury concentrations in UARP reservoirs, August 2021.

7.0 CONCLUSIONS

Based on 2021 in situ monitoring results, riverine water quality in the UARP study area generally met Basin Plan water guality objectives. There were no instances of dissolved oxygen measured below the Basin Plan instantaneous minimum objective (7.0 mg/L) for COLD and SPWN. There were seven instances of pH measured below the Basin Plan instantaneous minimum objective (6.5 s.u.) (13% of total pH measurements), which was generally similar to what was measured in prior monitoring years (Table 7-1). The occasionally low pH values are likely due to the low buffering capacity characteristic of headwater reaches in granitic watersheds, whereby the relatively low weathering rates of the predominant geology (i.e., granite) result in low alkalinity (<17 mg/L across all sites in 2017; SMUD [2018]) and low hardness (<20 mg/L across all sites in 2017; SMUD [2018]). Low alkalinity and hardness make the waters susceptible to pH decreases when naturally acidic inputs occur, such as snow melt, rainfall, and tannins from surrounding vegetation. Six of the seven instances of pH measured below the Basin Plan instantaneous minimum objective in 2021 occurred during the November (fall) sampling event, which occurred roughly two weeks after an atmospheric river brought historic rainfall to Northern California and a total of 11.5 inches of rain (541% of average) to the city of Placerville during the month of October (CNRFC 2021). The occasionally low pH level measured during the 2015-2021 monitoring period may also represent background conditions for the UARP watershed, particularly in the upper reaches of the study area. There were no instances of pH measured above the Basin Plan instantaneous maximum objective (8.5 s.u.) in 2021. There were no instances of elevated turbidity in 2021, supporting prior statements that elevated turbidity levels measured at low elevation sites during 2015–2017 were a direct result of sediment influx due to vegetation loss from the 2014 King Fire event.

Year	Number of pH Measurements below Basin Plan Objective	Percentage of pH Measurements below Basin Plan Objective
2015	3	8%
2016	30	46%
2017	5	7%
2018	6	9%
2019	2	3%
2020	12	21%
2021	7	13%

Table 7-1. *In situ* pH Measurements below Basin Plan Instantaneous Minimum Objective (6.5 s.u.) for UARP Riverine Sites, 2015–2021.

Reservoir *in situ* water quality in 2021 was also generally good, with occasional dissolved oxygen values during the October (Fall) sampling effort measuring below the Basin Plan instantaneous minimum objective (7 mg/L) for COLD and SPAWN designated beneficial uses in the bottom waters of the larger reservoirs (i.e., Union Valley Reservoir and Ice House Reservoir), a result that is not uncommon for deep waterbodies that have been thermally stratified for several months. There were several

instances of pH measured below the Basin Plan instantaneous minimum objective (6.5 s.u.), which, similar to the riverine pH results, may be due to low buffering capacity characteristic of headwater reaches in granitic watersheds. There were no instances of pH measured above the Basin Plan instantaneous maximum objective (8.5 s.u.). There were no instances of elevated turbidity in 2021.

Sampling results for 2021 indicated no exceedances of the 2018 Basin Plan fecal coliform objective of 200 MPN/100 mL (geometric mean of five samples collected over 30 days), and only one of the 25 samples exceeded the instantaneous maximum Basin Plan objective of 400 MPN/100 mL. The 2021 sampling results from the five sites monitored in 2021 are generally consistent with results reported in the Five-Year Monitoring Summary and the 2020 Water Quality Monitoring Report (SMUD 2020, 2021b).

Metals bioaccumulation sampling indicated that fish tissue mercury concentrations varied by reservoir and species. Fish tissue mercury concentrations were higher than the OEHHA ATL of 0.07 ug/g methylmercury wet weight in Gerle Creek, Union Valley, and Slab Creek reservoirs for 36–92% of samples, or 38% of all samples collected across all reservoirs in 2021 (Table 7-2, Figure 6-3). Four Sacramento pikeminnow from Slab Creek Reservoir and a single spotted bass from Union Valley Reservoir exhibited total mercury concentrations greater than the ATL of 0.44 ug/g methylmercury wet weight. Eight Sacramento pikeminnow from Slab Creek Reservoir and one spotted bass from Union Valley Reservoir exhibited total mercury concentrations greater than the ATL of 0.24 ug/g methylmercury wet weight. Eight Sacramento pikeminnow from Slab Creek Reservoir and one spotted bass from Union Valley Reservoir exhibited total mercury concentrations greater than the SFWQO of 0.20 ug/g methylmercury wet weight (Figure 6-3).

The total proportion of samples and the number of reservoirs with fish tissue samples exceeding the OEHHA ATL of 0.07 methylmercury wet weight slightly decreased and the total proportion of samples exceeding the ATL of 0.44 methylmercury wet weight slightly increased in 2021 compared to 2016 (Table 7-2). However, where sample sizes were greater than one, average mercury concentrations in 2021 were generally within one standard deviation of average mercury concentrations in 2016 (Figure 7-1). Sacramento pikeminnow exhibited the greatest increase in average total mercury concentration in 2021 compared to 2016 (0.52 and 0.25 ug/g methylmercury wet weight, respectively) (Figure 7-1). The increase in average total mercury concentration of Sacramento pikeminnow in 2021 is likely attributable to the larger average size of pikeminnow collected in 2021 (406 mm FL, compared to 289 mm FL in 2016 [SMUD 2017]), which is consistent with mercury bioaccumulation. Further analysis of metals bioaccumulation in fish tissue will be presented in the forthcoming 5-year summary report (2025).

	Samples g 0.07 ug	reater than /g ATL ¹	Samples greater than 0.44 ug/g ATL ¹		
Location	2016 ²	2021	2016 ²	2021	
Loon Lake Reservoir (M-1-LL)	43%	0%	0%	0%	
Gerle Creek Reservoir (M-1-GCR)	29%	50%	0%	0%	
Union Valley Reservoir (M-1-UVR)	45%	36%	3%	4%	
Ice House Reservoir (M-1-IHR)	38%	0%	13%	0%	
Camino Reservoir (M-1-CR)	8%	0%	0%	0%	
Slab Creek Reservoir (M-1-SCR)	67%	92%	7%	36%	
Total	40%	38%	3%	7%	

Table 7-2. Percentage of Fish Tissue Samples Greater Than OEHHA Methylmercury Advisory Tissue Levels.

¹ ATL = Advisory Tissue Level, Office of Environmental Health Hazard Assessment (OEHHA) (Klasing and Brodberg 2008)

² SMUD 2017. Note: The original 2016 calculations incorrectly treated laboratory QC and duplicates as individual samples. The corrected 2016 percentages are presented above and reflect a one to five percentage point increase over the originally reported result.

Copper, lead, and silver concentrations in 2021 were below MDLs for nearly all fish sampled (Table 6-3, Appendix D, Table D-1). Because of this, the concentrations of copper, silver, and lead in 2021 cannot be quantitatively compared to data collected in 2016.

Despite occasional low dissolved oxygen and pH measurements, one instance of elevated instantaneous fecal coliform measurements, and a relatively small number of fish exhibiting total mercury concentrations greater than OEHHA's ATL of 0.44 ug/g methylmercury wet weight and the SFWQO of 0.20 ug/g methylmercury wet weight, 2021 monitoring results indicate that overall, surface waters of the UARP study area consistently support designated beneficial uses, including COLD, SPWN, and REC-1.

Figure 7-1. Average fish tissue mercury concentration in UARP reservoirs, 2016 and 2021. Note: Average values are shown ± one standard deviation.

8.0 LITERATURE CITED

CEPA (California Environmental Protection Agency). 2005. General Protocol for Sport Fish Sampling and Analysis. M. Gassel and R. K. Brodberg. Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency. 11 pp. http://oehha.ca.gov/media/downloads/fish/document/fishsamplingprotocol2005.pdf

CNRFC (California Nevada River Forecast Center). 2021. CNRFC Interactive Map Interface. Retrieved from https://www.cnrfc.noaa.gov/ol.php?product=PPM&zoom=11&lat=38.777&lng=-120.679&COUNTIES=true on December 12, 2021.

CRWQCB (California Regional Water Quality Control Board). 2018. The Water Quality Control Plan (Basin Plan) for the California Regional Water Quality Control Board Central Valley Region. The Sacramento River Basin and The San Joaquin River Basin. Fifth Edition.

Davis, J. A., A. R. Melwani, S. N. Bezalel, J. A. Hunt, G. Ichikawa, A. Bonnema, W. A. Heim, D. Crane, S. Swenson, C. Lamerdin, and M. Stephenson. 2009. Contaminants in Fish from California Lakes and Reservoirs: Technical Report on Year One of a Two-Year Screening Survey. A Report of the Surface Water Ambient Monitoring Program (SWAMP). California State Water Resources Control Board, Sacramento, CA.

EPA (United States Environmental Protection Agency. 1994. USEPA Method 200.8 Rev 5.4: Determination of Trace Elements in Ambient Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry. US Environmental Protection Agency, Washington, DC.

EPA. 1996. USEPA Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices. US Environmental Protection Agency, Washington DC.

EPA. 2007. USEPA Method 7473. Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. US Environmental Protection Agency, Washington DC.

FERC (Federal Energy Regulatory Commission). 2014. Federal Energy Regulatory Commission Order 148 FERC 62,070 Issuing New License for the Sacramento Municipal Utility District Upper American River Hydroelectric Project No. 2101. Issued July 23.

Klasing, S. and R. Brodberg. 2008. Development of Fish Contaminant Goals and Advisory Tissue Levels for Common Contaminants in California Sport Fish: Chloradane, DDTs, Dieldrin, Methylmercury, PCBs, Selenium, and Toxaphene. Pesticide and Environmental Toxicology Branch Office of Environmental Health Hazard Assessment,

California Environmental Protection Agency. Updated ATL Table November, 2017. June.

Marine Pollution Studies Laboratory (MPSL). 2021a. Modifications to EPA 3052. Marine Pollution Studies Laboratory, Moss Landing, CA.

MPSL. 2021b. MPSL-105 Revision 5: Laboratory Preparation of Tissue in Marine and Freshwater Bivalves and Fish for Trace Metal and Synthetic Organic Analysis. Marine Pollution Studies Laboratory, Moss Landing, CA.

MPSL. 2021c. Modifications to EPA 2008. Marine Pollution Studies Laboratory, Moss Landing, CA.

MPSL. 2022. Modifications to EPA 7473. Marine Pollution Studies Laboratory, Moss Landing, CA.

SMUD (Sacramento Municipal Utilities Department). 2015. Water Quality Monitoring Plan. Hydro License Implementation. Upper American River Project, FERC Project No. 2101. May.

SMUD. 2017. Water Quality Monitoring Report (2016). Hydro License Implementation. Upper American River Project, FERC Project No. 2021. June..

SMUD. 2018. Water Quality Monitoring Report (2017). Hydro License Implementation. Upper American River Project, FERC Project No. 2101. June.

SMUD. 2020. Water Quality Monitoring Report (2019) and Five-Year Water Quality Summary (2015 – 2019). Hydro License Implementation. Upper American River Project, FERC Project No. 2101. June.

SMUD. 2021a. Water Quality Monitoring Plan. Revision 3. Hydro License Implementation. Upper American River Project, FERC Project No. 2101. March.

SMUD. 2021b. Water Quality Monitoring Report (2020) Hydro License Implementation. Upper American River Project, FERC Project No. 2101. May.

State Water Resources Control Board (SWRCB). 2017. Final Part 2 of the Water Quality Control Plan for Inland Surface Waters, Enclosed Bays, and Estuaries of California—Tribal and Subsistence Fishing Beneficial Uses and Mercury Provisions. Appendix A. May 2, 2017.

https://www.waterboards.ca.gov/water_issues/programs/mercury/docs/hg_lang_final.pdf

Wiener, J.G., R.A. Bodaly, S.S. Brown, M. Lucotte, M.C. Newman, D.B. Porcella, R.J. Reash, and E.B. Swain. 2007. *Monitoring and evaluating trends in methylmercury accumulation in aquatic biota*. Chapter 4 in R. C. Harris, D. P. Krabbenhoft, R. P.

Mason, M. W. Murray, R. J. Reash, and T. Saltman (editors) Ecosystem responses to mercury contamination: indicators of change. SETAC Press, Pensacola, Florida.

APPENDIX A In situ Vertical Profile Data for UARP Reservoir Sites

This Page Intentionally Left Blank

June 2022 Water Quality Monitoring Report

Sito ID	2021 Sample	Sample Depth	Water Temperature	Dissolved Oxygen (mg/L)	Dissolved Oxygen	Conductivity	pH		Secchi disk
Site ID	Dale	(11)	(10)	loon Lake I	(// sal) Reservoir	(us/cm)	(s.u.)		(11)
		0.1	11.0	80	82	7	61	0.1	
		1	11.9	8.0	82	7	5.0	0.1	
		2	11.9	8.9	82	7	5.9 6.0	0.1	
		3	11.9	8.9	82	7	6.0	0.1	
		4	11.9	8.9	82	7	6.0	0.1	
		5	11.8	8.9	82	7	6.0	0.1	
		6	11.8	8.9	82	7	5.0	0.1	
R-IS-1-LI	5/25	7	11.0	8.9	82	7	6.0	0.1	9.8
	0,20	8	11.3	8.9	82	7	5.9	0.1	
		9	11.0	8.9	81	7	5.8	0.1	
		10	10.9	9.0	81	6	5.7	0.1	
		11	10.7	9.1	82	6	5.7	0.1	
		12	10.5	9.1	82	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		13	10.4	9.1	82	6	5.7	0.1	
		14	9.9	9.2	82	6	5.6	0.1 ¹	1
		0.1	11.3	9.1	83	7	6.8	0.1	
		1	11.3	9.1	83	7	6.5	0.1	
		2	11.2	9.0	82	7	6.5	0.1	
		3	11.2	9.0	82	7	6.5	0.1	
		4	11.2	9.0	82	7	6.5	0.1	
		5	11.2	9.0	82	7	6.5	0.1	
R-IS-2-LL	5/25	6	11.2	9.0	82	7	6.5	0.1	12.2
		7	11.2	9.0	82	7	6.3	0.1	
		8	11.1	9.0	82	7	6.4	0.1	
		9	11.1	9.0	82	7	6.4	0.1	
		10	11.1	9.0	82	7	6.3	0.1	_
		11	11.0	9.0	82	7	6.3	0.1	
		12	9.9	9.2	82	6	6.2	0.1	

Table A-1. Vertical Profile Data for UARP Reservoir Sites – May (Spring) *In situ* Surveys.

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
		13	9.7	9.3	82	6	6.2	0.1	
		14	9.6	9.3	81	6	6.1	0.1	
		15	9.5	9.3	81	6	5.9	0.1	
		16	9.4	9.3	81	6	5.7	0.1	
		17	9.2	9.3	81	6	5.6	0.1	
		18	9.2	9.3	81	6	5.6	0.1	
		19	9.1	9.3	81	6	5.6	0.1	
		20	9.1	9.3	80	6	5.6	0.1 ¹	
R-IS-3-LL	-	0.1	10.8	9.1	82	6	6.8	0.1	
		1	10.8	9.1	82	6	6.7	0.1	
		2	10.8	9.1	82	6	6.7	0.1	
	-	3	10.8	9.1	82	6	6.6	0.1	
		4	10.8	9.1	82	6	6.6	0.1	
		5	10.7	9.1	82	6	6.6	0.1	
		6	10.7	9.1	82	6	6.6	0.1	
PIS 311	5/25	7	10.7	9.1	82	6	6.6	0.1	80
IN-IO-J-LL	5/25	8	10.6	9.1	82	6	6.6	0.1	0.9
		9	10.6	9.1	81	6	6.6	0.1	
		10	10.2	9.1	81	6	6.5	0.1	
		11	10.1	9.2	81	6	6.4	0.1	
		12	10.1	9.2	81	6	6.4	0.1	
		13	10.0	9.1	81	6	6.3	0.1	
		14	9.8	9.2	81	6	6.3	0.1	
		15	9.8	9.1	80	6	6.1	0.1 ¹	

	2021 Sample	Sample Depth	Water Temperature	Dissolved Oxygen	Dissolved Oxygen	Conductivity	pH	Turbidity	Secchi disk
Site ID	Date	(m)	(°C)	(mg/L)	(% sat)	(uS/cm)	(s.u.)	(NTU)	(m)
	1			Gerle Re	servoir				
R-IS-4-GC		0.1	15.3	8.8	88	11	6.9	0.2	
		1	14.5	8.9	88	11	6.8	0.2	
		2	12.1	9.2	86	10	6.7	0.2	
R-IS-4-GC	5/26	3	11.3	9.5	87	9	6.7	0.2	5.0
		4	10.8	9.5	86	9	6.7	0.3	
		5	10.4	9.6	85	9	6.7	0.3	
		6	10.0	9.6	85	9	6.5	0.3	4
		7	9.6	9.4	82	10	6.4	0.3 ¹	
			-	Union Valley	Reservoir	•		•	
		0.1	17.3	8.7	90	12	7.1	0.7	
		1	17.3	8.7	90	12	7.1	0.7	
		2	17.3	8.7	90	12	7.1	0.7	
		3	17.3	8.7	90	12	7.1	0.7	
		4	17.2	8.7	90	12	7.0	0.7	
	5/19	5	17.1	8.7	90	12	7.0	0.8	4.3
K-13-5-0VK		6	17.1	8.7	90	12	7.0	0.5	
		7	17.1	8.6	89	12	7.0	0.5	
		8	15.8	8.7	88	12	7.0	0.5	
		9	14.2	8.8	86	11	6.8	0.4	
		10	12.7	9.0	85	10	6.8	0.3	
		11	11.8	9.1	84	9	6.6	0.4	
		0.1	16.9	8.7	89	12	7.0	0.6	
		1	16.9	8.7	89	12	7.0	0.5	
		2	16.9	8.7	89	12	7.0	0.5	
	540	3	16.9	8.7	89	12	7.0	0.5	5 4
K-12-0-UVR	5/19	4	16.9	8.6	89	12	7.0	0.5	5.4
		5	16.8	8.7	89	12	7.0	0.5	
		6	13.9	9.6	93	11	7.0	0.4	1
	-	7	13.7	9.6	93	10	7.0	0.4	1

	2021	Sample	Water	Dissolved	Dissolved				
	Sample	Depth	Temperature	Oxygen	Oxygen	Conductivity	рH	Turbidity	Secchi disk
Site ID	Date	(m)	(°C)	(mg/L)	(% sat)	(uS/cm)	(s.u.)		(m)
		8	13.0	9.7	92	10	6.9	0.4	
		9	11.9	9.8	91	10	6.8	0.4	
		10	11.0	9.9	89	10	6.8	0.4	
		11	10.9	9.8	89	10	6.7	0.4	
		12	10.3	9.8	88	10	6.7	0.4	
		13	9.7	9.8	87	10	6.7	0.4	
		14	9.2	9.8	85	9	6.6	0.4	
		15	8.7	9.7	84	9	6.6	0.3	
		16	8.4	9.7	82	9	6.5	0.3	
		17	7.8	9.7	81	9	6.5	0.3	
		18	7.7	9.7	81	9	6.5	0.2	
		19	7.5	9.7	80	9	6.4	0.2	
		20	7.2	9.6	80	9	6.4	0.2	
		21	7.1	9.6	79	9	6.4	0.2	
		22	7.1	9.6	79	9	6.4	0.2	
		23	6.9	9.6	78	9	6.3	0.2	
		24	6.6	9.5	77	9	6.3	0.2	
		25	6.6	9.5	77	9	6.2	0.2	
		26	6.5	9.4	77	9	6.1	0.2	
		27	6.5	9.4	77	9	6.1	0.2	
		28	6.5	9.4	77	9	6.1	0.2	
		0.1	16.8	8.7	90	12	6.8	0.5	
		1	16.8	8.7	90	12	6.9	0.4	
		2	16.8	8.7	90	12	6.8	0.5	
		3	16.8	8.7	90	12	6.8	0.5	
R-IS-7-UVR	5/19	4	16.8	8.7	90	12	6.9	0.4	5.9
		5	16.8	8.7	90	12	6.8	0.4	
		6	16.7	8.7	89	12	6.8	0.5	
		7	16.6	8.7	90	12	6.8	0.5	
		8	13.7	9.5	92	10	6.7	0.4	

	2021 Sample	Sample Depth	Water Temperature	Dissolved Oxygen	Dissolved Oxygen	Conductivity	рН	Turbidity	Secchi disk
Site ID	Date	(m)	(° °)	(mg/L)	(% sat)	(uS/cm)	(s.u.)	(NTU)	(m)
		9	12.4	9.7	91	10	6.6	0.3	
		10	11.6	9.7	90	10	6.6	0.4	
		11	11.3	9.7	88	9	6.5	0.3	
		12	10.5	9.7	88	9	6.4	0.3	
		13	10.4	9.7	87	9	6.4	0.3	
		14	10.4	9.7	87	9	6.4	0.3	
		15	9.7	9.6	85	9	6.4	0.3	
		16	9.6	9.6	84	9	6.3	0.3	
		17	9.0	9.5	82	9	6.3	0.3	
		18	8.5	9.5	81	9	6.3	0.3	
		19	7.9	9.4	80	9	6.2	0.2	
		20	7.7	9.4	79	9	6.2	0.2	
		21	7.7	9.4	79	9	6.2	0.2	
		22	7.4	9.4	78	9	6.2	0.2	
		23	7.1	9.4	77	9	6.2	0.2	
		24	7.1	9.4	77	9	6.2	0.2	
		25	7.0	9.4	77	9	6.1	0.2	
		26	7.0	9.3	77	9	6.2	0.2	
		27	7.0	9.3	77	9	6.1	0.2	
		28	7.0	9.3	77	9	6.1	0.2	
		29	7.0	9.3	77	9	6.1	0.2	
		30	6.9	9.3	77	9	6.0	0.2	
		31	6.9	9.3	77	9	5.9	0.3	
		32	6.9	9.3	76	9	6.0	0.2	
		33	6.7	9.3	76	9	6.0	0.2	
		34	6.7	9.3	76	9	6.0	0.2	
		35	6.6	9.3	76	9	6.0	0.2	
		36	6.7	9.3	76	9	6.0	0.2	
	540	0.1	16.4	8.7	89	12	6.8	0.4	
K-12-8-07K	5/19	1	16.3	8.7	89	12	6.9	0.4	8.4

	2021 Sample	Sample Depth	Water Temperature	Dissolved Oxygen	Dissolved Oxygen	Conductivity	рН	Turbidity	Secchi disk
Site ID	Date	(m)	(°C)	(mg/L)	(% sat)	(uS/cm)	(s.u.)	(NTU)	(m)
		2	16.1	8.7	89	12	7.0	0.4	
		3	16.0	8.7	88	12	7.0	0.4	
		4	15.9	8.7	88	11	7.0	0.3	
		5	15.8	8.7	88	11	7.0	0.4	
		6	15.8	8.7	88	11	7.0	0.4	
		7	15.7	8.7	88	11	7.0	0.4	
		8	12.9	9.9	93	10	6.9	0.4	
		9	11.5	10.1	93	10	6.6	0.4	
		10	11.0	10.1	91	10	6.5	0.4	
		11	9.6	10.1	89	10	6.3	0.4	
		12	9.0	10.1	87	10	6.2	0.3	
		13	8.6	10.1	87	9	6.2	0.3	
		14	8.0	10.0	85	9	6.1	0.3	
		15	7.3	9.9	82	9	6.0	0.3	
		16	7.1	9.9	82	9	5.9	0.2	
		17	7.0	9.9	81	9	5.9	0.2	
		18	6.9	9.8	81	9	5.9	0.2	
		19	6.8	9.8	80	9	5.9	0.2	
		20	6.8	9.8	80	9	5.9	0.2	
		21	6.6	9.8	80	9	5.9	0.2	
		22	6.6	9.8	80	9	5.9	0.2	
		23	6.6	9.8	80	9	5.9	0.2	
		24	6.5	9.8	80	9	5.9	0.2	
		25	6.5	9.8	79	9	5.9	0.2	
		26	6.5	9.7	79	9	5.9	0.2	
		27	6.5	9.7	79	9	5.9	0.2	
		28	6.5	9.7	79	9	5.9	0.1	
		29	6.4	9.7	79	9	5.9	0.2	
		30	6.3	9.7	79	9	5.9	0.1	
		31	6.3	9.7	79	9	5.9	0.2	

	Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
			32	6.3	9.7	78	9	5.9	0.1	
			33	6.3	9.7	78	9	5.9	0.2	
			34	6.3	9.7	78	9	5.9	0.2	
			35	6.2	9.7	78	9	5.9	0.2	
			36	6.2	9.7	78	9	5.9	0.2	
			37	6.2	9.6	78	9	5.9	0.1	
			38	6.2	9.6	78	9	5.9	0.2	
			39	6.2	9.7	78	9	5.9	0.1	
			40	6.2	9.7	78	9	5.9	0.2	
			41	6.2	9.6	78	9	5.9	0.2	
			42	6.2	9.6	78	9	5.9	0.1	
			43	6.1	9.6	77	9	5.9	0.1	
			44	6.1	9.6	77	9	5.9	0.2	
			45	6.1	9.5	77	9	5.9	0.2	
			46	6.1	9.6	77	9	5.9	0.2	
			47	6.1	9.6	77	9	5.9	0.1	
			48	6.1	9.6	77	9	5.9	0.1	
			49	6.1	9.5	77	9	5.9	0.2	
			50	6.1	9.5	77	9	5.9	0.2	
			51	6.1	9.5	77	9	5.9	0.1	
			52	6.0	9.5	76	9	5.9	0.2	
			53	6.0	9.5	76	9	5.9	0.2	
			54	6.0	9.5	76	9	5.9	0.2	
			55	6.0	9.5	76	9	5.9	0.1	
			56	6.0	9.5	76	9	5.9	0.1	
			57	6.0	9.5	76	9	5.9	0.2	
ļ			58	6.0	9.5	76	9	5.9	0.2	
			59	6.0	9.5	76	9	5.9	0.2	
			60	6.0	9.5	76	9	5.9	0.2	
			61	6.0	9.4	76	9	5.9	0.2	

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
		62	6.0	9.4	76	9	5.9	0.2	
		63	6.0	9.4	76	9	5.9	0.2	
		64	6.0	9.4	76	9	5.9	0.2	
		65	6.0	9.4	76	9	5.9	0.2	
		66	6.0	9.4	76	9	5.9	0.2	
		67	6.0	9.4	76	9	5.9	0.2	
		68	6.0	9.4	75	9	5.9	0.2 ¹	
				Ice House F	Reservoir				
		0.1	16.7	8.6	88	9	7.0	0.2	
		1	16.7	8.6	88	9	7.0	0.3) (m) (m) (m) (m) (m) (m) (m) (m)
		2	16.6	8.6	88	9	7.0	0.3	
		3	15.8	8.7	88	9	7.0	0.2	
		4	15.5	8.8	88	9	7.0	0.3	
		5	14.5	9.1	89	9	7.0	0.2	
		6	14.2	9.2	89	8	7.0	0.3	
	5/19	7	13.4	9.3	89	8	7.0	0.3	
		8	13.2	9.2	88	8	6.9	0.3	7.0
K-13-9-11 IK	5/10	9	12.4	9.2	86	7	6.8	0.3	1.2
		10	11.8	9.5	88	7	6.8	0.3	
		11	11.2	9.7	88	7	6.8	0.3	
		12	10.7	9.5	86	7	6.7	0.2	
		13	10.2	9.4	84	7	6.6	0.3	
		14	9.7	9.5	84	7	6.6	0.2	
		15	9.0	9.6	83	7	6.6	0.3	
		16	8.4	9.5	81	7	6.5	0.3	
		17	7.7	9.3	78	7	6.4	0.3 ¹	
		0.1	16.1	8.6	88	9	7.1	0.3	
	5/18	1	16.1	8.6	88	9	7.0	0.2	8.4
R-IS-10-IHR	5/10	2	16.0	8.6	88	9	7.0	0.3	
		3	16.0	8.6	87	9	7.0	0.2	

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
		4	15.7	8.6	87	9	7.0	0.2	
		5	15.5	8.7	87	9	7.0	0.2	
		6	15.2	8.8	87	9	7.0	0.3	
		7	13.2	9.3	89	8	7.0	0.2	
		8	12.2	9.6	90	8	6.9	0.2	
		9	11.5	9.8	90	8	6.9	0.3	
		10	10.2	10.0	90	7	6.9	0.3 ¹	
		0.1	15.8	8.6	87	9	6.6	0.2	
		1	15.3	8.7	87	9	6.5	0.2	
		2	15.1	8.7	86	9	6.5	0.3	
		3	15.1	8.7	86	9	6.5	0.3	
		4	15.1	8.7	86	9	6.5	0.2	
		5	15.1	8.7	86	9	6.5	0.3	
		6	15.0	8.7	86	9	6.5	0.3	
		7	12.6	9.7	92	8	6.1	0.3	
		8	11.7	10.0	92	8	6.0	0.3	
		9	10.8	10.2	92	8	6.0	0.3	
		10	9.6	10.4	91	8	6.0	0.3	
R-IS-11-IHR	5/18	11	8.6	10.4	90	8	5.9	0.3	9.8
		12	8.1	10.4	88	7	5.9	0.2	
		13	7.6	10.2	85	7	5.8	0.3	
		14	7.2	10.0	83	7	5.7	0.3	
		15	7.1	9.9	81	7	5.7	0.2	
		16	7.0	9.8	81	7	5.6	0.2	
		17	7.0	9.7	80	7	5.6	0.3	
		18	7.0	9.7	80	7	5.6	0.2	
		19	6.9	9.7	80	7	5.6	0.2	
		20	6.9	9.7	79	7	5.6	0.2	
		21	6.9	9.6	79	7	5.6	0.2	
		22	6.9	9.6	79	7	5.6	0.2	

	2021	Sample	Water	Dissolved	Dissolved			Table	
Site ID	Sample Date	Depth (m)	l'emperature	Oxygen (mg/L)	Oxygen (% sat)	(uS/cm)	рН (su)	(NTU)	Secchi disk
	Duto	23	68	9.6	78	7	5.6	0.2	(,
		24	6.8	9.5	78	7	5.6	0.3	
		25	6.8	9.5	78	7	5.6	0.2	
		26	6.8	9.4	77	7	5.6	0.2	
		27	6.8	9.4	77	7	5.6	0.2	
		28	6.8	9.4	77	7	5.6	0.2	
		29	6.8	9.3	76	7	5.6	0.3	
		30	6.8	9.3	76	7	5.6	0.3	
		31	6.8	9.3	76	7	5.6	0.2	
		32	6.7	9.3	76	7	5.6	0.2	
		33	6.7	9.2	75	7	5.6	0.3	
		34	6.7	9.2	75	7	5.6	0.4	
				Junction R	eservoir	•		•	
		0.1	14.7	9.2	91	12	7.0	0.5	
		1	13.7	9.3	90	11	7.0	0.4	
		2	13.6	9.3	89	11	6.9	0.3	
		3	13.5	9.3	89	11	7.0	0.4	
		4	13.2	9.4	89	11	6.9	0.3	
		5	12.3	9.3	87	11	6.8	0.3	
	5/26	6	11.8	9.3	86	11	6.7	0.3	47
R-13-12-JR	5/20	7	11.4	9.4	86	11	6.6	0.3	4.7
		8	11.1	9.3	84	11	6.5	0.4	
		9	11.0	9.2	84	11	6.3	0.4	
		10	10.8	9.3	84	11	6.2	0.4	
		11	10.6	9.4	84	11	6.0	0.3	
		12	10.3	9.4	84	11	6.0	0.4	
		13	10.2	8.1	69	14	5.8	0.4 ¹	
				Camino Re	eservoir				
R-IS-13-CR	5/26	0.1	13.3	9.9	95	13	6.8	0.3	60
13-0F	5/20	1	13.0	9.9	94	12	6.9	0.3	0.0

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
		2	12.6	10.0	94	12	6.8	0.3	
		3	12.4	10.0	94	12	6.7	0.3	
		4	12.1	10.0	93	12	6.6	0.3	
		5	11.0	10.2	93	11	6.6	0.3	
		6	10.9	10.2	93	11	6.5	0.4	
			• •	Slab Creek	Reservoir				•
		0.1	18.4	9.6	103	28	7.5	0.5	
		1	18.4	9.6	103	28	7.5	0.6	
		2	18.4	9.6	103	28	7.6	0.5	
		3	18.3	9.6	102	28	7.6	0.5	
R-IS-14-SC	5/20	4	16.1	9.4	95	26	7.3	0.5	3.4
		5	15.1	9.3	93	24	7.1	0.6	
	-	6	14.7	9.4	93	24	7.1	0.5	
		7	14.5	9.4	92	23	7.0	0.6	
		8	14.4	9.4	92	23	7.0	0.8	
		0.1	18.0	9.6	101	27	7.4	0.4	
		1	18.0	9.6	101	27	7.5	0.3	
		2	18.0	9.6	101	27	7.5	0.4	
		3	17.8	9.6	101	27	7.5	0.4	
		4	17.6	9.6	101	27	7.5	0.3	
		5	16.4	9.5	97	26	7.3	0.4	
		6	16.0	9.4	95	25	7.1	0.4	
R-IS-15-SC	5/20	7	15.9	9.3	94	26	7.0	0.4	3.9
		8	15.7	9.2	93	26	7.0	0.5	
		9	15.6	9.2	92	26	7.0	0.4	
		10	15.5	9.1	92	25	7.0	0.5	
		11	15.4	9.1	91	25	7.0	0.4	
		12	15.3	9.1	91	25	6.9	0.4	
		13	15.3	9.0	90	24	6.9	0.4]
		14	15 1	9.0	89	24	6.9	0.4	

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
		15	15.0	8.9	89	24	6.9	0.3	
		16	15.0	8.9	88	23	6.9	0.3	
		17	14.9	8.9	88	23	6.9	0.4	
		18	14.8	8.9	88	23	6.8	0.3	
		19	14.8	8.9	88	23	6.8	0.5	
		20	14.7	8.9	88	23	6.8	0.4	
		21	14.7	8.9	88	23	6.8	0.5	
		22	14.6	8.9	88	23	6.8	0.4	
		23	14.6	8.9	88	23	6.8	0.4	
		24	14.6	8.9	87	23	6.8	0.5	
		25	14.5	8.9	87	23	6.8	0.5	
		26	14.5	8.9	87	23	6.8	0.5	
		27	14.5	8.9	87	23	6.7	0.5	
		28	14.4	8.4	81	25	6.7	0.5 ¹	

°C = degrees Celsius

m = meter(s)

mg/L = milligrams per liter

% sat = percent saturation

s.u = standard unit of pH

uS/cm = microsiemens per centimeter

NTU = Nephelometric Turbidity Unit

¹ Turbidity values are recorded as the values from the previous depth. Higher turbidity values collected in the field reflect turbidity caused by the probe coming into contact with reservoir bottom sediments.

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
				Loon L	ake				
		0.1	11.7	8.2	76	8	6.4	0.2	
		1	11.7	8.2	76	8	6.3	0.2	
		2	11.7	8.2	76	8	6.3	0.2	
		3	11.7	8.2	75	8	6.2	0.2	
		4	11.6	8.2	75	8	6.2	0.3	
		5	11.6	8.2	75	8	6.2	0.3	
		6	11.6	8.2	75	8	6.2	0.2	
		7	11.6	8.2	75	8	6.1	0.2	
R-IS-1-LL 10	10/19	8	11.6	8.2	75	8	6.1	0.2	8.1
		9	11.6	8.2	75	8	6.1	0.2	
	_	10	11.6	8.2	75	8	6.1	0.2	
		11	11.5	8.2	75	8	6.1	0.3	
	-	12	11.6	8.2	75	8	6.1	0.2	
		13	11.5	8.1	75	8	6.1	0.2	l
		14	11.5	8.1	75	8	6.1	0.2	
		15	11.5	8.1	75	8	6.0	0.2	
		16	11.5	8.1	75	8	6.0	0.2	
		0.1	11.9	8.1	75	8	6.4	0.2	
		1	11.9	8.1	75	8	6.6	0.2	
		2	11.8	8.1	75	8	6.6	0.2	
		3	11.9	8.1	75	8	6.6	0.2	
		4	11.8	8.1	75	8	6.6	0.2	
R-IS-2-LL	10/19	5	11.8	8.1	75	8	6.7	0.2	8.1
		6	11.8	8.1	75	8	6.7	0.2	
		7	11.8	8.1	75	8	6.7	0.2	
		8	11.8	8.1	75	8	6.7	0.2	
		9	11.7	8.1	75	8	6.7	0.2	
		10	11 7	81	75	8	67	0.2	

Table A-2. Vertical Profile Data for UARP Reservoir Sites – October (Fall) *In situ* Surveys.

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
		12	11.7	8.1	75	8	6.7	0.2	, <i>i</i>
		13	11.7	8.1	75	8	6.7	0.2	
		0.1	11.8	8.2	76	8	6.8	0.2	
		1	11.8	8.2	76	8	6.8	0.2	
		2	11.8	8.2	76	8	6.7	0.2	
		3	11.7	8.2	75	8	6.7	0.2	
		4	11.6	8.2	75	8	6.7	0.2	
		5	11.6	8.2	75	8	6.7	0.2	
R-IS-3-LL	10/10	6	11.6	8.2	75	8	6.7	0.2	7.0
	10/19	7	11.5	8.2	75	8	6.7	0.2	7.8
		8	11.5	8.2	75	8	6.7	0.2	
	-	9	11.5	8.2	75	8	6.7	0.2	
		10	11.5	8.2	75	8	6.7	0.2	
		11	11.5	8.2	75	8	6.7	0.2	
		12	11.5	8.2	75	8	6.7	0.3	
		13	11.4	8.2	75	8	6.6	0.2	
				Gerle Creek	Reservoir				
		0.1	11.3	9.1	83	10	7.0	0.1	
		1	11.3	9.0	82	10	6.9	0.1	
		2	11.3	9.0	82	10	6.8	0.0	
R-IS-4-GC	10/22	3	11.3	9.0	82	10	6.7	0.0	7.1
		4	11.1	8.9	81	10	6.6	0.0	
		5	10.7	8.9	80	10	6.5	0.1	
		6	10.2	9.0	80	10	6.5	0.0	
				Union Valley	Reservoir				
		0.1	14.9	8.0	79	18	6.7	0.5	
		1	14.9	8.0	79	18	6.7	0.4	
R-IS-6-UVR	10/18	2	14.8	8.0	79	18	6.8	0.5	3.6
		3	14.8	8.0	79	18	6.8	0.4	
		4	14.8	8.0	79	18	6.8	0.5	

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
		5	14.8	8.0	79	18	6.8	0.5	
		6	14.8	8.0	79	18	6.8	0.5	
		7	14.8	8.0	79	18	6.8	0.5	
		8	14.8	8.0	79	18	6.8	0.4	
		9	14.8	8.0	79	18	6.8	0.5	
		10	14.8	8.0	78	18	6.8	0.4	
		11	14.8	7.9	78	18	6.7	0.4	
		12	14.8	7.9	78	18	6.7	0.4	
		13	14.7	7.9	78	18	6.7	0.5	

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
		0.1	15.0	8.0	79	19	6.7	0.5	, ,
		1	14.9	8.0	79	19	6.7	0.5	
		2	14.9	8.0	79	19	6.7	0.6	
		3	14.9	8.0	79	19	6.7	0.6	
		4	14.8	8.0	79	19	6.7	0.6	
		5	14.8	8.0	79	19	6.7	0.6	
		6	14.8	8.0	79	19	6.7	0.6	
		7	14.7	8.0	79	19	6.7	0.7	
	8	14.7	8.0	79	19	6.7	0.7		
	9	14.7	8.0	79	19	6.7	0.7		
	10/10	10	14.7	8.0	79	19	6.7	0.7	0.7
R-IS-7-UVR	10/18	11	14.7	8.0	79	19	6.7	0.7	3.7
	-	12	14.7	8.0	78	19	6.7	0.6	
		13	14.7	8.0	78	19	6.7	0.7	
		14	14.6	8.0	78	18	6.7	0.7	
		15	14.6	8.0	78	18	6.7	0.7	
		16	14.6	8.0	78	18	6.7	0.7	
		17	14.6	8.0	78	18	6.7	0.7	
		18	14.6	8.0	78	18	6.7	0.7	
		19	14.6	8.0	78	18	6.7	0.7	
		20	14.6	8.0	78	18	6.7	0.7	
		21	14.6	8.0	78	18	6.7	0.8	
		0.1	14.8	7.7	76	18	6.7	0.3	
		1	14.8	7.7	76	18	6.7	0.2	
R-IS-8-UVR		2	14.8	7.7	76	18	6.7	0.3	
	10/10	3	14.8	7.7	76	18	6.7	0.3	25
	10/18	4	14.8	7.7	76	18	6.7	0.3	3.5
		5	14.8	7.7	76	18	6.7	0.3	
		6	14.8	7.7	76	18	6.7	0.3	
		7	14.8	7.7	76	18	6.7	0.3	

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
		8	14.8	7.7	76	18	6.7	0.3	
		9	14.8	7.7	76	18	6.7	0.3	
		10	14.8	7.7	76	18	6.7	0.3	
		11	14.8	7.7	76	18	6.7	0.3	
		12	14.8	7.7	76	18	6.7	0.3	
		13	14.8	7.7	76	18	6.7	0.3	
		14	14.7	7.7	76	18	6.7	0.3	
		15	14.7	7.7	76	18	6.7	0.4	
		16	14.7	7.7	76	18	6.7	0.3	
		17	14.7	7.7	76	18	6.6	0.3	
		18	14.7	7.7	76	18	6.6	0.3	
		19	14.7	7.7	76	18	6.6	0.3	
		20	14.7	7.7	76	18	6.6	0.3	
		21	14.7	7.7	75	18	6.6	0.3	
		22	14.7	7.6	75	18	6.6	0.3	
		23	14.7	7.6	75	18	6.6	0.3	
		24	14.7	7.6	75	18	6.6	0.3	
		25	14.6	7.5	74	18	6.6	0.3	
		26	14.5	7.5	73	18	6.5	0.3	
		27	13.2	6.8	65	16	6.3	0.0	
		28	12.1	6.7	62	15	6.1	0.0	
		29	11.8	6.8	62	15	6.1	0.0	
		30	11.5	6.8	63	14	6.1	0.0	
		31	11.1	6.9	63	14	6.1	0.0	
		32	11.0	6.9	63	14	6.1	0.0	
		33	10.7	6.9	62	14	6.0	0.0	
		34	10.5	6.9	62	14	6.0	0.1	
		35	10.3	6.9	62	14	6.0	0.0	
		36	10.2	6.9	62	14	5.9	0.0	
		37	10.1	6.9	61	14	5.9	0.0	1

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
		38	10.0	6.8	60	14	5.8	0.0	
		39	9.9	6.6	59	14	5.7	0.0	
		40	9.7	6.5	57	14	5.5	0.1	
		41	9.4	6.1	53	14	5.5	0.2	
		42	9.2	5.8	51	14	5.3	0.1	
		43	9.0	5.7	49	14	5.3	0.1	
		44	8.9	5.6	49	14	5.2	0.1	
		45	8.7	5.6	48	14	5.2	0.1	
		46	8.5	5.5	47	14	5.2	0.1	
		47	8.3	5.5	47	14	5.2	0.1	
		48	8.2	5.5	47	14	5.2	0.0	
		49	7.8	5.5	47	14	5.2	0.1	
		50	7.6	5.6	47	14	5.2	0.1 ¹	
				Ice House F	Reservoir				
		0.1	13.4	8.0	76	10	6.7	0.2	
		1	13.4	8.0	76	10	6.6	0.3	
		2	13.4	8.0	76	10	6.6	0.2	
		3	13.4	8.0	76	10	6.5	0.2	
		4	13.4	8.0	76	10	6.5	0.2	
		5	13.4	8.0	76	10	6.6	0.2	
		6	13.4	7.9	76	10	6.4	0.2	
	10/20	7	13.4	7.9	76	10	6.4	0.3	6.2
K-13-9-INK	10/20	8	13.3	7.9	76	10	6.4	0.2	0.5
		9	13.3	7.9	76	10	6.4	0.3	
		10	13.3	7.9	76	10	6.4	0.3	
		11	13.3	7.9	76	10	6.4	0.3	
		12	13.3	7.9	76	10	6.3	0.3	
		13	13.3	7.9	76	10	6.3	0.2	
		14	13.3	7.9	76	10	6.3	0.3	
		15	13.2	7.8	75	10	6.3	0.3	

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
		16	13.0	7.6	72	10	6.3	0.3	
		17	12.3	6.0	56	10	5.9	0.4	
		18	9.7	1.6	14	11	5.5	0.8	
		19	9.0	1.0	9	11	5.4	1.3	
		20	8.7	0.6	5	12	5.4	1.5	
		0.1	13.3	8.0	77	10	6.6	0.2	
		1	13.3	8.0	77	10	6.4	0.2	
		2	13.4	8.0	77	10	6.4	0.2	
		3	13.4	8.0	77	10	6.4	0.2	
	40/00	4	13.4	8.0	77	10	6.3	0.2	7 5
R-15-10-1HR	10/20	5	13.3	8.0	77	10	6.3	0.3	7.5
		6	13.3	8.0	77	10	6.3	0.2	
		7	13.3	8.0	77	10	6.3	0.2	
		8	13.3	8.0	77	10	6.3	0.2	
		9	13.3	8.0	77	10	6.3	0.2	
		0.1	13.2	8.1	77	10	6.7	0.3	
		1	13.2	8.1	77	10	6.5	0.2	
		2	13.2	8.0	77	10	6.5	0.2	
		3	13.2	8.0	77	10	6.4	0.2	
		4	13.2	8.0	77	10	6.4	0.2	
		5	13.2	8.0	77	10	6.3	0.2	
		6	13.2	8.0	77	10	6.3	0.2	
R-IS-11-IHR	10/20	7	13.2	8.0	77	10	6.2	0.2	10.3
		8	13.2	8.0	77	10	6.2	0.2	
		9	13.2	8.0	77	10	6.1	0.3	
		10	13.2	8.0	77	10	6.1	0.2	
		11	13.2	8.0	76	10	6.1	0.2	
		12	13.2	8.0	76	10	6.1	0.2	
		13	13.2	8.0	76	10	6.1	0.2	
		14	13.2	8.0	76	10	6.1	0.2	

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
		15	13.2	8.0	76	10	6.1	0.3	
		16	13.2	8.0	76	10	6.1	0.2	
		17	12.5	7.4	70	10	5.9	0.2	
		18	9.2	5.2	45	9	5.2	0.3	
		19	8.8	4.7	41	9	5.0	0.5	
		20	8.5	4.7	40	9	4.9	0.5	
		21	8.3	4.5	38	9	4.9	0.4	
				Junction R	eservoir				
		0.1	10.0	9.9	88	11	6.1	0.1	
		1	10.0	9.9	88	11	6.1	0.1	
		2	9.9	9.9	88	11	6.2	0.1	
		3	9.8	9.9	87	11	6.1	0.1	
		4	9.6	9.9	87	11	6.1	0.1	
	10/22	5	9.6	9.9	87	11	6.1	0.1	
		6	9.5	9.9	87	11	6.1	0.0	
		7	9.4	9.9	56	11	6.1	0.1	6.2
K-13-12-JK	10/22	8	9.3	9.8	86	11	6.1	0.1	0.2
		9	9.2	9.8	85	11	6.1	0.0	
		10	9.2	9.8	85	11	6.1	0.1	
		11	9.1	9.7	84	11	6.1	0.1	
		12	9.0	9.7	84	11	6.0	0.0	
		13	9.0	9.7	84	11	5.9	0.0	
		14	8.9	9.6	83	11	5.9	0.1	
		15	8.9	9.6	83	11	5.8	0.0	
				Camino R	eservoir				
		0.1	10.1	10.3	92	13	6.8	2	
		1	10.1	10.3	92	12	6.5	 2	
R-IS-13-CR	10/22	2	10.1	10.4	92	12	6.2	2	6.3
		3	10.0	10.4	92	12	6.2	2	
		4	9.8	10.4	92	12	6.2	 2	

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
		5	9.6	10.5	92	12	6.1	2	
		6	9.5	10.4	91	12	6.1	2	
		7	9.5	10.4	91	12	6.0	 2	
			•	Slab Creek	Reservoir			·	•
		0.1	14.0	9.4	91	26	7.0	0.1	
		1	13.5	9.3	89	25	6.9	0.2	
	10/01	2	13.4	9.3	89	25	6.9	0.2	5.0
R-15-14-5C	10/21	3	11.0	10.5	95	21	6.9	0.3	5.0
		4	10.0	10.8	96	19	6.8	0.3	
		5	9.9	10.9	96	19	6.8	0.4	
		0.1	13.6	9.3	90	25	6.9	0.1	
		1	13.3	9.3	89	25	6.9	0.2	
	-	2	13.2	9.2	88	25	6.9	0.2	
		3	13.2	9.2	88	25	6.8	0.2	
		4	13.2	9.2	88	25	6.8	0.3	
		5	13.1	9.2	88	25	6.8	0.2	
		6	13.1	9.2	87	25	6.8	0.2	
		7	13.1	9.2	87	25	6.8	0.3	
		8	12.9	9.0	85	25	6.7	0.2	
	10/01	9	12.8	9.0	85	25	6.7	0.2	6.1
R-13-15-3C	10/21	10	12.7	9.0	84	25	6.7	0.3	0.1
		11	12.6	8.9	84	25	6.6	0.3	
		12	12.6	8.9	84	25	6.6	0.3	
		13	12.6	8.9	83	25	6.5	0.3	
		14	12.5	8.8	83	25	6.5	0.4	
		15	12.5	8.8	83	25	6.5	0.4	
		16	12.4	8.9	83	26	6.4	0.4	
		17	12.4	9.0	84	26	6.5	0.4	
		18	12.4	9.1	85	26	6.5	0.4	
		19	12.3	9.2	86	27	6.5	0.3	

Site ID	2021 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	рН (s.u.)	Turbidity (NTU)	Secchi disk (m)
		20	12.3	9.2	86	27	6.5	0.4	
		21	12.2	9.3	86	27	6.5	0.3	
		22	12.2	9.3	87	26	6.5	0.3	
		23	12.2	9.3	87	25	6.5	0.4	
		24	12.2	9.4	88	24	6.5	0.3	
		25	12.1	9.5	88	24	6.5	0.3	
		26	12.1	9.5	88	24	6.5	0.3	
		27	12.0	9.6	89	24	6.5	0.4	
		28	11.9	9.6	89	24	6.5	0.4	
		29	11.8	9.7	90	24	6.4	0.5	
		30	11.7	9.8	90	23	6.4	0.5	
		31	11.6	9.8	91	23	6.4	0.6	
		32	11.6	9.9	91	23	6.4	0.6	
		33	11.5	9.9	91	23	6.2	0.7	
		34	11.4	9.9	91	23	6.2	0.7 ¹	

°C = degrees Celsius

m = meter(s)

mg/L = milligrams per liter

% sat = percent saturation

s.u. = standard unit of pH

uS/cm = microsiemens per centimeter

NTU = Nephelometric Turbidity Unit

¹ Turbidity values are recorded as the values from the previous depth. Higher turbidity values collected in the field reflect turbidity caused by the probe coming into contact with reservoir bottom sediments.

² Turbidity not collected due to sensor malfunction.

APPENDIX B In situ Vertical Profiles for UARP Reservoir Sites

This Page Intentionally Left Blank

June 2022 Water Quality Monitoring Report

Figure B-1. *In situ* water temperature, dissolved oxygen, and turbidity at Loon Lake sites R-IS-1-LL and R-IS-2-LL during May (Spring) 2021.

Figure B-2. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Loon Lake and Gerle Creek Reservoir sites R-IS-3-LL and R-IS-4-GC during May (Spring) 2021.

Figure B-3. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Union Valley Reservoir sites R-IS-5-UVR and R-IS-6-UVR during May (Spring) 2021.

Figure B-4. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Union Valley Reservoir sites R-IS-7-UVR and R-IS-8-UVR during May (Spring) 2021.

Figure B-5. *In situ* water temperature, dissolved oxygen, and turbidity at Ice House Reservoir sites R-IS-9-IHR and R-IS-10-IHR during May (Spring) 2021.

Figure B-6. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Ice House Reservoir and Junction Reservoir sites R-IS-11-IHR and R-IS-12-JR during May (Spring) 2021.

Figure B-7. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Camino Reservoir and Slab Creek Reservoir sites R-IS-13-CR and R-IS-14-SC during May (Spring) 2021.

Figure B-8. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Slab Creek Reservoir Site R-IS-15-SC during May (Spring) 2021.

Figure B-9. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Loon Lake Reservoir sites R-IS-1-LL and R-IS-2-LL during October (Fall) 2021.

Figure B-10. *In situ* water temperature, dissolved oxygen, turbidity, and pH Loon Lake Reservoir and Gerle Creek Reservoir sites R-IS-3-LL and R-IS-4-GC during October (Fall) 2021.

Figure B-11. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Union Valley Reservoir sites R-IS-6-UVR and R-IS-7-UV during October (Fall) 2021.

Figure B-12. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Union Valley Reservoir and Ice House Reservoir sites R-IS-8-UVR and R-IS-9-IHR during October (Fall) 2021.

Figure B-13. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Ice House Reservoir sites R-IS-10-IHR and R-IS-11-IHR during October (Fall) 2021.

Figure B-14. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Junction Reservoir and Camino Reservoir sites R-IS-12-JR and R-IS-13-CR during October (Fall) 2021. [Turbidity measurements were not collected at Site R-IS-13-CR due to sensor malfunction.]

Figure B-15. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Slab Creek Reservoir sites R-IS-14-SC and R-IS-15-SC during October (Fall) 2021.

This Page Intentionally Left Blank

APPENDIX C Bacteria Results for UARP Reservoir Sites

This Page Intentionally Left Blank

June 2022 Water Quality Monitoring Report

	Samp	le 1	Samp	le 2	Sample 3		Sample 4		Sample 5		Fecal	
Site ID	Fecal coliform	E. coli	coliform geometric mean ¹	<i>E. coli</i> geometric mean ¹								
Bac-7-UVR	1.8	21.1	<1.8	1.0	<1.8	1.0	<1.8	1.0	<1.8	<1.0	1.0	1.6
Bac-10-UVR	<1.8	<1.0	<1.8	<1.0	<1.8	<1.0	<1.8	2.0	<1.8	2.0	0.9	0.9
Bac-11-JR	23.0	34.5	170.0	195.6	7.8	4.1	130.0	50.4	79.0	7.5	50.0	25.3
Bac-13-IHR	<1.8	3.0	33.0	<1.0	17.0	18.7	<1.8	1.0	<1.8	<1.0	3.3	1.7
Bac-15-SCR	<1.8	3.1	2.0	<1.0	2.0	1.0	2.0	<1.0	>1,600	139.6	7.5	2.6
MDL	1.8	1.0	1.8	1.0	1.8	1.0	1.8	1.0	1.8	1.0	-	-
MRL	1.8	1.0	1.8	1.0	1.8	1.0	1.8	1.0	1.8	1.0	-	-

Table C-1. Bacteria (MPN/100mL) for UARP Sites during the 30-day Period Surrounding Independence Day^{1,2}.

MDL = method detection limit

MRL = method reporting limit

¹ Individual results < MDL were treated as $0.5 \times MDL$ for the geometric mean calculations. ² Individual results >1,600 were treated as 2.0 x 1,600 for the geometric mean calculations.

This Page Intentionally Left Blank

APPENDIX D Metals Bioaccumulation Results for UARP Reservoir Sites

This Page Intentionally Left Blank

Species	2021	Fork	Waight	Me	rcury (Hg) % Moisture		Copp	er (Cu)	Lead (Pb)		Silver (Ag)	
Common Name	Sampling Date	Length (mm)	(g)	% Moisture	ug/g ww	g ug/g v dw	for Cu, Pb, Ag	ug/g ww	ug/g dw	ug/g ww	ug/g dw	ug/g ww	ug/g dw
					LOO	N LAKE ((M-1-LL)						
Rainbow Trout	8/2	179	59	81.84	0.025	0.138	80.8	< 0.36, < 0.36	< 1.34, < 1.34	< 0.02, < 0.02	< 0.07, < 0.07	< 0.02, < 0.02	< 0.09, < 0.09
				GEF	RLE CREE	EK RESEF	RVOIR (M-1-GO	CR)					
		295	210	79.48	0.143	0.697	78.5	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		226	125	78.03	0.042	0.191	77.8	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		233	145	78.21	0.069	0.317	77.3	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		241	130	78.35	0.066	0.305	77.7	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		248	140	80.10	0.063	0.317	79.5	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
Brown Trout	8/5	255	135	78.65	0.077	0.361	78.1	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		224	135	78.06	0.069	0.315	78.0	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		208	305	77.70	0.099	0.444	77.6	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		296	255	79.10	0.085	0.407	78.8	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		301	290	78.54	0.09	0.419	78.3	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		332	275	80.50	0.16	0.820	80.7	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
Rainbow Trout	8/5	174	63	75.91	0.039	0.162	76.0	< 0.36	1.44	< 0.02	< 0.07	< 0.02	< 0.09

Table D-1. Fish tissue metals concentrations for UARP reservoirs.

Species	2021 Fork	Fork Weight	Ме	rcury (Hg)	%	Copper (Cu)		Lead	(Pb)	Silver (Ag)			
Common Name	Sampling Date	Length (mm)	(g)	% Moisture	ug/g ww	ug/g dw	for Cu, Pb, Ag	ug/g ww	ug/g dw	ug/g ww	ug/g dw	ug/g ww	ug/g dw	
				UNI	ON VALLE	EY RESER	RVOIR (M-1-U)	/R)						
Brown Trout	8/17	501	1480	77.62	0.160	0.715	77.4	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
Lake Trout	8/17	407	675	77.59	0.120	0.535	77.4	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		373 ¹	500	78.14	0.010	0.082	78.1	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
	8/5	368 ¹	530	76.62	0.011	0.041	76.6	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		414 ¹	910	73.28	0.009 ²	0.030 ²	73.2	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		339	400	79.33	0.017	0.046	79.5	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		334	440	77.86	0.009 ²	0.047	77.4	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
	-	330	460	76.93	0.007 ²	0.034 ²	76.7	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
Rainbow Trout 8/1		371	615	76.56	0.012	0.051	72.2	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		336	490	76.51	0.007 ²	0.030 ²	76.7	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		313	365	78.19	0.023, 0.025	0.110, 0.115	76.5	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
	8/17	356	490	77.61	0.014	0.063	78.4	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		331	445	77.23	0.008 ²	0.035 ²	77.7	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		401	725	76.14	0.013	0.054	78.3	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		334	465	76.46	0.008 ²	0.034 ²	76.9	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		345	460	76.87	0.011, 0.010	0.048, 0.043	76.9	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		334	405	77.66	0.009 ²	0.040	76.3	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		320	345	78.18	0.009 ²	0.041	76.5	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		172	80	79.80	0.125	0.619	79.9	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		185	90	78.50	0.117	0.544	78.3	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
	8/5	212	130	79.36	0.133	0.644	78.7	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
Spottod		220	160	77.75	0.116	0.521	77.9	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
Bass		360	780	78.91	0.851	4.03	77.6	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		296	425	78.04	0.040	0.178	77.8	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
	8/17	172	80	77.58	0.041	0.181	77.8	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
	0/17	183	100	77.39	0.082	0.392	76.9	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09	
		-	208	135	79.08	0.162	0.714	78.4	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09

June 2022 Water Quality Monitoring Report

Species Common	2021	Fork	Wainht	Ме	ercury (Hg)	%	Сорре	er (Cu)	Lead	(Pb)	Silver	' (Ag)
Common Name	Sampling Date	Length (mm)	(g)	% Moisture	ug/g ww	ug/g dw	for Cu, Pb,	ug/g ww	ug/g dw	ug/g ww	ug/g dw	ug/g ww	ug/g dw
Spotted Bass	8/17	282	365	77.32	0.100	0.455	78.2	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
				IC	E HOUSE	RESERV	OIR (M-1-IHR)	1					
		255	160	78.45	0.021	0.097	78.4	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
Rainbow	Q/2	233	140	85.43	0.022	0.151	85.0	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
Trout	0/5	214	120	79.79	0.032	0.158	79.2	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		355	580	76.88	0.006 ²	0.026 ²	76.6	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
CAMINO RESERVOIR (M-1-CR)													
		238	122	78.91	0.034	0.161	78.9	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		190	75	79.12	0.025	0.120	79.4	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		320	345	78.32	0.058	0.268	78.4	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
Brown Trout	8/3	183	70	78.63	0.019	0.089	78.6	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		182	68	78.53	0.025, 0.024	0.116, 0.112	78.2	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		219	100	79.43	0.068	0.331	78.9	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		252	189	78.2	0.038	0.174	78.1	< 0.36	< 1.34	0.02 ²	0.08 ²	< 0.02	< 0.09
		180	69	78.61	0.030	0.140	78.4	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
Rainbow	0/2	157	41	77.64	0.049	0.219	77.9	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
Trout	0/3	139	28	79.06	0.015	0.072	79.1	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		139	27	79.85	0.017	0.084	79.6	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		176	57	79.1	0.022	0.105	79.1	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
				SL	AB CREE	K RESER	VOIR (M-1-SC	R)					
Brown Trout	8/4	360	505	76.59	0.071	0.303	77.5	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		432	735	80.64	0.431, <i>0.501</i>	2.23, 2.59	80.2	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		395	625	82.27	0.616	3.48	81.5	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
Sacramento	8/4	440	960	80.34	1.15	5.85	79.5	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
Pikeminnow	0, 1	415	765	81.98	0.280	1.55	80.9	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		433	815	81.50	0.811	4.38	80.8	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
	·	376	575	80.45	0.512	2.62	79.4	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09

Species 2021		Fork	Woight	Mercury (Hg)			% Moioturo	Copper (Cu)		Lead (Pb)		Silver (Ag)	
Common Name	Sampling Date	Length (mm)	(g)	% Moisture	ug/g ww	ug/g dw	for Cu, Pb, Ag	ug/g ww	ug/g dw	ug/g ww	ug/g dw	ug/g ww	ug/g dw
Sacramento		379	485	80.38	0.127, 0.129	0.647, 0.657	80.3	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
Pikeminnow	8/4	407	635	80.20	0.370	1.87	79.8	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
		376	545	80.53	0.396	2.03	80.3	< 0.36	< 1.34	< 0.02	< 0.07	< 0.02	< 0.09
Rainbow Trout	8/4	342	425	77.09	0.069	0.301	76.4	< 0.36, < 0.36	< 1.34, < 1.34	< 0.02, < 0.02	< 0.07, < 0.07	< 0.02, < 0.02	< 0.09, < 0.09

dw = dry weight

ug/g = micrograms per gram

ww = wet weight

Bold indicates values that are greater than the Office of Environmental Health Hazard Assessment's (OEHHA's) Advisory Tissue Level (ATL) of 0.07 ug/g methylmercury wet weight (Klasing and Brodberg 2008). **Bold and italic** indicate values that are greater than OEHHA's ATL of 0.44 ug/g wet weight (Klasing and Brodberg 2008).

¹ Length measured in Total Length.

² Result is above the method detection limit but under the method reporting limit.

APPENDIX E In situ Field Data Sheets

This Page Intentionally Left Blank

Page 1 of 3

œ	
Stillwater	Sciences

SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project

Instrument(s) used: <u>YST 6X0²</u>

Crew: Es , AL

Site Location: IS- IS- SFAR	GPS:
Date: 02/10/2021	Time: 1225
Photos: <u>692,693</u>	Weather: Clear, Cool

	In situ										
Temp	DO		DO (Conductivity	Specific Conductance	pН	Turbidity	Notes		
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)					
7.50	12.02	100.2	35.5	0.053	7.55	0.55	735.4	mmHa			
						~)			

Site L	ocation:	IS-	19-5F	AR		GPS:					
Date:	02	110/20	150			Time:	1317				
Photos: 694,695 Weather: Clear, Warm											
Notes:											
		2									
				In situ			1				
Temp	e D	0	Conductivity	Specific Conductance	рН	Turbidity	Notes				
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)					
5.32	12.22	96.6	24.4	0.039	7.29	0.75	718.0 mmHg				
							J				

Site Loo	cation: IS	-15 - 5 FA1	GPS:			
Date:	02/10/	15051		Time:	43.6	
Notes:	10 - 10 - 10 -	"L †≂			CVAr, COOT	
			In situ	 		
			Cassifie			

Temp	DO		Conductivity	Conductance	рН	Turbidity	Notes
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	
5.88	12.05	96.6	41.8	0.066	7.58	0,70	712.4 mmHg
							J

SMUD In situ Monitoring in the Upper Stillwater Sciences American River Project and Chili Bar Project

Page 2 of 3

Instrument(s) used: VSI (-vo ²	Crew: ES, AL
Site Location: IS-16-SFAR Date: 02/10/2021 Photos: 698 Notes: 699	GPS: Time: 1443 Weather: (Gar, cool
In situ	1

Temp	DO		Conductivity	Specific Conductance	pH	Turbidity	Notes			
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(UTV)				
5.65	11.48	91.4	27.8	0.044	7.12	0.72	712.7 mmHa			

Site L Date: Photo	ocation:	I1/202	10-5FI	SC.		GPS: Time: Weath	0924		
Notes				in situ					
Temp	D (mo/l.)	0	Conductivity	Specific Conductance	pH	Turbidity	Notes		
3.61	10,93	82.5	6.7	0.011	7.05	0,69	(028.4 mm Hg		

Site L Date: Photo Notes	.ocation: 	.1010 BT: OVErcast ; cool								
In situ										
Temp	DO		DO Conductivity		pН	Turbidity	Notes			
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	1			
3.12	11.78	87.8	9.9	0.017	7.24	0,43	648.7 mmHc			
)			

	(s) usea:	121	- E X0°			Crew	AL, ES
Site	Location:	IS-	- 17-50			GPS:	
Phot	tos: $\frac{\sqrt{2}}{10}$	12.70	5			_ Time: Weath	10 90 er: 012(100) (00)
Note	is:					_	
				In situ		_	
Temp	D	0	Conductivity	Specific Conductance	pH	Turbidity	Notes
(°C)	(mg/L)	(%)	(uS/cm)	(mS/cm)	(s.u.)	(NTU)	
3.13	11.51	85.7	8.7	0.015	6.83	0.81	652.7 mmH
Site	Location:	IS-	-13 - 50	2		GPS: Time:	11.45
Note	os: <u>+0</u> s:	9-1-10	2			_ Weath	or: Overcast , cool
				In situ			
				111 5110			
Temp	D	0	Conductivity	Specific Conductance	рŅ	Turbidity	Notes
Temp (°C)	D (mg/L)	0 (%)	Conductivity (µS/cm)	Specific Conductance (mS/cm)	рН (s.u.)	Turbidity (NTU)	Notes
Temp (°C)	D (mg/L) 11.87	0 (%) 93.0	Conductivity (µS/cm)	Specific Conductance (mS/cm)	рн (s.u.) 7.04	Turbidity (NTU) 0.47	Notes (086.7 mm Ha
Temp (°C)	D (mg/L) 11.87	(%) 93.0	Conductivity (µS/cm)	Specific Conductance (mS/cm)	рн (s.u.) 7.04	NTU)	Notes (086.7 mm Hg
Temp (°C) 5.05	D (mg/L)	0 (%) 93.0	Conductivity (μS/cm) 11.3	Specific Conductance (mS/cm)	рн (s.u.) 7.04	(NTU) (NTU) ().47	Notes (086.7 mm Hg
Temp (°C)).05 Site I Date Phote Note	D (mg/L) 11. 87 Location: 55: 7()(0 (%) 93.0 15- //11/72 0, 70-	Conductivity (μS/cm) 11.3	Specific Conductance (mS/cm)	рн (s.u.) 7.04	GPS: Time: Weather	Notes (086. 4 mm Hay 1220 M: overcast, cool
Temp (°C)).05 Site I Date Phote Note	D (mg/L) 11. 87- Location: .: .: .: .: .: .: .: .: .: .: .: .: .:	0 (%) 93.0 <u>TS-</u> /!!!/?c e, T O=	Conductivity (µS/cm) 11.3	In situ	рн (s.u.) 7.04	GPS: Time: Weather	Notes (086.4 mm Ha 1220 m. overcast, cool
Temp (°C)).05 Site Date Phote Notes	D (mg/L) 11. 87 Location: cos:	0 (%) 93.0 <u>T5-</u> /!!./?.(4, 705	Conductivity (μS/cm) 11.3	In situ Specific Conductance (mS/cm)	рн (s.u.) 7.04	Contractions of the second sec	Notes (086. 4 mm Hg 1220 1220 Motes

RIVERINE - Spring

Site Type:	Riverine
Instrument:	YSI EXO2
Recorded by:	Eric Sommerauer

SWS ID	Date & Time	Weather	Temp. (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	рН (s.u.):	Turbidity (NTU):	Mercury (mmHg):
IS_6_GC	4/27/2021 10:33 AM	Warm	5.04	11.42	89.6	7.2	0.012	7.11	0.25	630.3
IS_9_GCC	4/27/2021 11:00 AM	Warm	6.14	11.26	90.8	7.7	0.012	6.98	0.12	629.1
IS_10_SFSC	4/27/2021 12:13 PM	Warm	6.40	11.00	89.3	7.3	0.011	6.96	0.39	627.7
IS_11_SFSC	4/27/2021 1:20 PM	Warm	9.73	10.51	92.6	11.5	0.016	7.26	0.32	647.6
IS_12_SC	4/27/2021 2:07 PM	Warm	7.37	10.96	91.1	10.2	0.015	7.31	0.29	651.9
IS_13_SC	4/27/2021 3:05 PM	Warm	9.90	11.08	97.9	11.9	0.017	7.37	0.37	685.4
IS_14_SC	4/27/2021 3:35 PM	Warm	9.18	11.32	98.2	12.8	0.018	7.42	0.23	689.0
IS_17_BC	4/28/2021 12:46 PM	Warm	8.26	10.92	92.8	16.4	0.024	7.32	0.42	695.1
IS_15_SFAR	4/28/2021 1:34 PM	Warm	10.61	10.81	97.2	29.9	0.041	7.41	0.50	716.6
IS_16_SFAR	4/28/2021 1:53 PM	Warm	11.51	10.85	99.6	24.6	0.033	7.41	0.46	716.5
IS_18_SFAR	4/28/2021 4:03 PM	Warm	14.58	10.20	100.2	29.9	0.037	7.63	0.87	738.0
IS_19_SFAR	4/29/2021 9:35 AM	Warm	10.86	10.82	97.9	23.9	0.033	7.27	0.49	723.2

RIVERINE - Summer

Site Type:	Riverine									
Instrument:	YSI EXO2									
Recorded by:	Kevin Ha	Eric Sommer	auer							
SWS ID	Date & Time	Weather	Temp. (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (μS/cm):	Specific Conductance (mS/cm):	рН (s.u.):	Turbidity (NTU):	Mercury (mmHg):
IS_4_GC	8/3/2021 12:06 PM	Clear, warm	11.17	8.36	76	32	0.043	6.79	0.1	621.2
IS_5_GC	8/3/2021 12:52 PM	Clear, warm	18.87	7.93	85.4	39	0.044	7.7	0.1	639.3
IS_6_GC	8/3/2021 1:15 PM	Clear, warm	15.9	8.12	82.1	37	0.045	7.46	0.4	643.6
IS_9_GCC	8/3/2021 1:38 PM	Clear, warm	24.58	7.63	91.7	44	0.044	7.78	0.1	642.8
IS_7_SFRR	8/3/2021 2:01 PM	Clear, warm	19.52	7.87	85.7	42	0.046	7.99	0.1	647.3
IS_8_SFRR	8/3/2021 2:14 PM	Clear, warm	18.25	8.34	88.6	37	0.042	7.71	0.1	648.3
IS_10_SFSC	8/3/2021 3:01 PM	Clear, warm	8.03	9.66	81.4	30	0.045	7.3	0.3	638.6
IS_4_GC	8/9/2021 10:54 AM	Clear, warm	11.1	8.91	80.9	7.3	0.01	6.42	0.09	610.3
IS_5_GC	8/9/2021 11:23 AM	Clear, warm	14.8	8.54	84.3	10.6	0.013	6.84	0.04	631
IS_6_GC	8/9/2021 11:42 AM	Clear, warm	15.5	8.25	82.6	11.7	0.014	6.78	0.06	634.9
IS_9_GCC	8/9/2021 11:58 AM	Clear, warm	20.2	7.95	87.7	14.7	0.016	7.18	0.1	633.7
IS_7_SFRR	8/9/2021 12:15 PM	Clear, warm	16	8.34	84.5	14.4	0.017	7.17	0.04	688.8
IS_8_SFRR	8/9/2021 12:24 PM	Clear, warm	15.8	8.49	85.7	13.7	0.017	7.1	0.07	639.6
IS_10_SFSC	8/9/2021 1:11 PM	Clear, warm	8.5	9.86	84.1	7.8	0.011	6.81	0.1	631.8
IS_13_SC	8/9/2021 2:03 PM	Clear, warm	18.1	8.57	90.7	14.4	0.017	7.15	0.06	686.5
IS_14_SC	8/9/2021 2:32 PM	Clear, warm	12.9	9.92	93.9	11.4	0.015	7.2	0.03	690
IS_11_SFSC	8/9/2021 3:27 PM	Clear, warm	22.2	7.62	87.4	13	0.014	7.31	0.04	650.7
IS_12_SC	8/9/2021 3:51 PM	Clear, warm	11.3	9.42	85.6	10.2	0.014	6.93	0.07	654.2
IS_19_SFAR	8/9/2021 5:13 PM	Clear, warm	13.5	10	95.3	15.3	0.02	7.25	0.1	716.3
IS_18_SFAR	8/10/2021 11:16 AM	Clear, warm	18	9.46	99.8	20.3	0.023	7.25	0.17	734.6
IS_17_BC	8/10/2021 12:47 PM	Clear, warm	13.1	9.62	91.5	19	0.025	7.09	0.86	692.2
IS_15_SFAR	8/10/2021 1:21 PM	Clear, warm	22.5	8.99	103.8	56.1	0.059	8.14	0.03	712.9
IS_16_SFAR	8/10/2021 1:34 PM	Clear, warm	9.7	11.23	98.7	10.7	0.015	6.72	0.01	713.1
IS_1_RR	8/11/2021 12:03 PM	Clear, warm	20.8	7.65	85.6	16.1	0.017	6.87	0.12	607.9
IS_2_LRR	8/11/2021 1:27 PM	Clear, warm	23.3	7.03	82.3	17	0.017	7.04	0.04	608.2
IS_3_LRR	8/11/2021 2:13 PM	Clear, warm	21.9	6.98	79.7	10.7	0.011	6.82	0.03	609.6

RIVERINE - Fall

Site Type:	Riverine	
Instrument:	YSI EXO2	
Recorded by:	Emily Applequist	Eric Sommerauer

			Temp.	Dissolved	Dissolved	Conductivity	Specific	рH	Turbidity	Mercurv
SWS ID	Date & Time	Weather	(°C):	Oxygen (mg/L):	Oxygen (%):	(µS/cm):	Conductance (mS/cm):	(s.u.):	(NTU):	(mmHg):
IS_4_GC	11/16/2021 10:28 AM	Sunny, cool	7.82	9.73	81.8	7.2	0.01	5.4	0.36	608.2
		Sunny, cool,								
IS_5_GC	11/16/2021 11:01 AM	slightly windy	6.26	10.42	84.3	13.3	0.021	6.39	0.23	629.3
IS_6_GC	11/16/2021 11:20 AM	Sunny, cool	8.15	9.96	84.4	7	0.011	6.35	0.33	633.4
IS_9_GCC	11/16/2021 11:37 AM	Sunny, cool	8.3	10.15	86.4	7.7	0.011	6.41	0.27	631.9
IS_7_SFRR	11/16/2021 11:53 AM	Sunny, cool	6.36	10.43	84.6	12.5	0.019	6.68	0.13	637.1
IS_8_SFRR	11/16/2021 12:05 PM	Sunny, cool	7	10.29	84.9	10.7	0.016	6.61	0.21	638
		Sunny, 60								
IS_10_SFSC	11/16/2021 12:48 PM	degrees	8.73	9.99	85.9	11.7	0.017	6.55	0.79	629.6
IS_17_BC	11/18/2021 9:31 AM	Cloudy, cool	11.06	9.9	89.9	20.4	0.028	6.38	3.31	693.2
IS_15_SFAR	11/18/2021 10:09 AM	Cloudy, cool	7.11	11.46	94.7	46.3	0.07	6.78	0.66	715.4
IS_16_SFAR	11/18/2021 10:23 AM	Overcast, cool	8.04	10.96	92.6	35.5	0.053	6.57	0.6	715.7
IS_11_SFSC	11/18/2021 11:30 AM	Overcast, cool	3.6	11.52	87	12.2	0.021	6.83	0.3	650.6
IS_12_SC	11/18/2021 11:56 AM	Overcast, cool	4.82	10.27	80.1	11.1	0.018	6.43	0.46	654.5
IS_13_SC	11/18/2021 12:46 PM	Overcast, cool	7.59	10.87	90.8	14.1	0.021	6.65	0.3	687.6
IS_14_SC	11/18/2021 1:21 PM	Overcast, cool	8.11	11.03	93.4	19.6	0.029	7.23	0.23	691.4
IS_19_SFAR	11/19/2021 8:46 AM	Cloudy, cool	9.38	10.35	90.4	43	0.061	7.32	1.32	721.3
IS_18_SFAR	11/19/2021 9:41 AM	Cloudy, cool	10.01	10.8	95.7	47.9	0.067	7.54	0.67	738.8

RESERVOIR R_IS_1_LL

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
5/25/2021 11:25 AM	Eric Sommerauer	Clear, calm	41.1	32.3

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0.1	11.91	8.9	82.4	6.6	0.009	6.13	0.1	605
1	11.91	8.89	82.3	6.6	0.009	5.94	0.1	605
2	11.88	8.89	82.2	6.6	0.009	5.98	0.08	605
3	11.88	8.88	82.2	6.6	0.009	5.98	0.08	605
4	11.88	8.87	82.1	6.6	0.009	5.97	0.08	605
5	11.78	8.87	82	6.6	0.009	5.98	0.08	605
6	11.79	8.87	81.9	6.6	0.009	5.93	0.09	605
7	11.72	8.87	81.8	6.6	0.009	5.95	0.12	605
8	11.32	8.93	81.8	6.5	0.009	5.9	0.1	605
9	11.12	8.93	81.2	6.5	0.009	5.84	0.07	605
10	10.92	8.97	81.2	6.4	0.009	5.74	0.09	605
11	10.7	9.05	81.5	6.4	0.009	5.72	0.11	605
12	10.49	9.1	81.6	6.4	0.009	5.67	0.1	605
13	10.4	9.12	81.6	6.4	0.009	5.68	0.11	605
14	9.94	9.21	81.5	6.3	0.009	5.59	3.42	605

RESERVOIR R_IS_2_LL

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
5/25/2021 12:19 PM	Eric Sommerauer	Clear, windy	61.5	39.9

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
1	11.28	9.05	82.6	6.5	0.009	6.51	0.06	605
2	11.24	9.04	82.4	6.5	0.009	6.52	0.08	605
3	11.24	9.03	82.4	6.5	0.009	6.52	0.09	605
4	11.22	9.03	82.3	6.5	0.009	6.5	0.09	605
5	11.23	9.02	82.2	6.5	0.009	6.45	0.07	605
6	11.18	9.02	82.1	6.5	0.009	6.47	0.08	605
7	11.17	9.01	82	6.5	0.009	6.34	0.05	605
8	11.09	9.01	81.9	6.5	0.009	6.36	0.08	605
9	11.09	9	81.7	6.5	0.009	6.36	0.08	605
10	11.06	9	81.7	6.5	0.009	6.32	0.08	605
11	11.01	8.99	81.6	6.5	0.009	6.31	0.09	605
12	9.92	9.18	81.5	6.3	0.009	6.23	0.09	605
13	9.71	9.26	81.5	6.3	0.009	6.18	0.1	605
14	9.56	9.29	81.4	6.2	0.009	6.08	0.12	605
15	9.54	9.28	81.3	6.2	0.009	5.91	0.1	605
16	9.37	9.28	80.9	6.2	0.009	5.7	0.14	605
17	9.21	9.29	80.8	6.2	0.009	5.64	0.11	605
18	9.23	9.29	80.9	6.2	0.009	5.62	0.12	605
19	9.09	9.28	80.5	6.2	0.009	5.59	0.14	605
20	9.09	9.28	80.4	6.2	0.009	5.57	1.39	605

RESERVOIR R_IS_3_LL

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
5/25/2021 12:58 PM	Eric Sommerauer	Cloudy, windy	48.1	29.1

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
1	10.82	9.09	82.1	6.4	0.009	6.68	0.06	605
2	10.78	9.09	82	6.4	0.009	6.67	0.08	605
3	10.77	9.09	82	6.4	0.009	6.58	0.1	605
4	10.77	9.08	81.9	6.4	0.009	6.61	0.08	605
5	10.7	9.08	81.7	6.4	0.009	6.59	0.09	605
6	10.66	9.08	81.7	6.4	0.009	6.55	0.08	605
7	10.66	9.07	81.6	6.4	0.009	6.56	0.09	605
8	10.62	9.07	81.5	6.4	0.009	6.57	0.11	605
9	10.57	9.06	81.2	6.4	0.009	6.55	0.12	605
10	10.22	9.14	81.4	6.3	0.009	6.51	0.12	605
11	10.14	9.15	81.4	6.3	0.009	6.44	0.12	605
12	10.11	9.15	81.3	6.3	0.009	6.36	0.11	605
13	9.95	9.11	80.7	6.3	0.009	6.33	0.14	605
14	9.82	9.15	80.7	6.3	0.009	6.32	0.13	605
15	9.78	9.13	80.2	6.3	0.009	6.11	259.62	605

RESERVOIR R_IS_4_GC

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
5/26/2021 3:10 PM	Eric Sommerauer	Cloudy, calm	25.1	16.5

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0.1	11.91	8.9	82.4	6.6	0.009	6.13	0.1	605
1	11.91	8.89	82.3	6.6	0.009	5.94	0.1	605
2	11.88	8.89	82.2	6.6	0.009	5.98	0.08	605
3	11.88	8.88	82.2	6.6	0.009	5.98	0.08	605
4	11.88	8.87	82.1	6.6	0.009	5.97	0.08	605
5	11.78	8.87	82	6.6	0.009	5.98	0.08	605
6	11.79	8.87	81.9	6.6	0.009	5.93	0.09	605
7	11.72	8.87	81.8	6.6	0.009	5.95	0.12	605
8	11.32	8.93	81.8	6.5	0.009	5.9	0.1	605
9	11.12	8.93	81.2	6.5	0.009	5.84	0.07	605
10	10.92	8.97	81.2	6.4	0.009	5.74	0.09	605
11	10.7	9.05	81.5	6.4	0.009	5.72	0.11	605
12	10.49	9.1	81.6	6.4	0.009	5.67	0.1	605
13	10.4	9.12	81.6	6.4	0.009	5.68	0.11	605
14	9.94	9.21	81.5	6.3	0.009	5.59	3.42	605

Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
Site Type: Instrument:	Reservoir YSI EXO2			

5/19/2021 1:17 PM	Eric Sommerauer	Clear, windy	37.2	14.2
-------------------	--------------------	--------------	------	------

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0.1	17.31	8.66	90.2	12	0.014	7.07	0.67	636.5
1	17.3	8.66	90.2	12	0.014	7.08	0.7	636.6
2	17.26	8.66	90.2	12	0.014	7.05	0.72	636.7
3	17.26	8.66	90.1	12	0.014	7.05	0.69	636.7
4	17.22	8.66	89.9	12	0.014	7.04	0.68	636.5
5	17.13	8.66	89.8	11.9	0.014	7.04	0.77	636.7
6	17.12	8.65	89.7	11.9	0.014	7.01	0.54	636.6
7	17.05	8.64	89.3	11.9	0.014	7	0.45	636.7
8	15.8	8.69	87.9	12	0.015	6.95	0.5	636.6
9	14.23	8.83	86.1	11.1	0.014	6.84	0.42	636.5
10	12.66	8.97	84.6	9.7	0.013	6.75	0.31	636.6
11	11.77	9.05	84	9.2	0.012	6.62	0.42	636.5

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
5/19/2021 1:56 PM	Eric Sommerauer	Clear, windy	115.0	17.6

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0.1	16.94	8.66	89.4	11.7	0.014	6.99	0.57	636.5
1	16.93	8.65	89.4	11.7	0.014	6.97	0.53	636.5
2	16.91	8.65	89.3	11.7	0.014	6.99	0.54	636.6
3	16.87	8.65	89.2	11.6	0.014	7.02	0.53	636.6
4	16.87	8.64	89.2	11.6	0.014	7.01	0.51	636.8
5	16.75	8.66	89.2	11.6	0.014	7.01	0.54	636.5
6	13.86	9.60	92.8	10.5	0.013	6.97	0.42	636.6
7	13.70	9.64	93.0	10.4	0.013	6.95	0.42	636.7
8	13.03	9.72	92.3	10.1	0.013	6.89	0.38	636.7
9	11.92	9.78	90.6	9.9	0.013	6.84	0.40	636.7
10	10.96	9.85	89.3	9.7	0.013	6.77	0.41	636.6
11	10.86	9.84	89.0	9.7	0.013	6.71	0.40	636.7
12	10.32	9.83	87.8	9.6	0.013	6.70	0.37	636.7
13	9.70	9.83	86.7	9.5	0.013	6.68	0.36	636.8
14	9.15	9.77	84.6	9.4	0.014	6.64	0.35	636.7
15	8.71	9.72	83.5	9.3	0.014	6.56	0.34	636.6
16	8.36	9.67	82.4	9.3	0.014	6.51	0.34	636.6
17	7.78	9.68	81.3	9.2	0.014	6.51	0.26	636.6
18	7.68	9.65	80.9	9.2	0.014	6.46	0.24	636.7
19	7.54	9.65	80.4	9.2	0.014	6.42	0.23	636.6
20	7.17	9.63	79.6	9.1	0.014	6.44	0.23	636.6

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
21	7.09	9.61	79.4	9.1	0.014	6.37	0.22	636.6
22	7.07	9.60	79.2	9.1	0.014	6.39	0.21	636.7
23	6.88	9.55	78.4	9.1	0.014	6.25	0.23	636.7
24	6.59	9.48	77.4	9.1	0.014	6.25	0.21	636.5
25	6.56	9.46	77.0	9.1	0.014	6.20	0.15	636.8
26	6.48	9.44	76.7	9.1	0.014	6.13	0.19	636.6
27	6.47	9.43	76.7	9.1	0.014	6.08	0.20	636.6
28	6.46	9.42	76.5	9.1	0.014	6.10	0.17	636.5

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
5/19/2021 12:11 PM	Eric	Clear, windy	124.0	19.4

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0.1	16.82	8.69	89.6	11.6	0.014	6.81	0.49	636.4
1	16.81	8.69	89.6	11.6	0.014	6.86	0.44	636.2
2	16.81	8.7	89.6	11.6	0.014	6.82	0.46	636.4
3	16.79	8.7	89.6	11.6	0.014	6.84	0.46	636.4
4	16.79	8.69	89.5	11.6	0.014	6.89	0.42	636.4
5	16.77	8.69	89.5	11.6	0.014	6.76	0.44	636.5
6	16.74	8.69	89.4	11.6	0.014	6.79	0.46	636.5
7	16.61	8.72	89.6	11.5	0.014	6.81	0.47	636.5
8	13.7	9.47	91.9	10.4	0.013	6.71	0.36	636.6
9	12.42	9.65	91	9.7	0.013	6.63	0.32	636.5
10	11.6	9.74	89.6	9.5	0.013	6.56	0.37	636.5
11	11.27	9.69	88.3	9.3	0.013	6.49	0.33	636.5
12	10.54	9.72	87.7	9.2	0.013	6.43	0.31	636.5
13	10.39	9.69	86.6	9.1	0.013	6.39	0.31	636.5
14	10.37	9.68	86.5	9.2	0.013	6.4	0.34	636.5
15	9.72	9.63	84.7	9	0.013	6.36	0.3	636.6
16	9.62	9.61	84.3	9	0.013	6.33	0.32	636.5
17	9.04	9.54	82.3	8.9	0.013	6.27	0.29	636.5
18	8.45	9.5	81	8.9	0.013	6.27	0.25	636.5
19	7.93	9.44	79.5	8.9	0.013	6.23	0.24	636.5
20	7.74	9.42	79.2	8.9	0.013	6.24	0.24	636.5

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
21	7.74	9.4	78.6	8.9	0.013	6.2	0.22	636.5
22	7.37	9.36	77.7	8.9	0.013	6.21	0.22	636.5
23	7.13	9.36	77.3	8.9	0.014	6.17	0.24	636.5
24	7.07	9.35	77.1	8.9	0.014	6.2	0.21	636.6
25	6.98	9.35	77	8.9	0.014	6.14	0.24	636.5
26	6.99	9.34	76.9	8.9	0.014	6.16	0.24	636.5
27	6.97	9.33	76.8	8.9	0.014	6.14	0.22	636.4
28	6.95	9.33	76.7	8.9	0.014	6.14	0.22	636.5
29	6.99	9.33	76.8	8.9	0.014	6.09	0.22	636.5
30	6.92	9.32	76.6	8.9	0.014	5.95	0.21	636.5
31	6.85	9.33	76.6	8.9	0.014	5.91	0.27	636.5
32	6.91	9.31	76.3	9	0.014	5.95	0.22	636.5
33	6.67	9.32	76.4	9	0.014	5.95	0.22	636.6
34	6.7	9.31	76.1	9	0.014	5.98	0.24	636.5
35	6.64	9.32	76.1	9	0.014	5.98	0.19	636.5
36	6.67	9.31	76	9	0.014	5.99	0.23	636.5

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
'19/2021 10:13 AM	Eric Sommerauer	Clear, breezy	243.0	27.7

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0.1	16.36	8.7	88.9	11.6	0.014	6.82	0.39	637
1	16.29	8.7	88.8	11.5	0.014	6.91	0.36	636.9
2	16.08	8.71	88.5	11.5	0.014	6.97	0.38	636.8
3	16.01	8.72	88.4	11.5	0.014	6.98	0.36	636.8
4	15.94	8.72	88.3	11.4	0.014	6.96	0.34	636.8
5	15.84	8.72	88.2	11.4	0.014	6.97	0.39	636.7
6	15.79	8.7	87.8	11.4	0.014	6.97	0.35	636.8
7	15.72	8.67	87.9	11.3	0.014	6.96	0.38	636.9
8	12.94	9.86	93	10.2	0.013	6.93	0.41	637
9	11.45	10.12	92.7	10.1	0.014	6.56	0.43	636.9
10	11.02	10.11	91.3	10	0.014	6.46	0.37	637.1
11	9.56	10.11	88.6	9.7	0.014	6.28	0.36	637.1
12	9.01	10.11	87.4	9.5	0.014	6.22	0.33	637
13	8.61	10.08	86.8	9.4	0.014	6.15	0.29	637
14	8.02	10.02	84.6	9.3	0.014	6.06	0.29	637
15	7.27	9.92	82.3	9.2	0.014	6	0.26	637
16	7.11	9.88	81.6	9.2	0.014	5.92	0.24	637
17	6.97	9.85	81.1	9.2	0.014	5.89	0.21	637
18	6.91	9.82	80.7	9.2	0.014	5.89	0.2	637
19	6.84	9.81	80.4	9.1	0.014	5.88	0.23	637
20	6.76	9.78	80.1	9.1	0.014	5.88	0.23	637

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
21	6.64	9.76	79.6	9.1	0.014	5.88	0.17	636.9
22	6.59	9.76	79.6	9.1	0.014	5.87	0.17	636.8
23	6.58	9.78	79.7	9.1	0.014	5.91	0.17	637
24	6.54	9.77	79.6	9.1	0.014	5.93	0.17	637
25	6.53	9.76	79.4	9.1	0.014	5.92	0.16	637
26	6.51	9.73	79.2	9.1	0.014	5.92	0.17	637
27	6.49	9.72	79.1	9.1	0.014	5.92	0.17	636.7
28	6.45	9.71	78.8	9.1	0.014	5.91	0.14	636.8
29	6.39	9.74	79	9	0.014	5.92	0.16	637
30	6.34	9.74	78.9	9	0.014	5.91	0.14	637
31	6.3	9.71	78.6	9	0.014	5.9	0.15	636.9
32	6.29	9.67	78.2	9	0.014	5.92	0.14	637
33	6.26	9.66	78.1	9	0.014	5.92	0.16	636.9
34	6.25	9.66	78	9	0.014	5.9	0.15	637
35	6.23	9.65	78	9	0.014	5.92	0.18	637
36	6.22	9.65	77.9	9	0.014	5.91	0.17	637
37	6.21	9.64	77.9	9	0.014	5.93	0.12	636.8
38	6.19	9.64	77.8	9	0.014	5.92	0.15	636.9
39	6.18	9.65	77.8	9	0.014	5.93	0.14	637
40	6.17	9.65	77.8	9	0.014	5.93	0.18	637
41	6.15	9.63	77.6	9	0.014	5.92	0.16	637
42	6.15	9.61	77.5	9	0.014	5.94	0.14	637
43	6.14	9.61	77.4	9	0.014	5.94	0.13	637
44	6.14	9.6	77.4	9	0.014	5.94	0.15	636.8
45	6.13	9.5	77.3	9	0.014	5.93	0.2	637
46	6.12	9.58	77.2	9	0.014	5.94	0.18	637
47	6.1	9.57	77.1	9	0.014	5.93	0.13	637
48	6.08	9.55	76.8	9	0.014	5.93	0.14	637
49	6.07	9.54	76.8	9	0.014	5.92	0.16	637

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
50	6.07	9.53	76.7	9	0.014	5.92	0.15	637
51	6.06	9.52	76.6	9	0.014	5.91	0.14	637
52	6.04	9.5	76.4	9	0.014	5.92	0.15	636.9
53	6.04	9.49	76.3	9	0.014	5.92	0.15	636.8
54	6.04	9.48	76.3	9	0.014	5.92	0.17	636.8
55	6.04	9.47	76.2	9	0.014	5.94	0.14	636.8
56	6.03	9.47	76.2	9	0.014	5.93	0.13	636.8
57	6.03	9.47	76.1	9	0.014	5.93	0.18	636.8
58	6.02	9.46	76.1	9	0.014	5.94	0.16	636.8
59	6.02	9.46	76	9	0.014	5.93	0.16	636.8
60	6.02	9.45	75.9	9	0.014	5.94	0.15	636.8
61	6.01	9.44	75.8	9	0.014	5.94	0.17	636.8
62	6.01	9.43	75.8	9	0.014	5.93	0.17	636.8
63	5.99	9.42	75.7	9	0.014	5.94	0.16	636.8
64	5.99	9.43	75.7	9	0.014	5.93	0.19	636.8
65	5.99	9.42	75.7	9	0.014	5.94	0.17	363.8
66	5.99	9.42	75.7	9	0.014	5.93	0.17	636.8
67	5.99	9.42	75.6	9	0.014	5.93	0.17	636.7
68	5.99	9.4	75.4	9	0.014	5.93	1.19	636.7

RESERVOIR R_IS_9_IHR

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
5/18/2021 1:06 PM	Eric Sommerauer	Clear, breezy	54.5	23.7

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0.1	16.72	8.58	88.3	9.3	0.011	7.04	0.24	627.2
1	16.68	8.59	88.2	9.3	0.011	7.04	0.31	627.2
2	16.58	8.61	88.2	9.3	0.011	7.04	0.25	627.2
3	15.81	8.71	87.9	9.1	0.011	7.03	0.23	627.2
4	15.45	8.81	88.2	8.9	0.011	7.03	0.29	627.2
5	14.5	9.08	89.1	8.5	0.011	7.01	0.2	627.2
6	14.2	9.16	89.3	8.3	0.01	6.99	0.27	627.2
7	13.35	9.28	88.6	7.9	0.01	6.96	0.26	627.2
8	13.16	9.2	87.6	7.7	0.01	6.91	0.28	627.2
9	12.44	9.17	86	7.4	0.01	6.82	0.25	627.3
10	11.84	9.49	87.7	74	0.01	6.8	0.25	627.4
11	11.21	9.65	87.9	7.4	0.01	6.8	0.27	627.3
12	10.74	9.51	85.6	7.2	0.01	6.73	0.22	627.3
13	10.15	9.44	83.9	7.1	0.01	6.64	0.26	627.3
14	9.66	9.54	83.8	7.1	0.01	6.6	0.22	627.3
15	8.95	9.59	82.9	7	0.01	6.58	0.25	627.4
16	8.36	9.46	80.5	7.1	0.01	6.5	0.25	627.3
17	7.71	9.25	77.7	7.2	0.011	6.4	20.42	627.2

9

10

11.5

10.22

9.76

10.02

RESERVOIR R_IS_10_IHR

Site Type: Instrument:	Reservoir YSI EXO2							
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)				
5/18/2021 1:52 PM	Eric Sommerauer	Clear, hot	30.2	27.6				
Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (μS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	16.12	8.64	87.7	9.3	0.011	7.06	0.25	627.1
1	16.08	8.63	87.6	9.3	0.011	7.02	0.23	627.1
2	16.03	8.63	87.5	9.3	0.011	7.02	0.3	627.1
3	16.03	8.62	87.4	9.3	0.011	7.03	0.24	627.1
4	15.72	8.63	86.9	9.2	0.011	7.03	0.24	627.2
5	15.45	8.67	86.9	9.2	0.011	7.02	0.24	627.1
6	15.2	8.77	87.3	9	0.011	7.02	0.26	627.1
7	13.16	9.34	89	8.1	0.01	6.95	0.23	627.1
8	12.22	9.62	89.7	7.8	0.01	6.88	0.21	627.1

89.6

89.5

7.6

7.4

0.01

0.01

6.87

6.85

0.25

3.64

627.2

627.1

RESERVOIR R_IS_11_IHR

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
5/18/2021 11:33 AM	Eric Sommerauer	Clear warm	90.0	32.1

	Temperature	Dissolved	Dissolved	Conductivity	Specific		Turbidity	Mercurv
Depth (m)	(°C).	Oxygen	Ovygen (%)	(uS/cm):	Conductance	pH (s.u.):	(NTU):	(mmHa):
	(0).	(mg/L):	Oxygen (%).	(µs/cm).	(mS/cm):		(NIO).	(mining).
0	15.79	8.63	87.1	9.3	0.011	6.55	0.24	627.4
1	15.32	8.66	86.7	9.2	0.011	6.5	0.22	627.4
2	15.11	8.69	86.4	9.1	0.011	6.49	0.32	627.5
3	15.1	8.69	86.3	9.1	0.011	6.5	0.3	627.6
4	15.08	8.67	86.2	9.1	0.011	6.51	0.23	627.5
5	15.06	8.66	86	9.1	0.011	6.48	0.3	627.5
6	15.02	8.66	86	9.1	0.011	6.47	0.3	627.6
7	12.6	9.74	91.7	8	0.011	6.11	0.26	627.6
8	11.74	10.01	92.4	8	0.011	6.02	0.25	627.6
9	10.8	10.17	92	7.8	0.011	6.02	0.26	627.5
10	9.62	10.37	91.1	7.6	0.011	6.03	0.26	627.5
11	8.61	10.43	89.7	7.5	0.011	5.93	0.26	627.4
12	8.1	10.39	88	7.4	0.011	5.88	0.23	627.4
13	7.59	10.2	85.1	7.4	0.011	5.8	0.27	627.5
14	7.2	10.01	82.8	7.4	0.011	5.72	0.26	627.5
15	7.07	9.86	81.4	7.4	0.011	5.66	0.23	627.5
16	7.02	9.83	80.9	7.4	0.011	5.62	0.23	627.5
17	6.96	9.73	80	7.4	0.011	5.6	0.25	627.4
18	6.95	9.69	79.7	7.4	0.011	5.59	0.22	627.4
19	6.93	9.68	79.6	7.4	0.011	5.59	0.22	627.4
20	6.91	9.67	79.4	7.4	0.011	5.59	0.24	627.5

RESERVOIR R_IS_11_IHR

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
21	6.88	9.6	78.9	7.4	0.011	5.55	0.23	627.4
22	6.85	9.57	78.5	7.4	0.011	5.58	0.22	627.4
23	6.84	9.55	78.3	7.4	0.011	5.59	0.24	627.4
24	6.82	9.51	77.9	7.4	0.011	5.58	0.26	627.4
25	6.81	9.45	77.6	7.4	0.011	5.59	0.23	627.4
26	6.8	9.43	77.3	7.4	0.011	5.58	0.22	627.4
27	6.78	9.39	76.9	7.4	0.011	5.58	0.23	627.4
28	6.78	9.35	76.6	7.4	0.011	5.58	0.24	627.4
29	6.77	9.31	76.2	7.4	0.011	5.59	0.26	627.3
30	6.76	9.31	76.2	7.4	0.011	5.59	0.25	627.3
31	6.75	9.29	76	7.4	0.011	5.6	0.24	627.4
32	6.74	9.27	75.8	7.4	0.011	5.59	0.24	627.4
33	6.72	9.21	75.4	7.4	0.011	5.59	0.27	627.3
34	6.72	9.18	627.3	7.4	0.011	5.58	0.36	627.4

RESERVOIR R_IS_12_JR

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
5/26/2021 12:44 PM	Eric Sommerauer	Clear, calm	41.4	15.4

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (μS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	14.65	9.21	90.6	11.6	0.015	7.03	0.46	650.3
1	13.7	9.29	89.5	11.4	0.015	7	0.4	650.6
2	13.57	9.27	89.1	11.3	0.015	6.94	0.31	650.4
3	13.51	9.3	89.3	11.3	0.015	6.95	0.35	650.5
4	13.18	9.36	89.2	11.3	0.015	6.94	0.28	650.4
5	12.32	9.33	87.1	11.2	0.015	6.82	0.3	650.5
6	11.79	9.3	85.7	11.1	0.015	6.72	0.31	650.5
7	11.39	9.35	85.7	10.9	0.015	6.63	0.32	650.5
8	11.07	9.25	84	11	0.015	6.52	0.42	650.5
9	10.96	9.22	83.6	11	0.015	6.33	0.37	650.5
10	10.81	9.32	84.1	10.8	0.015	6.24	0.37	650.5
11	10.55	9.41	84.3	10.7	0.015	6.04	0.33	650.6
12	10.28	9.41	83.9	10.7	0.015	5.97	0.37	650.5
13	10.15	8.1	69.2	13.8	0.019	5.76	313.32	650.5

RESERVOIR R_IS_13_CR

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
5/26/2021 10:51 AM	Eric Sommerauer	Clear, calm	19.7	19.7

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0.1	13.28	9.9	94.6	12.5	0.016	6.82	0.28	686.9
1	13.03	9.93	94.4	12.4	0.016	6.85	0.3	686.9
2	12.63	9.96	93.7	12.2	0.016	6.78	0.32	686.9
3	12.42	10.01	93.8	12	0.016	6.68	0.32	686.9
4	12.12	10.03	93.2	12	0.016	6.63	0.32	686.9
5	10.99	10.22	92.8	11.4	0.016	6.55	0.29	686.9
6	10.92	10.24	92.5	11.4	0.016	6.45	0.41	686.9

RESERVOIR R_IS_14_SC

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
5/20/2021 1:20 PM	Eric Sommerauer	Clear, windy	29.1	11.2

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0.1	18.42	9.64	102.7	27.8	0.032	7.47	0.51	711.2
1	18.43	9.64	102.8	27.8	0.032	7.49	0.55	711.2
2	18.41	9.63	102.6	27.8	0.032	7.56	0.54	711.2
3	18.34	9.61	102.2	27.7	0.032	7.55	0.5	711.2
4	16.07	9.42	95	25.5	0.031	7.3	0.52	711.2
5	15.08	9.34	92.7	24	0.03	7.08	0.59	711.2
6	14.71	9.4	92.7	23.6	0.029	7.11	0.51	711.2
7	14.45	9.39	92	23.3	0.029	7.04	0.64	711.2
8	14.42	9.38	91.8	23.2	0.029	7.02	0.8	711.2

RESERVOIR R_IS_15_SC

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
	Eric			
5/20/2021 12:10 PM	Sommerauer	Clear, windy	98.0	12.8

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0.1	17.97	9.59	101.3	27.3	0.031	7.43	0.37	711.6
1	17.98	9.59	101.2	27.3	0.031	7.46	0.34	711.7
2	17.97	9.57	101	27.3	0.032	7.49	0.36	711.7
3	17.84	9.59	101	27.2	0.031	7.53	0.39	711.7
4	17.63	9.6	100.6	27	0.031	7.54	0.34	711.6
5	16.38	9.48	97	26.1	0.031	7.25	0.4	711.6
6	16	9.39	95.1	25.3	0.031	7.12	0.4	711.7
7	15.89	9.3	93.9	25.8	0.031	7.04	0.43	711.5
8	15.72	9.21	92.6	25.6	0.031	7.03	0.45	711.7
9	15.64	9.18	92.2	25.5	0.031	7	0.44	711.7
10	15.47	9.14	91.6	25.3	0.031	6.99	0.46	711.7
11	15.39	9.14	91.4	25.3	0.031	6.97	0.38	711.7
12	15.32	9.08	90.6	24.5	0.03	6.91	0.37	711.7
13	15.25	9.03	90	24.2	0.03	6.92	0.43	711.7
14	15.08	8.95	88.9	23.7	0.029	6.9	0.38	711.6
15	15.03	8.92	88.5	23.5	0.029	6.88	0.34	711.7
16	14.95	8.91	88.3	23.4	0.029	6.88	0.34	711.7
17	14.85	8.89	87.9	23.3	0.029	6.87	0.36	711.7
18	14.81	8.87	87.6	23.2	0.029	6.84	0.32	711.7
19	14.78	8.89	87.8	23.2	0.029	6.8	0.48	711.7
20	14.71	8.91	87.8	23	0.029	6.84	0.41	711.7

RESERVOIR R_IS_15_SC

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
21	14.68	8.92	87.8	23.2	0.029	6.84	0.47	711.7
22	14.61	8.92	87.7	23.2	0.029	6.82	0.42	711.7
23	14.61	8.93	87.8	23.2	0.029	6.84	0.43	711.7
24	14.57	8.91	87.4	23.3	0.029	6.82	0.48	711.7
25	14.53	8.87	87.1	23.3	0.029	6.79	0.5	711.7
26	14.48	8.86	86.9	23.3	0.029	6.81	0.46	711.7
27	14.48	8.85	86.7	23.3	0.029	6.73	0.49	711.7
28	14.41	8.37	81.3	25.1	0.031	6.65	127.5	711.7

RESERVOIR R_IS_1_LL

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
10/19/2021 10:55 AM	CTB	Clear, cool	55.3	26.5

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	11.74	8.21	75.7	7.6	0.01	6.37	0.17	602.9
1	11.73	8.2	75.6	7.6	0.01	6.31	0.17	602.9
2	11.71	8.19	75.5	7.6	0.01	6.26	0.23	602.9
3	11.66	8.19	75.4	7.6	0.01	6.24	0.22	602.9
4	11.62	8.19	75.3	7.5	0.01	6.21	0.25	602.9
5	11.62	8.19	75.3	7.6	0.01	6.18	0.26	602.9
6	11.61	8.18	75.3	7.6	0.01	6.15	0.24	602.9
7	11.61	8.18	75.2	7.6	0.01	6.09	0.22	602.9
8	11.61	8.18	75.2	7.5	0.01	6.1	0.24	602.9
9	11.58	8.17	75.1	7.5	0.01	6.11	0.21	602.9
10	11.58	8.17	75.1	7.5	0.01	6.09	0.2	602.9
11	11.54	8.16	74.9	7.5	0.01	6.09	0.25	602.9
12	11.57	8.17	75	7.5	0.01	6.08	0.22	602.9
13	11.53	8.14	74.7	7.5	0.01	6.09	0.24	602.9
14	11.53	8.13	74.6	7.5	0.01	6.05	0.21	602.9
15	11.52	8.12	74.6	7.5	0.01	6.04	0.24	602.9
16	11.52	8.12	74.5	7.5	0.01	6.04	0.23	602.9

RESERVOIR R_IS_2_LL

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
10/19/2021 11:57 AM	Eric Sommerauer	Clear, cool	45.9	26.5

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (μS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	11.87	8.12	75.1	7.6	0.01	6.41	0.21	602.7
1	11.87	8.12	75.1	7.6	0.01	6.57	0.22	602.7
2	11.84	8.12	75	7.6	0.01	6.59	0.2	602.7
3	11.85	8.11	75	7.6	0.01	6.58	0.2	602.7
4	11.84	8.11	75	7.76	0.01	6.57	0.2	602.7
5	11.81	8.11	75	7.6	0.01	6.68	0.21	602.7
6	11.8	8.11	74.9	7.6	0.01	6.68	0.21	602.7
7	11.76	8.12	74.9	7.6	0.01	6.72	0.22	602.7
8	11.75	8.12	74.9	7.6	0.01	6.66	0.16	602.7
9	11.74	8.12	74.9	7.5	0.01	6.68	0.23	602.7
10	11.74	8.12	74.8	7.6	0.01	6.73	0.22	602.7
11	11.73	8.11	74.8	7.5	0.01	6.69	0.18	602.7
12	11.7	8.12	74.8	7.5	0.01	6.66	0.23	602.7
13	11.7	8.12	74.8	7.5	0.01	6.62	0.19	602.7

RESERVOIR R_IS_3_LL

Site Type: Reservoir Instrument: YSI EXO2				
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
10/19/2021 12:45 PM	Eric Sommerauer	Clear, cool	46.5	25.6

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	11.79	8.19	75.6	7.6	0.01	6.8	0.2	602.4
1	11.78	8.19	75.6	7.6	0.01	6.77	0.22	602.4
2	11.76	8.19	75.5	7.5	0.01	6.72	0.21	602.4
3	11.74	8.18	75.4	7.5	0.01	6.72	0.21	602.4
4	11.59	8.17	75.1	7.5	0.01	6.73	0.23	602.4
5	11.58	8.17	75	7.5	0.01	6.68	0.23	602.4
6	11.55	8.16	75	7.5	0.01	6.72	0.18	602.4
7	11.54	8.16	74.9	7.5	0.01	6.7	0.22	602.4
8	11.54	8.16	74.9	7.5	0.01	6.69	0.23	602.4
9	11.52	8.16	74.9	7.5	0.01	6.65	0.18	602.4
10	11.5	8.16	74.8	7.5	0.01	6.69	0.2	602.4
11	11.48	8.16	74.8	7.5	0.01	6.66	0.2	602.4
12	11.46	8.16	74.8	7.5	0.01	6.65	0.25	602.4
13	11.42	8.16	74.7	7.5	0.01	6.64	0.2	602.4

RESERVOIR R_IS_4_GC

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
10/22/2021 12:52 PM	Eric Sommerauer	Rain	23.3	23.3

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	11.27	9.06	82.7	9.5	0.013	7.04	0.05	629.2
1	11.32	8.99	82.2	9.5	0.013	6.86	0.07	629.2
2	11.31	8.97	82	9.5	0.013	6.75	0.02	629.2
3	11.3	8.96	81.8	9.5	0.013	6.65	0.02	629.2
4	11.12	8.94	81.2	9.6	0.013	6.56	0.01	629.2
5	10.71	8.93	80.4	9.8	0.013	6.52	0.06	629.2
6	10.19	8.95	79.6	9.9	0.014	6.46	0.04	629.2

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
10/18/2021 12:10 PM	Eric Sommerauer	Clear, cold	44.9	11.7

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	14.88	8.01	79.2	18.3	0.023	6.71	0.48	639
1	14.89	8	79.1	18.3	0.023	6.74	0.44	639
2	14.83	8	79.1	18.2	0.023	6.77	0.47	639
3	14.81	8	79	18.2	0.023	6.77	0.44	639
4	14.8	8	79	18.2	0.023	6.78	0.5	639
5	14.8	8	79	18.2	0.023	6.78	0.45	639
6	14.79	7.99	78.9	18.2	0.023	6.77	0.47	639
7	14.78	7.98	78.8	18.2	0.023	6.77	0.46	639
8	14.78	7.96	78.6	18.2	0.023	6.76	0.42	639
9	14.78	7.95	78.5	18.2	0.023	6.76	0.46	639
10	14.77	7.95	78.4	18.2	0.023	6.75	0.43	639
11	14.76	7.94	78.4	18.2	0.023	6.73	0.4	639
12	14.76	7.94	78.3	18.2	0.023	6.74	0.4	639.1
13	14.74	7.92	78.1	18.2	0.023	6.74	0.48	639

Site Type: Instrument:	Reservoir YSI EXO2							
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)				
10/18/2021 1:24 PM	Eric Sommerauer	Clear, calm	75	12.2				
Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	14.99	8	79.3	18.6	0.023	6.73	0.5	639
1	14.93	7.99	79.1	18.6	0.023	6.7	0.53	639
2	14.87	7.99	79	18.5	0.023	6.71	0.55	639
3	14.85	7.99	78.9	18.5	0.023	6.7	0.6	636
4	14.82	7.99	78.9	18.5	0.023	6.72	0.56	639
5	14.8	7.99	78.9	18.5	0.023	6.7	0.59	639
6	14.78	8	78.9	18.5	0.023	6.73	0.58	639
7	14.74	7.98	78.7	18.5	0.023	6.72	0.65	639
8	14.72	7.97	78.5	18.5	0.023	6.71	0.67	639
9	14.72	7.96	78.5	18.5	0.023	6.72	0.66	639
10	14.71	7.96	78.5	18.5	0.023	6.71	0.68	639
11	14.7	7.96	78.5	18.5	0.023	6.72	0.7	639
12	14.68	7.96	78.4	18.5	0.023	6.7	0.62	639
13	14.66	7.95	78.3	18.5	0.023	6.71	0.68	639
14	14.62	7.96	78.3	18.4	0.023	6.71	0.65	639
15	14.62	7.96	78.3	18.4	0.023	6.7	0.69	639
16	14.62	7.97	78.3	18.4	0.023	6.67	0.66	639
17	14.62	7.97	78.4	18.4	0.023	6.7	0.66	639
18	14.62	7.97	78.4	18.4	0.023	6.69	0.69	639
19	14.62	7.97	78.4	18.4	0.023	6.69	0.65	639
20	14.61	7.97	78.4	18.4	0.023	6.7	0.67	639
21	14.61	7.97	78.4	18.4	0.023	6.69	0.76	639

Site Type: Instrument:	Reservoir YSI EXO2							
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)				
10/18/2021 10:26 AM	Emily Applequist	Cloudy, cold - 40s	185	11.5				
Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	14.76	7.73	76.2	18.2	0.023	6.72	0.25	638.9
1	14.78	7.72	76.2	18.2	0.023	6.73	0.23	638.9
2	14.77	7.72	76.2	18.2	0.023	6.72	0.32	638.9
3	14.77	7.72	76.2	18.2	0.023	6.7	0.3	638.9
4	14.77	7.72	76.2	18.2	0.023	6.7	0.3	638.9
5	14.76	7.71	76.1	18.2	0.023	6.71	0.29	638.9
6	14.76	7.71	76	18.2	0.023	6.7	0.32	639
7	14.76	7.7	76	18.2	0.023	6.69	0.29	638.9
8	14.75	7.7	75.9	18.2	0.023	6.7	0.3	639
9	14.75	7.69	75.9	18.2	0.023	6.66	0.29	638.9
10	14.75	7.69	75.8	18.2	0.023	6.69	0.3	638.9
11	14.75	7.68	75.8	18.2	0.023	6.69	0.3	638.9
12	14.75	7.68	75.8	18.2	0.023	6.66	0.31	638.9
13	14.75	7.68	75.8	18.2	0.023	6.68	0.3	639
14	14.74	7.68	75.7	18.2	0.023	6.66	0.28	639
15	14.74	7.68	75.7	18.2	0.023	6.65	0.37	638.9
16	14.74	7.67	75.6	18.2	0.023	6.65	0.28	638.9
17	14.74	7.67	75.6	18.2	0.023	6.64	0.34	638.9
18	14.73	7.67	75.6	18.2	0.023	6.64	0.31	638.9
19	14.73	7.66	75.6	18.2	0.023	6.62	0.31	639.1
20	14.73	7.66	75.5	18.2	0.023	6.62	0.28	639.1
21	14.72	7.65	75.4	18.2	0.023	6.63	0.31	639

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
22	14.7	7.64	75.2	18.2	0.023	6.63	0.26	639.1
23	14.66	7.6	74.8	18.1	0.023	6.6	0.31	639
24	14.66	7.59	74.7	18.1	0.023	6.58	0.32	639
25	14.58	7.54	74.1	17.9	0.022	6.57	0.33	639.1
26	14.46	7.46	73	17.7	0.022	6.54	0.28	639
27	13.2	6.84	65.1	15.6	0.02	6.32	0.04	639
28	12.06	6.7	62.3	14.7	0.02	6.14	0.03	639
29	11.82	6.75	62.4	14.6	0.019	6.12	0.03	639
30	11.45	6.83	62.7	14.4	0.019	6.11	0.01	639
31	11.1	6.93	63	14.2	0.019	6.08	0.02	639
32	11.01	6.94	62.9	14.1	0.019	6.06	0.04	639
33	10.72	6.89	62	14	0.019	5.96	0.01	639
34	10.52	6.91	62.1	13.9	0.019	5.97	0.05	639.1
35	10.33	6.9	61.6	13.9	0.019	5.99	0.02	639
36	10.23	6.9	61.5	13.9	0.019	5.89	0.01	639.1
37	10.1	6.86	60.8	13.9	0.019	5.88	0.01	639
38	9.99	6.82	60.4	13.9	0.019	5.83	0.01	639.1
39	9.86	6.63	58.5	13.9	0.02	5.65	0.02	639
40	9.72	6.52	56.8	14.1	0.02	5.54	0.12	638.9
41	9.41	6.08	53	14.1	0.02	5.45	0.19	639
42	9.24	5.83	50.7	14.2	0.02	5.33	0.12	639
43	9	5.7	49.3	14.1	0.02	5.27	0.1	639
44	8.85	5.64	48.5	14.1	0.02	5.24	0.1	638.9
45	8.74	5.6	48.1	14.1	0.02	5.23	0.11	639
46	8.45	5.54	47.3	14	0.02	5.23	0.09	639
47	8.26	5.51	46.8	13.9	0.02	5.22	0.07	639.1
48	8.17	5.5	46.6	13.9	0.02	5.21	0.04	639.1
49	7.83	5.54	46.7	13.8	0.02	5.21	0.07	639
50	7.58	5.59	46.8	13.6	0.02	5.2	59.1	639

RESERVOIR R_IS_9_IHR

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
10/20/2021 10:24 AM	Eric Sommerauer	Breezy, overcast	70	20.7

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	13.38	7.98	76.4	10.1	0.013	6.73	0.24	627.8
1	13.39	7.97	76.3	10	0.013	6.6	0.25	627.8
2	13.39	7.97	76.3	10.1	0.013	6.55	0.22	627.8
3	13.38	7.97	76.2	10	0.013	6.52	0.22	627.8
4	13.37	7.96	76.2	10	0.013	6.49	0.2	627.8
5	13.37	7.96	76.2	10	0.013	6.641	0.22	627.8
6	13.36	7.94	76	10	0.013	6.4	0.21	627.8
7	13.35	7.94	75.9	10	0.013	6.4	0.25	627.8
8	13.33	7.92	75.7	10	0.013	6.38	0.23	627.8
9	13.33	7.92	75.7	10	0.013	6.37	0.25	627.8
11	13.32	7.91	75.6	10	0.013	6.35	0.25	627.8
11	13.32	7.9	75.5	10	0.013	6.36	0.25	627.8
12	13.31	7.9	75.5	10	0.013	6.32	0.29	627.8
13	13.31	7.91	75.6	10	0.013	6.34	0.24	627.8
14	13.29	7.9	75.5	10	0.013	6.33	0.25	627.8
15	13.24	7.83	74.7	10	0.013	6.32	0.25	627.8
16	13.04	7.56	71.6	10.1	0.013	6.26	0.26	627.8
17	12.32	6	55.7	10.1	0.013	5.94	0.38	627.8
18	9.73	1.62	14	10.7	0.015	5.48	0.75	627.8
19	9.02	1.01	8.6	11	0.016	5.4	1.26	627.8
20	8.66	0.57	4.9	11.5	0.017	5.4	1.48	627.8

RESERVOIR R_IS_10_IHR

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
10/20/2021 9:57 AM	Eric Sommerauer	Overcast, breezy	27.7	24.5

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	рН (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	13.34	8.04	76.9	10	0.013	6.6	0.19	627.6
1	13.34	8.04	76.8	10	0.013	6.44	0.23	627.6
2	13.35	8.03	76.8	10	0.013	6.35	0.18	627.6
3	13.35	8.03	76.8	10	0.013	6.35	0.22	627.6
4	13.35	8.03	76.8	10	0.013	6.32	0.21	627.6
5	13.34	8.03	76.8	10	0.013	6.25	0.25	627.6
6	13.34	8.03	76.8	10	0.023	6.3	0.22	627.6
7	13.34	8.02	76.7	10	0.013	6.29	0.18	627.6
8	13.33	8.01	76.5	10	0.013	6.29	0.2	627.6
9	13.33	8	76.5	10	0.013	6.32	0.21	627.6

RESERVOIR R_IS_11_IHR

Site Type: Instrument:	Reservoir YSI EXO2							
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)				
10/20/2021 8:52 AM	Eric Sommerauer	Overcast, calm	66	33.9				
Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	13.2	8.09	77.1	9.9	0.013	6.73	0.28	627.5
1	13.2	8.05	76.7	9.9	0.013	6.54	0.16	627.5
2	13.2	8.04	76.7	9.9	0.013	6.47	0.22	627.5
3	13.2	8.03	76.6	9.9	0.013	6.4	0.23	627.5
4	13.2	8.03	76.6	9.9	0.013	6.35	0.23	627.5
5	13.2	8.03	76.6	9.9	0.013	6.31	0.24	627.5
6	13.2	8.03	76.6	9.9	0.013	6.26	0.2	627.5
7	13.2	8.02	76.5	9.9	0.013	6.19	0.19	627.5
8	13.2	8.02	76.5	9.9	0.013	6.16	0.19	627.5
9	13.2	8.02	76.5	9.9	0.013	6.14	0.25	627.5
10	13.2	8.02	76.5	9.9	0.013	6.13	0.22	627.5
11	13.2	8.01	76.4	9.9	0.013	6.1	0.24	627.5
12	13.2	8.01	76.4	9.9	0.013	6.08	0.22	627.5
13	13.2	8.01	76.4	9.9	0.013	6.07	0.22	627.5
14	13.2	8.01	76.4	9.9	0.013	6.07	0.23	627.5
15	13.2	8	76.3	9.9	0.013	6.05	0.25	627.5
16	13.2	8	76.3	9.9	0.013	6.05	0.24	627.5
17	12.45	7.43	70.2	9.8	0.013	5.93	0.21	627.5
18	9.24	5.23	45.3	8.8	0.013	5.17	0.28	627.5
19	8.82	4.72	40.6	8.7	0.013	4.96	0.48	627.5
20	8.47	4.66	39.8	8.5	0.012	4.93	0.54	627.5
21	8.28	4.5	38.3	8.5	0.013	4.89	0.41	627.5

RESERVOIR R_IS_12_JR

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
10/22/2021 2:50 PM	Eric Sommerauer	Rain	53.9	20.4

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	9.97	9.88	87.5	10.7	0.015	6.08	0.13	629.2
1	9.95	9.89	87.5	10.7	0.015	6.1	0.07	647.6
2	9.89	9.91	87.6	10.8	0.015	6.15	0.07	647.6
3	9.77	9.9	87.2	10.8	0.015	6.13	0.05	647.6
4	9.64	9.89	86.9	10.8	0.015	6.12	0.05	647.6
5	9.59	9.89	86.8	10.8	0.015	6.13	0.06	647.6
6	9.51	9.88	86.5	10.8	0.015	6.14	0.03	647.6
7	9.43	9.87	56.2	10.8	0.015	6.1	0.05	647.6
8	9.31	9.84	85.7	10.8	0.015	6.08	0.06	647.6
9	9.24	9.81	85.3	10.8	0.015	6.12	0.04	647.6
10	9.22	9.8	85.2	10.8	0.015	6.11	0.05	647.6
11	9.07	9.72	84.2	10.7	0.015	6.08	0.07	647.6
12	9.03	9.7	83.9	10.7	0.015	6.01	0.04	647.6
13	8.98	9.66	83.5	10.8	0.816	5.92	0.01	647.6
14	8.94	9.62	83	10.8	0.016	5.85	0.05	647.6
15	8.9	9.58	82.7	10.9	0.016	5.81	0.03	647.6

RESERVOIR R_IS_13_CR

Site Type: Instrument:	Reservoir YSI EXO2				
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)	
10/22/2021 10:30 AM	Eric Sommerauer	Rainy	25.1	20.6	
	_	Dissolved			Specific

 Depth (m)	Temperature (°C):	Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	10.11	10.31	91.6	12.5	0.017	6.77	0	715
1	10.13	10.32	91.7	12.4	0.017	6.48	0	715
2	10.05	10.35	91.8	12.3	0.017	6.24	0	715
3	9.95	10.36	91.7	12.3	0.017	6.2	0	715
4	9.78	10.41	91.8	12.1	0.017	6.16	0	715
5	9.64	10.46	91.9	11.9	0.017	6.12	0	715
6	9.51	10.44	91.4	11.7	0.017	6.07	0	715
7	9.47	10.36	90.6	11.6	0.016	6.01	0	715

RESERVOIR R_IS_14_SC

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
10/21/2021 2:47 PM	Eric Sommerauer	Overcast	20.3	20.3

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	14.03	9.38	91	25.5	0.032	6.97	0.11	715.7
1	13.45	9.28	89	25.1	0.032	6.91	0.16	715.7
2	13.38	9.28	88.8	25	0.032	6.85	0.15	715
3	10.96	10.51	95.3	20.5	0.028	6.88	0.27	715
4	9.95	10.81	95.7	18.9	0.027	6.82	0.28	715
5	9.87	10.88	96.1	18.8	0.026	6.78	0.35	715

RESERVOIR R_IS_15_SC

Site Type: Instrument:	Reservoir YSI EXO2			
Date & Time	Recorded By	Weather	Water Depth (ft.)	Secchi Depth (ft.)
0/21/2021 1:37 PM	Eric Sommerauer	Overcast, drizzle	117	20

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
0	13.63	9.29	89.5	25	0.032	6.94	0.12	715.7
1	13.33	9.26	88.5	24.9	0.032	6.89	0.2	715.7
2	13.23	9.24	88.1	24.8	0.032	6.87	0.16	715.7
3	13.19	9.22	87.9	24.8	0.032	6.84	0.2	715.7
4	13.16	9.21	87.7	24.7	0.032	6.81	0.26	715.7
5	13.13	9.19	87.5	24.7	0.032	6.8	0.17	715.7
6	13.13	9.18	87.3	24.7	0.032	6.77	0.22	715.7
7	13.08	9.16	87	24.6	0.032	6.75	0.26	715.7
8	12.86	9.03	85.4	25	0.033	6.72	0.24	715.7
9	12.81	8.97	84.8	25.3	0.033	6.68	0.23	715.7
10	12.68	8.95	84.4	25	0.033	6.66	0.25	715.7
11	12.63	8.93	84	24.7	0.032	6.62	0.26	715.7
12	12.6	8.88	83.5	24.8	0.032	6.57	0.32	715.7
13	12.56	8.85	83.1	25	0.033	6.53	0.3	715.7
14	12.51	8.83	82.8	25	0.033	6.48	0.35	715.7
15	12.46	8.8	82.5	25.1	0.033	6.47	0.42	715.7
16	12.42	8.86	83.1	25.6	0.034	6.44	0.39	715.7
17	12.39	8.96	83.9	26	0.034	6.45	0.37	715.7
18	12.35	9.07	84.9	26.4	0.035	6.46	0.35	715.7
19	12.28	9.18	85.7	26.8	0.035	6.48	0.33	715.7
20	12.27	9.21	86	26.7	0.035	6.49	0.37	715.7

RESERVOIR R_IS_15_SC

Depth (m)	Temperature (°C):	Dissolved Oxygen (mg/L):	Dissolved Oxygen (%):	Conductivity (µS/cm):	Specific Conductance (mS/cm):	pH (s.u.):	Turbidity (NTU):	Mercury (mmHg):
21	12.24	9.25	86.3	26.6	0.035	6.5	0.33	715.7
22	12.23	9.27	86.5	26	0.034	6.48	0.32	715.7
23	12.21	9.31	86.9	25	0.032	6.47	0.35	715.7
24	12.17	9.39	87.5	24.4	0.032	6.49	0.32	715.7
25	12.13	9.46	88	24.1	0.032	6.48	0.28	715.7
26	12.08	9.5	88.4	24	0.032	6.47	0.26	715.7
27	12	9.57	88.9	23.8	0.032	6.46	0.4	715.7
28	11.91	9.63	89.2	23.7	0.032	6.45	0.4	715.7
29	11.84	9.68	89.5	23.5	0.031	6.43	0.47	715.7
30	11.67	9.79	90.2	23.1	0.031	6.42	0.47	715.7
31	11.61	9.83	90.5	23.1	0.031	6.39	0.61	715.7
32	11.55	9.87	90.7	23	0.031	6.36	0.57	715.7
33	11.5	9.89	90.7	23	0.031	6.24	0.7	715.7
34	11.44	9.89	90.6	22.8	0.031	6.22	2.18	715.7

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

This Page Intentionally Left Blank

APPENDIX F In situ Field Calibration Sheets

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

This Page Intentionally Left Blank

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: UARP/LIS WQ - WINTER 2021

Unit ID: YSI Ex02

Sampling Event Date(s): 2/10/2021 -> 2/11/2021

	PRE-SAMPL	ING	CALIBRATI	ON
--	-----------	-----	-----------	----

Date and time 2/10/24 0615

Name ERIC SOMMERNUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25℃)	1,000	16.5	1003	1000	
Cond (uS/cm @ 25°C)	1,413	16.8	~	1412	
DO (%) ~94	~94	16.6	100.2	93.8	
DO (mg/L)* ~ 9.1	~9.1	16.6	-	9.14	Check solubility table*
pH4	pH4	17.0	4.04	4.00	712 G man Hu
pH 7	pH 7	17.5	7.12	7.03	
pH 10	pH 10	16.9	10.15	10.10	
Turbidity	0,0	17.2	0.09	0.0	
Turbidity	12.4	17.2	11.41	12.40	

Date and time 2/16/2) 1630 Name ERIC SOMMERADER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	18,31	980	N		A	
Cond (uS/cm @ 25°C)	1,413	17,85	1389	N		A	,
DO (%)	~94	13.70	94.5	N		A	ann 120 717 9
D0 (mg/L)	~9.7	13,70	9.79	N		A	Check solubility table
pH4	pH 4	17.18	3.48	N		A	
pH 7	pH 7	17.92	7.05	N		A	
pH 10	pH 10	18,22	10.00	N		A	
Turbidity	0.0	22.35	-0.02	N		A	
Turbidity	12.4	19.08	12,26	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Ver. 01/2016

CONSTRUCTION

pg 2 of 2

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: VARP/LB WG WINTER 2021

Unit ID: YSI EXO*

Sampling Event Date(s): 2/10/2021 - 2/11/2021

PRE-SAMPLING CALIBRATION

Date and time 2/10/2021 1705 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	18.37	୧୧୫	1010	
Cond (uS/cm @ 25°C)	1,413		-		713.3 nom Hu
DO (%)	Ngy	17.2	93.8	93.8	··· ··· · · · · · · · · · · · · · · ·
DO (mg/L)*	~ 9.1	17.2	-	9.04	Check solubility table*
pH4	pH4	18.3	3.47	4.00	
pH 7	pH 7	18.3	7.06	7.03	
pH 10	pH 10	18.2	10.11	10.08	
Turbidity	0.0	21.4	-0.08	0.00	
Turbidity	12.4	20.0	12,38	12,40	

POST-SAMPLING CALIBRATION CHECK Date and time 2/11/2021 1530 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	15.87	996	N		A	
Cond (uS/cm @ 25°C)	1,413	16,12	1404	N		A	
DO (%)	~150	13.76	108.2	N		A	760.6 mm Hu
DO (mg/L)	~ 10,3	13.76	10.38	N		A	Check solubility table /
pH4	pH 4	15.21	4.05	N		A	
pH 7	pH 7	15.55	7.13	N		A	
pH 10	pH 10	15.43	10.10	N		A	
Turbidity	0.0	15.71	0.03	N		A	
Turbidity	12.4	15,32	12.36	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Stillwater Sciences

pg 1 of 3 Water Quality YSI 6920 Sonde Calibration – Daily Use

Project: SMUD WATER QUALITY 2021 SPRING SURVEY - RIVERINE

Unit ID: YSI EXO2

Sampling Event Date(s): 4/27 - 29 / 2021

PRE-SAMPLING CALIBRATION

Date and time 4/27/21 0730 Name ERIL SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	16.9	1002	1000	
Cond (uS/cm @ 25°C)	1,413	16.9	-	1414	
DO (%)	~93.5	16.5	87.5	93.6	711. I man Iday
DO (mg/L)*	~9.1	16.5	8.54	9.13	Check solubility table*
pH4	pH4	17.2	4.00	4.00	
pH 7	pH 7	16.7	6.98	7.04	
pH 10	pH 10	17.1	9.86	10.10	
Turbidity	0.0	15.0	-0.35	0.00	
Turbidity	12.4	16,8	10.51	12.40	

POST-SAMPLING CALIBRATION CHECK Date and time 4/27/21 1802 Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQÓ Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	16.45	993	N		A	
Cond (uS/cm @ 25°C)	1,413	16.49	1385	N		A	
DO (%)	~93.5	18.23	99.3	N		Q	
DO (mg/L)	28.8	18,29	9.36	N		Q	Check solubility table
pH4	pH 4	16.71	4.09	N		A	712.5 mmlty
pH 7	pH 7	16.39	7.17	N		A	
pH 10	pH 10	16.29	10.03	N		A	
Turbidity	0,0	15.15	-0.03	N		A	
Turbidity	12.4	16.17	12,19	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤5%	> 5% and ≤ 10%	> 10%

Stillwater Sciences

pg 2 of 3

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SMUT WATER QUALITY 2021 SPRINGSURVEY-RIVERINE

Unit ID: YSI EXO2

Sampling Event Date(s): 4/27 - 29 /21

PRE-SAMPLING CALIBRATION Date and time 4/28/21 0730 Name Eric Sommer quer

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	16.0	1001	1000	
Cond (uS/cm @ 25°C)	1,413	16.2	ſ	1418	
DO (%)	~94.5	15.3	100.1	94.3	
D0 (mg/L)*	~9.5	15.3	-	9.43	Check solubility table*
pH4	pH4	16.2	4.08	4.00	716.9 mm Ha
pH 7	pH 7	16.4	7.16	7.04	/
pH 10	pH 10	16.4	10.04	10.11	
Turbidity	0.0	15.0	~0.01	0.00	
Turbidity	12.4	16.0	12.56	12,40	

POST-SAMPLING CALIBRATION CHECK Date and time 4/28/21 1736 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	17.44	995	N		A	
Cond (uS/cm @ 25°C)	1,413						
DO (%)	~94.5	20.05	94.0	Ν		A	
DO (mg/L)	~8.5	20.05	8.54	N		A	Check solubility table
pH4	pH 4	17.42	3.92	\sim		Δ	7163 mm Hy
pH 7	pH 7	17.08	7.04	N		A	
pH 10	pH 10	16.96	10.15	N		A	
Turbidity	0.0	15.10	0.04	N		A	
Turbidity	12.4	17.19	12.45	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	u\$/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Stillwater Sciences

pg <u>ع</u> of <u>ع</u> Water Quality YSI 6920 Sonde Calibration – Daily Use

. . .

Project: SMUD WO ZOZI SPRING SURVEY - RIVERINE

Unit ID: YSI EXOZ

Sampling Event Date(s): 4/27~29/21

Date and time 4/29/21 0630 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	18,45	1001	1000	
Cond (uS/cm @ 25°C)	1,413	19.26	-	14.17	
DO (%)	~94.5	17.9	94.1	94.4	717,5 man Hg
DO (mg/L)*	~ 8.9	17.9	>	8.96	Check solubility table*
pH4	pH4	18.5	3,98	4.00	
pH 7	pH 7	19.6	7.17	7.03	
pH 10	pH 10	18.7	10.15	10.08	
Turbidity	0.0	21.2	-0.02	0.00	
Turbidity	12.4	20.7	12.60	12.40	

POST-SAMPLING CALIBRATION CHECK Date and time <u>4/29/2 און 1500</u> Name ERIC Somm ERAUER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	21,86	998	N		A	
Cond (uS/cm @ 25°C)	1,413	22.34	1413	N		A	
DO (%)	~100.5	25.97	100.9	N		A	764.7
DO (mg/L)	~8.1	25.97	8,19	N		B	Check solubility table
pH4	pH4	21.38	4.02	N		A	
pH 7	pH 7	22.62	7.04	\sim		A	
pH 10	pH 10	24.22	9.97	N		A	
Turbidity	0.0	15.26	-0.08	N		A	
Turbidity	12.4	12.72	12.24	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

CCCC Stillwater Sciences

yg <u>−1</u> of <u>5</u> Water Quality YSI 6920 Sonde Calibration – Daily Use

Project: UARP SPRING WA RESERVOIR SURVEY

Unit ID: YSI EXO 2

Sampling Event Date(s): 5/18/21 -5/26/21

PRE-SAMPLING CALIBRATION

Date and time 5/18/21 0652 Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	19.54	997	1000	
Cond (uS/cm @ 25°C)	1,413	19.83	****	1420	
DO (%)	~100	20.05	101.7	100.2	
DO (mg/L)*	~9.1	20.05	-	9.11	Check solubility table*
pH4	pH4	20.2	4.15	4.00	
pH 7	pH 7	20.4	7.05	1.02	
pH 10	pH 10	19.5	9.62	10.07	
Turbidity	0.0	20.0	0,04	0.00	
Turbidity	12.4	20.2	12.31	12.40	

Date and time 5/18/21 אותר POST-SAMPLING CALIBRATION CHECK

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	24.61	995	N		A	
Cond (uS/cm @ 25°C)	1,413	23.89	1403	N		A	
DO (%)	~93	25.58	93.3	N		A	
DO (mg/L)	~7.7	25.58	7.62	N		A	Check solubility table
pH4	pH 4	24.17	3.89	N		A	
pH 7	pH 7	24.60	6.96	N		A	
pH 10	pH 10	25.26	9.97	N		A	
Turbidity	0,0	26.83	0.01	N		A	
Turbidity	12.4	24.81	12.66	N		A	
¹ See Table 1						-	

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
рН	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

 Stillwater Sciences
 $pg^2 of \mathcal{S}$

 Water Quality YSI 6920 Sonde Calibration - Daily Use

 Project:
 SMUD RESERVOIR WQ-SPRING SURVEY

 Unit ID:
 YSI EXO2

 Sampling Event Date(s):
 5/18/21 - 5/26/21

 PRE-SAMPLING CALIBRATION

 Date and time
 5/19/21

 Obsolve
 Name Eric SomMERAUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	24.05	1603	1000	
Cond (uS/cm @ 25°C)	1,413	24.07		1416	
DO (%)	293	23.8	92.7	93.1	707.3 mm 1/4
DO (mg/L)*	~7.8	23.8	~	7.87	Check solubility table*
pH4	pH4	24.4	3.82	4.00	
pH 7	pH 7	24.3	6.99	7.01	
pH 10	pH 10	24.5	10.17	10.01	
Turbidity	0.0	23.3	0.10	0.00	
Turbidity	12.4	24.5	12.56	12.40	

Date and time 5/19/2: 1735 Name ERIE SommERAVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	23.19	1004	N		A	
Cond (uS/cm @ 25°C)	1,413	22.85	1413	N		A	
DO (%)	~ 93	20.41	93.3	N		A	705.4 mm Ha
DO (mg/L)	~ 8.4	20.41	8.42	N		A	Check solubility table
pH4	pH 4	22.68	4.03	N		A	
pH 7	pH 7	23.35	6.99	N		A	
pH 10	pH 10	23.94	9.98	N		A	
Turbidity	6.0	23.00	-0.02	N		A	
Turbidity	12.4	23.21	12.33	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pН	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Stillwater Sciences Water Quality YSI 6920 Sonde Calibration - Daily Use Project: SMJD WATER QUALITY RESERVOIR SPRING SURVEY Unit ID: YSI Exo2Sampling Event Date(s): 5/18/21 - 5/26/21

Date and time 5710/21 0600 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	22.67	1006	1000	
Cond (uS/cm @ 25°C)	1,413	22.41	1	14/4	
DO (%)	~93	22.16	93.1	93.1	707.5 mm Ha
DO (mg/L)*	~8.1	22.16	-	8.1	Check solubility table*
pH4	pH4	32.9	4.05	4.00	
pH 7	pH 7	22.9	7.01	7.01	
pH 10	pH 10	23.0	9.95	10.03	
Turbidity	0,0	22.7	-0-01	0.00	
Turbidity	12.4	23.3	12.24	12.40	

POST-SAMPLING CALIBRATION CHECK Date and time 5/20/21 1802 Name ERIC SOMMERAJER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code1	Notes
Cond (uS/cm @ 25°C)	1,000	21.41	1002	N		4	
Cond (uS/cm @ 25°C)	1,413	22.62	1412	N		A	
DO (%)	~100	20.99	99.6	N		A	761.2 mm 1tg
DO (mg/L)	8.9	20.99	8.88	N		A	Check solubility table
pH4	pH4	21.79	4.60	N		A	
pH 7	pH 7	21.65	6.91	N		A	
pH 10	pH 10	22.06	9.88	N		A	
Turbidity	0.0	20.66	0.01	N		A	
Turbidity	12.4	21.82	12.38	N		Pr	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	r Units Accept		Qualify	Reject		
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%		
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%		
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5		
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%		

 Stillwater Sciences
 $pg \ \underline{f} of \underline{5}$

 Water Quality YSI 6920 Sonde Calibration - Daily Use

 Project: <u>SMUD UARP W& SPRING Reserve</u>; $r \ Survey$

 Unit ID: YSI EX02

 Sampling Event Date(s): 5/18/21 - 5/26/21

 PRE-SAMPLING CALIBRATION

 Date and time 5/25/21

 OBCO Name ERIC SomMER AUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	21.9	996	1000	
Cond (uS/cm @ 25°C)	1,413	21.9		1413	
DO (%)	~100	22.1	100.7	100.1	
DO (mg/L)*	~8.7	22.1	-	8.73	Check solubility table*
pH4	pH4	22.0	4.12	4.00	760.9 mm Ha
pH 7	pH 7	22.1	7.10	7.01)
pH 10	pH 10	22.0	10.14	10.04	
Turbidity	0.0	22.0	-0.02	0.00	
Turbidity	12.4	22.3	12.60	12.40	

Date and time SNS N 1800 Name ERIC SOMMERALER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	24.89	1000	N	5	A	
Cond (uS/cm @ 25°C)	1,413	24.42	1405	N		A	
DO (%)	~93	24.59	93.3	N		A	708.7 mm Ha
DO (mg/L)	27.7	24.59	7.77	N		A	Check solubility table
pH4	pH 4	24.25	3.89	N		A	
pH 7	pH 7	24.13	6.90	N		A	
pH 10	pH 10	24.22	9.93	N		A	
Turbidity	0.0	20.02	0.04	N		A	
Turbidity	12.4	24.37	12.47	N		A	
¹ See Table 1	×				6	81 16	3

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject	
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%	
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%	
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5	
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%	

Stillwater Sciences

pg 5 of 5 Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SMUD IN SITU RESERVOIR WA-SPRING SURVEY

Unit ID: YSI EXOZ

Sampling Event Date(s): 5/18/21 - 5/26/21

Date and time 5/26/21 0 730 Name ERIL SOMM ERAUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	23.8	999	1000	
Cond (uS/cm @ 25°C)	1,413	24.1	1	1413	
DO (%)	~93	22.2	92.6	93.3	708.8 mm Ha
DO (mg/L)*	~ 8.1	22. 2	~	8.12	Check solubility table*
pH4	pH4	23.7	3,88	4.00	
pH 7	pH 7	23.7	6.91	7.01	
pH 10	pH 10	23.9	10.00	10.61	
Turbidity	0.0	23.9	0.01	0.00	
Turbidity	12.4	24.1	12.40	12.40	

POST-SAMPLING CALIBRATION CHECK Date and time 5/26/21 /8 45 Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	25.89	998	N		A	
Cond (uS/cm @ 25°C)	1,413	25.71	1408	N		A	
DO (%)	100	23.97	100.9	N		A	758.0 MM Ha
*DO (mg/L)	8.4	23.97	8.48	N		A	Check solubility table
pH4	pH 4	24.89	4.07	N		A	
pH 7	pH 7	24.39	7.05	N	() 	A	
pH 10	pH 10	24.85	10.06	N		A	
Turbidity	0.0	22.11	0.01	N		A	
Turbidity	12.4	24.13	12.46	N		A	
¹ See Table 1					2		

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Parameter Units Accept Dissolved oxygen % saturation ≤ 5%		Qualify	Reject		
Dissolved oxygen			> 5% and ≤ 10%	> 10%		
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%	10	
рН	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5	5	
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%		

CORD Stillwater Sciences

pg <u>۱</u> of <u>3</u> Water Quality YSI 6920 Sonde Calibration – Daily Use

Project: SMUD WQ SUMMER RIVERINE

Unit ID: YSI Pro DSS

Sampling Event Date(s): 8/9/21 ~ 8/11/21

		PRE-3	SAMPLING C	ALIBR/	ATION
Date and time	2/9/21	0920	Name	ERIC	SOMMERAJER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	23.4	927	1000	
Cond (uS/cm @ 25°C)	1,413	22.6	-	1414	
DO (%)	~88	20.8	95.0	88.2	670.5 mm Hg
DO (mg/L)*	~7.8	20.8	-	7.80	Check solubility table*
pH4	pH4	22.7	3.44	4.00	
pH 7	pH 7	23.2	7.14	7.01	
pH 10	pH 10	23.0	10.34	10.03	
Turbidity	0.0	23.2	-2.97	0.00	
Turbidity	12.4	23.7	53.69	12.4	

Date and time 8/9/21 POST-SAMPLING CALIBRATION CHECK

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	27.2	1004	N		A	
Cond (uS/cm @ 25°C)	1,413	27.1	1409	N		A	
DO (%)	~93.5	29.2	93.4	N		A	
DQ (mg/L)	~7,1	29.2	7.15	\sim		A	Check solubility table
pH4	pH4	29.5	4.07	N		A	708, Omm Ha
pH 7	. pH 7	27.9	6.86	N		A	
pH 10	pH 10	27.5	9.94	N		B	
Turbidity	6.0	28,2	0.04	N		A	
Turbidity	12.4	27.5	12,32	N		1	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

COD Stillwater Sciences

pg <u>2</u> of <u>3</u> Water Quality YSI 6920 Sonde Calibration – Daily Use

Project: _	SMUD SU	IMMER RIVERINE WQ	
Unit ID:	YSI	ProDSS	
Sampling	Event Date(s):	8/9/21 - 8/11/21	

		PRE-SA	MPLING C	ALIBRAT	ION
Date and time _	8/10/21	0600	Name_	ERIC	SOMMER AVER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	17.0	1049	1000	
Cond (uS/cm @ 25°C)	1,413	17.3	1469	1413	
DO (%)	~ 93.5	17.8	93.2	93.4	
DO (mg/L)*	- 8.8	17.8	-	8.82	Check solubility table*
pH4	pH4	17,3	4.10	4.00	709.8 mm Ha
pH 7	pH 7	17.7	7.15	7.03	
pH 10	pH 10	18.5	10.20	10.08	
Turbidity	0.0	20.2	0.06	0.00	
Turbidity	12.4	20.4	10,20	12.40	

POST-SAMPLING CALIBRATION CHECK Date and time \$/10/21 1430 Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	22.1	1002	N		A	
Cond (uS/cm @ 25°C)	1,413	22.4	1421	N		A	
DO (%)	~93.5	28.9	94.0	N		A	
D0 (mg/L)	~7.1	28.9	7.24	N		A	Check solubility table
pH4	pH 4	22.1	4,15	N		A	709,8 mm Hg
pH 7	pH 7	21.2	7.08	N		A	
pH 10	pH 10	21.4	9.93	N		A	
Turbidity	0.0	19.7	0.02	N		A	
Turbidity	12.4	22.1	12.49	N		A	
¹ See Table 1							-

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	>10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

 Stillwater Sciences
 pg 3 of 3

 Water Quality YSI 6920 Sonde Calibration - Daily Use

 Project: SMVD SVMMER RIVERINE WQ

 Unit ID: YS1 Pro DSS

 Sampling Event Date(s): $\frac{8/9/21 - 8/11/21}{21}$

Date and time 8/11/21 0830 Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	21.4	960	1000	
Cond (uS/cm @ 25°C)	1,413	21.7	_	1414	
DO (%)	~ 80.5	23.5	80.9	80.3	
DO (mg/L)*	~ 6.7	23.5	-	6.82	Check solubility table*
pH4	pH4	21.7	3.99	4.00	610.2 mm Ha
pH 7	pH 7	22.7	6.94	7.01	
pH 10	pH 10	22.2	10.03	10.03	
Turbidity	0.0	23. Z	0.23	0.00	
Turbidity	12.4	23.0	20,20	12.40	

Date and time 8/11/21 1944 Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	3].]	99/	N		A	
Cond (uS/cm @ 25°C)	1,413	31,7	1404	N		A	
DO (%)	~ 99.5	32.0	98.5	M		A	
D0 (mg/L)	~ 7.3	32.0	7.20	N		A	Check solubility table
pH4	pH 4	31.6	4.09	N		A	757.9
pH 7	pH 7	31.4	6.96	N		A	
pH 10	pH 10	30,4	9.99	N		A	
Turbidity	0.0	25.3	0.0]	N		A	
Turbidity	12.4	32.1	12,32	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Stillwater Sciences

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SMUD WQ FALL RESERVOIR SURVEY

Unit ID: YSI EXO2

Sampling Event Date(s): 10/18/2021 → 10/12/2021

Date and time 10/17/2021 2144 Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	20.3	750	1000	
Cond (uS/cm @ 25°C)	1,413	20.6	-	1410	
DO (%)	~93.5	17.5	93.7	93.5	710.5 mmHz
DO (mg/L)*	- 8.9	17.5	-	8.96	Check solubility table*
pH4	pH4	20.5	3.98	4.00	
pH 7	pH 7	20.Z	6.94	7.02	
pH 10	pH 10	20.1	10.04	10.06	
Turbidity	0.0	16.3	0.01	0.00	
Turbidity	12.4	18,9	12.01	12.40	

Date and time 10/18/2021 1745 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code1	Notes
Cond (uS/cm @ 25°C)	1,000	19.3	992	\sim		A	
Cond (uS/cm @ 25°C)	1,413	19.4	1408	N		Á	
DO (%)	~935	18.4	93.7	N		A	712.1mm 140
*D0 (mg/L)	~ 8.8	18.4	8.81	~		A	Check solubility table"
pH4 👂	pH 4	19.3	4.05	N		A	
pH 7	pH 7	17.4	6.94	N		A	
pH 10	pH 10	18.3	9.99	N		A	
Turbidity	0.0	19.2	0.04	N		A	
Turbidity	12.4	19.3	12.50	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Water Quality YSI 6920 Sonde Calibration - Daily Use

pg2 of 5

Project:	SMUD	WQ FALL	RESERVOIR	SURVEY
Unit ID:	YSI	EXOZ		

Sampling Event Date(s): 10/18/21 - 10/12/1021

PRE-SAMPLING CALIBRATION Date and time 10/18/21 1908 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	15.4	1344	1000	
Cond (uS/cm @ 25°C)	1,413	15.8	l	1414	
DO (%)	~93.5	17.3	94.7	93.7	
DO (mg/L)*	~9.0	17.4		8.98	Check solubility table*
pH4	pH4	15.7	3.98	4.00	712.2
pH 7	pH 7	16.3	6.94	7.04	
pH 10	pH 10	15.9	9.78	10.11	
Turbidity	0.0	16.6	-0,16	0.00	
Turbidity	12.4	17.7	1236	12.40	

Date and time 0/19/21 1700 Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	17,44	990	N		A	
Cond (uS/cm @ 25°C)	1,413	17.56	1401	N		4	
DO (%)	~933	15.80	91.4	N		A	
D0 (mg/L)	~9.2	15.81	9.09	N		A	Check solubility table
pH4	pH 4	17.37	3.95	N		A	710.6 malte
pH 7	pH 7	17.47	7.04	N		A	
pH 10	pH 10	17.58	10.13	N		A	
Turbidity	0.0	17.23	0.03	N		À	
Turbidity	12.4	17.45	12.44	N		9	
¹ See Table 1		14.14					

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

(CO)

Stillwater Sciences

pg 3 of 5 Water Quality YSI 6920 Sonde Calibration − Daily Use

Project: SMUD WO FALL RESERVOIR SURVEY

Unit ID: YSI EXOZ

Sampling Event Date(s): 10/18 - 10/22, 2021

Date and time 10/20/21 0500 Name ERIC SOMMER AD ER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	17,6	1004	1000	
Cond (uS/cm @ 25°C)	1,413	17.7	-	1413	
DO (%)	~94	18.2	94.1	93.8	712,8 mm/tu
D0 (mg/L)*	~8.9	18.2	-	8.85	Check solubility table*
pH4	pH4	18.0	3.97	4.00	
pH 7	pH 7	18.0	7.04	7.03	
pH 10	pH 10	17.9	10.31	10.09	
Turbidity	0.0	17.4	-0.02	0.0	
Turbidity	12.4	17.7	12.45	12.4	

POST-SAMPLING CALIBRATION CHECK Date and time 10/20/21 15 30 Name_ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code1	Notes
Cond (uS/cm @ 25°C)	1,000	17.94	993	N		Λ	
Cond (uS/cm @ 25°C)	1,413	18.23	1407	N		A	
DO (%)	~100	19.5	99.6	N		A	762.7 mm Ha
D0 (mg/L)	~4.1	19.5	9.21	N		Â	Check solubility table
pH4	pH 4	17,49	3.86	N		A	
pH 7	pH 7	17.90	6.90	N		A	
pH 10	pH 10	15.06	10.02	N		A	
Turbidity	0.0	19.76	0.05	N		A	
Turbidity	12.4	18.84	12.53	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	, > 10%

Stillwater S	eciences	,	Water Q	uality YSI 6920 So	nde Calibration – Daily Use	pg <u>4</u> of <u>5</u>
Project:	SMUD	wQ	FALL	RESERVOIR	SURVEY	

Unit ID: YSI EXOL

Sampling Event Date(s): 10/18 - 10/22, 2021

	PRE-SA	AMPLING CA	ALIBRAT	ION
Date and time 10/20/21	1545	Name_	ERIC	SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	17.64	995	1000	
Cond (uS/cm @ 25°C)	1,413	17.81	-	1413	
DO (%)	N(00	18.4	99.3	100.4	
DO (mg/L)*	~9.4		1	9.43	Check solubility table*
pH4	pH4	(7.8	3.82	4.00	762.6
pH 7	pH 7	17.4	6.92	7.0	
pH 10	pH 10	17.1	10.01	10.10	
Turbidity	0.0	18.8	-0.03	0,00	
Turbidity	12,4	17.4	12049	12.40	

POST-SAMPLING CALIBRATION CHECK Date and time 10/21/21 2030 Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	23.27	990	N		A	
Cond (uS/cm @ 25°C)	1,413	23.36	1389	N		A	
DO (%) ~10	5	22.84	100-8	N		A	761 monther
*D0 (mg/L)	~ 8.6	22.84	8.67	N		A	Check solubility table
pH4	pH 4	23.07	4.09	N		A	
pH 7	pH 7	22.96	7.08	N		A	
pH 10	pH 10	23.23	10.02	N		A	
Turbidity	0.0	21.20	0.01	N		A	
Turbidity	12.4	23.11	12.46	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

CONSTRUCTION Stillwater Sciences	Water Quality YSI 6920 Sonde Calibration – Daily Use	pg <u>5</u> of <u>5</u>
Project: 2021	SMUD FALL RESERVOIR IN SITU	
Unit ID: YS1	Ex02 10/18-22/2021	

Sampling Event Date(s): ____

	PRE-SA	MPLING CALIBRATION
Date and time 10/22/21	0808	Name ERIC SOMMERAVER

Parameter •	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000		-	-	1 St TURB LAL WAS CHUTY B
Cond (uS/cm @ 25°C)	1,413	18.286	13 81	1413	AT STATE R. T.S. 13-C.P.
DO (%)	~ 94	20.9	94.2	93.7	The party republic of the second
DO (mg/L)*	~ 8.3	208		8.38	Check solubility table*
pH4	pH4	18.6	4.01	4.00	711.8 mp 1-1a
pH 7	pH 7	18.7	7.11	7.03	Resol in field
pH 10	pH 10	17.8	10.09	10.01	Pre Post
Turbidity	0.0	17.6	4.27	0.60	7.5 % -5.79, 0.00 1:37
Turbidity	12.4	18.5	12.24	12.40	13.16 12.32 12.46 1112

Date and time 10/22/21 1830 Name GRIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	23,2	ଦ୍ୟୁବୀ	N		A	
Cond (uS/cm @ 25°C)	1,413	22,9	1397	N		A	
DO (%)	~100.5	13.1	100.7	N		A	
D0 (mg/L)	~8.6	23.1	8.58	N,		A	Check solubility table
pH4	pH 4	22.7	4.06	N		A	760,8 mm Ha
pH 7	pH 7	22.7	2.09	N		A	
pH 10	pH 10	22.9	10.04	N		A	
Turbidity	0.0	23.4	0.03	N		A	
Turbidity	12.4	22.8	12.36	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

((3)) pg of 3 Stillwater Sciences Water Quality YSI 6920 Sonde Calibration - Daily Use Project: 2021 SMUD UARP Water Quality Unit ID: YSI Exo 2 Sampling Event Date(s): 11/16/2021 -11/19/2021 PRE-SAMPLING CALIBRATION Date and time 11/16/21 Name Emily Popplequest, Eric Sommeromer 8080 Parameter Std. Std. Pre-Cal Post-Cal Notes Value Temp Value Value (°C) bad botch of 1,000,0 S/cm standard Cond (uS/cm @ 25°C) 1,000 1,413 1.352 14.03 Cond (uS/cm @ 25°C) 1,413 662.1 mm Hg Check solubility table ~87 87.D 87.1 DO (%) 19.4 ~7.9 19.54 7.99 DO (mg/L)* -15.6 4.00 4.00 pH4 pH4 pH 7 pH 7 15.4 7.08 7.04 15.1 pH 10 pH 10 10.43 10.12 15.0 Turbidity 0.0 0.32 00.0 12.4 13.7 Turbidity 12.45 12.40

POST-SAMPLING CALIBRATION CHECK

Date and time 11/14/21 1330 Name Emily Applequist Eric Sommerower

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000					-	See above
Cond (uS/cm @ 25°C)	1,413	12:09	1,408	N		A	
DO (%)	~88	13.90	88.3	N		A	668.6 mm Hg
*D0 (mg/L)	~9.0	13.90	9.13	N		A	Check solubility table ⁴⁰
pH4	pH 4	16.13	4.03	N		A	
pH 7	pH 7	16.88	6.98	N		A	
pH 10	pH 10	16.68	10.07	N		A	
Turbidity	0.0	17.57	0.03	N		A	
Turbidity	12.4	17.17	12.41	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	$>5\%$ and $\leq10\%$	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pН	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

CED Stillwater Sciences

pg <u>2</u> of <u>3</u> Water Quality YSI 6920 Sonde Calibration - Daily Use

Project:	202	1 SMUDUARP	Wate	Quality
Unit ID:	٧SI	Exo2		I

Sampling Event Date(s): 11/16/2021-11/19/2021

	PRE-SAMP	LING CALIBRA	ATION		-
Date and time 11/18/201	0800	Name Emih	, Apple	unt,Er	ic Sommerane

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	17.01	1,027	1,000	
Cond (uS/cm @ 25°C)	1,413	11.40	-	1,411	
DO (%)	~81	16.8	88.9	87.1	662.1mm Ha
D0 (mg/L)*	~ 8.4	16.8	1	8.44	Check solubility table*
pH4	pH4	11.4	9.14	4.00	
pH 7	pH 7	11.0	7.10	7.06	
pH 10	pH 10	10.8	10.82	10,18	
Turbidity	0.0	9.7	0.09	0.00	
Turbidity	12.4	9.7	12.37	12.40	

Date and time 11/18/2021 14:40 Name Emily Applequint

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	16.57	1,005	N		A	
Cond (uS/cm @ 25°C)	1,413	15.71	1,405	2		A	
DO (%)	~88	13.66	86.8	2		₽.	670.0 mm Ha
*D0 (mg/L)	~9.1	13.66	10.6	Z		A	Check solubility table?
pH4	pH 4	15.10	3.97	2		A	
pH 7	pH 7	15.83	6.92	N		A	
pH 10	pH 10	16.52	9.94	N		A	
Turbidity	0.0	16.11	0.67	N		A	
Turbidity	12.4	15.15	12.36	2		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
рН	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

pg 3 of 3 Stillwater Sciences Water Quality YSI 6920 Sonde Calibration - Daily Use Project: 2021 SMUD VARP +CB Water Quality Unit ID: YSI Exo 2 Sampling Event Date(s): 11/16/2021 - 11/19/2021 0755 Name Emply Applequist + Eric Simmeran Date and time 11/19/21

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes			
Cond (uS/cm @ 25°C)	1,000	14.71	1,005	1,000				
Cond (uS/cm @ 25°C)	1,413	14.46	-	1,402				
DO (%)	~ 87	17.9	87.7	87.2	642.9 mm Hg			
DO (mg/L)*	~8.2	17.94	-	8.20	Check solubility table*			
pH4	pH4	15.2	3.96	4.00	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
pH 7	pH 7	14.9	6.94	7.04				
pH 10	pH 10	14.7	10.05	10.13				
Turbidity	0.0	13.7	-0.10	00.0				
Turbidity	12.4	13.5	12.38	12.40				

POST-SAMPLING CALIBRATION CHECK 1400 Name Errily Applequist Eric Sommerawer Date and time 11/19/21 1400

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	19.13	994	N		A	
Cond (uS/cm @ 25°C)	1,413	19.40	1,393	N		A	
DO (%)	~97	16.30	94.3	2		A	740.7 mm Ha
*DO (mg/L)	~ 9.5	16.30	9.25	N		A	Check solubility table
pH4	pH 4	18.35	4.06	N		A	
pH 7	pH 7	20.00	7.07	N		A	
pH 10	pH 10	19.59	80.0	N		A	
Turbidity	0.0	18,40	10.0	N		A	
Turbidity	12.4	19.11	12.33	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

This Page Intentionally Left Blank

APPENDIX G Analytical Laboratory Bacteria Reports

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

This Page Intentionally Left Blank

CALIFORNIA LABORATORY SERVICES Committed. Responsive. Flexible.

June 29, 2021

CLS Work Order #: 21F1220 COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 06/22/21 16:02. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA SWRCB ELAP Accreditation/Registration number 1233

		Report To:		Client 750.10	Job Nut Task 05	mber 00.02		AN/	ALYSI	IS RE	QUESTED	GE	OTR/	CKE	R	
Stillwa 2855 T	ter Scien elegraph	nces Ave. Suite 400		Destinat Ranc	ion Lab ho Cord	oratory ova	1	Fec		E. co		EDF REPORT YES X NO				
Berkeley, CA 94705 Project Manager Emily Applequist eapplequist@stillwatersci.com Project Name SMUD In situ, Bac-T, & Chemistry Monitoring Sampled By				X CLS	(916)	638-7301	1	alc		oli Q		GL	OBAI	ID.		
				3249 Fitzgerial Koad Rancho Cordova, CA 95742 www.californialab.com OTHER				oliform-15 Tube		ianti-tray		FIELD CONDITIONS:				
Job Description Monitor seasonal bacteria levels in UARP reaches. Site Location UARP																
											1	URN. TIME	AROUND IN DAYS		SPECIAL INSTRUCTIONS	
DATE	TIME	SAMPLE	FIELD	MITDIV	CO	INTAINER						1	2	3	5	
(. 192/91	1115	BACELOFUVR		Surface water	NO.	TIPE	6	x	+	x		+	-	_	x	
6/22/41	1145	Bar ~ 7 - UVR		Surface water			6	×	-	X		\vdash			x	
6/22/21	1225	Bac - 13- IHR		Surface water			6	×	-	x					х	
6/22/21	1310	BAC-11-JR		Surface water			6	X		x					х	
/22/21	1430	BAL- 15-SCR		Surface water			6	x		×					X	
				Surface water			6								х	
				Surface water			6								х	INVOICE TO:
				Surface water			6								х	Stillwater Sciences
				Surface water			6								х	Same as above
				Surface water			6								х	
				Surface water			6								х	Project No. 750.10 Tas 0500.02
				Surface water			6								х	QUOTE#
SUSPECT	ED CONST	TITUENTS						SAM	PLE RE	TENTI	ON TIME	PR	ESER	VATI	VES (I	1) HCL (3) = COLD 2) HNO ₃ (4)= H2SO4
RELINQU	ISHED BY ((Signature)	PRINT NAM	IE/COMPANY		DATE/TIME			RECEI	IVED I	3Y (Signature)				PRI	NT NAME/COMPANY
Lid V	ath	Loren Sar	2 Rosa	155)yo	der	6-22-2	2									
RECEIV	ED AT LA	BBY:		DATE/TIME:]	602	2	CO	NDITI	ONS/CO	омм	ENTS: C	2.0	t			
SHIPPED BY: FED EX UPS			PS 🗆	OTHER 5/22/21 (602 AIR BILL #												

CALIFORNIA LABORATORY SERVICES

Page 1 of 2	B		06/29/21 13:53
Stillwater Sciences	Project:	SMUD In situ, Bac-T, & Chemistry 1	Monitoring
2855 Telegraph Ave., Suite 400	Project Number:	750.10 Task 0500.02 CL	S Work Order #: 21F1220
Berkeley, CA 94705	Project Manager:	Emily Applequist CO	C #:

Microbiological Parameters by APHA Standard Methods

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bac-10-UVR (21F1220-01) Surface Water	Sampled: 06/22/21 11:15	Recei	ved: 06/22	/21 16:02					
Fecal Coliforms	<1.8	1.8	MPN/100	1	2105141	06/22/21 16:30	06/25/21	SM 9221	
E. Coli	<1	1.0	*		2105133	06/22/21 17:00	06/23/21	SM9223	
Bac-7-UVR (21F1220-02) Surface Water	Sampled: 06/22/21 11:45	Receiv	ed: 06/22/2	21 16:02					
Fecal Coliforms	1.8	1.8	MPN/100	1	2105141	06/22/21 16:30	06/25/21	SM 9221	
E. Coli	21.1	1.0	* *		2105133	06/22/21 17:00	06/23/21	SM9223	
Bac-13-IHR (21F1220-03) Surface Water	Sampled: 06/22/21 12:25	Receiv	ved: 06/22/	21 16:02					
Fecal Coliforms	<1.8	1.8	MPN/100	1	2105141	06/22/21 16:30	06/25/21	SM 9221	
E. Coli	3.0	1.0			2105133	06/22/21 17:00	06/23/21	SM9223	
Bac-11-JR (21F1220-04) Surface Water 5	Sampled: 06/22/21 13:10	Receive	d: 06/22/2	1 16:02					
Fecal Coliforms	23	1.8	MPN/100	1	2105141	06/22/21 16:30	06/25/21	SM 9221	
E. Coli	34.5	1.0			2105133	06/22/21 17:00	06/23/21	SM9223	
Bac-15-SCR (21F1220-05) Surface Water	Sampled: 06/22/21 14:30	Recei	ved: 06/22	21 16:02					
Fecal Coliforms	<1.8	1.8	MPN/100	1	2105141	06/22/21 16:30	06/25/21	SM 9221	
E. Coli	3.1	1.0			2105133	06/22/21 17:00	06/23/21	SM9223	

3249 Fitzgerald Road, Rancho Cordova, CA 95742 | 800.638.7301 | Tel: 916.638.7301 x102 | Fax: 916.638.4510 | www.californialab.com Small Business #2916 | ELAP #1233 | NAICS #541380 | CA SWRCB ELAP Accreditation/Registration Number 1233

CALIFORNIA LABORATORY SERVICES

Page 2 of 2	2			(06/29/21 13:53
Stillwater 2 2855 Teleg Berkeley, (Sciences graph Ave., Suite 400 CA 94705	Project: Project Number: Project Manager:	SMUD In situ, Bac-T, & Chemis 750.10 Task 0500.02 Emily Applequist	stry Monitoring CLS Work Order #: 21F? COC #:	1220
		Notes and Defini	itions		
BT-4a	<1.8				
BT-4	<1				
DET	Analyte DETECTED				
ND	Analyte NOT DETECTED at or above the reporting limit (or	r method detection limit	when specified)		
NR	Not Reported				
dry	Sample results reported on a dry weight basis				
RPD	Relative Percent Difference				

3249 Fitzgerald Road, Rancho Cordova, CA 95742 | 800.638.7301 | Tel: 916.638.7301 x102 | Fax: 916.638.4510 | www.californialab.com Small Business #2916 | ELAP #1233 | NAICS #541380 | CA SWRCB ELAP Accreditation/Registration Number 1233

CALIFORNIA LABORATORY SERVICES Committed. Responsive. Flexible.

July 07, 2021

CLS Work Order #: 21F1497 COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 06/29/21 13:45. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA SWRCB ELAP Accreditation/Registration number 1233

		Report To:		Client 750.10	Job Numbe Task 0500.0	er V2		ANA	LYSIS	REG	UESTED	GE	OTR	ACKE	R	
Stillwa 2855 T	ter Scier elegraph	nces Ave. Suite 400		Destinat Ranc	ion Laborat ho Cordova	iory L		Fee		E. co		EC	FRE	PORT		YES X INO
Berkeley, CA 94705 Project Manager Emily Applequist eapplequist@stillwatersci.com			V CLS	(916) 63	8-7301		al c		i Q		GLOBAL ID.					
			3249 Fitzgerald Road Rancho Cordova, CA				olit		uant		1					
							form		H-							
roject Na	me	D. T. & OL . L. M.		95742 www.californialab.com				2	×			FIE	ELD C	OND	ITIONS	k.
ampled B) in situ,	Bac-1, & Chemistry Mon	ittoring	-			R	ST								
Eric	Somme	raver/David Rosen		□ OTHER				ube								
Job Description Monitor seasonal bacteria levels in UARP reaches.				· · · · · · · · · · · · · · · · · · ·												
Site Location UARP										TURNAROUND TIME IN DAYS			AVS	SPECIAL INSTRUCTIONS		
		SAMPLE	FIELD		CONT	AINER										
DATE	TIME	IDENTIFICATION	ID.	MATRIX	NO.	TYPE						1	2	3	5	
129/2	0810	Bac-10-UVR		Surface water			6	×		*					x	
29/21	0920	BAC-7-UVR		Surface water			6	x		x					x	
129/21	0950	BAC-13-IMR		Surface water			6	x		×					x	
129/21	1035	Bac-11- JR		Surface water			6	X		x	×.				x	
61:4/2	120	BAC-15-SCR	- Ix	Surface water			6	X		x					х	
				Surface water			6								х	
				Surface water			6								x	INVOICE TO:
			-	Surface water	_		6								X	Stillwater Sciences
				Surface water			6								х	Same as above
				Surface water	_		6			-					х	
		1		Surface water			6								x	Project No. 750.10 148 0500.02
				Surface water	_		6								х	QUOTE#
USPECT	ED CONST	TITUENTS						SAMPI	LE RETE	ENTIO	N TIME	PR	ESER	VATI	VES (I	(3) = COLD (4) = H2SO4
ELINQU	ISHED BY	(Signeture)	PRINT NAM	ECOMPANY	D	ATE/TIME		1	RECEIV	ED BY	(Signature)	-			PRIM	T NAME/COMPANY
HA	ud K	Posen Davi	d Kosca	Hilmate	T Col	29/21	13	45								
Jun		a data			1	or the	1									-
		N/1			1101	1 101	1						120			

CALIFORNIA LABORATORY SERVICES

E	
age 1 of 2	07/07/21 12:08
Stillwater Sciences	Project: SMUD In situ, Bac-T, & Chemistry Monitoring
2855 Telegraph Ave., Suite 400	Project Number: 750.10 Task 0500.02 CLS Work Order #: 21F1497
Berkeley, CA 94705	Project Manager: Emily Applequist COC #:

Microbiological Parameters by APHA Standard Methods

	Re	porting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bac-10-UVR (21F1497-01) Surface Water	Sampled: 06/29/21 08:10	Recei	ved: 06/29	/21 13:45					
Fecal Coliforms	<1.8	1.8	MPN/100 mL	1	2105351	06/29/21 14:00	07/02/21	SM 9221	
E. Coli	<1	1.0			2105335	06/29/21 16:00	06/30/21	SM9223	
Bac-7-UVR (21F1497-02) Surface Water	Sampled: 06/29/21 09:20	Receiv	ed: 06/29/2	21 13:45					
Fecal Coliforms	<1.8	1.8	MPN/100	1	2105351	06/29/21 14:00	07/02/21	SM 9221	
E. Coli	1.0	1.0			2105335	06/29/21 16:00	06/30/21	SM9223	
Bac-13-IHR (21F1497-03) Surface Water	Sampled: 06/29/21 09:50	Receiv	ved: 06/29/	21 13:45					
Fecal Coliforms	33	1.8	MPN/100	1	2105351	06/29/21 14:00	07/02/21	SM 9221	
E. Coli	<1	1.0			2105335	06/29/21 16:00	06/30/21	SM9223	
Bac-11-JR (21F1497-04) Surface Water	Sampled: 06/29/21 10:35	Receive	d: 06/29/21	13:45					
Fecal Coliforms	170	1.8	MPN/100	1	2105351	06/29/21 14:00	07/02/21	SM 9221	
E. Coli	195.6	1.0			2105335	06/29/21 16:00	06/30/21	SM9223	
Bac-15-SCR (21F1497-05) Surface Water	Sampled: 06/29/21 12:20	Recei	ved: 06/29/	21 13:45					
Fecal Coliforms	2.0	1.8	MPN/100	1	2105351	06/29/21 14:00	07/02/21	SM 9221	
E. Coli	<1	1.0			2105335	06/29/21 16:00	06/30/21	SM9223	

3249 Fitzgerald Road, Rancho Cordova, CA 95742 | 800.638.7301 | Tel: 916.638.7301 x102 | Fax: 916.638.4510 | www.californialab.com Small Business #2916 | ELAP #1233 | NAICS #541380 | CA SWRCB ELAP Accreditation/Registration Number 1233

CALIFORNIA LABORATORY SERVICES

Page 2 of	2				07/07/21 12:08
Stillwater 2855 Tele Berkeley,	Sciences graph Ave., Suite 400 CA 94705	Project: Project Number: Project Manager:	SMUD In situ, Bac-T, & Chem 750.10 Task 0500.02 Emily Applequist	istry Monitoring CLS Work Order #: 211 COC #:	71497
		Notes and Defin	itions		
BT-4a	<1.8				
BT-4	<1				
DET	Analyte DETECTED				
ND	Analyte NOT DETECTED at or above the reporting limit (or method detection limit	when specified)		
NR	Not Reported				
dry	Sample results reported on a dry weight basis				
RPD	Relative Percent Difference				

3249 Fitzgerald Road, Rancho Cordova, CA 95742 | 800.638.7301 | Tel: 916.638.7301 x102 | Fax: 916.638.4510 | www.californialab.com Small Business #2916 | ELAP #1233 | NAICS #541380 | CA SWRCB ELAP Accreditation/Registration Number 1233

July 13, 2021

CLS Work Order #: 21G0167 COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 07/06/21 12:12. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA SWRCB ELAP Accreditation/Registration number 1233

		Report To:		Client 750.10	Jeb Numb Task 0500.	07 02		ANA	LYSIS	REQUES	FED G	EOR	LACK	R		
Stillwa 2855 T	ter Scier	tees Ave. Suite 400		Destinat Rane	ion Labora Iro Cordes	dory a	1	Fe			E	DF-R	EPOR	ns.	YEN X SKO	
Berkel	cy, CA 9	4705		T CLS	(916) 6	38-7301		23 0			36	GLOBAL ID				
Project Ma	Apolary	int annalas dat Scotlla	and an and a second	- 1249 Ranci	Fitzgerald ho Cordov	d Road m, CA	-10	olifo	1000	anti-t						
Emily Project Na SMUI	Appiequ inc) In situ,	Bac-T, & Chemistry M	Monitoring	95742 www.cali	2 ifornialat	0.com	RESER	rm-15	ray		E	FIELDAGONDITIONS				
iampled I K2.5	DK	ck		□ OTHER			VATIN	Tube								
lah Desan Manuar is	Description muor seasonal bacteria levels in UARP regenes.															
Site Deent	ion UARF	(TUR	NARG	UND	SPECIAL	
DATE	TIME	SAMPLE	FIELD	CONTAINER					1	2	3	5	ISSIRUCTROSS			
le las		DENTIFICATION	10.	MATRIX	NO.	TYPE						-				
16/21	0750	BAC-ID-UVK		Surface water			0	x		×	-	-	-	X		
16/20	06.30	7 17 - THE		Surface water			6	X	1 8	r –		+	-	X		
11/71	0940	D. 11. TO		Surface water			6	X		X		+	-	X		
16/22	1105	Bar IE CIR		Surface water		-	6	2	1	~		+	-	N N		
10100	119.1	pac - ip - pen		Surface water		-	6	0	+ +			+	+	x		
				Surface water			6					+	+	x	INVOICE TO:	
		-		Surface water			6					+	t	x	Stillwater Sciences	
				Surface water			6					T		x	Same as above	
				Surface water			.6					T		x		
				Surface water	_		6							x	Project No. 750.10 Tax 0590.02	
				Surface water			6							X	QUOTE#	
USPECT	ED CONST	ITUENTS						SAMPI.	ERETEN	TION TIME	19	ESE	RVAI	VES (HCL (3) = COLD 2) BNO: (4)= H2SO4	
FLINQU	ISHED BY (Signature)	PRINT NAM	EACOMPANY	D	ATE/DME		R	ECRIVE	D BV (Signal	ure)		1	PRP	IT NAME/COMPANY	
28		- 30	C SOMMER AVET	e/still wate	n 74	121 171	2									
		An An			1.5	10.0	-				ME	2	1			

CALIFORNIA LABORATORY SERVICES

Page 1 of 2	B		07/13/21 13:31
Stillwater Sciences	Project:	SMUD In situ, Bac-T, & Chemistry I	Monitoring
2855 Telegraph Ave., Suite 400	Project Number:	750.10 Task 0500.02 CL	S Work Order #: 21G0167
Berkeley, CA 94705	Project Manager:	Emily Applequist CO)C #:

Microbiological Parameters by APHA Standard Methods

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bac-10-UVR (21G0167-01) Surface Water	Sampled: 07/06/21 07:50	Rece	ived: 07/06	6/21 12:12					
Fecal Coliforms	<1.8	1.8	MPN/100	1	2105530	07/06/21 12:30	07/08/21	SM 9221	
E. Coli	<1	1.0	*		2105533	07/06/21 12:45	07/07/21	SM9223	
Bac-7-UVR (21G0167-02) Surface Water	Sampled: 07/06/21 08:30	Receiv	ved: 07/06/	21 12:12					
Fecal Coliforms	<1.8	1.8	MPN/100	1	2105530	07/06/21 12:30	07/09/21	SM 9221	
E. Coli	1.0	1.0	mL. *		2105533	07/06/21 12:45	07/07/21	SM9223	
Bac-13-IHR (21G0167-03) Surface Water	Sampled: 07/06/21 09:10	Recei	ved: 07/06	/21 12:12					
Fecal Coliforms	17	1.8	MPN/100	1	2105530	07/06/21 12:30	07/09/21	SM 9221	
E. Coli	18.7	1.0			2105533	07/06/21 12:45	07/07/21	SM9223	
Bac-11-JR (21G0167-04) Surface Water	Sampled: 07/06/21 09:40	Receive	ed: 07/06/2	1 12:12					
Fecal Coliforms	7.8	1.8	MPN/100	1	2105530	07/06/21 12:30	07/09/21	SM 9221	
E. Coli	4.1	1.0			2105533	07/06/21 12:45	07/07/21	SM9223	
Bac-15-SCR (21G0167-05) Surface Water	Sampled: 07/06/21 11:05	Recei	ved: 07/06	21 12:12					
Fecal Coliforms	2.0	1.8	MPN/100 mL	1	2105530	07/06/21 12:30	07/09/21	SM 9221	
E. Coli	1.0	1.0			2105533	07/06/21 12:45	07/07/21	SM9223	

3249 Fitzgerald Road, Rancho Cordova, CA 95742 | 800.638.7301 | Tel: 916.638.7301 x102 | Fax: 916.638.4510 | www.californialab.com Small Business #2916 | ELAP #1233 | NAICS #541380 | CA SWRCB ELAP Accreditation/Registration Number 1233

CALIFORNIA LABORATORY SERVICES

Page 2 of	2				07/13/21 13:31
Stillwater 2855 Tele Berkeley,	Sciences graph Ave., Suite 400 CA 94705	Project: Project Number: Project Manager:	SMUD In situ, Bac-T, & Chemi 750.10 Task 0500.02 Emily Applequist	istry Monitoring CLS Work Order #: 21G COC #:	0167
		Notes and Defin	itions		
BT-4a	<1.8				
BT-4	<1				
DET	Analyte DETECTED				
ND	Analyte NOT DETECTED at or above the reporting limit (or	or method detection limit	when specified)		
NR	Not Reported				
dry	Sample results reported on a dry weight basis				
RPD	Relative Percent Difference				

3249 Fitzgerald Road, Rancho Cordova, CA 95742 | 800.638.7301 | Tel: 916.638.7301 x102 | Fax: 916.638.4510 | www.californialab.com Small Business #2916 | ELAP #1233 | NAICS #541380 | CA SWRCB ELAP Accreditation/Registration Number 1233

July 20, 2021

CLS Work Order #: 21G0707 COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 07/13/21 12:37. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA SWRCB ELAP Accreditation/Registration number 1233

		Report To:			Client 750.10	Job Num Task 0500	ber 1.02		ANAI	LYSIS	REQUEST	ED GE	OTRA	CKE	R	
Stillwa 2855 T	ter Scier elegraph	ices Ave. Suite 400			Destinat Ranci	ion Labor ho Cordo	atory va		Fec	E. 00	5	EE	FREP	ORT		YES X 🗆 NO
Berkele	y, CA 9	4705			T CLS	(916) (38-7301	1	alo	4	5	GL	GLOBAL ID. FIELD CONDITIONS			
Project Ma Emily Project Na	nager Applequ me	iist eapplequist@s	tillwater	sci.com	3249 Ranel 95742	Fitzgera no Cordo 2	ld Road wa, CA	PRE	oliform-	uanu-way		FIE				
SMUE) In situ,	Bac-T, & Chemis	try Moni	toring					IS			1 1 ⁰⁰	FIELD CONDITIONS:			
Erits	y maneras	er, Kevin He							Tubs							
Job Descri Monitor se	ption asonal bacte	ria levels in UARP reaches.	b						ř							
Site Locati	x Location UARP											1	URN/ IME	AROI	UND	SPECIAL INSTRUCTIONS
	-	SAMPLE		FIELD		CON	TAINER									1
DATE	TIME	IDENTIFICAT	ION	ID,	MATRIX	NO.	TYPE	v				1	2	3		
13/21	0080	BAL-10-UVR			Surfáce water			6	x		X				x	
113/21	0840	BAC - 7-UVE	ξ		Surface water			6	x		Y				х	
1/13/21	0915	Bar - 13- IHR			Surface water			6	×		X				х	
1/13/21	0955	Bac - 11- JR			Surface water			6	X		X				x	
1/13/24	1115	BAC- 15-56	R		Surface water			6	X		X				x	
					Surface water			6							x	
					Surface water			6							x	INVOICE TO:
					Surface water			6							x	Stillwater Sciences
					Surface water			6							x	Same as above
					Surface water			6							x	
					Surface water			6							x	Project No. 750.10 Tast
					Surface water			6							x	QUOTER
SUSPECT	ED CONST	TITUENTS					he e		SAMPL	ERETEN	TION TIME	PR	ESERA	ATT	VES ()) HCL (3) = COLD () HNO: (4)= H2SO4
RELINQU	ISHED BY	(Signature)		PRINT NAM	ECOMPANY		DATE/TIME		R	RECEIVE	BY (Signat	ure)			PRIM	T NAME/COMPANY
he	Eritamara			moverau	er/Stillion	for 7	113/20 12	37								
RECEIV	ED AT LA	B BY:			DATE/TIME: 7	1/13/	21 173	7 co	NDITIO	NS/COM	MENTS:	0.5	~			
State of state		100	20.2.17		/	1.1	el lel	1		28 807.865T				-		

CALIFORNIA LABORATORY SERVICES

	E		
Page 1 of 2			07/20/21 15:25
Stillwater Sciences	Project:	SMUD In situ, Bac-T, & Chemistry	Monitoring
2855 Telegraph Ave., Suite 400	Project Number:	750.10 Task 0500.02 CL	S Work Order #: 21G0707
Berkeley, CA 94705	Project Manager:	Emily Applequist CO	IC #:

Microbiological Parameters by APHA Standard Methods

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bac-10-UVR (21G0707-01) Surface Water	Sampled: 07/13/21 08:00	Rece	ived: 07/1.	3/21 12:37					
Fecal Coliforms	<1.8	1.8	MPN/100	1	2105767	07/13/21 12:45	07/16/21	SM 9221	
E. Coli	2.0	1.0			2105756	07/13/21 13:15	07/14/21	SM9223	
Bac-7-UVR (21G0707-02) Surface Water	Sampled: 07/13/21 08:40	Receiv	ed: 07/13	21 12:37					
Fecal Coliforms	<1.8	1.8	MPN/100	1	2105767	07/13/21 12:45	07/16/21	SM 9221	
E. Coli	1.0	1.0	* *		2105756	07/13/21 13:15	07/14/21	SM9223	
Bac-13-IHR (21G0707-03) Surface Water	Sampled: 07/13/21 09:15	Recei	ved: 07/13	/21 12:37					
Fecal Coliforms	<1.8	1.8	MPN/100	1	2105767	07/13/21 12:45	07/16/21	SM 9221	
E. Coli	1.0	1.0			2105756	07/13/21 13:15	07/14/21	SM9223	
Bac-11-JR (21G0707-04) Surface Water	Sampled: 07/13/21 09:55	Receive	d: 07/13/2	1 12:37					
Fecal Coliforms	130	1.8	MPN/100	1	2105767	07/13/21 12:45	07/16/21	SM 9221	
E. Coli	50.4	1.0			2105756	07/13/21 13:15	07/14/21	SM9223	
Bac-15-SCR (21G0707-05) Surface Water	Sampled: 07/13/21 11:15	Recei	ved: 07/13	/21 12:37					
Fecal Coliforms	2.0	1.8	MPN/100	1	2105767	07/13/21 12:45	07/16/21	SM 9221	
E. Coli	<1	1.0	· ·		2105756	07/13/21 13:15	07/14/21	SM9223	

3249 Fitzgerald Road, Rancho Cordova, CA 95742 | 800.638.7301 | Tel: 916.638.7301 x102 | Fax: 916.638.4510 | www.californialab.com Small Business #2916 | ELAP #1233 | NAICS #541380 | CA SWRCB ELAP Accreditation/Registration Number 1233

CALIFORNIA LABORATORY SERVICES

Page 2 of	12			07/2	0/21 15:25
Stillwate 2855 Tele Berkeley	r Sciences egraph Ave., Suite 400 , CA 94705	Project: Project Number: Project Manager:	SMUD In situ, Bac-T, & Chem 750.10 Task 0500.02 Emily Applequist	istry Monitoring CLS Work Order #: 21G0707 COC #:	,
		Notes and Defini	itions		
BT-4a	<1.8				
BT-4	<1				
DET	Analyte DETECTED				
ND	Analyte NOT DETECTED at or above the reporting limit	(or method detection limit v	when specified)		
NR	Not Reported				
dry	Sample results reported on a dry weight basis				
RPD	Relative Percent Difference				

3249 Fitzgerald Road, Rancho Cordova, CA 95742 | 800.638.7301 | Tel: 916.638.7301 x102 | Faic 916.638.4510 | www.californialab.com Small Business #2916 | ELAP #1233 | NAICS #541380 | CA SWRCB ELAP Accreditation/Registration Number 1233

July 27, 2021

CLS Work Order #: 21G1136 COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 07/20/21 12:36. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA SWRCB ELAP Accreditation/Registration Number 1233

07/27/21 12:12

Stillwater Sciences	Project:	SMUD In situ, Bac-T, & Chemistry Monito	ring
2855 Telegraph Ave., Suite 400	Project Number:	750.10 Task 0500.02	CLS Work Order #: 21G1136
Berkeley CA, 94705	Project Manazer:	Emily Appleauist	COC #:
Berkeley CA, 94705	Project Manager:	Emmy Apprequise	

Microbiological Parameters by APHA Standard Methods

			Reporting							
Analyte	Result	MDL.	Limit	Units	Dilutio	n Batch	Prepared	Analyzed	Method	Notes
Bac-10-UVR (21G1136-01) Water	Sampled: 07/20/21 08:1	10 Re	ceived: 07/20/	21 12:36						
Fecal Coliforms	<1.8	1.8	1.8	MPN/100 m	L 1	2105975	07/20/21 13:00	07/23/21	SM 9221	
E. Coli	2.0	1.0	1.0			1 2105978	07/20/21 13:15	07/21/21	SM9223	
Bac-7-UVR (21G1136-02) Water	Sampled: 07/20/21 08:50	Reco	rived: 07/20/2	1 12:36						
Fecal Coliforms	<1.8	1.8	1.8	MPN/100 m	L 1	2105975	07/20/21 13:00	07/23/21	SM 9221	
E. Coli	<1	1.0	1.0		1	2105978	07/20/21 13:15	07/21/21	SM9223	
Bac-13-IHR (21G1136-03) Water	Sampled: 07/20/21 09:2	5 Rec	eived: 07/20/2	1 12:36						
Fecal Coliforms	<1.8	1.8	1.8	MPN/100 m	L 1	2105975	07/20/21 13:00	07/23/21	SM 9221	
E. Coli	<1	1.0	1.0		1	2105978	07/20/21 13:15	07/21/21	SM9223	
Bac-11-JR (21G1136-04) Water	Sampled: 07/20/21 10:05	Recei	ved: 07/20/21	12:36						
Fecal Coliforms	79	1.8	1.8	MPN/100 m	L.	1 2105975	07/20/21 13:00	07/23/21	SM 9221	
E. Coli	7.5	1.0	1.0			1 2105978	07/20/21 13:15	07/21/21	SM9223	
Bac-15-SCR (21G1136-05) Water	Sampled: 07/20/21 11:3	0 Rec	eived: 07/20/2	1 12:36						
Fecal Coliforms	>1600	1.8	1.8	MPN/100 m	L 1	2105975	07/20/21 13:00	07/23/21	SM 9221	
E. Coli	139.6	1.0	1.0			1 2105978	07/20/21 13:15	07/21/21	SM9223	

3249 Fitzgerald Road, Rancho Cardova, CA 95742 | 800.638.7301 | Tel: 916.638.7301 x102 | Fax: 916.638.4510 | www.californialab.com Small Business #2916 | ELAP #1233 | NAICS #541380 | CA SWRCB ELAP Accreditation/Registration Number 1233

07/27/21 12:12

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring 2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0500.02 Berkeley CA, 94705 Project Manager: Emily Applequist	Stillwater Sciences	Project:	SMUD In situ, Bac-T, & Chemistry Monitor	ring
	2855 Telegraph Ave., Suite 400	Project Number:	750.10 Task 0500.02	CLS Work Order #: 21G1136
	Berkeley CA, 94705	Project Manager:	Emily Applequist	COC #:

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

3249 Fitzgeraid Road, Rancha Cardova, CA 95742 | 800.638.7301 | Tel: 916.638.7301 x102 | Fax: 916.638.4510 | www.californialab.com Small Business #2916 | ELAP #1233 | NAICS #541380 | CA SWRCB ELAP Accreditation/Registration Number 1233

07/27/21 12:12

CALIFORNIA LABORATORY SERVICES
Committed. Responsive. Flexible.

Stillwater:	Sciences	Project:	SMUD In situ, Bac-T, & Chemistry Mo	nitoring
2855 Teleş	2855 Telegraph Ave., Suite 400 Project Nurr		750.10 Task 0500.02	COC #
Berkeley (A, 94705	Project Manager:	Emily Applequist	COC #.
		Notes an	ad Definitions	
BT-5	>1600			
BT-4a	<1.8			
BT-4	<1			
DET	Analyte DETECTED			
ND	Analyte NOT DETECTED at or above the report	ting limit (or method dete	ection limit when specified)	
NR	Not Reported			
dry	Sample results reported on a dry weight basis			
RPD	Relative Percent Difference			

This is a "MDL Report", thus if the report denotes an "ND" for a particular analyte, it should be noted that the analyte was not detected at or above the MDL.

3249 Fitzgerald Road, Rancho Cordova, CA 95742 | 800.638.7301 | Tel: 916.638.7301 x102 | Fax: 916.638.4510 | www.californialab.com Small Business #2916 | ELAP #1233 | NAICS #541380 | CA SWRCB ELAP Accreditation/Registration Number 1233

		07/27/21 12:12
Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley CA, 94705	Project: Project Number: Project Manager:	SMUD In situ, Bac-T, & Chemistry Monitoring 750.10 Task 0500.02 Emily Applequist COC #:

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

This Page Intentionally Left Blank

APPENDIX H Field Collection Methods for Metals Bioaccumulation Sampling

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

This Page Intentionally Left Blank

Union Valley Reservoir

Figure 8. Union Valley Reservoir sampling locations.

Collection Method: Gill net Date(s) of Collection: August 5, 2016 Sample Effort: 0720-1430 (7 hours) Samplers: Gary Ichikawa and Scot Lucas

Sportfish Species FL (mm)						
	**Rainbow Trout (Oncorhynchus mykiss) **					
37	373 368 414					
	Spotted Bass (Ptychocheilus grandi)					
172 185 212 220 360						
Fork Length not recorded, Total Length shown						

Comments: The sampling vessel was launched from the launch ramp adjacent to the dam. Electrofishing vessel was ineffective due to low conductivity. Specimens were collected using only gill nets.

Slab Creek Reservoir

Figure 7a. Slab Creek Reservoir sampling locations.

Collection Method: Electro-fisher boat, gill net Date(s) of Collection: August 4, 2021 Sample Effort: 0745 – 1645 (9 hours) Samplers: Gary Ichikawa and Scot Lucas

	Sportfish Species FL (mm)						
	Rainbo	w Trout (On	corhynchus r	nykiss)			
		42	25				
	В	rown Trout	(Salmo trutta	a)			
	360						
Sacramento Pikeminnow (Ptychocheilus grandi)							
415	440	395	433	115			
	376	379	407	376			

Comments: The sampling vessel was launched from the main launch ramp. Ten fish were collected via gill net with the remaining two fish samples collected via electro-fishing.

Loon Lake

Figure 6a. Loon Lake sampling locations.

Collection Method: Electro-fisher boat, gill net Date(s) of Collection: August 2, 2021 Sample Effort: 1240-1840 (6 hours) Samplers: Chris Beebe and Evan Mattiasen

Sportfish Species FL (mm)				
	Rainbow Trout (Oncorhynchus mykiss)			
	179			

Comments: The sampling vessel was launched from the main launch ramp. Strong winds down the fetch of the lake prohibited samplers from safely accessing the northern area. One Rainbow Trout was collected from gill net 1Net2. Low conductivity prohibited efficient use of the electrofishing vessel.

Ice House Reservoir

Figure 5a. Ice House Reservoir sampling locations.

Collection Method: Gill net, Hook and line Date(s) of Collection: August 3, 2016 Sample Effort: 1050 - 1710 (5.33 hours) Samplers: Gary Ichikawa and Scot Lucas

Sportfish Species FL (mm)					
Ra	Rainbow Trout (Oncorhynchus mykiss)				
255	233	214	355		

Comments: The sampling vessel was launched from the main launch ramp. Two rainbow trout were caught via hook and line effort near the dam. Two Rainbow trout were collected via gill nets. The electro-fisher boat was unable to be used effectively due to low conductivity at the site.

Gerle Creek Reservoir

Figure 4. Gerle Creek Reservoir sampling locations.

Collection Method: Electro-fisher boat, gill net Date(s) of Collection: August 5, 2021 Sample Effort: 0730 - 1200 (4.5 hours) Samplers: Chris Beebe and Evan Mattiasen

Species Collected, FL (mm)						
	Rainbow Trout (Oncorhynchus mykiss)					
	174					
	Brown Trout (Salmo trutta)					
295	226	233	241	248	255	
224	208	296	301	332		

Comments: The sampling vessel was launched from the ramp adjacent to the dam. Ten of the fourteen specimens collected via net placement 1Net1. Nearly the entire boatable area was sampled by electrofishing producing one Brown Trout and one Rainbow Trout.

Chili Bar Reservoir

Figure 3. Chili Bar Reservoir sampling locations.

Collection Method: Electro-fisher boat, gill net Date(s) of Collection: August 4, 2021 Sample Effort: 0730 - 1505 (7.5hours) Samplers: Chris Beebe and Evan Mattiasen

	Sportfish Species FL (mm)					
	Rainbow Trout (Oncorhynchus mykiss)					
	176 307					
Sacramento Pikeminnow (Ptychocheilus grandi)						
	180 257					

Comments: The sampling vessel was launched from the main launch ramp adjacent to the dam. One brown trout was collected in the gill nets, the other specimens were collected using the electro-fisher boat.

Camino Reservoir

Figure 2. Camino Reservoir sampling locations.

Collection Method: Electro-fisher boat, gill net Date(s) of Collection: August 3, 2021 Sample Effort: 0815 – 1430 (5.25 hours) Samplers: Chris Beebe and Evan Mattiasen

Sportfish Species FL (mm)						
	Rainbow Trout (Oncorhynchus mykiss)					
252	180	157	139	139	176	
Brown Trout (Salmo trutta)						
238	190	320	183	182	219	

Comments: The sampling vessel was launched from the bank. The entire boatable area of the reservoir was sampled twice using the electro-fisher boat. Eight fish were collected using the electrofishing vessel. Three fish were collected at net placement 1Net1 and one Brown Trout was collected at 1Net2.

Back to Table

5

Table 1. Fish Collection Summary

	Rainbow Trout	Brown Trout	Spotted Bass	Sacramento Pikeminnow
Camino Reservoir	6	6		
Chili Bar Reservoir	2			2
Gerle Creek Reservoir	1	11		
Ice House Reservoir	4			
Loon Lake	1			
Slab Creek Reservoir	1	1		10
Union Valley Reservoir	3		5	

2.6.1 Table of Contents for SMUD Collection Locations

Lake Name	Page Number
Camino Reservoir	<u>5</u>
Chili Bar Reservoir	<u>6</u>
Gerle Creek Reservoir	<u>Z</u>
Ice House Reservoir	<u>8</u>
Loon Lake	<u>9</u>
Slab Creek Reservoir	<u>10</u>
Union Valley Reservoir	<u>11</u>

At the MPSL-DFW lab, samples were stored in a freezer at -20°C until they were processed for authorized analysis, per appropriate SOP's. Analysis authorization dictates tissue analysis (QA/QC requirements-preservatives, dissecting, cooling, etc.).

Figure 1. Overview of lakes sampled.

2.6 Results

A summary of the number of fish samples collected from the seven water bodies are in Table 1.

Two MPSL-DFW teams sampled the lakes and reservoirs. More detail regarding maps of the sampling effort for each water body, the sampling crew, station name, date, species collected and total length, are linked to Table 2.7.1 below.

2.2 MPSL-DFW Sampling personnel

Project Director
Crew Lead
Crew Lead
Research Tech
Research Tech

2.3 Authorization to collect samples

All sampling personnel are Marine Pollution Studies Lab staff contracted through San Jose State University Research Foundation (SJSURF) to conduct the sample collection activities listed herein. Fish were collected under Ca Department of Fish and Wildlife specific use permit S-183470004-21048-001; Title: Sacramento Municipal Utility District Monitoring.

2.4 Station selection

The study area includes seven project reservoirs and diverted stream reaches. Reservoirs included in the fish monitoring program include Chili Bar, Loon Lake, Gerle Creek, Ice House, Union Valley, Camino, and Slab Creek.

Fish tissues were sampled to assess potential bioaccumulation of metals in resident fish within these reservoirs in accordance with protocols of the State Water Quality Control Board (SWRCB) Surface Water Ambient Monitoring Program (SWAMP). Fish collection was conducted using hook and line, gill nets and electro-fishing boats; techniques approved by the CDFW.

2.5 Summary of types of samples authorized to be collected

Sport fish species were to be collected to better determine contamination risks at the chosen lakes. Target species included brown trout (*Salmo trutta*), black bass (*Micropterus spp.*), rainbow trout (*Oncorhynchus mykiss*) and Sacramento pikeminnow (*Ptychocheilus grandis*). An attempt was made to collect a minimum of three fish per species. Physical parameters were collected for each individual fish, which included: weight, total length, fork length and presence of any abnormalities. Each sport fish was individually tagged, wrapped in aluminum foil, placed in a labeled zipper-closure bag and stored on dry ice for the duration of the trip.

June 2022 Water Quality Monitoring Report

Cruise Report for the Water Quality Monitoring Plan for the Upper American River Project (UARP)/FERC Project No. 2101 UARP or 2155 CHILI BAR Sacramento Municipal Utility District (SMUD) Sampling Dates: August 2 – August 5, 2021

Prepared by Chris Beebe and Marine Pollution Studies Laboratory Staff (<u>MPSL-DFW</u>) at Moss Landing Marine Laboratories; San Jose State University

1.0 Introduction

This work was performed for the Sacramento Municipal Utility District (SMUD) as part of their relicensing requirements through the Water Quality Monitoring Plan for the Upper American River Project (UARP)/FERC Project No. 2101 UARP or 2155 CHILI BAR.

The Upper American River Project is situated within El Dorado and Sacramento counties on the western slope of the Sierra Nevada. Operated by SMUD, the UARP consists of eleven reservoirs and eight powerhouses. In normal water years the UARP provides roughly 1.8 billion kilowatt-hours of electricity or enough energy to power about 180,000 homes. It covers over 6400 acres in the El Dorado National Forest and land administered by the Bureau of Land Management and receives runoff from approximately 674 square miles. The UARP also has extensive recreational facilities at many of the reservoirs.

The UARP water quality plan includes monitoring of the following: 1) basic *in situ* parameters, 2) general water chemistry, 3) bacteria, and 4) metals bioaccumulation. The portion of this plan detailed below only describes the activities in Part 4: the bioaccumulation of metals in fish.

2.0 Cruise Report

2.1 Objectives

The objectives were to collect designated sportfish species as identified by the SMUD Water Quality Monitoring Plan (May 2015). We targeted the following primary fish species at all lakes: brown trout (*Salmo trutta*), smallmouth bass (*Micropterus dolomieu*), rainbow trout (*Oncorhynchus mykiss*) and Sacramento pikeminnow (*Ptychocheilus grandis*). A minimum of three individuals from each species were targeted from each lake, non-size specific. If hardhead were seen, they were returned unharmed to the reservoir.

Fish were collected under California Department of Fish and Wildlife (CDFW) specific use permit S-183470004-21048-001; Title: Sacramento Municipal Utility District Monitoring. Sample sites were reached by boating and fish were collected by hook and line, gill nets and electro-shocking boats in accordance with the permit.

2.7 Discussion

A total of seven lakes were sampled: Camino Reservoir, Chili Bar Reservoir, Gerle Creek Reservoir, Ice House Reservoir, Loon Lake, Slab Creek Reservoir and Union Valley Reservoir. The collections were done over a period of four consecutive days: August 2 through August 5, 2021.

APPENDIX I QA/QC Summaries for Metals Bioaccumulation Sampling

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

This Page Intentionally Left Blank

DocuSign Envelope ID: AC73E580-10E4-43EF-9EDF-E5EBBC41D8D2

HOLDING TIME

Metals samples were digested January 14 through February 2, 2022 and analyzed January 22 through February 11, 2022. Samples were analyzed within the EPA holding time of 1 year from collection.

Mercury samples were analyzed January 26 through February 7, 2022. Samples were analyzed within the EPA holding time of 1 year from collection.

CALIBRATION VERIFICATION

Initial Calibration Verification (ICV) and all Continuing Calibration Verification (CCV) were within DQO of ±20%.

DETECTION LIMIT

Detection limits were determined using chicken breast, and calculated following EPA 40 CFR 136 Appendix B, revision 2 (2016). All detection limits listed in the table above were achieved.

METHOD BLANKS

Two (2) method blanks were analyzed with each batch of metals samples. Three (3) method blanks were analyzed with each batch of mercury samples. All blanks were below detection limits. Sample results are not blank corrected.

REPLICATES

One pair of analytical duplicates selected haphazardly was analyzed with each batch of samples. All RPDs met the DQO of ±25%, when calculable.

MATRIX SPIKES

Two matrix spike/matrix spike duplicate (MS/MSD) pairs were analyzed with each batch of metals samples. All recoveries and RPDs met the DQO of ±25%.

One matrix spike/matrix spike duplicate (MS/MSD) pair was analyzed with each batch of mercury samples. All recoveries and RPDs met the DQO of ±25%.

CERTIFIED REFERENCE MATERIAL

One CRM DORM-5 was analyzed with each batch of samples. The percent moisture of CRM DORM-5 at the time of analysis was 3.06 or 3.31. Percent moistures for CRMs were measured on January 11 and February 1, 2022.

The certified value for Lead is below the dry weight Method Detection Limit (MDL), therefore a Laboratory Control Spike (LCS) was reported instead. There is no percent moisture associated with LCS.

Percent recoveries met the DQO of ±25%.

DocuSign Envelope ID: AC73E580-10E4-43EF-9EDF-E5EBBC41D8D2

Marine Pollution Studies Laboratories Moss Landing Marine Laboratories 7544 Sandholdt Road

Moss Landing, CA 95039

Project Manager:	Autumn Bonnema
Phone:	831-771-4175
e-mail:	autumn.bonnema@sjsu.edu
Project Name:	SMUD_FERC_2021
Parameter:	Metals and Mercury

Matrix: Report Date:

Tissue 18 Feb 2022

QA/QC SUMMARY

SAMPLE CUSTODY

Fifty-two (52) tissue samples were collected August 3-5, 2021 and were received in good condition on August 6, 2021. Cooler temperature at the time samples were received was -20°C. Samples were stored at -20°C before and after analysis.

An additional twenty (20) tissue samples were collected at Union Valley Reservoir on August 17, 2021 for the State Wide Bioaccumulation Monitoring Program. Cooler temperature when samples were received on August 18, 2021 was -20°C. Samples were stored at -20°C before and after analysis. Both programs agreed to share the data collected from these fish.

QA/QC DATA QUALITY OBJECTIVES (DQO)

Analyte	Reference Method	Range of Recovery	Relative Precision	Detection Limit (MDL)	Reporting Limit (RL)
Ag	EPA 200.8M	±25%	±25%	0.02 µg/g _{wet} 0.09 µg/g _{drv}	0.07 µg/g wet 0.27 µg/g dry
Cu	EPA 200.8M	±25%	±25%	0.36 µg/g wet 1.34 µg/g dry	1.07 µg/g wet 4.02 µg/g dry
Pb	EPA 200.8M	±25%	±25%	0.02 µg/g wet 0.07 µg/g dry	0.05 µg/g wet 0.20 µg/g dry
Hg	EPA 7473M	±20%	±25%	0.003 µg/g wet 0.012 µg/g dry	0.010 µg/g we 0.039 µg/g dry

METHOD

Fish were dissected following MPSL-105, Laboratory Preparation of Tissue in Marine and Freshwater Bivalves and Fish for Trace Metal and Synthetic Organic Analysis.

Metals samples (Ag, Cu, and Pb) were digested using EPA 3052 (Modified): Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices, and analyzed using EPA 200.8 (Modified): Determination of Trace Elements in Ambient Waters and Wastes by ICP-MS. Digestion was performed by Amy Byington and analysis by Adam Newman.

Mercury samples were analyzed using EPA 7473 (Modified): Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. Analysis was performed by Jessica Heath.