Water Quality Monitoring Report - 2020

Sacramento Municipal Utility District

Hydro License Implementation • May 2021

Upper American River Project

FERC Project No. 2101

This Page Intentionally Left Blank

i

TABLE OF CONTENTS

1.0 INTRODUCTION AND BACKGROUND	1
2.0 MONITORING OBJECTIVE	1
3.0 STUDY AREA	1
4.0 SAMPLING FREQUENCY AND LOCATIONS	4
5.0 METHODS	11
5.1 IN SITU PARAMETERS	11
5.2 BACTERIA	13
6.0 RESULTS	15
6.1. IN SITU PARAMETERS	15
6.1.1. Riverine Sites	15
6.1.2. Reservoir Sites	20
6.2. BACTERIA	24
7.0 CONCLUSIONS	26
8.0 LITERATURE CITED	28

LIST OF TABLES

Table 4-1. Sampling Frequency for <i>In situ</i> Parameters and Bacteria	4
Table 4-2. <i>In situ</i> Water Quality Sampling Locations and Dates for SMUD Upper American River Project Reservoir Sites	7
Table 4-3. <i>In situ</i> Water Quality Sampling Locations and Dates for SMUD Upper American River Project Riverine Sites.	8
Table 4-4. <i>In situ</i> Water Quality Sampling Locations Not Sampled for SMUD Upper American River Project Riverine Sites	
Table 4-5. Bacteria Sampling Locations and Dates for SMUD Upper American River Project Sites.	10
Table 5-1. <i>In situ</i> Water Quality Parameters and Measurement Methods	13
Table 5-2. Measurement Quality Objectives Criteria for <i>In situ</i> Parameters	13
Table 5-3. Bacteria Analytical Methods and Field Hold Times	14
Table 6-1. <i>In situ</i> Water Quality for UARP Riverine Sites	17
Table 6-3. Bacteria Counts for UARP Reservoir Sites	25
Table 7-1. <i>In situ</i> pH Measurements below Basin Plan Instantaneous Minimum Objective (6.5 s.u.) for UARP Riverine Sites, 2015–2020	26

LIST OF FIGURES

Figure 3-1.	. Study area for SMUD Upper American River Project <i>in situ</i> and bacteria monitoring	3
	. <i>In situ</i> water quality and bacteria sampling locations for SMUD Upper American River Project – upper sites	5
•	. <i>In situ</i> water quality and bacteria sampling locations for SMUD Upper American River Project – lower sites.	6
•	. Example of mid-reservoir <i>in situ</i> water quality sampling site (R-IS-3-LL) at Loon Lake Reservoir	11
	Example of an <i>in situ</i> water quality sampling site (IS-18-SFAR) on the South Fork American River upstream of White Rock Powerhouse	12
Figure 5-3.	Example of a bacteria sampling site in Ice House Reservoir (Site Bac- 12-IHR).	14
•	. <i>In situ</i> water temperature, dissolved oxygen, turbidity, and pH at Union Valley Reservoir and Slab Creek Reservoir sites R-IS-8-UVR (top) and R-IS-15-SC (bottom) during May (Spring) 2020	21
	. <i>In situ</i> water temperature, dissolved oxygen, turbidity, and pH at Junction Reservoir and Union Valley Reservoir sites R-IS-12-JR (top) and R-IS-7-UVR (bottom) during October (Fall) 2020	23

LIST OF APPENDICES

Appendix A In situ Vertical Profile Data for UARP Reservoir Sites

Appendix B In situ Vertical Profiles for UARP Reservoir Sites

Appendix C Bacteria Results for UARP Reservoir and Riverine Sites

Appendix D In situ Field Data Sheets

Appendix E *In situ* Field Calibration Sheets

Appendix F Analytical Laboratory Bacteria Reports

Acronyms and Abbreviations

Acronym	Definition
BLM	U.S. Bureau of Land Management
CDFW	California Department of Fish and Wildlife
COLD	cold freshwater habitat
°C	degrees Celsius
DO	dissolved oxygen
EPA	United States Environmental Protection Agency
FERC	Federal Energy Regulatory Commission
hr	hour
m	meter
MQO	Measurement Quality Objective
MDL	Method Detection Limit
uS/cm	microsiemens per centimeter
mg/L	milligram per liter
mL	milliliter
MPN	Most Probable Number
MRL	Method Reporting Limit
NTU	Nephelometric Turbidity Unit
% Sat	percent saturation
QA/QC	quality assurance and quality control
RWQCB	Regional Water Quality Control Board
SFAR	South Fork American River
SMUD	Sacramento Municipal Utility District
SPWN	spawning, reproduction and/or early development
SWRCB	State Water Resources Control Board
SM	standard methods
S.U.	standard unit of pH
USFS	United States Forest Service
UARP	Upper American River Project
YSI	Yellow Springs Instruments

This Page Intentionally Left Blank

1.0 INTRODUCTION AND BACKGROUND

This Water Quality Monitoring Report (Report) addresses monitoring requirements set forth in Sacramento Municipal Utility District's (SMUD) Water Quality Monitoring Plan (Plan) (SMUD 2016). The requirements for this Plan are found in State Water Resources Control Board (SWRCB) Condition 8.J, and U.S. Forest Service (USFS) 4(e) Condition 31.10, located in Appendices A and B, respectively, of the Federal Energy Regulatory Commission's (FERC) Order Issuing New License for the Upper American River Project (UARP), dated July 23, 2014. The Plan was developed by SMUD (SMUD 2015) in coordination with the Consultation Group and Resource Agencies stipulated in the license (FERC 2014). The Plan was revised in 2015 (Revision 1) and again in 2016 (Revision 2) to update the referenced analytical methods for various sub-programs within the Plan.

This Report describes the results of the sixth year (2020) of water quality monitoring of basic *in situ* parameters and bacteria for the UARP.

SMUD owns and operates the UARP, which is licensed by FERC. The UARP (FERC Project No. 2101) lies within El Dorado and Sacramento counties, primarily within lands of the Eldorado National Forest. The UARP consists of three major storage reservoirs (Loon Lake, Union Valley, and Ice House) with a combined capacity of approximately 379,000 acre-feet, eight smaller regulating or diversion reservoirs, and eight powerhouses. The UARP also includes recreation facilities containing over 700 campsites, five boat ramps, hiking paths, and bicycle trails at the reservoirs.

2.0 MONITORING OBJECTIVE

The objective of the 2020 monitoring program was to perform *in situ* water quality and bacteria monitoring in reservoirs and stream reaches of the UARP, in order to meet the objectives and rationale of SWRCB Water Quality Certification Condition 8.J.

The rationale for water quality monitoring, as described by the SWRCB Water Quality Certification, is as follows:

Water quality monitoring is important for determining compliance with state and federal water quality standards and examining long-term trends in water quality. The frequency of monitoring for any compound can be reduced if shown to be at background or non-detect levels for a statistically significant period of time.

3.0 STUDY AREA

The study area included UARP reservoirs and diverted stream reaches. All UARP reservoirs (Rubicon, Buck Island, Loon Lake, Gerle Creek, Ice House, Union Valley, Junction, Camino, Brush Creek, and Slab Creek) were included in the monitoring program; the relatively small Robbs Peak Forebay (30 acre-feet) was not included. [Note: Rockbound Lake, although hydraulically associated with the UARP, is not a UARP

reservoir and is not included within the FERC-defined UARP boundary.] The diverted stream reaches included in the monitoring program represented all streams and rivers downstream of UARP reservoirs (Figure 3-1).

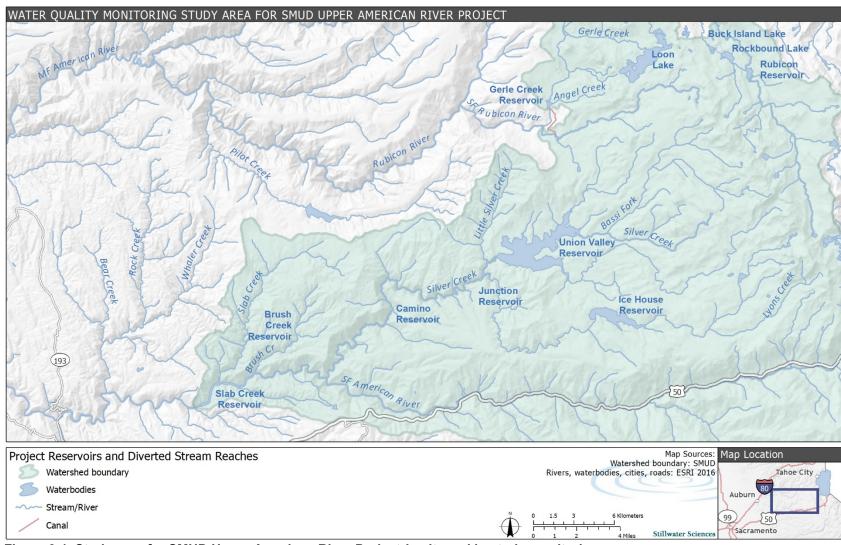


Figure 3-1. Study area for SMUD Upper American River Project in situ and bacteria monitoring.

4.0 SAMPLING FREQUENCY AND LOCATIONS

Year 6 (2020) sampling frequency for *in situ* water quality was consistent with winter, spring, summer, and fall monitoring periods designated in the Plan (SMUD 2016) (Table 4-1). Required bacteria monitoring was conducted by sampling the middle elevation UARP reservoir sites (Gerle Creek, Union Valley, Junction, Ice House, Brush Creek, Slab Creek) during the 30-day period surrounding 4th of July and sampling the upper elevation UARP reservoir sites (Loon Lake, Buck Island) during a 15-day period before Labor Day.

Table 4-1. Sampling Frequency for *In situ* Parameters and Bacteria.

Туре	2020 (Year 6) Frequency
In city receptoir	Once in spring – April/May
<i>In situ</i> reservoir	Once in fall – October/November
	Once in winter – January/February
In situ riverine	Once in spring – April/May
III situ riverine	Once in summer – August
	Once in fall – November
Bacteria	Five samples within 30 days – around 4 th of July Five samples within 30 days – around Labor Day ¹

The Labor Day Bacteria sampling deviated from the sampling frequency schedule. Due to unhealthy air quality and recreational site closures resulting from the August–September 2020 California wildfires, only two bacteria samples were collected during a 15-day period before Labor Day.

Specific sampling locations within reservoirs and diverted stream reaches varied depending on the general constituent under study. As specified in the Plan, *in situ* monitoring occurred at 15 representative reservoir locations (Figure 4-1 and Figure 4-2, Table 4-2) and 19 representative stream reaches (Figure 4-1 and Figure 4-2, Table 4-3). Several riverine sites could not be safely sampled during the winter and spring survey periods due to snow accumulation (Table 4-4). Bacteria sampling occurred at 15 locations (Figure 4-1 and Figure 4-2, Table 4-5).

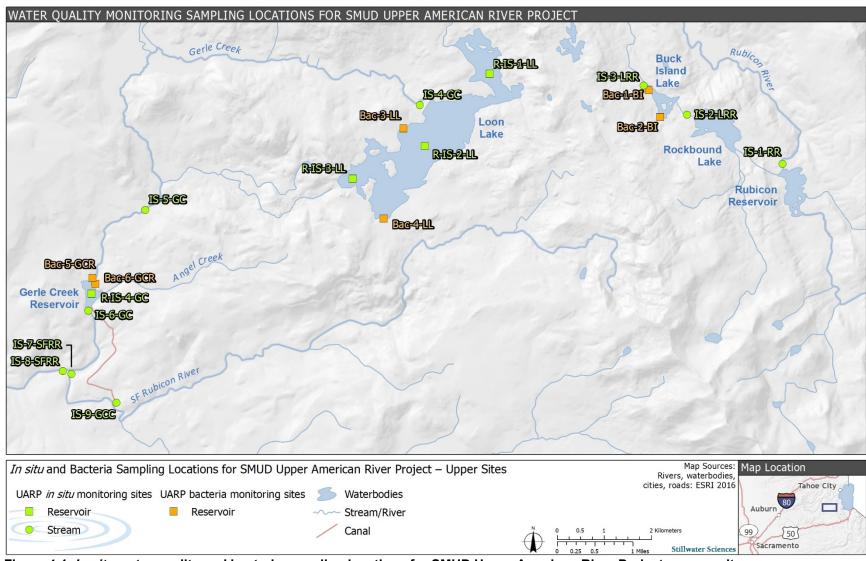


Figure 4-1. In situ water quality and bacteria sampling locations for SMUD Upper American River Project – upper sites.



Figure 4-2. In situ water quality and bacteria sampling locations for SMUD Upper American River Project – lower sites.

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

Table 4-2. In situ Water Quality Sampling Locations and Dates for SMUD Upper American River Project Reservoir Sites.

abio + zi m ona	Trator Quality Campin		toooi voii Oitooi
014115 011			2020
SMUD Site			<i>In situ</i> Survey
Name	Site ID	Location	Sample Date
R-4C	R-IS-1-LL	Loon Lake, upper reservoir (northeast body)	5/26, 10/29
R-4B	R-IS-2-LL	Loon Lake, mid-reservoir (west body)	5/26, 10/29
R-4A	R-IS-3-LL	Loon Lake, near dam	5/26, 10/29
R-5	R-IS-4-GC	Gerle Creek Reservoir, mid-reservoir	5/29, 10/30
R-6C	R-IS-5-UVR	Union Valley Reservoir, Robbs PH tailrace zone	5/27, 10/28
R-6D	R-IS-6-UVR	Union Valley Reservoir, Jones Fork Silver Creek arm	5/27, 10/28
R-6B	R-IS-7-UVR	Union Valley Reservoir, mid-reservoir	5/27, 10/28
R-6A	R-IS-8-UVR	Union Valley Reservoir, near dam	5/27, 10/28
R-7C	R-IS-9-IHR	Ice House Reservoir, upper lake body	5/22, 10/27
R-7B	R-IS-10-IHR	Ice House Reservoir, mid-reservoir	5/22, 10/27
R-7A	R-IS-11-IHR	Ice House Reservoir, near dam	5/22, 10/27
R-8	R-IS-12-JR	Junction Reservoir, mid-reservoir between arms	5/29, 10/30
R-9	R-IS-13-CR	Camino Reservoir, mid-reservoir	5/29, 10/30
R-11B	R-IS-14-SC	Slab Creek Reservoir, upper-reservoir	5/28, 11/5
R-11A	R-IS-15-SC	Slab Creek Reservoir, mid-reservoir	5/28, 11/5

Table 4-3. In situ Water Quality Sampling Locations and Dates for SMUD Upper American River Project Riverine Sites.

SMUD Site	-	Sampling Locations and Dates for Simob opper American River Project	2020 <i>In situ</i> Survey
Name	Site ID	Location	Sample Date
2	IS-1-RR	Rubicon River outflow from Rubicon Reservoir	8/3, 11/2
5	IS-2-LRR	Little Rubicon River outflow from Rockbound Lake	8/3, 11/2
6	IS-3-LRR	Little Rubicon River outflow from Buck Island Lake	8/3, 11/2
7	IS-4-GC	Gerle Creek outflow from Loon Lake	5/19, 8/4, 11/4
14	IS-5-GC	Gerle Creek inflow to Gerle Creek Reservoir	5/19, 8/4, 11/4
15	IS-6-GC	Gerle Creek outflow from Gerle Creek Reservoir	1/24, 5/19, 8/4, 11/4
18	IS-7-SFRR	S.F. Rubicon upstream of Gerle Creek confluence	5/19, 8/4, 11/4
19	IS-8-SFRR	S.F. Rubicon downstream of Gerle Creek confluence	5/19, 8/4, 11/4
16	IS-9-GCC	Gerle Creek Canal inflow to Robbs Forebay	1/24, 5/19, 8/4, 11/4
25	IS-10-SFSC	S.F. Silver Creek outflow from Ice House Reservoir	1/24, 5/19, 8/4, 11/4
27	IS-11-SFSC	S.F. Silver Creek inflow to Junction Reservoir	1/23, 5/20, 8/5,11/3
29	IS-12-SC	Silver Creek outflow from Junction Reservoir	1/23, 5/20, 8/5, 11/4
32	IS-13-SC	Silver Creek inflow to Camino Reservoir	1/23, 5/20, 8/5,11/3
34	IS-14-SC	Silver Creek outflow from Camino Reservoir	1/23, 5/20, 8/5,11/3
38	IS-15-SFAR	South Fork American River (SFAR) upstream of Camino Powerhouse	1/23, 5/20, 8/5,11/3
41	IS-16-SFAR	SFAR downstream of Camino Powerhouse	1/23, 5/20, 8/5,11/3
40	IS-17-BC	Brush Creek outflow from Brush Creek Reservoir	1/23, 5/20, 8/5,11/3
60	IS-18-SFAR	SFAR upstream of White Rock Powerhouse	1/22, 5/21, 8/6, 11/6
43	IS-19-SFAR	SFAR downstream of Slab Creek Reservoir	1/22, 5/21, 8/6, 11/5

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

Table 4-4. In situ Water Quality Sampling Locations Not Sampled for SMUD Upper American River Project Riverine Sites.

SMUD Site			Reason not sampled for 2020 In situ
Name	Site ID	Location	Survey
		January (Winter)	
2	IS-1-RR	Rubicon River outflow from Rubicon Reservoir	Snow accumulation
5	IS-2-LRR	Little Rubicon River outflow from Rockbound Lake	Snow accumulation
6	IS-3-LRR	Little Rubicon outflow from Buck Island Lake	Snow accumulation
7	IS-4-GC	Gerle Creek outflow from Loon Lake	Snow accumulation
14	IS-5-GC	Gerle Creek inflow to Gerle Creek Reservoir	Snow accumulation
18	IS-7-SFRR	S.F. Rubicon upstream of Gerle Creek confluence	Snow accumulation
19	IS-8-SFRR	S.F. Rubicon downstream of Gerle Creek confluence	Snow accumulation
		May (Spring)	
2	IS-1-RR	Rubicon River outflow from Rubicon Reservoir	Snow accumulation
5	IS-2-LRR	Little Rubicon River outflow from Rockbound Lake	Snow accumulation
6	IS-3-LRR	Little Rubicon outflow from Buck Island Lake	Snow accumulation

Table 4-5. Bacteria Sampling Locations and Dates for SMUD Upper American River Project Sites.

	2020			
Reservoir	Name	Site ID	Location	Sample Dates
Buck Island Reservoir	R-3B	Bac-1-BI	On Northshore, near dam and Off-Highway Vehicle camping	8/19, 9/2
(beach locations) ¹	77	Bac-2-BI	On south shore, near Rubicon hiking trail	8/19, 9/2
Loon Lake Reservoir	64	Bac-3-LL	West of main dam, near Red Fir Campground	8/19, 9/2
(beach locations) ¹	65	Bac-4-LL	West of Loon Lake Campground, near boat launch	8/19, 9/2
Gerle Creek Reservoir	66	Bac-5-GCR	Near Gerle Creek Campground	6/18, 6/25, 7/2, 7/9, 7/16
(beach locations)	67	Bac-6-GCR	Near Angel Creek picnic area	6/18, 6/25, 7/2, 7/9, 7/16
	R-6H	Bac-7-UVR	At Fashoda Beach	6/18, 6/25, 7/2, 7/9, 7/16
Union Valley Reservoir	R-6E	Bac-8-UVR	Near Wench Creek Campground	6/18, 6/25, 7/2, 7/9, 7/16
(swim areas)	FC-2	Bac-9-UVR	Near Camino Cove Campground	6/18, 6/25, 7/2, 7/9, 7/16
	R-6F	Bac-10-UVR	Near Yellowjacket Campground	6/18, 6/25, 7/2, 7/9, 7/16
Other UARP Locations	R-8B	Bac-11-JR	Junction Reservoir, near boat launch	6/17, 6/24, 7/1, 7/8, 7/15
Ice House Reservoir	68	Bac-12-IHR	Northshore near private campground access	6/17, 6/24, 7/1, 7/8, 7/15
(beach locations)	69	Bac-13-IHR	East of boat launch and picnic area	6/17, 6/24, 7/1, 7/8, 7/15
Other UARP	R-10B	Bac-14-BCR	Brush Creek Reservoir, near boat launch	6/17, 6/24, 7/1, 7/8, 7/15
locations	R-11C	Bac-15-SCR	Slab Creek Reservoir, near boat launch	6/17, 6/24, 7/1, 7/8, 7/15

The five weeks of scheduled sampling within 30 days of Labor Day at Buck Island Reservoir and Loon Lake Reservoir were reduced to two weeks of sampling due unhealthy air quality and closures of recreational sites resulting from the August–September 2020 California wildfires.

5.0 METHODS

5.1 IN SITU PARAMETERS

Reservoir *in situ* water quality monitoring was conducted by watercraft to access midreservoir areas (Figure 5-1). A multi-probe Sonde (Yellow Springs Instruments [YSI] EXO2) was deployed from a boat for measurement of *in situ* parameters, including water temperature, conductivity, dissolved oxygen, pH, and turbidity (Table 5-1).

Figure 5-1. Example of mid-reservoir *in situ* water quality sampling site (R-IS-3-LL) at Loon Lake Reservoir.

At each reservoir site, a vertical water column profile was collected for all *in situ* water quality parameters at one-meter depth intervals. For bottom water samples, the Sonde was drawn back 0.5 meter (m) from the sediment layer before taking a reading. Prior to taking each reading, the Sonde was allowed to stabilize (typically requiring no more than 90 seconds to two minutes, as needed). Water transparency was measured at reservoir stations with a standard 7.9-inch-diameter Secchi disk.

At riverine sites, Sonde readings were obtained where sufficient stream turbulence provided good lateral and vertical mixing of the water, and as near as possible to the stream thalweg (Figure 5-2). Prior to taking each reading, the Sonde was allowed to stabilize (typically requiring no more than 90 seconds to two minutes, as needed) such that there was little variability in parameter readings at each location.

Figure 5-2. Example of an *in situ* water quality sampling site (IS-18-SFAR) on the South Fork American River upstream of White Rock Powerhouse.

For both reservoir and riverine *in situ* monitoring, Sonde calibration was conducted prior to the start of each sampling day, and a post-sampling calibration check was conducted following each sampling day, using standard solutions and recorded on calibration logs (Appendix E). Comparisons between post-sampling and post-calibration values were made and Measurement Quality Objective (MQO) codes (Accept, Qualify, Reject) were assigned to each parameter. MQO criteria for each *in situ* parameter are provided in Table 5-2.

Other data gathered at each monitoring station included date, time, site name, sampling location, collector's name, weather conditions, and any other pertinent observations related to the monitoring station. Following each field event, data were added to a database template provided by SMUD, for eventual transfer into SMUD's master database. All *in situ* water quality sampling was conducted in compliance with the approved Plan (SMUD 2016).

Table 5-1. In situ Water Quality Parameters and Measurement Methods.

Parameter	Method	Units	Reporting Resolution
Water temperature	EPA 170.1	degrees Celsius (°C)	0.1
Conductivity	SM 2510-B	microsiemens per centimeter (uS/cm)	1.0
DO	SM 4500-O(G)	milligrams per liter (mg/L)	0.1
рН	SM 4500-H	standard unit of pH (s.u.)	0.1
Turbidity	SM 2130B	Nephelometric Turbidity Unit (NTU)	0.1
Secchi depth (Secchi disk)	USGS	meter (m)	0.1

DO = dissolved oxygen

EPA = Environmental Protection Agency

SM = Standard Method

USGS = United States Geological Survey

Table 5-2. Measurement Quality Objectives Criteria for In situ Parameters.

Measurement Quality Objectives (MQO)							
Parameter	Parameter Units Accept Qualify Reject						
Dissolved Oxygen	% Saturation	≤ 5%	> 5% and ≤ 10%	> 10%			
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%			
pН	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5			
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%			

NTU = Nephelometric Turbidity Unit

s.u. = standard unit of pH

uS/cm = microsiemens per centimeter

5.2 BACTERIA

Bacteria grab samples were collected near reservoir and river shorelines in shallow water, and in particular at swim areas/beach locations (Table 4-5, Figure 5-3). Samples were collected in sterilized bottles supplied by the analytical laboratory. Field sampling personnel wearing sterile gloves filled each sample bottle by direct immersion in the reservoir or stream. Immediately after collection, samples were placed on ice for transport to the analytical laboratory within the required field hold time (Table 5-3).

Figure 5-3. Example of a bacteria sampling site in Ice House Reservoir (Site Bac-12-IHR).

Table 5-3. Bacteria Analytical Methods and Field Hold Times.

Analyte	Method	Units	MDL	Hold Time
Escherichia coli	SM9223B (Quantitray)	MPN/100 mL	1.0	8 hr
Fecal coliform	SM9221E (MPN 15 or 25)	MPN/100 mL	1.8	8 hr

MDL = method detection limit

mL = milliliter

MPN = most probable number SM = Standard Method

Field-based Quality Assurance/Quality Control (QA/QC) for bacterial samples was assured by accurate and thoroughly completed sample labels, field sheets, chain of custody, and sample log forms. Sample labels included sample identification code, date, time, preservative, client name, collector's name, reservoir/river name, sampling location, and analysis/sample type. All sample labels were cross-checked by a second field technician before delivering samples to the analytical laboratory.

6.0 RESULTS

6.1. IN SITU PARAMETERS

6.1.1. Riverine Sites

Detailed *in situ* water quality dates and measurements for UARP riverine sites can be found in Table 6-1, and field data sheets are provided in Appendix D. Several riverine sites were not sampled during the 2020 January (Winter) and May (Spring) sampling events due to safety issues associated with snow accumulation (Table 4-4).

January (Winter) In situ Water Quality Sampling Event

During the January sampling event, water temperatures ranged from 2.1 to 6.1 degrees Celsius (°C) and were variable by site. Riverine dissolved oxygen ranged from 11.3 to 12.5 milligrams per liter (mg/L) (85 to 101% saturation), with no measurements falling below the Basin Plan minimum concentration of 7.0 mg/L for cold freshwater habitat (COLD) and spawning, reproduction, and/or early development (SPWN) designated beneficial uses (CRWQCB 2016). pH at riverine sites ranged from 6.3 to 7.3 standard units (s.u.), with one instance of pH falling below the Basin Plan instantaneous minimum objective of 6.5 s.u. (Site IS-6-GC, 6.3 s.u.) and no exceedances of the Basin Plan instantaneous maximum objective of 8.5 s.u. (Table 6-1).

Typical of granitic watersheds, conductivity at the riverine sites was low, ranging from 6 to 40 microsiemens per centimeter (uS/cm) (Table 6-1).

Turbidity measurements during the January sampling event were low, ranging from 0.2 to 1.2 Nephelometric Turbidity Units (NTUs) (Table 6-1).

May (Spring) In situ Water Quality Sampling Event

During the May sampling event, water temperatures (5.3 to 11.8°C) exhibited a greater range and were generally higher than temperatures measured during the winter sampling event. Dissolved oxygen ranged from 9.6 to 11.0 mg/L (82 to 99% saturation) across all accessible riverine sites, which is well above the Basin Plan minimum concentration of 7.0 mg/L for COLD and SPWN. pH ranged from 6.3 to 7.4 s.u., with three instances of pH falling below the Basin Plan instantaneous minimum objective (6.5 s.u.) and no exceedences of the Basin Plan instantaneous maximum objective (8.5 s.u.). Measured pH below the Basin Plan instantanous minimum occurred at Site IS-9-GCC (6.3 s.u.), Site IS-5-GC (6.4 s.u.), and Site IS-8-SFRR (6.4 s.u.) (Table 6-1).

Conductivity at the riverine sites was low, ranging from 6 to 32 uS/cm during the May sampling event (Table 6-1).

Turbidity measurements were low, ranging from 0.3 to 18.4 NTU, and only one site (Site IS-17-BC) exhibiting turbidity greater than 3.0 NTU (Table 6-1).

August (Summer) In situ Water Quality Sampling Event

During the August sampling event, water temperatures ranged from 8.0 to 24.6°C and were variable by site. Riverine dissolved oxygen during the August sampling event ranged from 6.7 to 11.6 mg/L (78 to 103% saturation), with two measurements falling below the Basin Plan minimum concentration of 7.0 mg/L for COLD and SPWN. Dissolved oxygen below the criterion occurred at sites IS-1-RR (6.9 mg/L) and IS-3-LRR (6.7 mg/L). pH ranged from 5.6 to 7.5 s.u., with nine instances falling below the Basin Plan instantaneous minimum (6.5 s.u.) and no exceedences of the instantaneous maximum objective (8.5 s.u.). Measured pH below the Basin Plan instantaneous minimum objective occurred at Site IS-4-GC (5.6 s.u.), Site IS-5-GC (6.2 s.u.), Site IS-6-GC (6.3 s.u.), Site IS-9-GCC (6.4 s.u.), Site IS-10-SFSC (5.9 s.u.), Site IS-12-SC (6.2 s.u.), Site IS-14-SC (6.4 s.u.), and Site IS-16-SFAR (6.1 s.u.) (Table 6-1).

Conductivity at the riverine sites was low, ranging from 7 to 44 uS/cm in August (Table 6-1).

During the August sampling event, turbidity measurements were low, ranging from 0.0 to 4.7 NTU (Table 6-1).

November (Fall) In situ Water Quality Sampling Event

Water temperatures during the November sampling event ranged from 4.7 to 13.5°C. Riverine dissolved oxygen ranged from 7.6 to 11.5 mg/L (64 to 98% saturation), with no measurements falling below the Basin Plan instantaneous minimum concentration of 7.0 mg/L for COLD and SPWN. Riverine pH ranged from 6.5 to 7.8 s.u. with no measurements falling below the Basin Plan instantaneous minimum pH objective (6.5 s.u.) and no exceedances of the instantaneous maximum (8.5 s.u) (Table 6-1).

Conductivity at the riverine sites was low, ranging from 7 to 54 uS/cm during the November sampling event (Table 6-1).

Turbidity at riverine sites was low, ranging from 0.1 to 11.4 NTU, and only one site (Site IS-1-RR) exhibiting turbidity greater than 3.0 NTU (Table 6-1).

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

Table 6-1. In situ Water Quality for UARP Riverine Sites.

Site ID	2020 Sample Date	Water Temperature (°C)	pH (s.u.)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	Turbidity (NTU)
January (Winter)							
IS-1-RR							
IS-2-LRR							
IS-3-LRR							
IS-4-GC							
IS-5-GC							
IS-6-GC	1/24	2.1	6.3	11.8	85	7	0.2
IS-7-SFRR							
IS-8-SFRR							
IS-9-GCC	1/24	2.3	6.5	11.7	86	7	0.2
IS-10-SFSC	1/24	4.0	6.6	11.3	86	6	0.4
IS-11-SFSC	1/23	2.9	6.9	12.0	89	9	0.3
IS-12-SC	1/23	3.1	7.0	11.7	87	9	0.4
IS-13-SC	1/23	4.4	6.7	12.2	94	10	0.3
IS-14-SC	1/23	4.5	6.9	12.2	94	13	0.3
IS-15-SFAR	1/23	5.2	7.3	12.4	97	40	0.5
IS-16-SFAR	1/23	4.8	7.2	12.5	98	38	0.6
IS-17-BC	1/23	6.0	7.0	11.5	92	17	1.2
IS-18-SFAR	1/22	6.1	7.2	12.5	101	30	0.3
IS-19-SFAR	1/22	4.9	6.7	12.5	97	22	0.4
			Ma	y (Spring)			
IS-1-RR							
IS-2-LRR							
IS-3-LRR							
IS-4-GC	5/19	9.6	6.5	9.6	82	6	0.9
IS-5-GC	5/19	5.3	6.4	10.8	85	7	0.8
IS-6-GC	5/19	7.9	6.8	10.1	85	7	0.3
IS-7-SFRR	5/19	7.5	6.7	10.4	86	8	0.3
IS-8-SFRR	5/19	7.9	6.4	10.4	87	8	0.3
IS-9-GCC	5/19	8.2	6.3	10.2	87	6	0.3
IS-10-SFSC	5/19	6.5	6.6	10.4	85	7	0.7
IS-11-SFSC	5/20	6.6	6.6	10.8	88	11	0.9
IS-12-SC	5/20	8.9	6.7	10.0	86	11	0.6

Site ID	2020 Sample Date	Water Temperature (°C)	pH (s.u.)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	Turbidity (NTU)	
IS-13-SC	5/20	9.4	7.1	10.5	92	12	1.5	
IS-14-SC	5/20	10.1	7.2	10.5	93	14	2.8	
IS-15-SFAR	5/20	10.2	7.4	10.8	96	24	1.4	
IS-16-SFAR	5/20	10.2	7.3	11.0	98	22	3.0	
IS-17-BC	5/20	11.3	7.3	10.0	91	19	18.4	
IS-18-SFAR	5/21	11.8	7.3	10.7	99	32	1.4	
IS-19-SFAR	5/21	10.8	7.1	10.7	97	21	2.0	
			Augu	st (Summer)				
IS-1-RR	8/3	21.8	6.5	6.9	78	14	0.4	
IS-2-LRR	8/3	24.6	6.9	7.0	84	13	0.1	
IS-3-LRR	8/3	22.7	6.5	6.7	78	10	0.2	
IS-4-GC	8/4	11.7	5.6	8.8	81	7	0.2	
IS-5-GC	8/4	13.1	6.2	8.8	83	10	0.1	
IS-6-GC	8/4	15.4	6.3	8.3	84	8	0.1	
IS-7-SFRR	8/4	14.0	6.6	8.8	85	8	0.1	
IS-8-SFRR	8/4	14.6	6.4	8.8	86	9	0.1	
IS-9-GCC	8/4	15.4	6.4	8.5	85	8	0.0	
IS-10-SFSC	8/4	8.2	5.9	10.1	85	7	0.5	
IS-11-SFSC	8/5	13.9	7.0	9.0	87	12	0.3	
IS-12-SC	8/5	8.0	6.2	10.2	86	9	0.2	
IS-13-SC	8/5	16.5	6.9	8.9	91	14	0.5	
IS-14-SC	8/5	11.8	6.4	10.2	94	12	0.2	
IS-15-SFAR	8/5	21.7	7.5	8.7	98	44	0.4	
IS-16-SFAR	8/5	10.3	6.1	11.6	103	12	0.4	
IS-17-BC	8/5	16.2	6.9	8.9	91	26	4.7	
IS-18-SFAR	8/6	20.7	7.5	9.1	101	26	0.4	
IS-19-SFAR	8/6	13.7	6.5	9.9	95	15	0.5	
	November (Fall)							
IS-1-RR	11/2	8.1	6.5	7.6	64	49	11.4	
IS-2-LRR	11/2	8.2	7.4	10.0	84	11	0.1	
IS-3-LRR	11/2	13.5	7.8	9.8	94	33	0.5	
IS-4-GC	11/4	11.1	7.1	9.1	82	7	0.2	
IS-5-GC	11/4	7.7	7.0	10.2	85	8	0.1	
IS-6-GC	11/4	8.5	6.9	9.7	83	8	0.2	

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

Site ID	2020 Sample Date	Water Temperature (°C)	pH (s.u.)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	Turbidity (NTU)
IS-7-SFRR	11/4	7.4	7.1	10.3	86	9	0.1
IS-8-SFRR	11/4	7.2	7.0	10.5	87	9	0.1
IS-9-GCC	11/4	11.4	7.0	9.3	85	9	0.1
IS-10-SFSC	11/4	8.5	6.9	9.9	85	9	0.7
IS-11-SFSC	11/3	8.4	7.5	10.4	88	11	0.2
IS-12-SC	11/4	4.7	6.8	11.0	86	9	0.1
IS-13-SC	11/3	7.7	7.4	11.1	93	11	0.1
IS-14-SC	11/3	9.1	7.5	10.9	95	11	0.2
IS-15-SFAR	11/3	8.0	7.5	11.5	97	54	0.2
IS-16-SFAR	11/3	9.1	6.9	11.3	98	17	0.1
IS-17-BC	11/3	12.3	7.2	9.8	92	20	2.3
IS-18-SFAR	11/6	9.4	7.4	11.1	97	21	0.6
IS-19-SFAR	11/5	9.9	7.0	10.8	96	15	0.7

= degrees Celsius s.u. = standard unit of pH mg/L = milligrams per liter % sat = percent saturation

uS/cm = microsiemens per centimeter

NTU = Nephelometric Turbidity Unit
"-" Indicates that data were not collected due to site inaccessibility. See Table 4-4.

6.1.2. Reservoir Sites

In situ water quality data for selected UARP reservoir sites are presented in Figures 6-1 and 6-2 as representative of vertical profiles at other similar sites. Data for all sites are presented in Appendices A and B. As noted in Section 5, *in situ* water quality parameters were collected as part of Spring and Fall *in situ* sampling events in 2020, consistent with the Plan (SMUD 2016).

May (Spring) In situ Water Quality Sampling Event

During the May (Spring) sampling event, reservoir water temperatures ranged from approximately 13 to 20°C in surface waters to 6 to 15°C in bottom waters (Figure 6-1 and Appendix B, Figures B-3 through B-8). The onset of thermal stratification was apparent in Loon Lake, Union Valley, Junction, and Camino reservoirs. In Loon Lake, water temperature decreased gradually and consistently with depth, varying by approximately 3 to 4°C between the surface and bottom waters (Appendix B, Figures B-1 and B-2). The deep Union Valley Reservoir exhibited a broad thermocline extending from the water surface to approximately 20 m (Figure 6-1 and Appendix B, Figures B-3 and B-4), and in the more shallow Junction and Camino reservoirs, a broad thermocline extended from the surface to approximately 5 m to 15 m (Appendix B, Figures B-6 and B-7). In Ice House and Slab Creek reservoirs, the thermocline was more distinct and compact, located between 5 m and 10 m from the surface in Ice House Reservoir (Appendix B. Figures B-5 and B-6) and between 2.5 m or 5 m from the surface in Slab Creek Reservoir, depending on measurement location (Figure 6-1 and Appendix B, Figures B-7 and B-8). The relatively shallow Gerle Creek Reservoir water column appeared well mixed, with a slight (0.5°C) drop in temperature from the surface to 1 m depth (Appendix B, Figure B-2).

In Union Valley, Ice House, and Junction reservoirs, dissolved oxygen concentrations increased slightly (0.1 to 1.3 mg/L) within the developing thermoclines before decreasing gradually with depth. Dissolved oxygen concentrations in Loon Lake, Gerle Creek, Camino, and Slab Creek reservoirs were generally consistent with depth. Dissolved oxygen concentrations were above 8.6 mg/L at all reservoir sites during the May (Spring) sampling event, which is greater than the Basin Plan instantaneous minimum concentration of 7.0 mg/L for COLD and SPAWN designated beneficial uses. pH values showed little variation among reservoirs and with depth, ranging from 6.2 to 7.2 s.u. Three sites (R-IS-7-UVR, R-IS-8-UVR, and R-IS-12-JR) exhibited pH values that fell below the Basin Plan instantaneous minimum pH objective (6.5 s.u.). There were no exceedances of the instantaneous maximum pH objective (8.5 s.u.). pH measurements from two reservoirs, Ice House Reservoir and Loon Lake were rejected due to a malfunctioning pH sensor that exhibited excessive instrument drift. Turbidity levels were very low and were generally consistent with depth (less than or equal to 1.8 NTU) across all reservoir monitoring sites.

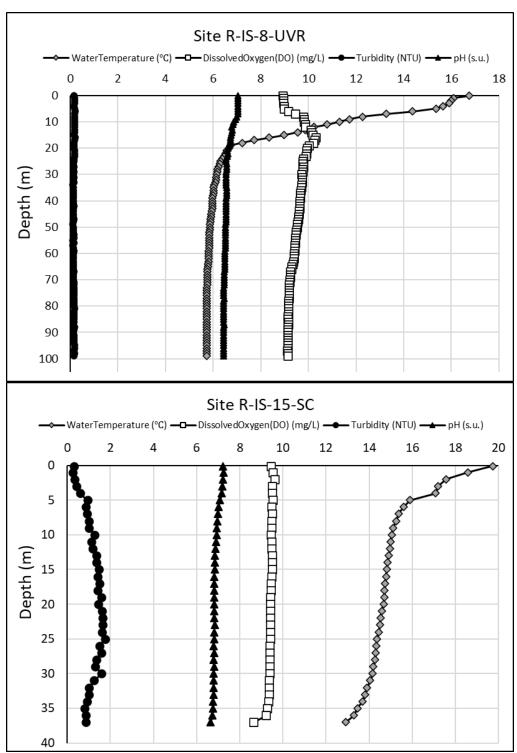


Figure 6-1. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Union Valley Reservoir and Slab Creek Reservoir sites R-IS-8-UVR (top) and R-IS-15-SC (bottom) during May (Spring) 2020.

October and November (Fall) In situ Sampling Event

During the October and November (Fall) sampling events, surface water temperatures across all reservoir sites ranged from approximately 9 to 17°C and bottom water temperatures ranged from 7 to 16°C. Most sites exhibited little to no variation in water temperature with depth, indicating that the reservoirs were generally well mixed (Figure 6-2 and Appendix B, Figures B-9 through B-11 and B-13 through B-16). Thermal stratification was observed at Union Valley Reservoir and Ice House Reservoir at sites R-IS-7-UVR, R-IS-8-UVR, and R-IS-11-IHR, where thermoclines were located at depths of 32 m, 28 m, and 15 m from the surface, respectively (Figure 6-2 and Appendix B, Figures B-12 and B-14).

Dissolved oxygen, pH, and turbidity at all reservoir sites were generally consistent with depth; exceptions occured at sites R-IS-7-UVR, R-IS-8-UVR, and R-IS-11-IHR, where dissolved oxygen concentrations and pH decreased along with decreases in water temperature within the thermoclines (Figure 6-2 and Appendix B, Figures B-12 and B-14). Dissolved oxygen concentrations fell below the Basin Plan instantaneous minimum concentration of 7.0 mg/L for COLD and SPAWN designated uses below the thermoclines of sites R-IS-7-UVR, R-IS-8-UVR, and R-IS-11-IHR, as well at the bottom sample of Site R-IS-9-IHR (Appendix B, Figures B-12 through B-14). The minimum dissolved oxygen concentration across all sites was 4.5 mg/L (Appendix A, Table A-2). Loon Lake (Site R-IS-1-LL), Union Valley Reservoir (Site R-IS-8-UVR), Ice House Reservoir (sites R-IS-9-IHR and R-IS-11-IHR), Junction Reservoir (Site R-IS-12-JR), Camino Reservoir (Site R-IS-13-CR), and Slab Creek Reservoir (Site R-IS-15-SC) all exhibited values below the Basin Plan instantaneous minimum pH objective (6.5 s.u.), either throughout the water column or in the deeper portions of the water column (Appendix B, Figures B-9 and B-12 through B-15). There were no exceedences of the instantaneous maximim pH objective (8.5 s.u.). Turbidity levels were low (less than or equal to 6.3 NTU).

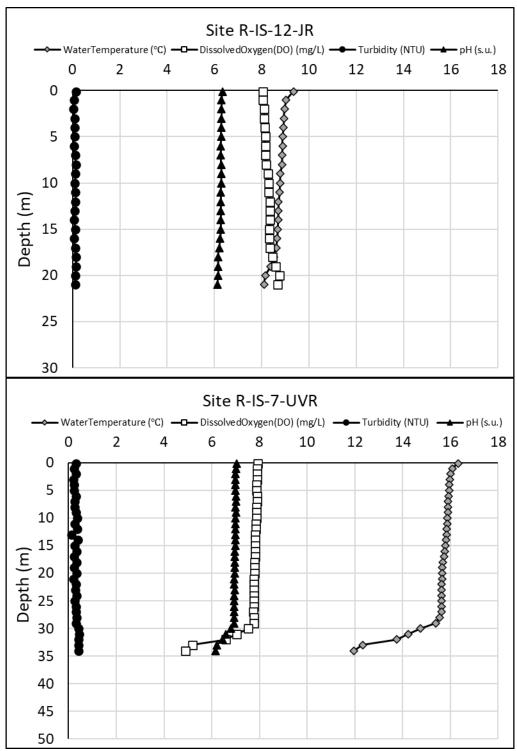


Figure 6-2. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Junction Reservoir and Union Valley Reservoir sites R-IS-12-JR (top) and R-IS-7-UVR (bottom) during October (Fall) 2020.

6.2. **BACTERIA**

Instantaneous fecal coliform counts ranged from less than the method detection limit (MDL) (i.e., 1.8 most probable number per 100 milliliters [MPN/100 mL]) to 540.0 MPN/100 mL during both the 2020 Independence Day and Labor Day sampling events (Appendix C, Tables C-1 and C-2). Two of the 2020 samples exceeded the instantaneous maximum Basin Plan objective of 400 MPN/100 mL; both of these samples exhibited instantaneous fecal coliform counts of 540 MPN/100 mL and occurred at Site Bac-11-JR (Appendix C, Table C-1).

Fecal coliform geometric mean counts in 2020 were well below the Basin Plan objective of 200 MPN/100 mL for the recreational water contact (REC-1) designated beneficial use. The lowest fecal coliform geometric mean count (0.9 MPN/100 mL) was calculated for samples from Ice House Reservoir (Site Bac-13-IHR) during the Independence Day sampling event. The highest geometric mean fecal coliform count (75.5 MPN/100 mL) occurred at Junction Reservoir (Site Bac-11-JR) during the Independence Day sampling event (Table 6-3). The 2020 Labor Day sampling event was reduced to two surveys occurring over a 15-day period due to unhealthy air quality and recreational site closures resulting from the August–September California wildfires. As a result, the geometric means for sites Bac-1-BI, Bac-2-BI, Bac-3-LL, and Bac-4-LL were calculated using the instantaneous results of two samples instead of five.

Instantaneous *Escherichia coli* (*E. coli*) counts ranged from less than the MDL (i.e., <1.0 MPN/100 mL) to 866.4 MPN/100 mL during the 2020 Independence Day and Labor Day sampling events (Appendix C, Tables C-1 and C-2). There is no Basin Plan numeric objective for *E. coli*.

E. coli geometric mean counts in 2020 ranged from 0.6 MPN/100 mL, calculated for samples from Ice House Reservoir (Site Bac-13-IHR) during the Independence Day sampling event, to 25.1 MPN/100 mL, calculated for samples from Gerle Creek Reservoir (Site Bac-5-GCR) during the Independence Day sampling event (Table 6-3). The Labor Day sampling event was reduced to two surveys occurring over a 15 day period due to unhealthy air quality and recreational site closures resulting from the August–September California wildfires. As a result, the geometric means for sites Bac-1-BI, Bac-2-BI, Bac-3-LL, and Bac-4-LL were calculated using the instantaneous results of two samples instead of five.

Table 6-2. Bacteria Counts for UARP Reservoir Sites.

0.4.10	Fecal Coliform Geometric Mean 1,2	E. coli Geometric Mean				
Site ID	(MPN/100 mL)	(MPN/100 mL)				
Independence Day						
Bac-5-GCR	26.4	25.1				
Bac-6-GCR	16.2	9.9				
Bac-7-UVR	5.7	12.3				
Bac-8-UVR	2.8	1.8				
Bac-9-UVR	3.7	6.6				
Bac-10-UVR	2.6	1.0				
Bac-11-JR	75.5	23.0				
Bac-12-IHR	1.2	0.7				
Bac-13-IHR	0.9	0.6				
Bac-14-BCR	2.5	0.8				
Bac-15-SCR	3.4	3.0				
	Labor Day ³					
Bac-1-Bl	1.3	0.7				
Bac-2-Bl	1.3	0.7				
Bac-3-LL	2.0	1.4				
Bac-4-LL	21.9	4.9				

MPN/100 mL = most probable number per 100 milliliters

¹ Method detection limit (MDL for fecal coliform = 1.8 MPN/100 mL. MDL for *E. coli* = 1.0 MPN/100 mL). Individual results less than the MDL were treated as 0.5 x MDL for the geometric mean calculations.

The Basin Plan REC-1 water quality objective for fecal coliform is 200 MPN/100 mL expressed as the geometric mean of five samples collected over 30 days.

³ Three of five scheduled samples were not collected during the Labor Day sampling event due to unhealthy air quality and recreational site closures resulting from the August–September California wildfires. The Labor Day geometric means were calculated using the instantaneous counts from two samples collected before Labor Day.

7.0 CONCLUSIONS

Based on 2020 in situ monitoring results, riverine water quality in the UARP study area generally met Basin Plan water quality objectives. There were two instances (out of 66 total measurements) of dissolved oxygen measured below the Basin Plan instantaneous minimum objective (7.0 mg/L) for COLD and SPWN, which occurred during the August (Summer) sampling event at Rubicon River and Little Rubicon River sites and may have been due to relatively high water temperatures (greater than 20°C) and low flows. There were twelve instances of pH measured below the Basin Plan instantaneous minimum objective (6.5 s.u.) (21% of total pH measurements), which was more than measured during 2015, 2017, 2018, and 2019 in situ water quality monitoring at riverine sites but less than what was measured in 2016 (Table 7-1). The occasionally low pH values are likely due to the low buffering capacity characteristic of headwater reaches in granitic watersheds, whereby the relatively low weathering rates of the predominant geology (i.e., granite) results in low alkalinity (<17 mg/L across all sites in 2017; SMUD [2018]) and low hardness (<20 mg/L across all sites in 2017; SMUD [2018]) making the waters susceptible to pH decreases when naturally acidic inputs occur, such as snow melt, rainfall, and tannins from surrounding vegetation. The occasionally low pH level measured during the 2015-2020 monitoring period may represent background conditions for the UARP watershed, particularly in the upper reaches of the study area. There were no instances of pH measured above the Basin Plan instantaneous maximum objective (8.5 s.u.) in 2020. There were no instances of elevated turbidity in 2020, supporting prior statements that elevated turbidity levels measured at low elevation sites during 2015-2017 were a direct result of sediment influx due to vegetation loss from the 2014 King Fire event.

Table 7-1. *In situ* pH Measurements below Basin Plan Instantaneous Minimum Objective (6.5 s.u.) for UARP Riverine Sites, 2015–2020.

Year	Number of pH Measurements below Basin Plan Objective	Percentage of pH Measurements below Basin Plan Objective
2015	3	8%
2016	30	46%
2017	5	7%
2018	6	9%
2019	2	3%
2020	12	21%

Reservoir *in situ* water quality in 2020 was also generally good, with occasional values measured below the Basin Plan instantaneous minimum objectives for dissolved oxygen (7 mg/L) for COLD and SPAWN designated beneficial uses in the bottom waters of the larger reservoirs (i.e., Union Valley Reservoir and Ice House Reservoir), a result that is not uncommon for deep waterbodies that have been thermally stratified for several months. There were several instances of pH measured below the Basin Plan instantaneous minimum objective (6.5 s.u.), which, similar to the riverine pH results, may be due to low buffering capacity characteristic of headwater reaches in granitic

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

watersheds. There were no instances of pH measured above the Basin Plan instantaneous maximum objective (8.5 s.u.). There were no instances of elevated turbidity in 2020, supporting prior statements that elevated turbidity levels measured at low elevation sites during 2015–2017 were a direct result of sediment influx due to vegetation loss from the 2014 King Fire event.

Sampling results for 2020 indicated no exceedances of the fecal coliform Basin Plan objective of 200 MPN/100 mL (geometric mean of five samples collected over 30 days), and only two of 63 samples exceeded the instantaneous maximum Basin Plan objective of 400 MPN/100 mL. The 2020 sampling results are generally consistent with results reported in the Five-Year Monitoring Summary (SMUD 2020). Of the 15 locations monitored for fecal coliform and *E. coli* during the 2015–2020 period, none exhibited exceedances of the Basin Plan fecal coliform geometric mean objective of 200 MPN/100 mL. During 2015–2020, the following 10 locations also exhibited no exceedances of either Basin Plan fecal coliform objective for protection of REC-1 designated waters: Bac-1-BI, Bac-2-BI, Bac-3-LL, Bac-4-LL, Bac-5-GCR, Bac-6-GCR, Bac-8-UVR, Bac-9-UVR, Bac-12-IHR, and Bac-14-BCR.

Despite occasional low dissolved oxygen and pH measurements and a small number of elevated instantaneous fecal coliform measurements, 2020 monitoring results indicate that overall, surface waters of the UARP study area consistently support designated beneficial uses, including COLD, SPWN, and REC-1.

8.0 LITERATURE CITED

CRWQCB (California Regional Water Quality Control Board). 2016. The Water Quality Control Plan (Basin Plan) for the California Regional Water Quality Control Board Central Valley Region. Fourth Edition.

FERC (Federal Energy Regulatory Commission). 2014. Federal Energy Regulatory Commission Order 148 FERC 62,070 Issuing New License for the Sacramento Municipal Utility District Upper American River Hydroelectric Project No. 2101. Issued July 23.

SMUD (Sacramento Municipal Utilities Department). 2015. Water Quality Monitoring Plan. Hydro License Implementation. Upper American River Project, FERC Project No. 2101. May.

SMUD. 2016. Water Quality Monitoring Plan. Revision 2. Hydro License Implementation. Upper American River Project, FERC Project No. 2101. August.

SMUD. 2018. Water Quality Monitoring Report (2017). Hydro License Implementation. Upper American River Project, FERC Project No. 2101. June.

SMUD. 2020. Water Quality Monitoring Report (2019) and Five-Year Water Quality Summary (2015 – 2019). Hydro License Implementation. Upper American River Project, FERC Project No. 2101. June.

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

APPENDIX A In situ Vertical Profile Data for UARP Reservoir Sites

This Page Intentionally Left Blank

Table A-1. Vertical Profile Data for UARP Reservoir Sites - May (Spring) In situ Surveys.

	2020	Sample	RP Reservoir Sit Water	Dissolved	Dissolved				
	Sample	Depth	Temperature	Oxygen	Oxygen	Conductivity	рН	Turbidity	Secchi disk
Site ID	Date	(m)	(°C)	(mg/L)	(% sat)	(uS/cm)	(s.u.)	(NTU)	(m)
	1 1		1	Loon Lake I		T			T
		0.1	13.3	8.9	85	6	1	0.0	
		1	12.7	9.0	85	6	1	0.0	
		2	12.0	9.1	85	6	1	0.0	
		3	11.7	9.1	84	6	1	0.0	
		4	11.5	9.2	84	6	1	0.1	
		5	11.1	9.2	83	6	1	0.1	
		6	10.7	9.2	83	6	1	0.1	
		7	10.6	9.2	83	6	1	0.1	
D IC 4 I I	IS-1-LL 5/26	8	10.3	9.2	82	6	1	0.1	9.9
K-15-1-LL	5/26	9	10.0	9.2	82	6	1	0.1	9.9
		10	9.8	9.2	82	6	1	0.1	
		11	9.7	9.2	81	6	1	0.1	
		12	9.5	9.2	81	6	1	0.1	
		13	9.4	9.2	80	6	1	0.1	1
		14	9.3	9.1	80	6	1	0.1	
		15	9.3	9.1	80	6	1	0.1	
		16	9.2	9.1	80	6	1	0.1	
		17	9.2	9.1	79	6	1	0.1	
		0.1	12.7	9.1	85	6	1	0.0	
		1	12.2	9.1	85	6	1	0.0	
		2	11.9	9.1	84	6	1	0.0	
		3	11.2	9.2	84	6	1	0.1	
D 10 0 1 1	5/00	4	11.1	9.2	83	6	1	0.1	0.5
R-IS-2-LL	5/26	5	10.8	9.2	83	6	1	0.0	9.5
		6	10.7	9.2	83	6	1	0.0	
		7	10.6	9.2	83	6	1	0.1	1
		8	10.4	9.2	82	6	1	0.1	
		9	10.1	9.2	82	6	1	0.0	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		10	9.9	9.2	81	6	1	0.1	
		11	9.9	9.2	81	6	1	0.1	
		12	9.7	9.2	81	6	1	0.1	
		13	9.6	9.2	81	6	1	0.1	
		14	9.5	9.2	80	6	1	0.1	
		15	9.3	9.2	80	6	1	0.1	
		16	9.3	9.2	80	6	1	0.1	
		17	9.3	9.2	80	6	1	0.1	
		18	9.2	9.2	80	6	1	0.1	
		0.1	11.7	9.1	84	6	 1	0.0	
		1	11.2	9.1	83	6	1	0.0	
		2	11.0	9.2	83	6	1	0.0	
		3	10.9	9.2	83	6	1	0.0	
		4	10.8	9.2	83	6	1	0.0	
		5	10.7	9.2	83	6	1	0.0	
		6	10.6	9.2	83	6	1	0.1	
R-IS-3-LL	5/26	7	10.6	9.2	83	6	1	0.1	10.5
K-13-3-LL	3/20	8	10.4	9.2	82	6	1	0.1	10.5
		9	10.2	9.2	82	6	1	0.0	
		10	10.0	9.2	82	6	1	0.1	
		11	10.0	9.2	81	6	1	0.1	
		12	9.8	9.2	81	6	1	0.1	
		13	9.7	9.1	80	6	1	0.1	
		14	9.5	9.1	80	6	1	0.1	
		15	9.4	9.1	79	6	1	0.1	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk
		. ,		Gerle Res		X = - Y	(-,-,-	1 -1	
		0.1	11.4	9.5	87	7	6.6	0.2	
		1	11.1	9.6	87	7	6.5	0.2	
		2	11.1	9.5	87	7	6.6	0.2	
R-IS-4-GC	E/20	3	11.0	9.5	87	7	6.5	0.2	0.0
R-15-4-GC	5/29	4	11.0	9.5	86	7	6.5	0.3	8.0
		5	11.0	9.5	86	7	6.5	0.2	
		6	11.0	9.5	86	7	6.5	0.2	
		7	10.9	9.5	86	7	6.5	0.3	
				Union Valley	Reservoir			•	
		0.1	18.0	8.9	94	11	7.1	0.1	
		1	17.7	8.9	94	11	7.1	0.1	
		2	16.8	9.0	92	10	7.1	0.2	
		3	15.7	9.2	92	10	7.1	0.2	
		4	15.1	9.2	91	10	7.0	0.2	
		5	13.3	9.4	90	9	7.0	0.2	
		6	13.0	9.4	90	9	6.9	0.2	
		7	12.6	9.5	89	9	6.9	0.2	
		8	12.0	9.5	89	9	6.8	0.2	
R-IS-5-UVR	5/27	9	11.8	9.5	88	9	6.8	0.1	7.4
K-13-3-0 VK	3/2/	10	11.4	9.6	87	8	6.8	0.1	7.4
		11	11.0	9.6	87	8	6.8	0.2	
		12	10.4	9.6	86	8	6.8	0.2	
		13	10.0	9.7	86	8	6.7	0.2	
		14	9.3	9.8	85	8	6.7	0.2	
		15	8.9	9.8	84	8	6.7	0.2	
		16	8.6	9.7	84	8	6.7	0.2	
		17	7.7	9.7	81	8	6.6	0.2	
		18	7.4	9.7	80	8	6.6	0.2	
		19	7.0	9.5	78	8	6.6	0.2	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		20	6.7	9.4	77	8	6.5	0.2^{2}	
		0.1	18.3	8.8	93	11	7.1	0.1	
		1	17.7	8.9	92	11	7.1	0.2	
		2	15.9	9.1	92	10	7.1	0.2	
		3	15.1	9.2	91	10	7.1	0.2	
		4	14.6	9.3	91	10	7.1	0.2	
		5	13.8	9.4	90	10	7.1	0.2	
		6	13.5	9.4	90	10	7.1	0.2	
		7	13.1	9.5	91	9	7.1	0.2	
		8	12.3	9.7	91	9	7.0	0.2	
		9	12.0	9.7	90	9	7.0	0.2	
		10	11.4	9.8	90	9	6.9	0.2	
		11	11.0	9.9	89	9	6.9	0.2	
		12	10.7	9.9	89	9	6.9	0.2	
		13	10.4	9.9	88	9	6.8	0.2	
R-IS-6-UVR	5/27	14	9.6	9.9	87	9	6.8	0.2	6.2
		15	9.4	10.0	87	9	6.8	0.2	
		16	9.1	10.0	87	9	6.8	0.2	
		17	8.6	10.1	87	8	6.8	0.2	
		18	8.1	10.1	85	8	6.7	0.2	
		19	7.7	9.7	82	8	6.7	0.2	
		20	7.4	9.7	81	8	6.6	0.2	
		21	6.9	9.7	80	8	6.6	0.2	
		22	6.7	9.8	80	8	6.6	0.2	
		23	6.7	9.7	80	8	6.6	0.2	
		24	6.6	9.7	80	8	6.6	0.2	
		25	6.5	9.8	80	8	6.6	0.2	
		26	6.5	9.8	79	8	6.6	0.2	
		27	6.5	9.8	79	8	6.6	0.2	
		28	6.4	9.7	79	8	6.6	0.1	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		29	6.3	9.7	78	8	6.6	0.2	
		30	6.3	9.7	78	8	6.6	0.1	
		31	6.3	9.7	78	8	6.6	0.1	
		32	6.3	9.6	78	8	6.6	0.1	
		33	6.2	9.6	77	8	6.6	0.1	
		34	6.2	9.6	77	8	6.6	0.1	
		35	6.1	9.4	76	8	6.6	0.2	
		36	6.1	9.4	76	8	6.6	0.1	
		0.1	16.5	9.0	92	10	6.9	0.1	
		1	16.2	9.0	92	10	7.0	0.2	
		2	15.8	9.1	92	10	7.0	0.2	
		3	14.7	9.3	91	10	6.9	0.2	
		4	14.1	9.3	91	10	6.9	0.2	
		5	13.7	9.4	90	9	6.9	0.2	
		6	13.3	9.4	90	9	6.9	0.2	
		7	12.9	9.4	89	9	6.8	0.2	
		8	12.3	9.5	89	9	6.8	0.2	
		9	11.7	9.6	89	9	6.8	0.2	
R-IS-7-UVR	5/27	10	11.1	9.7	88	9	6.8	0.2	7.8
K-13-7-UVK	3/2/	11	10.7	9.8	88	9	6.7	0.2	7.0
		12	10.5	9.8	88	9	6.7	0.2	
		13	10.0	9.8	87	8	6.7	0.2	
		14	9.3	9.9	86	8	6.6	0.2	
		15	8.7	9.9	85	8	6.6	0.2	
		16	8.0	10.1	85	8	6.5	0.2	
		17	7.6	10.1	84	8	6.4	0.2	
		18	7.3	10.1	84	8	6.4	0.2	
		19	7.1	10.0	83	8	6.3	0.2	
		20	6.8	9.9	81	8	6.3	0.2	
		21	6.7	9.8	80	8	6.3	0.2	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		22	6.6	9.7	79	8	6.3	0.2	
		23	6.6	9.7	79	8	6.3	0.2	
		24	6.5	9.7	79	8	6.2	0.2	
		25	6.5	9.6	78	8	6.2	0.1	
		26	6.4	9.6	78	8	6.2	0.1	
		27	6.3	9.6	77	8	6.2	0.1	
		28	6.2	9.5	77	8	6.2	0.1	
		29	6.2	9.5	77	8	6.2	0.1	
		30	6.2	9.5	77	8	6.2	0.2	
		31	6.2	9.5	77	8	6.2	0.1	
		32	6.2	9.5	77	8	6.2	0.1	
		33	6.1	9.5	77	8	6.2	0.1	
		34	6.1	9.5	77	8	6.2	0.1	
		35	6.1	9.5	77	8	6.2	0.1	
		36	6.1	9.5	77	8	6.2	0.1	
		37	6.1	9.5	76	8	6.2	0.1	
		38	6.1	9.5	76	8	6.2	0.1	
		39	6.0	9.5	76	8	6.3	0.1	
		40	6.0	9.5	76	8	6.2	0.1	
		41	6.0	9.4	76	8	6.3	0.1	
		42	6.0	9.4	75	8	6.2	0.1	
		43	6.0	9.4	75	8	6.2	0.1	
		44	6.0	9.4	75	8	6.2	0.1	
		45	6.0	9.4	75	8	6.2	0.1	
		46	5.9	9.4	75	8	6.2	0.1	
		47	5.9	9.4	75	8	6.2	0.1	
		48	5.9	9.3	75	8	6.2	0.2	
		49	5.9	9.3	75	8	6.2	0.2	
R-IS-8-UVR	5/27	0.1	16.8	8.9	92	10	7.0	0.2	6.6
N-13-0-UVK	3/2/	1	16.1	9.0	91	10	7.0	0.2	0.0

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		2	16.0	9.0	91	10	7.0	0.2	
		3	15.9	8.9	90	10	7.0	0.2	
		4	15.6	9.0	90	10	7.1	0.2	
		5	15.4	9.0	90	10	7.1	0.2	
		6	14.4	9.2	90	10	7.1	0.2	
		7	13.3	9.4	90	10	7.0	0.2	
		8	12.3	9.8	91	9	7.0	0.2	
		9	11.7	9.8	91	9	6.9	0.2	
		10	11.3	9.8	90	9	6.9	0.2	
		11	10.8	9.9	89	9	6.8	0.2	
		12	10.2	9.9	88	9	6.8	0.2	
		13	9.9	10.1	89	9	6.8	0.2	
		14	9.6	10.1	89	9	6.8	0.2	
		15	9.0	10.2	88	9	6.8	0.2	
		16	8.4	10.3	88	9	6.7	0.2	
		17	7.7	10.3	86	9	6.7	0.2	
		18	7.2	10.2	85	8	6.7	0.2	
		19	6.7	10.0	82	8	6.7	0.2	
		20	6.7	9.9	81	8	6.6	0.2	
		21	6.6	9.9	81	8	6.6	0.2	
		22	6.5	9.9	81	8	6.6	0.2	
		23	6.5	9.9	80	8	6.6	0.2	
		24	6.4	9.8	79	8	6.6	0.2	
		25	6.3	9.8	79	8	6.6	0.2	
		26	6.3	9.8	79	8	6.6	0.1	
		27	6.2	9.8	79	8	6.6	0.2	
		28	6.2	9.8	79	8	6.6	0.1	
		29	6.2	9.8	79	8	6.6	0.2	
		30	6.1	9.7	78	8	6.6	0.1]
		31	6.1	9.7	79	8	6.5	0.2	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		32	6.1	9.7	79	8	6.6	0.1	
		33	6.1	9.7	78	8	6.5	0.2	
		34	6.1	9.7	78	8	6.6	0.1	
		35	6.0	9.7	78	8	6.6	0.1	
		36	6.0	9.7	78	8	6.6	0.1	
		37	6.0	9.7	78	8	6.6	0.1	
		38	6.0	9.7	78	8	6.6	0.1	
		39	6.0	9.7	78	8	6.6	0.1	
		40	6.0	9.6	77	8	6.6	0.1	
		41	6.0	9.6	77	8	6.6	0.1	
		42	6.0	9.6	77	8	6.5	0.2	
		43	6.0	9.6	77	8	6.5	0.1	
		44	5.9	9.6	77	8	6.5	0.1	
		45	5.9	9.6	77	8	6.6	0.1	
		46	5.9	9.6	77	8	6.5	0.1	
		47	5.9	9.6	77	8	6.5	0.2	
		48	5.9	9.6	77	8	6.5	0.1	
		49	5.9	9.5	76	8	6.5	0.1	
		50	5.9	9.5	76	8	6.5	0.1	
		51	5.9	9.5	76	8	6.5	0.1	
		52	5.8	9.5	76	8	6.5	0.1	
		53	5.8	9.5	76	8	6.5	0.2	
		54	5.8	9.5	76	8	6.5	0.2	
		55	5.8	9.5	76	8	6.5	0.1	
		56	5.8	9.4	76	8	6.5	0.2	
		57	5.8	9.4	75	8	6.5	0.1	
		58	5.8	9.4	75	8	6.5	0.1	
		59	5.8	9.4	75	8	6.5	0.2	
		60	5.8	9.4	75	8	6.5	0.1	
	<u> </u>	61	5.8	9.4	75	8	6.5	0.1	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		62	5.8	9.4	75	8	6.5	0.1	
		63	5.8	9.4	75	8	6.5	0.1	
		64	5.8	9.3	75	8	6.5	0.1	
		65	5.8	9.3	74	8	6.5	0.1	
		66	5.8	9.3	74	8	6.5	0.1	
		67	5.8	9.3	74	8	6.5	0.2	
		68	5.8	9.2	74	8	6.5	0.1	
		69	5.8	9.2	74	8	6.5	0.1	
		70	5.8	9.2	74	8	6.5	0.1	
		71	5.8	9.2	74	8	6.5	0.2	
		72	5.8	9.2	73	8	6.5	0.2	
		73	5.7	9.2	73	8	6.5	0.2	
		74	5.7	9.2	73	8	6.5	0.2	
		75	5.7	9.2	73	8	6.5	0.2	
		76	5.7	9.2	73	8	6.5	0.2	
		77	5.7	9.2	73	8	6.5	0.2	
		78	5.7	9.2	73	8	6.5	0.2	
		79	5.7	9.2	73	8	6.5	0.2	
		80	5.7	9.2	73	8	6.4	0.2	
		81	5.7	9.2	73	8	6.4	0.2	
		82	5.7	9.2	73	8	6.5	0.2	
		83	5.7	9.2	73	8	6.4	0.2	
		84	5.7	9.1	73	8	6.4	0.2	
		85	5.7	9.1	73	8	6.5	0.2	
		86	5.7	9.2	73	8	6.5	0.2	
		87	5.7	9.2	73	8	6.5	0.1	
		88	5.7	9.1	73	8	6.5	0.2	
		89	5.7	9.1	73	8	6.4	0.2	
		90	5.7	9.1	73	8	6.4	0.1	
		91	5.7	9.1	73	8	6.4	0.2	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		92	5.7	9.1	73	8	6.4	0.2	
		93	5.7	9.1	73	8	6.4	0.2	
		94	5.7	9.1	73	8	6.5	0.2	
		95	5.7	9.1	73	8	6.4	0.2	
		96	5.7	9.1	73	8	6.4	0.2	
		97	5.7	9.1	73	8	6.4	0.2	
		98	5.7	9.1	73	8	6.4	0.2	
		99	5.7	9.1	73	8	6.5	0.2	
				Ice House F	Reservoir				
		0.1	12.8	9.0	85	8	1	0.2	
		1	12.8	9.0	85	8	1	0.3	
		2	12.6	9.0	85	8	1	0.3	
		3	12.5	9.0	85	8	 1	0.3	
		4	12.5	9.0	85	8	 1	0.3	
		5	12.0	9.2	85	8	1	0.3	
		6	11.4	9.3	85	7	1	0.3	
R-IS-9-IHR	5/22	7	10.5	9.4	85	7	1	0.3	6.3
		8	9.9	9.5	84	7	1	0.3	
		9	9.8	9.5	84	7	1	0.3	
		10	8.7	9.7	83	7	1	0.3	
		11	8.0	9.7	82	7	1	0.3	
		12	7.7	9.7	81	6	1	0.3	
		13	7.5	9.6	80	7	1	0.3	
		14	7.4	9.6	80	7	1	0.4	
		0.1	12.7	9.1	85	8	1	0.5	
		1	12.7	9.1	86	8	1	0.2	
D IC 10 ILID	5/22	2	12.7	9.1	85	8	1	0.2	7.4
R-IS-10-IHR	5/22	3	12.7	9.1	85	8	1	0.3	7.1
		4	12.5	9.1	85	8	1	0.3	
		5	12.1	9.2	85	8	1	0.2	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		6	11.0	9.4	85	7	<u></u> 1	0.3	
		7	9.9	9.6	85	7	 1	0.3	
		8	9.4	9.7	85	7	1	0.3 ¹	
		0.1	12.6	9.1	86	8	1	0.3	
		1	12.6	9.1	85	8	1	0.2	
		2	12.2	9.1	85	8	1	0.2	
		3	12.2	9.1	85	8	1	0.3	
		4	12.1	9.1	85	8	1	0.2	
		5	12.1	9.1	84	8	1	0.3	
		6	11.9	9.1	85	8	1	0.2	
		7	10.3	10.0	89	7	1	0.3	
		8	9.5	10.1	88	7	1	0.3	
		9	8.4	10.2	87	7	1	0.3	
		10	7.8	10.2	85	7	1	0.3	
		11	7.2	9.8	81	7	1	0.4	
		12	7.0	9.8	81	7	1	0.4	
R-IS-11-IHR	5/22	13	7.0	9.8	81	7	1	0.3	7.1
		14	6.8	9.7	80	7	1	0.3	
		15	6.8	9.7	79	7	1	0.3	
		16	6.7	9.6	79	7	 1	0.4	
		17	6.7	9.6	79	7	1	0.4	
		18	6.7	9.6	78	7	1	0.4	
		19	6.6	9.5	78	7	1	0.4	
		20	6.6	9.5	77	7	1	0.3	
		21	6.6	9.5	77	7	1	0.3	
		22	6.6	9.4	77	7	 1	0.4	
		23	6.6	9.4	77	7	1	0.4	
		24	6.5	9.4	76	7	1	0.4	
		25	6.5	9.3	76	7	1	0.4	
		26	6.5	9.3	76	7	1	0.4	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		27	6.5	9.3	76	7	1	0.4	
		28	6.5	9.3	75	7	1	0.4	
		29	6.5	9.2	75	7	1	0.4	
		30	6.5	9.2	75	7	1	0.4	
		31	6.5	9.2	75	7	1	0.4	
		32	6.5	9.2	75	7	1	0.4	
		33	6.4	9.1	74	7	1	0.4	
				Junction R	eservoir		•		
		0.1	17.7	8.6	91	13	6.9	0.3	
		1	16.2	8.7	89	13	6.9	0.3	
		2	15.3	9.1	91	13	6.8	0.3	
		3	13.8	9.5	88	12	6.8	0.3	
		4	12.8	9.6	90	12	6.8	0.3	
		5	12.1	9.6	89	12	6.7	0.4	
		6	11.7	9.5	88	12	6.7	0.4	
R-IS-12-JR	5/29	7	11.3	9.5	87	11	6.7	0.4	6.8
		8	11.0	9.5	86	11	6.6	0.4	
		9	10.7	9.5	85	11	6.6	0.4	
		10	10.4	9.5	85	11	6.5	0.4	
		11	10.1	9.5	84	11	6.4	0.5	
		12	9.7	9.7	85	10	6.4	0.3	
		13	9.4	9.6	84	10	6.4	0.3	
		14	9.2	9.7	84	10	6.3	0.3	
				Camino R	eservoir		•		
		0.1	15.7	9.4	94	14	6.9	0.4	
		1	13.9	9.6	94	13	6.8	0.5	
R-IS-13-CR	E/20	2	13.4	9.8	93	12	6.8	0.5	F 2
K-13-13-CK	5/29	3	12.6	9.9	93	12	6.8	0.6	5.3
		4	11.3	10.2	93	11	6.7	0.5	
		5	10.9	10.2	93	11	6.7	0.5	

Oita ID	2020 Sample	Sample Depth	Water Temperature	Dissolved Oxygen	Dissolved Oxygen	Conductivity	pH	Turbidity	Secchi disk				
Site ID	Date	(m)	(°C)	(mg/L) Slab Creek	(% sat)	(uS/cm)	(s.u.)	(NTU)	(m)				
		0.1	17.5	9.2	99	28	7.1	0.6					
		1	16.0	9.4	96	22	7.1	0.0					
		2	15.4	9.5	95	21	7.0	0.7					
		3	15.3	9.5	95	21	7.0	0.8					
		4	15.3	9.5	95	21	7.0	0.9					
R-IS-14-SC	5/28	5	15.2	9.6	95	21	7.0	0.8	4.0				
		6	15.2	9.6	95	21	7.0	0.7					
		7	15.1	9.6	95	21	7.0	0.8					
		8	14.9	9.6	95	21	7.0	0.9					
		9	14.9	9.6	95	21	7.0	1.1					
		0.1	19.7	9.4	103	27	7.2	0.3					
		1	18.6	9.5	102	26	7.2	0.3					
		2	17.6	9.6	101	25	7.2	0.4					
		3	17.2	9.5	99	25	7.2	0.4					
		4	17.1	9.5	99	25	7.2	0.6					
		5	15.9	9.5	96	23	7.1	0.9					
		6	15.6	9.5	95	22	7.0	0.9					
		7	15.4	9.5	95	22	7.0	0.9					
		8	15.3	9.5	94	22	7.0	1.0					
R-IS-15-SC	5/28	9	15.1	9.5	94	22	6.9	1.0	4.0				
		10	15.1	9.5	94	22	6.9	1.3					
						11	15.0	9.5	94	22	6.9	1.1	
		12	15.0	9.5	94	21	6.9	1.2					
		13	14.9	9.5	94	21	6.9	1.3					
		14	14.8	9.5	94	20	6.8	1.4					
		15	14.8	9.5	94	20	6.8	1.5					
		16	14.8	9.5	94	21	6.8	1.4					
		17	14.7	9.4	93	21	6.8	1.5					
		18	14.7	9.4	93	22	6.8	1.4					

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		19	14.7	9.4	93	21	6.8	1.6	
		20	14.7	9.4	93	22	6.8	1.5	
		21	14.6	9.4	93	22	6.8	1.6	
		22	14.5	9.4	92	22	6.8	1.6	
		23	14.5	9.4	92	22	6.8	1.6	
		24	14.5	9.4	92	22	6.8	1.6	
		25	14.4	9.4	92	22	6.8	1.8	
		26	14.3	9.4	92	22	6.8	1.5	
		27	14.3	9.4	92	22	6.8	1.6	
		28	14.3	9.4	92	23	6.8	1.4	
		29	14.2	9.4	91	23	6.8	1.3	
		30	14.2	9.4	91	23	6.8	1.6	
		31	14.0	9.4	91	23	6.8	1.3	
		32	13.9	9.4	91	24	6.8	1.0	
		33	13.8	9.4	91	24	6.8	1.0	
		34	13.7	9.3	90	24	6.8	0.9	
		35	13.5	9.3	89	24	6.8	0.8	
		36	13.3	9.2	88	25	6.7	0.9	
		37	12.9	8.6	82	26	6.7	0.9^{2}	

°C = degrees Celsius

m = meter(s)

mg/L = milligrams per liter % sat = percent saturation s.u = standard unit of pH

uS/cm = microsiemens per centimeter NTU = Nephelometric Turbidity Unit

¹ pH measurements were rejected due to malfunctioning sensor exhibiting excessive instrument drift.

² Turbidity values are recorded as the values from the previous depth. Higher turbidity values on the data sheet reflect turbidity caused by the probe coming into contact with reservoir bottom sediments.

Table A-2. Vertical Profile Data for UARP Reservoir Sites - October/November (Fall) In situ Surveys.

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
	T 1		1	Loon L		T		1	T
		0.1	11.2	8.5	77	7	6.9	0.2	
		1	11.2	8.5	77	7	6.9	0.2	
		2	11.2	8.5	77	7	6.8	0.1	
		3	11.2	8.5	77	7	6.8	0.1	
		4	11.2	8.5	77	7	6.8	0.1	
		5	11.2	8.5	77	7	6.8	0.0	
		6	11.2	8.4	77	7	6.8	0.1	
		7	11.2	8.4	77	7	6.8	0.2	
		8	11.2	8.4	77	7	6.8	0.1	
		9	11.2	8.4	77	7	6.7	0.2	
R-IS-1-LL	10/29	10	11.1	8.4	76	7	6.8	0.2	6.9
N-10-1-LL	10/29	11	11.1	8.4	76	7	6.7	0.1	0.9
		12	11.2	8.4	76	7	6.7	0.2	
		13	11.1	8.4	76	7	6.7	0.1	
		14	11.1	8.3	76	7	6.7	0.2	
		15	11.1	8.3	76	7	6.7	0.1	
		16	11.1	8.3	76	7	6.7	0.2	
		17	11.1	8.3	76	7	6.7	0.2	
		18	11.1	8.3	76	7	6.7	0.1	
		19	11.1	8.3	76	7	6.6	0.1	
		20	11.1	8.3	76	7	6.5	0.2	
		21	11.1	8.3	75	7	6.4	0.2 ¹	
		0.1	11.6	8.5	78	7	6.7	0.1	
		1	11.6	8.5	78	7	6.6	0.0	1
D 10 0 11	40/00	2	11.5	8.5	78	7	6.6	0.0	0.4
R-IS-2-LL	10/29	3	11.5	8.5	78	7	6.6	0.0	8.1
		4	11.5	8.5	78	7	6.5	0.1	
		5	11.5	8.5	78	7	6.5	0.1	1

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		6	11.5	8.5	78	7	6.5	0.1	
	=	7	11.5	8.5	78	7	6.6	0.0	
		8	11.5	8.5	78	7	6.6	0.1	
		9	11.5	8.5	78	7	6.5	0.0	
		10	11.5	8.5	78	7	6.5	0.0 ¹	
		0.1	11.3	8.6	79	7	6.8	0.0	
		1	11.3	8.6	79	7	6.7	0.1	
	=	2	11.3	8.6	79	7	6.7	0.1	
	=	3	11.3	8.6	79	7	6.7	0.0	
		4	11.2	8.6	78	7	6.7	0.1	
R-IS-3-LL	10/29	5	11.2	8.6	78	7	6.6	0.1	7.5
	=	6	11.2	8.6	78	7	6.6	0.0	
		7	11.2	8.6	78	7	6.6	0.2	
	-	8	11.2	8.6	78	7	6.7	0.2	
		9	11.2	8.6	78	7	6.6	0.1	
	-	10	11.2	8.6	78	7	6.7	0.1 ¹	
				Gerle Creek	Reservoir				
		0.1	11.1	9.0	82	9	6.8	0.2	
	=	1	10.5	9.0	81	9	6.7	0.2	
		2	10.4	9.0	80	9	6.7	0.2	
R-IS-4-GC	10/30	3	10.3	9.0	80	9	6.7	0.2	6.3
R-15-4-GC	10/30	4	10.3	9.0	80	9	6.8	0.2	6.3
		5	10.2	9.0	80	9	6.7	0.2	
	=	6	9.7	8.9	78	9	6.7	0.2	
		7	9.7	8.7	76	12	6.6	0.21	
				Union Valley	Reservoir				
		0.1	15.8	8.0	81	11	7.0	0.2	
R-IS-5-UVR	10/28	1	15.5	8.1	81	11	7.0	0.2	6.2
K-19-9-UVK	10/28	2	15.3	8.1	80	11	7.0	0.3	0.∠
		3	15.1	8.1	80	11	7.0	0.2	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		4	15.0	8.1	80	11	7.0	0.4	
		5	14.9	8.1	80	11	7.0	0.2	
		6	14.4	8.2	80	11	7.0	0.4	
		7	13.9	8.2	80	11	6.9	0.4	
		0.1	16.7	7.9	82	11	7.0	0.2	
		1	16.7	7.9	81	11	7.0	0.2	
		2	16.3	7.9	81	11	7.0	0.2	
		3	16.2	8.0	81	11	7.0	0.3	
		4	16.1	7.9	81	11	7.0	0.4	
		5	16.1	7.9	80	11	7.0	0.3	
		6	16.1	7.9	80	11	7.0	0.3	
		7	16.0	7.9	80	11	7.0	0.3	
		8	16.0	7.9	80	11	7.0	0.2	
		9	16.0	7.9	80	11	7.0	0.3	
		10	16.0	7.9	80	11	7.0	0.3	
R-IS-6-UVR	10/28	11	16.0	7.9	80	11	7.0	0.2	6.1
K-13-0-0VK	10/20	12	16.0	7.9	80	11	7.0	0.2	0.1
		13	16.0	7.9	80	11	7.0	0.3	
		14	16.0	7.9	80	11	7.0	0.2	
		15	16.0	7.9	80	11	7.0	0.2	
		16	16.0	7.9	80	11	7.0	0.3	
		17	16.0	7.8	80	11	7.0	0.3	
		18	16.0	7.8	79	11	7.0	0.2	
		19	16.0	7.8	79	11	7.0	0.2	
		20	16.0	7.8	79	11	7.0	0.2	
		21	16.0	7.8	79	11	7.0	0.3	
		22	15.9	7.8	78	11	7.0	0.2	
		23	15.8	7.7	77	11	6.9	0.3	
R-IS-7-UVR	10/28	0.1	16.3	7.9	81	11	7.0	0.3	7.7
K-13-1-UVK	10/20	1	16.1	7.9	80	11	7.0	0.2	1.1

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		2	16.0	7.9	80	11	7.0	0.3	
		3	16.0	7.9	80	11	7.0	0.2	
		4	16.0	7.9	80	11	7.0	0.2	
		5	16.0	7.9	80	11	7.0	0.2	
		6	15.9	7.9	80	11	7.0	0.3	
		7	15.9	7.9	80	11	7.0	0.3	
		8	15.9	7.9	80	11	7.0	0.3	
		9	15.9	7.9	80	11	7.0	0.3	
		10	15.9	7.9	80	11	7.0	0.4	
		11	15.9	7.9	79	11	7.0	0.3	
		12	15.9	7.8	79	11	7.0	0.4	
		13	15.9	7.8	79	11	7.0	0.1	
		14	15.8	7.8	79	11	7.0	0.4	
		15	15.8	7.8	79	11	7.0	0.3	
		16	15.8	7.8	79	11	7.0	0.3	
		17	15.7	7.8	79	11	7.0	0.2	
		18	15.7	7.8	79	11	7.0	0.3	
		19	15.7	7.8	78	11	7.0	0.2	
		20	15.7	7.8	78	11	7.0	0.3	
		21	15.7	7.8	78	11	7.0	0.2	
		22	15.6	7.8	78	11	7.0	0.3	
		23	15.6	7.8	78	11	7.0	0.3	
		24	15.6	7.8	78	11	7.0	0.3]
		25	15.6	7.8	78	11	7.0	0.3	
		26	15.6	7.8	78	11	7.0	0.3	
	Ţ	27	15.6	7.8	78	11	7.0	0.3	
		28	15.6	7.8	78	11	6.9	0.3	
	[29	15.4	7.8	78	11	6.9	0.3	1
	Ţ	30	14.7	7.5	74	11	6.8	0.4	
	Ţ	31	14.2	7.0	68	11	6.6	0.5	1

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		32	13.7	6.6	63	11	6.5	0.4	
		33	12.3	5.2	48	11	6.2	6.3	
		34	12.0	4.9	45	11	6.2	1.1	
		0.1	16.9	8.0	81	11	7.1	0.2	
		1	16.2	7.9	81	11	7.0	0.2	
		2	16.1	7.9	80	11	7.0	0.2	
		3	16.1	7.9	80	11	7.0	0.2	
		4	16.1	7.9	80	11	7.0	0.3	
		5	16.1	7.9	80	11	7.0	0.3	
		6	16.1	7.9	80	11	7.0	0.3	
		7	16.1	7.9	80	11	7.0	0.3	
		8	16.1	7.9	80	11	7.0	0.2	
		9	16.1	7.9	80	11	7.0	0.2	
		10	16.1	7.9	80	11	6.9	0.2	
		11	16.1	7.9	80	11	6.9	0.3	
		12	16.1	7.8	80	11	6.9	0.3	
R-IS-8-UVR	10/28	13	16.1	7.8	79	11	6.9	0.3	6.5
		14	16.1	7.8	79	11	6.8	0.2	
		15	16.1	7.8	79	11	6.8	0.3	
		16	16.1	7.8	79	11	6.8	0.3	
		17	16.1	7.8	79	11	6.8	0.2	
		18	16.1	7.8	79	11	6.8	0.3	
		19	16.1	7.8	79	11	6.7	0.2	
		20	16.1	7.8	79	11	6.7	0.3	
		21	16.1	7.8	79	11	6.7	0.2	
		22	16.0	7.7	78	11	6.7	0.2	
		23	16.0	7.7	78	11	6.7	0.2	
		24	16.0	7.7	78	11	6.7	0.3	
		25	16.0	7.7	78	11	6.6	0.3	
		26	15.9	7.6	76	11	6.6	0.2	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		27	15.6	7.5	75	11	6.4	0.1	
		28	15.3	7.3	73	11	6.3	0.2	
		29	14.1	7.0	68	10	6.1	0.1	
		30	13.4	6.9	66	10	6.0	0.1	
		31	12.9	6.9	66	10	6.0	0.1	
		32	12.5	7.0	65	10	6.0	0.1	
		33	12.3	7.0	65	10	6.0	0.2	
		34	12.1	7.0	65	10	6.0	0.1	
		35	12.0	7.0	65	10	6.0	0.1	
		36	11.8	7.0	64	10	5.9	0.1	
		37	11.6	6.9	64	10	5.9	0.1	
		38	11.4	7.0	64	9	5.9	0.1	
		39	11.2	7.0	64	9	5.9	0.0	
		40	11.0	7.1	64	9	5.9	0.1	
		41	10.8	7.1	64	9	5.9	0.1	
		42	10.7	7.2	65	9	5.9	0.1	
		43	10.5	7.2	64	9	5.9	0.0	
		44	10.4	7.2	65	9	5.9	0.1	
		45	10.3	7.2	64	9	5.9	0.0	
	-	46	10.2	7.2	64	9	5.9	0.0	
		47	10.1	7.2	64	9	5.9	0.1	
		48	9.9	7.2	64	9	5.9	0.2	
	-	49	9.8	7.2	64	9	5.9	0.1	
		50	9.7	7.2	63	9	5.9	0.1	
		51	9.5	7.1	63	9	5.9	0.1	
		52	9.4	7.1	62	9	5.8	0.1	
		53	9.4	7.0	61	9	5.8	0.1	
		54	9.3	6.9	60	9	5.8	0.1	
		55	9.2	6.8	59	9	5.8	0.2	
		56	9.1	6.7	58	9	5.8	0.1	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		57	8.9	6.6	57	9	5.8	0.1	
		58	8.8	6.5	56	9	5.8	0.1	
		59	8.5	6.4	55	9	5.8	0.1	
		60	8.2	6.3	54	9	5.8	0.1	
		61	7.8	6.3	53	9	5.7	0.2	
		62	7.1	6.5	54	9	5.8	0.1	
		63	6.8	6.8	56	9	5.8	0.2	
		64	6.6	6.9	57	9	5.8	0.2	
		65	6.6	7.0	57	9	5.8	0.2	
		66	6.5	7.0	57	9	5.8	0.1	
				Ice House F	Reservoir				
		0.1	14.0	7.9	77	9	7.0	0.1	
		1	14.0	7.9	76	9	6.9	0.1	
		2	14.0	7.9	76	9	6.9	0.1	
		3	14.0	7.9	76	9	6.5	0.1	
		4	13.9	7.9	76	9	6.4	0.1	
		5	13.9	7.9	76	9	6.3	0.2	
		6	13.9	7.9	76	9	6.3	0.1	
R-IS-9-IHR	10/27	7	13.9	7.8	76	9	6.3	0.1	9.2
K-13-9-1HK	10/21	8	13.9	7.8	76	9	6.3	0.1	9.2
		9	13.9	7.8	76	9	6.3	0.1	
		10	13.9	7.8	76	9	6.3	0.1	
		11	13.9	7.8	76	9	6.3	0.1	
		12	13.9	7.8	76	9	6.3	0.1	
	Ī	13	13.9	7.8	76	9	6.3	0.2	
	Ī	14	13.9	7.8	75	9	6.3	0.1	
		15	12.9	6.5	62	9	6.4	0.2	
		0.1	14.0	8.0	78	9	7.0	0.1	
R-IS-10-IHR	10/27	1	14.0	8.0	78	9	7.0	0.1	9.3
	Ī	2	14.0	8.0	78	9	7.0	0.0	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		3	14.0	8.0	78	9	7.0	0.0	
		4	14.0	8.0	78	9	7.0	0.1	
		5	14.0	8.0	77	9	6.9	0.0	
		6	14.0	8.0	77	9	6.9	0.0	
		7	14.0	8.0	77	9	6.9	0.0	
		8	14.0	8.0	77	9	6.9	0.0	
		9	14.0	8.0	77	9	6.9	0.0	
		10	14.0	7.9	77	9	6.9	0.0	
		11	14.0	7.9	77	9	6.9	0.0	
		12	13.9	7.9	77	9	6.9	0.1	
		0.1	14.1	8.0	78	9	7.0	0.2	
		1	14.1	8.0	78	9	7.0	0.2	
		2	14.0	8.0	78	9	7.0	0.2	
		3	14.0	8.0	78	9	7.0	0.1	
		4	14.0	8.0	78	9	6.9	0.2	
		5	14.0	8.0	78	9	6.9	0.2	
		6	14.0	8.0	78	9	6.9	0.1	
		7	14.0	8.0	77	9	6.9	0.2	
		8	14.0	8.0	77	9	6.9	0.2	
R-IS-11-IHR	40/07	9	14.0	8.0	77	9	6.9	0.2	0.1
K-15-11-1HK	10/27	10	14.0	8.0	77	9	6.9	0.2	9.1
		11	14.0	7.9	77	9	6.9	0.1	
		12	14.0	7.9	77	9	6.9	0.2	
		13	14.0	7.9	77	9	6.9	0.1	
		14	14.0	7.9	77	9	6.9	0.2	
		15	13.7	7.7	75	9	6.8	0.2	
		16	11.7	6.0	55	9	6.2	0.2	
		17	10.1	4.7	42	8	6.0	0.3	
		18	9.4	4.7	41	8	5.9	0.3	
		19	8.9	4.7	40	8	5.9	0.2	

	2020	Sample	Water	Dissolved	Dissolved				
	Sample	Depth	Temperature	Oxygen	Oxygen	Conductivity	рН	Turbidity	Secchi disk
Site ID	Date	(m)	(°C)	(mg/L)	(% sat)	(uS/cm)	(s.u.)	(NTU)	(m)
		20	8.7	4.5	39	8	5.9	0.3	
	1		1 1	Junction R	1	1		1	
		0.1	9.3	8.1	70	9	6.3	0.1	
		1	9.0	8.0	70	9	6.3	0.1	
		2	9.0	8.1	70	9	6.3	0.0	
		3	8.9	8.1	70	9	6.3	0.1	
		4	8.9	8.1	70	9	6.3	0.1	
		5	8.9	8.2	70	9	6.3	0.1	
		6	8.9	8.2	70	9	6.3	0.1	
		7	8.9	8.2	70	9	6.3	0.1	
		8	8.9	8.2	71	9	6.3	0.1	
		9	8.8	8.3	71	9	6.3	0.1	
R-IS-12-JR	10/30	10	8.8	8.3	71	9	6.3	0.1	9.8
11-10-12-011	10/30	11	8.8	8.3	71	9	6.3	0.1	9.0
		12	8.7	8.3	72	9	6.3	0.1	
		13	8.7	8.4	72	9	6.3	0.1	
		14	8.7	8.3	72	9	6.3	0.1	
		15	8.7	8.3	72	9	6.3	0.1	
		16	8.7	8.3	72	9	6.3	0.1	
		17	8.6	8.4	72	9	6.2	0.1	
		18	8.5	8.5	72	9	6.2	0.1	
		19	8.4	8.6	73	9	6.2	0.2	
		20	8.2	8.8	74	9	6.2	0.1	
		21	8.1	8.7	73	10	6.1	0.1 ¹	
				Camino Ro	eservoir				
		0.1	8.8	10.7	92	9	6.5	0.1	
		1	8.8	10.7	92	9	6.5	0.1	
R-IS-13-CR	10/30	2	8.8	10.7	92	9	6.4	0.1	6.6
		3	8.8	10.7	92	9	6.4	0.1	
		4	8.8	10.7	92	9	6.4	0.1	

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		5	8.8	10.7	92	9	6.4	0.1	
			8.8	10.7	92	9	6.4	0.1	
			8.7	10.7	91	10	6.4	0.1 ¹	
				Slab Creek	Reservoir				
		0.1	9.4	11.1	97	15	6.7	0.0	
		1	9.4	11.2	98	15	6.6	0.0	
R-IS-14-SC	11/5	2	9.4	11.2	98	15	6.6	0.1	5.0
K-13-14-3C	1 1/5	3	9.4	11.2	98	14	6.6	0.0	5.0
		4	9.4	11.2	98	15	6.6	0.0	
		5	9.4	11.2	98	14	6.6	0.3	
		0.1	10.8	10.0	90	18	6.7	0.4	
		1	10.6	10.0	90	17	6.7	0.5	
		2	10.2	10.1	90	17	6.7	0.5	
		3	10.2	10.1	90	17	6.7	0.3	
		4	10.1	10.1	90	17	6.7	0.4	
		5	10.1	10.1	89	17	6.7	0.5	
		6	10.1	10.1	89	17	6.7	0.5	
		7	10.1	10.1	89	17	6.6	0.5	
		8	10.1	10.1	89	17	6.6	0.4	
D 10 45 00	44/5	9	10.0	10.1	89	17	6.4	0.2	4.0
R-IS-15-SC	11/5	10	10.0	10.1	89	17	6.4	0.4	4.9
		11	10.0	10.1	89	17	6.4	0.5	
		12	9.9	10.1	90	16	6.4	0.3	
		13	9.8	10.2	90	16	6.4	0.4	
		14	9.8	10.1	89	16	6.3	0.6	
		15	9.8	10.1	89	16	6.3	0.4	1
		16	9.8	10.2	90	16	6.3	0.5	1
		17	9.8	10.2	90	16	6.3	0.4	1
		18	9.8	10.2	90	16	6.3	0.3	1
		19	9.8	10.3	90	15	6.3	0.3	1

Site ID	2020 Sample Date	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% sat)	Conductivity (uS/cm)	pH (s.u.)	Turbidity (NTU)	Secchi disk (m)
		20	9.7	10.3	91	15	6.3	0.3	
		21	9.7	10.3	91	15	6.3	0.3	
		22	9.7	10.3	91	15	6.3	0.3	
		23	9.7	10.4	91	15	6.3	0.3	
		24	9.7	10.4	92	15	6.3	0.3	
		25	9.7	10.4	92	15	6.3	0.4	
		26	9.7	10.4	92	15	6.3	0.4	
		27	9.6	10.4	92	15	6.3	0.4	
		28	9.6	10.4	92	15	6.3	0.4	
		29	9.6	10.5	92	15	6.3	0.4	
		30	9.6	10.5	92	14	6.3	0.4	
		31	9.6	10.4	92	14	6.3	0.7	
		32	9.5	10.4	91	14	6.3	1.0	
		33	9.5	10.0	88	15	6.2	1.0 ¹	

°C = degrees Celsius

m = meter(s)

mg/L = milligrams per liter % sat = percent saturation s.u. = standard unit of pH

uS/cm = microsiemens per centimeter NTU = Nephelometric Turbidity Unit

¹ Turbidity values are recorded as the values from the previous depth. Higher turbidity values on the data sheet reflect turbidity caused by the probe coming into contact with reservoir bottom sediments

This Page Intentionally Left Blank

.

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

APPENDIX B In situ Vertical Profiles for UARP Reservoir Sites

This Page Intentionally Left Blank

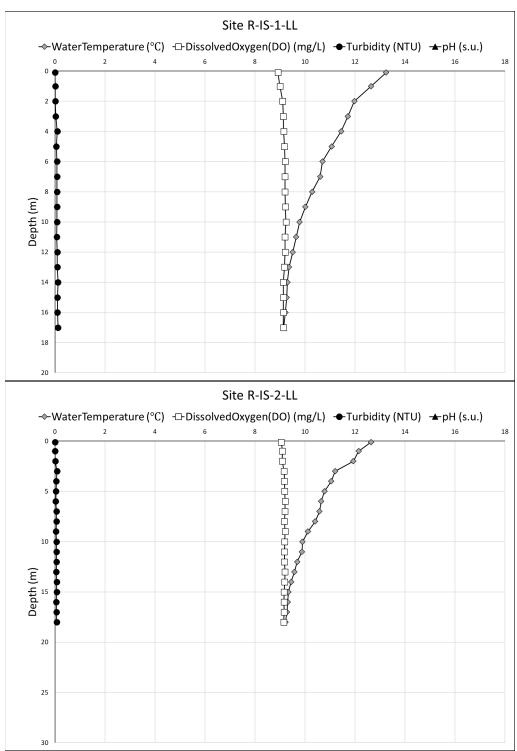


Figure B-1. *In situ* water temperature, dissolved oxygen, and turbidity at Loon Lake sites R-IS-1-LL and R-IS-2-LL during May (Spring) 2020.

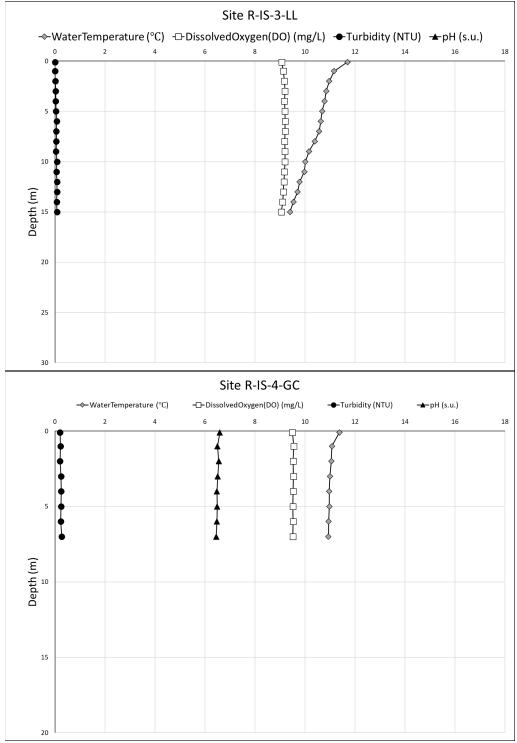


Figure B-2. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Loon Lake and Gerle Creek Reservoir sites R-IS-3-LL and R-IS-4-GC during May (Spring) 2020.

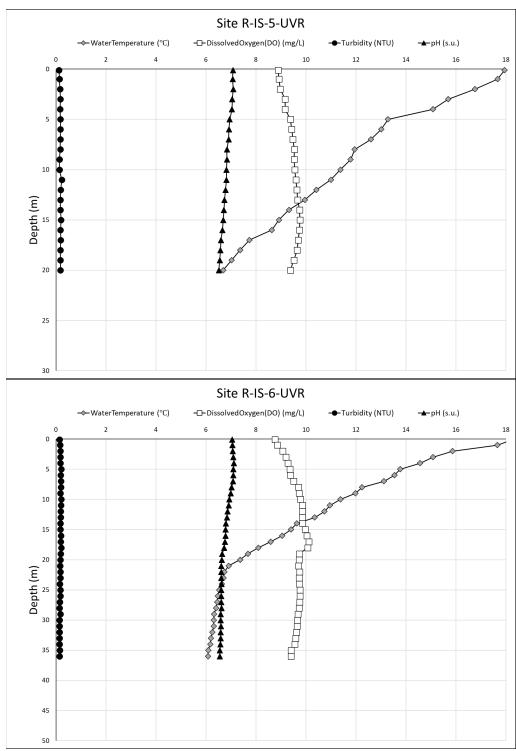


Figure B-3. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Union Valley Reservoir sites R-IS-5-UVR and R-IS-6-UVR during May (Spring) 2020.

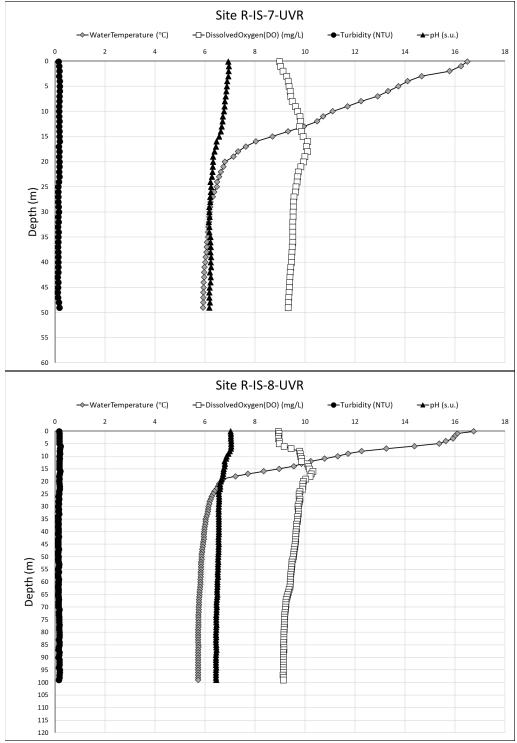


Figure B-4. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Union Valley Reservoir sites R-IS-7-UVR and R-IS-8-UVR during May (Spring) 2020.

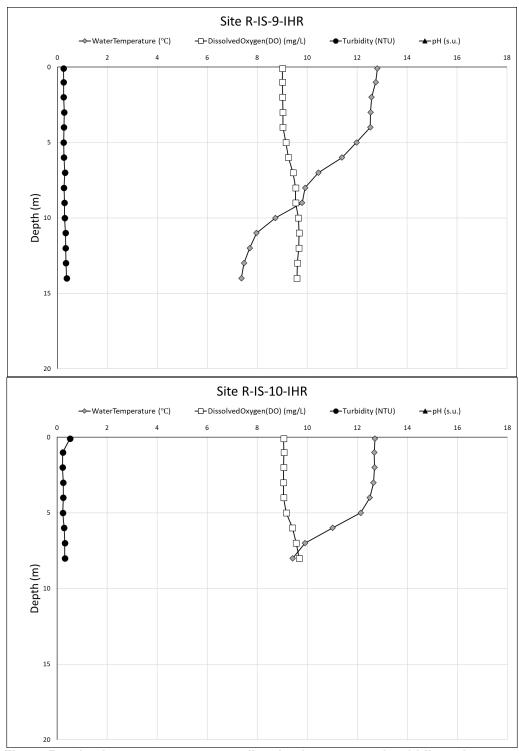


Figure B-5. *In situ* water temperature, dissolved oxygen, and turbidity at Ice House Reservoir sites R-IS-9-IHR and R-IS-10-IHR during May (Spring) 2020.

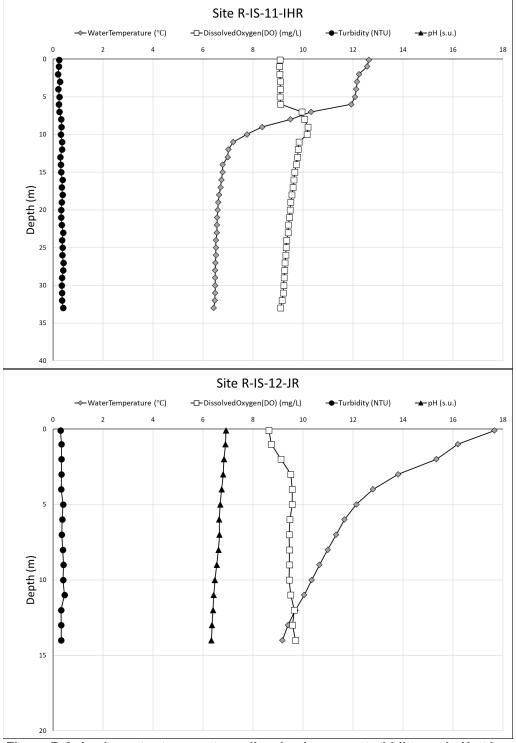


Figure B-6. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Ice House Reservoir and Junction Reservoir sites R-IS-11-IHR and R-IS-12-JR during May (Spring) 2020.

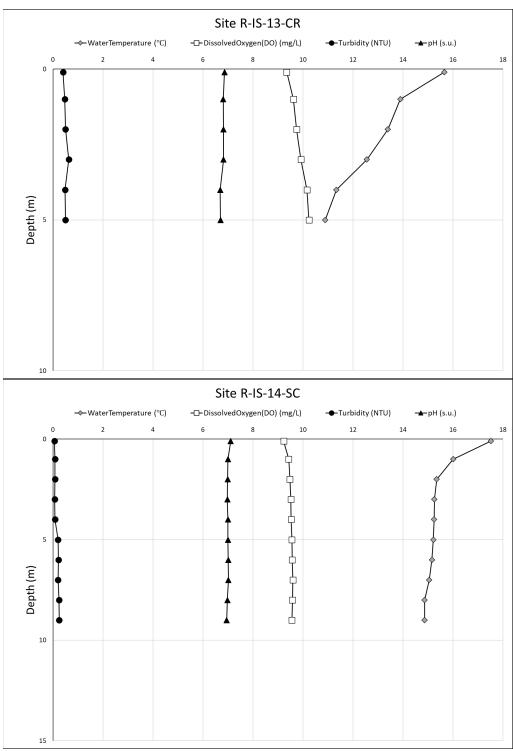


Figure B-7. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Camino Reservoir and Slab Creek Reservoir sites R-IS-13-CR and R-IS-14-SC during May (Spring) 2020.

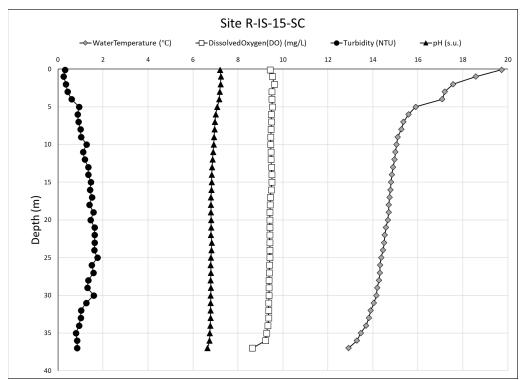


Figure B-8. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Slab Creek Reservoir Site R-IS-15-SC during May (Spring) 2020.

Figure B-9. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Loon Lake Reservoir sites R-IS-1-LL and R-IS-2-LL during October (Fall) 2020.

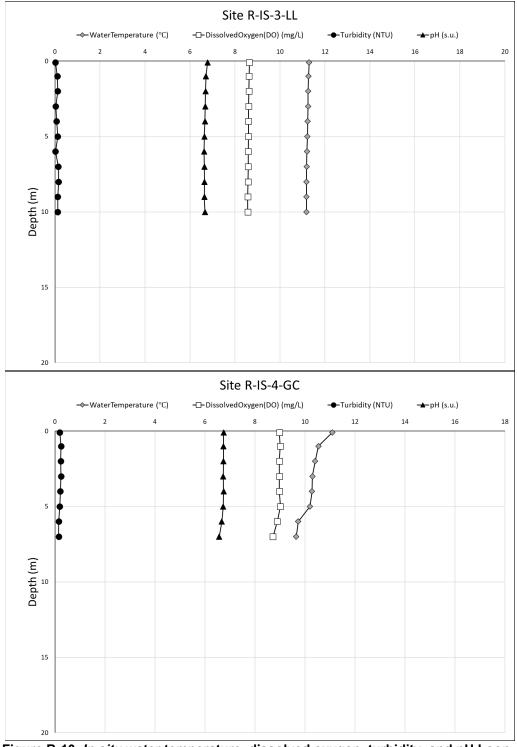


Figure B-10. *In situ* water temperature, dissolved oxygen, turbidity, and pH Loon Lake Reservoir and Gerle Creek Reservoir sites R-IS-3-LL and R-IS-4-GC during October (Fall) 2020.

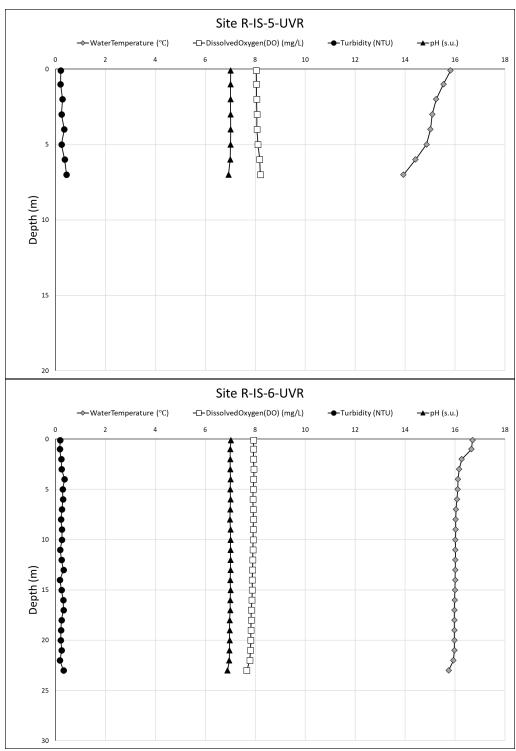


Figure B-11. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Union Valley Reservoir sites R-IS-5-UVR and R-IS-6-UV during October (Fall) 2020.

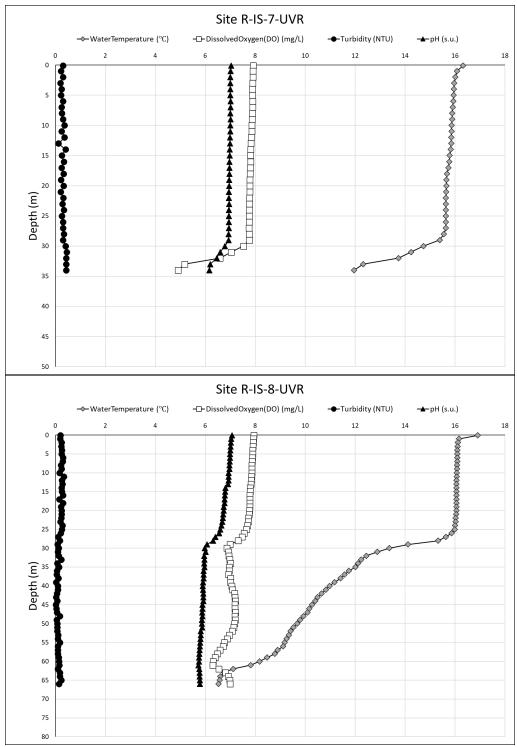


Figure B-12. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Union Valley Reservoir sites R-IS-7-UVR and R-IS-8-UVR during October (Fall) 2020.

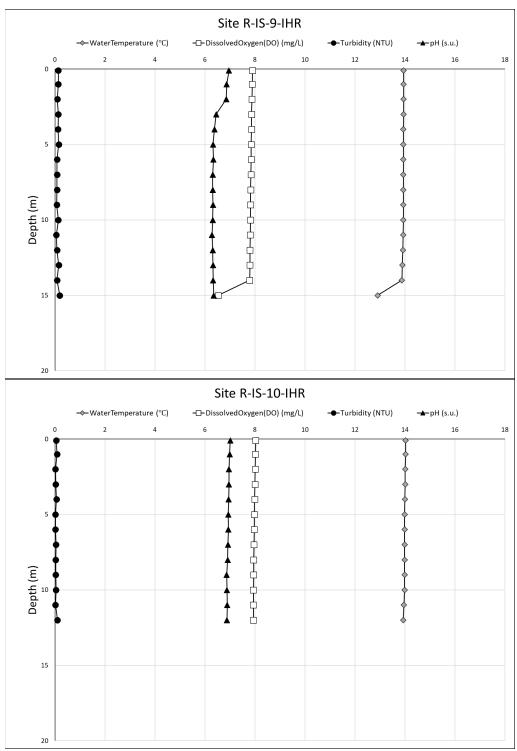


Figure B-13. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Ice House Reservoir sites R-IS-9-IHR and R-IS-10-IHR during October (Fall) 2020.

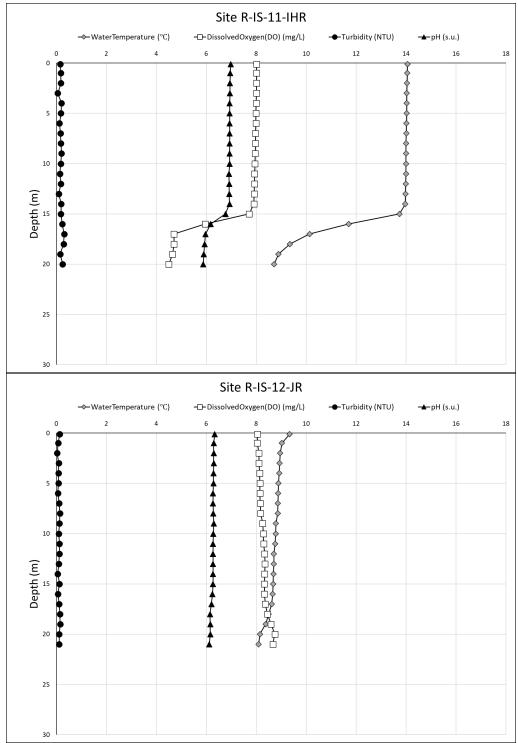


Figure B-14. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Ice House Reservoir and Junction Reservoir sites R-IS-11-IHR and R-IS-12-JR during October (Fall) 2020.

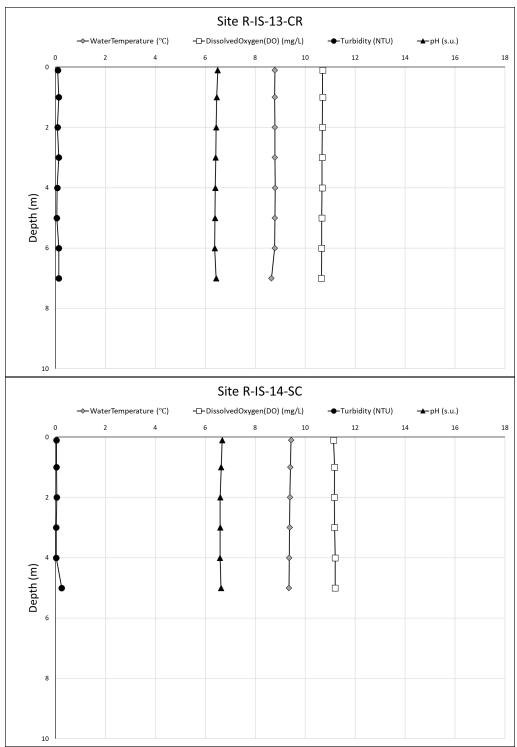


Figure B-15. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Camino Reservoir and Slab Creek Reservoir sites R-IS-13-CR and R-IS-14-SCR during October and November (Fall) 2020.

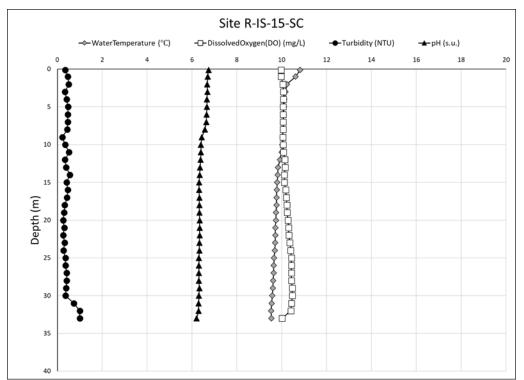


Figure B-16. *In situ* water temperature, dissolved oxygen, turbidity, and pH at Slab Creek Reservoir sites R-IS-15-SCR during November (Fall) 2020.

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

APPENDIX C Bacteria Results for UARP Reservoir and Riverine Sites

This Page Intentionally Left Blank

Table C-1. Bacteria (MPN/100mL) for UARP Sites During the 30-day Period Surrounding Independence Day¹.

	Samp	le 1	Samp	le 2	Samp	le 3	Samp	le 4	Samp	le 5	Fecal	
Site ID	Fecal coliform	E. coli	coliform geometric mean ¹	E. coli geometric mean ¹								
Bac-5-GCR	7.8	5.2	240.0	325.5	49	48.7	4.5	11.0	31.0	11.0	26.4	25.1
Bac-6-GCR	4.5	2.0	33.0	26.9	350	275.5	<1.8	1.0	24.0	6.3	16.2	9.9
Bac-7-UVR	<1.8	1.0	4.0	3.1	4.5	8.6	46.0	866.4	7.8	12.0	5.7	12.3
Bac-8-UVR	<1.8	1.0	23.0	17.1	2.0	1.0	4.5	1.0	<1.8	1.0	2.8	1.8
Bac-9-UVR	<1.8	2.0	4.5	3.0	2.0	16.0	13.0	30.9	6.8	4.1	3.7	6.6
Bac-10-UVR	4.5	<1	7.8	17.3	4.0	<1	<1.8	<1	<1.8	<1	2.6	1.0
Bac-11-JR	11.0	1.0	540.0	39.9	4.5	3.0	170.0	137.6	540.0	387.3	75.5	23.0
Bac-12-IHR	<1.8	<1	<1.8	1.0	2.0	<1	<1.8	1.0	2.0	<1	1.2	0.7
Bac-13-IHR	<1.8	<1	<1.8	<1	<1.8	1.0	<1.8	<1	<1.8	<1	0.9	0.6
Bac-14-BCR	<1.8	<1	7.8	2.0	2.0	<1	<1.8	<1	7.8	1.0	2.5	8.0
Bac-15-SCR	4.5	2.0	1.8	4.1	31	27.9	<1.8	<1	2.0	2.0	3.4	3.0
MDL	1.8	1.0	1.8	1.0	1.8	1.0	1.8	1.0	1.8	1.0	-	-
MRL	1.8	1.0	1.8	1.0	1.8	1.0	1.8	1.0	1.8	1.0	-	_

¹ Individual results < MDL were treated as 0.5 x MDL for the geometric mean calculations.

MDL = method detection limit

MRL = method reporting limit

Table C-2. Bacteria (MPN/100mL) for UARP Sites During the 30-day Period Surrounding Labor Day¹.

	Samp	le 1	Sampl	e 2	Samp	le 3	Sampl	e 4	Samp	le 5	Fecal	E. coli
Site ID	Fecal coliform	E. coli	Fecal coliform	E. coli	Fecal coliform	E. coli	Fecal coliform	E. coli	Fecal coliform	E. coli	coliform geometric mean ¹	geometric mean ¹
Bac-1-BI	<1.8	<1	2.0	1.0	2	2	2	2	2	2	1.3	0.7
Bac-2-BI	<1.8	<1	2.0	1.0	2	 ²	 ²	 ²	2	 ²	1.3	0.7
Bac-3-LL	2.0	2.0	2.0	1.0	 ²	2.0	1.4					
Bac-4-LL	240.0	47.1	2.0	<1	2	 ²	21.9	4.9				
MDL	1.8	1.0	1.8	1.0	1.8	1.0	1.8	1.0	1.8	1.0	-	-
MRL	1.8	1.0	1.8	1.0	1.8	1.0	1.8	1.0	1.8	1.0	-	-

¹ Individual results <MDL were treated as 0.5 x MDL for the geometric mean calculations.

MDL = method detection limit

MRL = method reporting limit

² Sample not collected due to unhealthy air quality and reduced recreational usage resulting from the August–September California wildfires.

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

APPENDIX D In situ Field Data Sheets

This Page Intentionally Left Blank

Site Location: \(\frac{1}{5} - \frac{18}{5} - \frac{5}{6} \) Date: \(\frac{12}{12} \frac{1207}{20} \) Time: \(\frac{10.17}{10.17} \) Weather: \(\frac{10.17}{10.17} \) Weather: \(\frac{10.17}{10.17} \) Notes: \(\frac{10.17}{10.17} \)	Site Date Phot Note	os: <u>4</u> 4	22/20	1-SPAR 20 4758			GPS: Time: Weath	08:52 Br. OVERCAST / COCL
Conductivity Conductance PH Turbidity Notes					In situ			
Site Location:				Conductivity		pН	Turbidity	Notes
Site Location: \(\frac{1}{2} \) = \(18 - 3 \) = \(18 - 3 \) = \(18 - 3 \)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	
Date: 1/22/2070 Time: 10.17	4.90	12.46	97.3	22.2	0.036	6.65	0.40	724.0 mm Hg
Temp DO Conductivity Specific Conductance pH Turbidity Notes (°C) (mg/L) (%) (μS/cm) (mS/cm) (s.u.) (NTU)	Site	Location:	Ts-	18 - SEA	2		GPS:	
Conductivity Conductance PH Turbidity Notes (°C) (mg/L) (%) (μS/cm) (mS/cm) (s.u.) (NTU)	Date Phot	$\frac{1/2}{47}$	2/202	٥	R			10:17 er: wereact/lar
	Date Phot	$\frac{1/2}{47}$	2/202	٥				10:17 er: wereact/lac
0.11 12.47 100.5 30.0 0.047 7.15 0.34 741.7 mm	Date Phot Note	: 1/2' ios: 47 s:	2/202 59 3	4700	In situ	pH	Time: Weath	,
	Date Phot Note	is: 1/2' ios: 47	2/207	Conductivity	In situ Specific Conductance		Time: Weath	,
	Phote Phote Note	e: 1/2 los: 47 es: C	2/202 3	Conductivity	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	,

Site Date Phot Note	os: 4+	3/202				GPS: Time: Weath	09:48 er:nvercos+/cool
	_			In situ			
Temp	D	0	Conductivity	Specific Conductance	рН	Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
4.39	12.16	93.7	10.4	0.017	6.68	0.32	691.2 mmHg
		-					

Page 2 of 4

Site	Location:	T c	1 -50			CDC:	
Date:			4-26			GPS:	12.07
Photo:	ne. 177.	3/2 (20)	4783			. I Ime: Weeth	10:23 TO Vercas +/cool
Notes		+47 -	7763			. weath	DVECCOSTCON
				In situ			
Temp	D	0	Conductivity	Specific Conductance	pH	Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
+.48	12.21	94.3	12.6	0.021	6.93	0.30	695.1 mmH
							_
							I
Site I	Location:	I5-	11-5FS	C		GPS:	
Date:		23/20				Time:	11:39
Date:			020 4 47 X5			-	
Photo	: <u>1/</u> os: <u>4</u> -					-	11:39 er:cool/overcast
	: <u>1/</u> os: <u>4</u> -					-	
Photo	: <u>1/</u> os: <u>4</u> -			In situ		-	
Photo Note:	:/ os: s:	84	4785	Specific	nH nH	Weathe	er.cool/overcast
Photo Note:	s:	0	Conductivity	Specific Conductance	pH	Weath	
Photo Note:	:/ os: s:	84	4785	Specific	pH (s.u.)	Weathe	er.cool/overcast
Photo Note:	:/_ os:	0 (%)	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Notes
Photo Note:	s:	0 (%)	Conductivity	Specific Conductance		Weath	er.cool/overcast
Photo Note:	:/_ os:	0 (%)	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Notes
Photo Note:	:/_ os:	0 (%)	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Notes
Temp (°C)		0 (%) 88.8	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Notes
Temp (°C)		0 (%) 88.8	Conductivity (µS/cm) 9.1	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Notes (652.8 mmHz)
Temp (°C) Site I		0 (%) 88.8	Conductivity (µS/cm) 9.1	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 0.3\ GPS: Time:	Notes (652.8 mm Hs)
Temp (°C) Site I Date Photo		0 (%) 88.8	Conductivity (µS/cm) 9.1	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 0.3\ GPS: Time:	Notes (652.8 mmHz)
Temp (°C) Site I		0 (%) 88.8	Conductivity (µS/cm) 9.1	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 0.3\ GPS: Time:	Notes (652.8 mm Hs)
Temp (°C) Site I Date Photo		0 (%) 88.8	Conductivity (µS/cm) 9.1	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 0.3\ GPS: Time:	Notes (652.8 mm Hs)
Temp (°C) Site I Date Photo		0 (%) 88.8	Conductivity (µS/cm) 9.1	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 0.3\ GPS: Time:	Notes (652.8 mm Hs)
Temp (°C) Site Date Photo Note:		0 (%) 88.8 TS-	Conductivity (µS/cm) 9. \	Specific Conductance (mS/cm) O O O O In situ Specific	(s.u.)	Turbidity (NTU) GPS: Time: Weath	Notes (652.8 mm Hs)
Temp (°C) Site I Date Photo Note		0 (%) 88.8 TS4	Conductivity (µS/cm) 9.1	Specific Conductance (mS/cm) In situ Specific Conductance	(s.u.)	Turbidity (NTU) GPS: Time: Weath	Notes (652.8 mm Hs)

SMUD In situ Monitoring in the Upper

Page $\overline{\underline{}}$ of $\underline{\underline{}}$

strument	(s) used:	Y	51 EXU			_ Crew:	EES AMC
Site Date Phot Note	os: 47	1/2	17- BC 3/2020 9-790				14.07 91: COUL/DVEVCOS -
				In situ			
Temp	D	0	Conductivity	Specific Conductance	pН	Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
0.01	11.50	92.4	16.7	0.026	6.96	1.15	694.1 mmHg
Site Date		Is-1 3/202	5-5FAR			GPS: Time:	14:46
	: 1/2 os: 47		.0			Time:	14:46 Br. (pol/clovely
Date Phot	: 1/2 os: 47	3/202	.0 7-93	In situ		Time:	
Date Phot Note	: \/2 ios: 47 s:	3/202 91-4	.0		pH	Time:	
Date Phot Note	: \/2 ios: 47 s:	3/202 91-4	.0 7-93	In situ	pH (s.u.)	Time: Weath	F. cool/clovely
Date Phot Note	: \\/2 os: 47 s:	3/202 91-4	Conductivity	In situ Specific Conductance	<u> </u>	Time: Weath	Notes
Date Phot Note Temp (°C)	1/2 1/2	3/202 91 ~ 4 0 (%) 94.4	Conductivity (µS/cm) 39.5	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) GPS: Time:	Notes
Temp (°C) Site Date Phot	1/2 1/2	3/202 91 - 4 (%) 97.4 IS-1 3/202	Conductivity (µS/cm) 39.5	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) GPS: Time:	Notes This 2 mm H
Temp (°C) Site Phot Note	1/2 1/2	3/202 91 - 4 (%) 97.4 IS-1 3/202 194	Conductivity (µS/cm) 39.5 Conductivity	In situ Specific Conductance (mS/cm) 0.04	(s.u.)	Turbidity (NTU) GPS: Time: Weath	Notes This 2 mm H
Temp (°C) Site Date Phot Note	1/2 1/2	3/202 91-4 0 (%) 97.4 IS-1 3/202	Conductivity (µS/cm) 39.5	In situ Specific Conductance (mS/cm) 0.04	(s.u.) 7.28	Time: Weather Turbidity (NTU) O.46 GPS: Time: Weather	Notes This 2 mm Ho

Site Location: 15 - 10 - 563C

SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project

Page 4 of (1)

Crew: GES AML Instrument(s) used: Site Location: 15-6-60 GPS: Date: 1/24/2020 Time: 6943 -4796 Photos: 4795 Weather: OVECASH, COOL Notes: In situ Specific Temp DO Conductivity pH Turbidity Conductance Notes (mg/L) (µS/cm) (°C) (%) (mS/cm) (NTU) (s.u.) 85.3 2,05 0,013 6.26 7.1 0.19 634.1 mm Hg

Site Location: 15-9-666 GPS: 1/24/2020 Date: Time: __1045 Weather: overcast, cool Photos: 4797-4799 Notes: In situ Specific DO Temp Conductivity pΗ Turbidity Conductance Notes (°C) (mg/L) (%) (µS/cm) (mS/cm) (NTU) (s.u.) 633.3 mm Hay 2.33 85.6 7.2 6.52 0.013 11.73 0.17

Photo Note:	os: 48	4/2020 00 - 480	1			Time: Weath	BIT OURCOUST COUL
				In situ			
Temp	D	0	Conductivity	Specific Conductance	pH	Turbidity	Notes
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	
3,98	11.26	85.9	6,4	0.011	6.55	0.44	631.3

GPS:

Page _ 1 of _ 6

Site Date Phot Note	08: <u>17.0</u>	15-41 -19-20 -0076,	2.0			GPS: Time: Weath	1000 BT: OVER (AG), cool Snow fluxies
				In situ			
Temp	(mg/L)	O (%)	Conductivity (µS/cm)	Specific Conductance (mS/cm)	pH (s.u.)	Turbidity (NTU)	Notes
8.30	9.61	81.7	5.7	0.008	6.48	0.88	603,0 mm 139

Date Phot Note	os: 120	19-2020					1105 er: articont, cool, drizzle
				. In situ			
Temp	D	0	Conductivity	Specific Conductance	рН	Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
5.25	10.79	85.0	6.8	0.011	6.37	0.83	625.1 mm Hy

Date: Photo Note:	os: 120	5-19-207				Time: Weath	1135 BT: overcast, cool, driz=1e
				In situ Specific			
Temp	D	0	Conductivity	Conductance	pH	Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
7.87	10.12	8.5.1	6.5	0.010	6.78	0.30	629.7 mm Hg
							/

Page 2_ of 6_

Cito	Location		0 -0-00			ODC:	
Date	LOCATION.	15-00	9-GCC			GPS:	1200
Phot	ins: Or	78	/			. Weath	or avarage con
Note		10					er: avarcoist, cool,
				In alter			
				In situ Specific			1
Temp	0	00	Conductivity	Conductance	pH	Turbidity	Notes
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	
8,24	10,19	2610	6.4	0,009	6,29	0,26	628.5 mmhs
10-1	/////	00.0	0,,	0,007	(D) ~ 1	O Ipon	(DOOL D MILES
			2				
Site I	Location:	T6-	7-SFRR			GPS:	
			P ATT TOTAL				
Date	· 5.	-19-20				Time:	1250
Date:	5.	-19-20					1250
Photo	: <u>5</u> . os: <u>00</u> -	-19-20 79-00					1250 er: 0 x0+cast, coo)
	: <u>5</u> . os: <u>00</u> -	-19-20					
Photo	: <u>5</u> . os: <u>00</u> -	-19-20		In situ			
Photo Notes	s:	-19 -20 79 -009	80	In situ Specific	nu nu	Weath	
Photo Notes Temp	s:	-19 -20 79 -009	Conductivity	Specific Conductance	рН	Weathe	
Photo Notes	s:	-19 -20 79 -009	80	Specific	pH (s.u.)	Weath	Br. 0 x04 sast, coo)
Photo Notes Temp	s:	-19 -20 79 -009	Conductivity (µS/cm)	Specific Conductance		Weathe	Notes
Photo Notes Temp	: 5- os: 00- s: D	-19 -20 79 -009	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Br. 0 x04 sast, coo)
Photo Notes Temp (°C)	: 5- os: 00- s: D	-19 -20 79 -009	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Notes
Photo Notes Temp	: 5- os: 00- s: D	-19 -20 79 -009	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Notes
Photo Notes Temp (°C)	c: 5: os: 00- s: D (mg/L)	-19 -20 79 - 00 90 (%) 86,4	Conductivity (µS/cm) S, /	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Notes
Temp (°C)	: 5: os: 00- s: D (mg/L)	19-20 79-00 79-00 90 (%) 86,4	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 0.23	Notes 633,9
Temp (°C) 7.51 Site L	(mg/L) 10,36	19-20 79-00 79-00 86,4 13-	Conductivity (µS/cm) S,	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) O. JS GPS: Time:	Notes 633,9
Temp (°C)	5 5 10 10 36 36 36 36 36 36 36 3	19-20 79-00 79-00 90 (%) 86,4	Conductivity (µS/cm) S,	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) O. JS GPS: Time:	Notes 633,9
Temp (°C) 7.51 Site L Date:	5 5 10 10 36 36 36 36 36 36 36 3	19-20 79-00 79-00 86,4 13-	Conductivity (µS/cm) S,	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) O. JS GPS: Time:	Notes 633,9
Temp (°C) 7.51 Site L Date:	5 5 10 10 36 36 36 36 36 36 36 3	19-20 79-00 79-00 86,4 13-	Conductivity (µS/cm) S,	Specific Conductance (mS/cm) 0,012	(s.u.)	Turbidity (NTU) O. JS GPS: Time:	Notes 633,9
Temp (°C) 7.51 Site L Date:	5 5 00	19-20 79-00 79-00 86,4 13-	Conductivity (µS/cm) S,	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) O. JS GPS: Time:	Notes 633,9
Temp (°C) 7.51 Site L Date: Photo	5 5 00	19-20 19-00 19-00 19-00 86,4 13- 19-20 1-0083	Conductivity (µS/cm) 8,1	Specific Conductance (mS/cm) 0,012 In situ Specific Conductance	(s.u.) 6,71	Turbidity (NTU) GPS: Time: Weather	Notes 633.9 1305 1305 1305 1305
Temp (°C) 7,51 Site L Date: Photo	5 5 10 10 36 10 10 36 10 10 10 10 10 10 10 1	19-20 19-00 10 10 10 10 10 10 10 10 10 10 10 10 1	Conductivity (µS/cm) S, /	Specific Conductance (mS/cm) 0,012	(s.u.) 6,7/	Turbidity (NTU) O. JS GPS: Time: Weather	Notes 633.9 1305 Proversest, coo.)

Page 3 of 6

strument	t(s) used:	Y51-	EXO			Crew	EBS DKR
	Location:	IS	-10-SFS	C		GPS:	
Date Phot Note	tos: _ <i>Qo</i>	-191-20 84				Time: Weath	1415 er: Avotcast, cool
				In situ			
Temp		00	Conductivity	Specific Conductance	рН	Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
6,47	10,44	84,9	6,9	0.011	6,60	0,68	627,3 maha
			11/2/1			GPS:	
Site			11-5FSC				
Date Phote Note:	os: <u>5</u>	IS-1 30-20 85-00	2			Time:	0918 MAR. COOL, COOL, STIZZLE,
Date: Photo	os: <u>5</u>	20-20	2			Time:	og18 ma Briovercost, cool, Orizzle
Date: Photo	: <u>5-</u> os: <u>001</u> s:	20-20	2	In situ Specific Conductance	рН	Time:	
Date Phote Note:	: <u>5-</u> os: <u>001</u> s:	30 - 20 85 - 00	186	In situ Specific	pH (s.u.)	Time: Weather	drizzle,
Date Phote Note:	: <u>5-</u> 0s: <u>60</u> 3	0 (%)	Conductivity	In situ Specific Conductance		Time: Weather	Notes
Date Phote Note:	: 5- os: 003 s: D	0 (%)	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	drizzle,
Date Phote Note:	: 5-00: 000: 500: 500: 500: 500: 500: 50	00 - 20 85 - 00 00 (%) 57.6	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Notes
Date Phote Note: Temp (°C)	5 -	00 - 20 85 - 00 00 (%) 57.6	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) GPS: Time:	Notes
Temp (°C) Site I Date: Photo	5 -	00 - 20 85 - 00 00 (%) 57.6	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) GPS: Time:	Notes 1000
Date Photo Notes Temp (°C) Site I Date: Photo Notes Temp	5 - 005 5 -	20 - 20 85 - 00 0 (%) 57.6	Conductivity (µS/cm) 11,0 12-50 88	In situ Specific Conductance (mS/cm) O,OI7 In situ Specific Conductance	(s.u.)	Turbidity (NTU) GPS: Time: Weather	Notes 1000
Date Photo Notes	5 - 00	30 - 20 85 - 00 85 - 00 57.6 15 20-20 37 - 00	Conductivity (µS/cm) 11,0	In situ Specific Conductance (mS/cm) 0,017	(s.u.)	Turbidity (NTU) GPS: Time: Weather	Notes Notes

Page 4 of 6

		Y51-	~				EES -DKR
Site	Location:	IS-	13-SC 20 0090			GPS:	
Date		7-20-1	20		1/2	Time:	1110
Note	55:	5774-	0030			. Weath	er: pHy clay, cool
				In situ			
Temp	D	00	Conductivity	Specific Conductance	рН	Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
9,42	10.52	91,9	12,4	0,018	7.08	1,45	686,5 mm hg
			- 14 - 60			GPS:	
Site	ocation:	76				GFS.	
	_ocation:	75	-14-5C				1 100
Date:	5-	-20-2	20			Time:	1155
Date:	s: <u>00</u>		20			Time: Weathe	1155 er: ptlycldy, umra
Date:	s: <u>00</u>	-20-2	20			Time: Weathe	1155 er: ptlycldy, upon
Date:	s: <u>00</u>	-20-2	20			Time: Weathe	1155 er: ptlycldy, umra
Date:	s: <u>00</u>	-20-2 91-00	20	In situ Specific Conductance	рН	Time: Weather	Notes
Date: Photo Notes	os: <u>60</u>	-20-2 91-00	20/2	In situ Specific	pH (s.u.)		
Date: Photo Notes Temp (°C)	ps: <u>00</u>	-20-2 91-00	Conductivity	In situ Specific Conductance		Turbidity	Notes
Date: Photo Notes Temp (°C)	5- os: <u>60</u> 0	0 (%)	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	
Date: Photo Notes Temp (°C)	5- os: <u>60</u> 0	0 (%)	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Notes
Photo: Notes Temp (°C) 0,0%	5-50s: 00 s: 00 (mg/L)	- 20 - 20 91 - 00 0 (%) 92.9	Conductivity (µS/cm) 13,9	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Notes
Temp (°C) Site L	5-50s: 00 (mg/L)	0 (%) 92.9	Conductivity (µS/cm) 13,9	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 2,780	Notes 692.1 marky
Temp (°C) Site L Date:	5-50s: 00 (mg/L)	0 (%) 92.9	Conductivity (µS/cm) 13,9	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 2,780	Notes 692.1 marky
Temp (°C) Site L Date: Photo	(mg/L) 10.46	- 20 - 20 91 - 00 0 (%) 92.9	Conductivity (µS/cm) 13,9	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 2,780	Notes 692.1 marky
Temp (°C) Site L Date:	(mg/L) 10.46	0 (%) 92.9	Conductivity (µS/cm) 13,9	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 2,780	Notes
Temp (°C) Site L Date: Photo	(mg/L) 10.46	0 (%) 92.9	Conductivity (µS/cm) 13,9	In situ Specific Conductance (mS/cm) Ø,019	(s.u.)	Turbidity (NTU) 2,780	Notes 692.1 marky
Temp (°C) Site L Date: Photo Notes	Dos: 000	0 (%) 92.9 13-20-20	Conductivity (µS/cm) 13,9 17-BC	In situ Specific Conductance (mS/cm)	(s.u.) 7,19	Turbidity (NTU) 2,780	Notes 692.1 marky
Temp (°C) Site L Date: Photo Notes	00: 500 (mg/L) 10:46	0 (%) (%) 12.9	Conductivity (µS/cm) 13,9	In situ Specific Conductance (mS/cm) Ø,019	(s.u.) 7,19	GPS: Time: Weathe	Notes 692.1 many

Page <u>5</u> of <u>6</u>

strument(s) used:	461	-EXO			Crew	EES-DKR
Site L	ocation:	I5-	15-SFAR			GPS:	
Date:	45	-20-	20			Time:	1505 er: phy clay, Warm
Photo Notes		96-0	097			Weath	er:pt) y cldy, Warm
				In situ			
Temp	D	DO	Conductivity	Specific Conductance	pH ·	Turbidity	Notes
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	
0,21	10,52	96.3	24,2	0.034	7,37	1,39	714,4 mang
							5
0:1-1		-1-	11 / 700	10			
	ocation:	IS	-16-SF	AR		GPS:	
Date:	5	-20-	-16-SF,	AR		Time:	1520
	_5	-20-	-16-5F, 20	A.R.		Time:	520 or: pty cldy, vere
Date:	s: <u>90</u>	-20-	-16-SF, 20	AR		Time:	520 er: pty clay, KER
Date: Photo	s: <u>90</u>	-20-	-16-5F, 20			Time:	1520 er: ptly cldy, uzra
Date: Photo Notes	s: <u>00</u>	-20 - 98	20	In situ		Time: Weath	520 er: pty clay, warra
Date: Photo	s: <u>00</u>	-20-	-16-SF,		рН	Time:	1520 er: ptry cldy, were
Date: Photo Notes	s: <u>00</u>	-20 - 98	20	In situ	pH (s.u.)	Time: Weath	er. pty clay, uno
Date: Photo Notes	s: <u>00</u>	0	Conductivity	In situ Specific Conductance		Time: Weath	Notes
Date: Photo Notes	s: <u>ØØ</u>	- 20 - 98 0 (%)	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Time: Weath	er: pty clay, were
Date: Photo Notes	s: <u>ØØ</u>	- 20 - 98 0 (%)	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Time: Weath	Notes
Date: Photo Notes Temp (°C) //////	S:	-20 - 98 0 (%)	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Notes
Date: Photo Notes Temp (°C) //////	S:	-20 - 98 0 (%)	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 3.02	Notes 714,8 months
Date: Photo Notes Temp (°C) //////	S:	-20 - 98 0 (%)	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 3.02 GPS: Time:	Notes 714,8 manha
Date: Photo Notes Temp (°C) //////	S: 000 (mg/L)	-20 - 98 0 (%)	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 3.02 GPS: Time:	Notes 714,8 months
Temp (°C) ////// Site L Date: Photo	S: 000 (mg/L)	-20 - 98 0 (%)	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 3.02 GPS: Time:	Notes 714,8 manha
Temp (°C) ////// Site L Date: Photo	S: 000 (mg/L)	0 (%) 97,9 21-20 9-01	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 3.02 GPS: Time:	Notes 714,8 manha
Temp (°C) //O,177 Site L Date: Photo Notes	S: 000	0 (%) 97,9 21-20 9-01	Conductivity (µS/cm) 218	In situ Specific Conductance (mS/cm) 0.030 In situ Specific	(s.u.) 7,32	Turbidity (NTU) 3.02 GPS: Time: Weather	Notes 714,8 manha 1933 Cap, Sunny,

Page 6 of 6

Site Date Phot Note	Location: e: 5 tos: es:	-21-6 0101	GPS: Time: Weath	er: Clear, svany, x			
			٠,	In situ			
Temp	D	0	Conductivity	Specific Conductance	e pH	Turbidity	Notes
(°C)	(mg/L)	(%)	(%) (μS/cm)	(mS/cm)	(s.u.)	(NTU)	
0,82	10,72	96,8	21.1	0.029	7.11	1,98	718,5 mm/mg
Date						GPS:	
Phot						Weath	e <u>r:</u>
Note	s:						
				In situ			
Temp	D	DO 0	Conductivity	Specific Conductance	рН	Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
							I
						GPS:	
	Location:					Time:	
Date							241
	:					Weathe	er:
Date: Photo	:			In situ			er:
Date: Photo	:		Conductivity	In situ Specific Conductance	рН		Notes
Date: Photo Note:	os:		Conductivity		pH (s.u.)	Weathe	

(-30)
Stillwater	Sciences

1	_
Page	of /
, ago _	

Site I Date Phot Note	os: 11	15-1. -20 -8-014				GPS: Time: Weath	1230 Br: conny, clear, het
				In situ			
Temp	D	0	Conductivity	Specific Conductance	pH	Turbidity	Notes/205,4
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	
21.77 Site	Location:	78.3	14.5 L RR	0.015	6.57	0,37	
Site Date	Location: :8-3 os:1-4	15-2-	L RR		6.57	GPS: Time:	1340 er. windy, s-my
Site Date	Location: :8-3 os:1-4	15-2-		trickly.	6.52	GPS: Time:	
Site Date Phot Note	Location: :	15-2- -20 8-149	LRR	trick t	6.52	GPS: Time:	
Site Date	Location: :	15-2-	L RR	trickly.	6.57	GPS: Time:	er. windy, smay
Site Date Phot Note	Location: :	15-2- -20 8-149	LRR	In situ Specific		GPS: Time: Weath	

Site Date Phot Note	os: 150	- 2020	- LRR			GPS: Time: Weath	1435 er: clebr, suny	
				In situ				
Temp	(mg/L)	(%)	Conductivity	Specific Conductance	pH	Turbidity (NTU)	Notes	
22.72	6.73	78.0	(μS/cm)	(mS/cm)	(s.u.)	0.22	607.5	

	(s) used:	461				Crew:	EES AL
Date: Photo Note:	s: <u>B/</u> L	1/20	. 6.0			Time:	0837 er: ()fus, hreezy
				In situ			
Temp	, D	0	Conductivity	Specific Conductance	pH	Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
11.66	8.81	81.1	6.7	0.009	5.60	0.22	608.9 mm Hy
				•			· '
					-		
Site I	_ocation:	T4-1	5-60			GPS:	
Site I	Location:	IS-3	5-60			GPS: Time:	0914
Date:	8/4 os: 15		5-60			Time:	OPLY er: cool, clear
Date:	8/4 os: 15	12020	5-60			Time:	
Date:	8/4 os: 15	12020	5-60	In situ		Time:	
Date:	8/4 ps: 15° s:	12020	Conductivity	In situ Specific Conductance	pH	Time:	er; (30), (120/
Photo Notes	8/4 ps: 15° s:	3-154	ı	Specific	pH (s.u.)	Time: Weath	er; (30), (120/
Photo Notes Temp	9/4 ps: 153 s: D	3~154	Conductivity	Specific Conductance		Time: Weath	
Photo Notes Temp	5: 8/4 ps: 15: s: D (mg/L)	3~151	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Time: Weath	er; (30), (120/
Photo Notes Temp	5: 8/4 ps: 15: s: D (mg/L)	3~151	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Time: Weath	er; (30), (120/
Photo Notes Temp (°C)	8/4 DS: 15' S:	7/2020 3-154 00 (%) 83.2	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Time: Weath	er; (30), (120/
Photo Notes Temp (°C)	8/4 ps: 15: s:	1/2020 3-154 00 (%) 83.2	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) O+10 GPS: Time:	Notes 629.4 mm try
Temp (°C) 3.06	8/4 0s: 15: 15: (mg/L) 8.75 0s: 8/4 0s: 8/4	1/2020 3-154 00 (%) 83.2	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) O+10 GPS: Time:	Notes 629.4 mm try
Temp (°C) 3.06	8/4 0s: 15: 15: (mg/L) 8.75 0s: 8/4 0s: 8/4	1/2020 3-154 00 (%) 83.2	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) O+10 GPS: Time:	Notes 629.4 mm try
Temp (°C) 3.06	8/4 08: 15: 15: (mg/L) 8. 75 155- 5: 155-	1/2020 3-154 00 (%) 83.2	Conductivity (µS/cm) 9, 7	Specific Conductance (mS/cm) O-013	(s.u.) 6.16	Time: Weath	Notes 629. 4 mm ity
Temp (°C) 3.06	8/4 08: 15: 15: (mg/L) 8. 75 155- 5: 155-	1/2020 3-154 00 (%) 83.2	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) O+10 GPS: Time:	Notes 629.4 mm try

6.26

15,44

83.5

0	3	-30)
Stillwat	ет	Sciences

Page 3_ of 7_

Date:	8/4/ 08: 157	12020	7 - 6((GPS: Time: Weath	1015 er: clew, warm
				In situ			0
Temp DO			Conductivity Specific Conductance	pH	Turbidity	Notes	
Temp	D	0	Conductivity		pH	Turbidity	Notes
Temp	(mg/L)	O (%)	Conductivity (μS/cm)		pH (s.u.)	Turbidity (NTU)	Notes
(°C)			-	Conductance			Notes 632.3 mm Hg
	(mg/L)	(%)	(µS/cm)	Conductance (mS/cm)	(s.u.)	(NTU)	

Site L	ocation:		SFRR			GPS:	
Date:	8/4	120				Time:	1101
Photo	xs: _159	- 161				Weath	er. Cleur, hot
Notes	3:						,
				In situ			
Temp		0	Conductivity	Specific Conductance	pH	Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
13.49	8.81	85.4	8.3	0.011	6.59	0.06	637.4 mm Hu
							,

Date: 8/4/20 Photos: 162-163 Notes:				Time: ۱۱ 2 الاصل Weathe <u>r: داحمر المما</u>				
				In situ				
Temp	D	0	Conductivity Specific Conductance pH	Turbidity	Notes	/-20 a v		
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	1	638.3 mm M
14.60	8.78	86.3	8.6	0.011	6,38	0.07		

Ca	3
Stillwater	

Page U of 7

Site	Location:	17 - 17	(E()			GPS:	
Date	. Q/4	1720	7-7-76			Time:	1228
Phot	os:	64-165				Weath	
Note						1997	
				In situ			
Temp	D	0	Conductivity	Specific Conductance	pH	Turbidity	Notes
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	110100
8.20	10.07	85.4	7.2	0.011	5.87	0.52	630.2 mm Hy
Date Phot	: 8/s	5/70	11- SF5C				0900 er: clear, cool
Phot Note	: 8/3 os: 1	517.0		In situ		Time: Weath	er: Cleve, Cool
Date Phot Note	: 8/3 os: 1	517.0	Conductivity	Specific Conductance	рН	Time: Weath	er: Cleve, Cool
Phot Note	: 8/3 os: 1	517.0		Specific	pH (s.u.)	Time: Weath	er: Cleve, Cool
Date Phot Note Temp (°C)	: 8/3 os: 1	517.0	Conductivity	Specific Conductance		Time: Weath	er: clear, cool
Date Phot Note Temp (°C)	: 8/: os: 1 ss: D	0 (%)	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	er: Cleve, Cool
Date Phot Note Temp (°C)	8/1: 08:	(%)	Conductivity (µS/cm) 0.015	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	er: Cleve, Cool
Date Phot Note Temp (°C)	8/5 OS:	(%)	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Notes 648, 4mm/s
Temp (°C) 3.89	8/5 OS:	(%) 86.9	Conductivity (µS/cm) 0.015	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) GPS: Time:	Notes 648, 4mm/
Date Phot Note Temp (°C) 3.89 Site Date Phot Note	8/5 os:	(%) 86.9	Conductivity (µS/cm) 0.015	Specific Conductance (mS/cm)	(s.u.) 7.01	Turbidity (NTU) GPS: Time: Weath	Notes 648, 4mm/s
Temp (°C) 3.89 Site Date Phot	(mg/L) Location:	86.9	Conductivity (µS/cm) 0.015	Specific Conductance (mS/cm)	(s.u.) 7.01	Time: Weath	Notes 648, 4mm/

tillwater trument(Y51 8	EXO			Crew	ES AL
•	,						
Date:	ocation:	20	-56			GPS: Time:	1/31
Photo	s: 16						er: Elew hot
Notes							
				In situ			
Temp	D	0	Conductivity	Specific Conductance	pH	Turbidity	Notes
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	110103
,57	8.90	91.1	14.1	0.017	6.88	0.52	
Site I	ocation:	+/	/			0.000	
Site L Date: Photo Notes	s: /	120					1275 er: Cheur hot
Date: Photo Notes	8 / S	120		In situ		Time:	
Date: Photo Notes	8 / ś	0	Conductivity	Specific Conductance	рН	Time: Weath	
Date: Photo Notes	8 / 5 ::	0 (%)		Specific	(s.u.)	Time: Weath	er: Cheur hot
Date: Photo Notes	8 / 5 ::	0	Conductivity	Specific Conductance		Time: Weath	er: Cheur hot
Date: Photo Notes	8 / 5 :: D (mg/L) [(0,] ()	0 (%)	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Time: Weath	er: Cheur hot
Date: Photo Notes Temp (°C)	8 / 5 s:/ [(mg/L)] [(0,](//	0 (%)	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Time: Weath	Notes
Date: Photo Notes		0 (%)	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Time: Weath	er: Cheur hot
Photo Notes Temp (°C) Site L Date: Photo		0 (%)	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Time: Weath	Notes
Photo Notes Temp (°C) Site L Date: Photo Notes		0 (%)	Conductivity (µS/cm)	Specific Conductance (mS/cm) O. U. ((s.u.)	Time: Weath	Notes 1571 er: Clew hut
Date: Photo Notes Temp (°C) 76 Site L Date: Photo		0 (%)	Conductivity (µS/cm)	Specific Conductance (mS/cm)	(s.u.)	Time: Weath	Notes

		75/20	IS - SFAR			GPS:	1609 ar. cler, he}
				In situ			
Temp	D	00	Conductivity	Specific Conductance	pH	Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
1.70	8.65	98.4	14.3	0.047	7.46	0.43	709,3 mm Hy
Note	los: 17	7			-	Weath	1636 er: clen, h,1
	los: 17	7		In situ	1	Weath	1636 er: clear, hil
	los: 17	00	Conductivity		pH	Weath	Notes
Note	os: 17	00 (%)		In situ Specific Conductance (mS/cm)	1.17	Turbidity (NTU)	Notes
Note Temp	os: 17	00 (%)	Conductivity	In situ Specific Conductance	pH	Weath	er: clear, h.z

(µS/cm)

(mS/cm)

0.028

(NTU)

0.39

(s.u.)

7.49

(°C)

20.70

(mg/L)

101.4

strument(s) used:	451	EXO			Crew:	45 DR
Site I	ocation:	25-1	9-5FAR			GPS:	
Date:	_8-6	0-20	,,,,,				1730
Photo		_				Weath	er: (Leer, ho)
. 10101							
				In situ			
Temp		0	Conductivity	Specific Conductance	pН	Turbidity	Notes 713.2 mm 1/2
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	11.1.0
13,69	9.87	95.1	15,4	0.020	6.46	0.51	
Site I	ocation:					GPS:	
Date:						GPS: Time:	
Date: Photo	os:					Time:	er:
Date:	os:					Time:	
Date: Photo	os:					Time:	
Photo Notes	os:			In situ Specific	all all	Time: Weath	
Date: Photo Note:	D D	0	Conductivity	In situ Specific Conductance	рН	Time: Weath	
Photo Notes	os:			In situ	pH (s.u.)	Time: Weath	er:
Date: Photo Note:	D D	0	Conductivity	In situ Specific Conductance	-	Time: Weath	er:
Date: Photo Note:	D D	0	Conductivity	In situ Specific Conductance	-	Time: Weath	er:
Photo Photo Notes Temp	D (mg/L)	(%)	Conductivity (μS/cm)	In situ Specific Conductance	-	Time: Weath	er:
Photo Photo Notes Temp	(mg/L)	(%)	Conductivity (μS/cm)	In situ Specific Conductance	-	Time: Weath	er:
Photo Notes Temp (°C)	(mg/L)	(%)	Conductivity (μS/cm)	In situ Specific Conductance	-	Time: Weath	Notes
Temp (°C) Site I Date: Photo	(mg/L)	(%)	Conductivity (μS/cm)	In situ Specific Conductance	-	Time: Weath	Notes
Temp (°C) Site I Date: Photo	(mg/L)	(%)	Conductivity (μS/cm)	In situ Specific Conductance (mS/cm)	-	Time: Weath	Notes

SMUD In situ Monitoring in the Upper

Page ___ of ______

strument	(s) used:	$-\epsilon \times$	0			Crew:	AML, EES
Site	Location:	Is-	1 - RR			GPS:	
Date	: _11/	02/202				Time:	13/2
Phot						Weath	er: (lear and sunny
Note	s: Ruh	icon K	eservoir 15	a/most	dry	water v	very murky
				In situ			, ,
Temp		0	Conductivity	Specific Conductance	pH	Turbidity (NTU)	Notes
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)		
8.13	7.56	64.0	49.2	0.073	6.50	11.42	
Site			-2 - LR			GPS:	
							1 4 40 4
Date	: 11/0	202/202	0			Time:	1430
Date Phot		202/202	0				
	os:				noa + 1	Weath	ericlear and Sunny
Phot	os:				x+ poo	Weath	
Phot	os:			in situ	t pon	Weath	ericlear and Sunny
Phot Note Temp	os: <u>No</u>	NINOUN	Conductivity	In situ Specific Conductance	рН	Weath	ericlear and Sunny
Phot Note	s: <u>No</u>	Yunnin) water,	In situ Specific	,	Weath	ericlear and Sunny
Phot Note Temp	os: s: <u>No</u> (mg/L)	NINOUN	Conductivity	In situ Specific Conductance	рН	Weath	ericlear and Sunny
Phot Note Temp (°C)	os: No (mg/L)	(%) 84.4	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	pH (s.u.)	Turbidity (NTU)	ericlear and Sunny
Phot Note Temp (°C) 8.27	os:	(%) 84.4	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	pH (s.u.)	Turbidity (NTU) ().05	Notes
Phot Note Temp (°C) 3.27 Site Date	os: No (mg/L) 9. 95	(%) 84.4	Conductivity (µS/cm) 10 · G	In situ Specific Conductance (mS/cm)	pH (s.u.)	Turbidity (NTU) ().05	Notes
Phot Note Temp (°C) 3.27 Site Date Phot	os: No (mg/L) 9. 95	(%) 84.4	Conductivity (µS/cm) 10.6	In situ Specific Conductance (mS/cm)	pH (s.u.) 7, 43	Turbidity (NTU) (). 0 5	Notes 15/5 Process Sunny
Phot Note Temp (°C) 3.27 Site Date	(mg/L) 9. 95 Location:	(%) 84.4	Conductivity (µS/cm) 10.6	In situ Specific Conductance (mS/cm)	pH (s.u.) 7, 43	Turbidity (NTU) (). 0 5	Notes 15/5 Process Sunny
Phot Note Temp (°C) 8.27 Site Date Phot	os: No (mg/L) 9. 95	(%) 84.4	Conductivity (µS/cm) 10.6	In situ Specific Conductance (mS/cm) 0.016	pH (s.u.) 7, 43	Turbidity (NTU) (). 0 5	Notes 15/5 Process Sunny
Phot Note Temp (°C) Site Date Phot Note	(mg/L) 9, 95 Location: :: 11/ os: 8, year	(%) 84.4 27.7.02.0 1.02.7.7.02.0	Conductivity (µS/cm) 10.6 3 - L R R	In situ Specific Conductance (mS/cm) O. Old In situ Specific Conductance	pH (s.u.) 7, 43	Weath Turbidity (NTU) ().05	Notes 15/5 Process Sunny
Temp (°C) Site Date Phot Note	(mg/L) 9. 95 Location:	TS- 02/7020	Conductivity (µS/cm) 10.6 3-LRR	In situ Specific Conductance (mS/cm) O. 010	pH (s.u.) 7.43	Weath Turbidity (NTU) ().05	Notes 15/5 ericker and Sunny ericker and Sunny
Phot Note Temp (°C) Site Date Phot Note	(mg/L) 9, 95 Location: :: 11/ os: 8, year	(%) 84.4 27.7.02.0 1.02.7.7.02.0	Conductivity (µS/cm) 10.6 3 - L R R	In situ Specific Conductance (mS/cm) O. Old In situ Specific Conductance	pH (s.u.) 7.43	Weath Turbidity (NTU) ().05	Notes 15/5 ericker and Sunny ericker and Sunny

(6	3
Stillwater	Sciences

		7
Page 2	of	(

Site i	ocation:	IS-1	6-SFAR	- Uronak		GPS: Time:	0935
Photo	os:						Clear & cool
Notes	3:						
				In situ			
Temp	D	0	Conductivity Specific Conductance		ρH	Turbidity	Notes
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	110.00
9.09	11.31	98.1	17.0	0.024	6.87	0.05	
1.01	11.51	1041	17.0	0.027	0.67	0.00	
					L		
						-	THE MAN AND ADDRESS OF THE PARTY OF THE PART
Site	ocation:	TS	- /7 - B C			000	
Date:						GPS:	10.15
Date.	11/0	3/7 07	0			i ime:	1018
Dhat		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					1
Photo	os:					Weath	er. clear \$ cool
Photo	os:					Weath	ar. Clear & cool
	os:			In situ		Weath	ar. Clear & COOI
Notes	os:		Conductivity	In situ	- NA		
Notes	DS:	00	Conductivity	Specific Conductance	рН	Turbidity	Notes
Notes	os:	00	Conductivity (µS/cm)	Specific	pH (s.u.)		
Temp	os: s: D (mg/L)	00	-	Specific Conductance (mS/cm)		Turbidity (NTU)	
Temp	os: s: D (mg/L)	(%)	(μS/cm)	Specific Conductance	(s.u.)	Turbidity	
Temp	os: s: D (mg/L)	(%)	(μS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	
Temp (°C)	(mg/L)	92.0	(μS/cm)	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	
Temp (°C)	(mg/L)	(%) 92.0	(μS/cm) 1 9. 7	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 2.25	Notes
Temp (°C)	(mg/L) (ng/L) (-1.84	92.0	(μS/cm) 1 9. 7	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 2.2.5	Notes
Temp (°C) 2.31 Site I	(mg/L) (ng/L) (-84	(%) 92.0	(μS/cm) 1 9. 7	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 2.2.5	Notes
Temp (°C)	(mg/L) (ng/L) (-84	(%) 92.0	(μS/cm) 1 9. 7	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 2.2.5	Notes
Temp (°C) 2.31 Site I Date:	(mg/L) (ng/L) (-84	(%) 92.0	(μS/cm) 1 9. 7	Specific Conductance (mS/cm) O. O2 6	(s.u.)	Turbidity (NTU) 2.2.5	Notes
Temp (°C) 2.31 Site Date: Phote	(mg/L) (ng/L) (-1.84	0 (%) 92.0	(μS/cm) 1 9. 7 / 5 ~ 5 = β	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) 2.2.5	Notes
Temp (°C) 2.31 Site I Date: Phote	(mg/L) (ng/L) (-1.84	0 (%) 92.0 ====================================	(μS/cm) 1 9. 7	Specific Conductance (mS/cm) 0.026	(s.u.) 7.20	Turbidity (NTU) 2.2.5 GPS: Time: Weath	Notes 1100 Br. Clear & Sunny
Temp (°C) 2.31 Site Date: Phote	(mg/L) (ng/L) (-84	0 (%) 92.0 3/7020	(μS/cm) 1 9. 7 / 5 ~ 5 = β	Specific Conductance (mS/cm) 0.026	(s.u.) 7.20	Turbidity (NTU) 2.25 SPS: Time: Weath	Notes 1100 Br. Clear & Sunny

	Sciences			Monitoring Project and C			Page_	3 of <u>7</u>
Instrument	(s) used:	EXO	. ,5 ,	. v	5.4	Crew	AML, FE	3
Date: Photo Note:	os:	IS- 03/20	13 - SC :.	6-1	7	GPS: Time: Weath	1258 er: c (ear	
				In situ				
Temp		00	Conductivity	Specific Conductance) pH	Turbidity	Notes	, er t.
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)		11.15
7.70	11.09	93.0	11.4	0.017	7.37	0.11		
			ĺ í					ļ
Date Photo Notes	os:			In situ		GPS: Time: Weath		t cooly
Temp		00	Conductivity	Specific Conductance	pH	Turbidity	Notes	
(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Notes	
9.12	10.00							
	110.70	94.6	11.0	0.016	7.48	0.20		
	10.70	94.6	11.0	0.016	7.48	0.20		
	10.40	94.6	11.0	0.016	7.48	0.20		
Site Date Photi Note	Location:	1	1-SESC (7.48	GPS: Time:	1450 er: Cloar	<u>t cool</u>
Date Phot	Location:	Is-1	1-SESC (7.48	GPS: Time:		<u>\$ cool</u>
Date Phote Note	Location:	TS-1	1-SESC (7.48	GPS: Time:	1450 er. Cloar	<u>† cool</u>
Date Phot Note	Location:	IS-1	1-5FSC (In situ Specific		GPS: Time: Weath	er: Cloar.	\$ 0001

Stillwater							
strument	(s) used:	$-\in \times$				Crew:	EES, AML
Site	Location:	I3-	12 -3C			GPS:	
Date	_ 11/		020			Time:	0940
Phot						Weath	ericlear & cool
Note	s:						
				In situ			
Temp		0	Conductivity	Specific	pH	Turbidity	
(°C)			(μS/cm)	Conductance		-	Notes
	(mg/L)	(%)	(μS/Cm)	(mS/cm)	(s.u.)	(NTU)	
H.73	11.01	85.6	8.5	0.014	6.82	0.09	
						-10	
Site		_					
	Location:	15-	-10-5F	-50		GPS:	
			-10-5F	-SC		GPS:	1115
Date	_11/	15-		-SC		Time:	1115
Date Phot	: os:			-2C		Time:	
Date	: os:			- S C		Time:	1115 er: (lear & sunny
Date Phot	: os:					Time:	1115 er: (lear & sunny
Date Phot Note	os:	04/20	520	In situ Specific	nU nu	Time: Weath	er: (lear & sunny
Date Phot Note	os:	04/20	Conductivity	In situ Specific Conductance	рН	Time: Weath	1115 er: (lear & sunny Notes
Date Phot Note	os:	04/20	520	In situ Specific	pH (s.u.)	Time: Weath	er: (lear & sunny
Date Phot Note	 DS: S: (mg/L)	00 .	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	er: (lear & sunny
Date Phot Note	os:	04/20	Conductivity	In situ Specific Conductance		Time: Weath	er: (lear & sunny
Date Phot Note	 DS: S: (mg/L)	00 .	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	er: (lear & sunny
Date Phot Note	 DS: S: (mg/L)	00 .	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	er: (lear & sunny
Date Phote Note Temp (°C)		0 (%)	Conductivity (µS/cm) 8.5	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	er: (lear & sunny
Date Phote Note Temp (°C)		0 (%) 84.8	Conductivity (µS/cm) 8.5	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	Notes
Date Phote Note Temp (°C) . 5		0 (%)	Conductivity (µS/cm) 8.5	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) GPS: Time:	Notes
Temp (°C) Site Date Phot	(mg/L) 9,92 Location:	0 (%) 84.8	Conductivity (µS/cm) 8.5	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) GPS: Time:	Notes
Date Phot Note Temp (°C) . S I	(mg/L) 9,92 Location:	0 (%) 84.8	Conductivity (µS/cm) 8.5	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) GPS: Time:	Notes
Temp (°C) Site Date Phot	(mg/L) 9,92 Location:	0 (%) 84.8	Conductivity (µS/cm) 8.5	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) GPS: Time:	Notes
Temp (°C) Site Date Phot	(mg/L) 9,92 Location:	0 (%) 84.8	Conductivity (µS/cm) 8.5	In situ Specific Conductance (mS/cm) O 1 2	(s.u.) (6.90	Turbidity (NTU) O. 72 GPS: Time: Weath	Notes
Temp (°C) Site Date Phot	(mg/L) 9,92 Location:	0 (%) 84.8	Conductivity (µS/cm) 8.5	In situ Specific Conductance (mS/cm) O 1 7 In situ Specific Conductance	(s.u.)	Turbidity (NTU) GPS: Time:	Notes
Temp (°C) Site Date Phot	(mg/L) 9,92 Location:	0 (%) 84.8	Conductivity (µS/cm) 8.5	In situ Specific Conductance (mS/cm) O 1 2	(s.u.) (6.90	Turbidity (NTU) O. 72 GPS: Time: Weath	Notes IZ 19 Bricker & Sunny
Date Photo Note Temp (°C) Site Date Photo Note	(mg/L) (0 (%) 84.8	Conductivity (µS/cm) 8.5 Conductivity (µS/cm)	In situ Specific Conductance (mS/cm) O 1 7 In situ Specific Conductance (mS/cm)	pH (s.u.)	Turbidity (NTU) GPS: Time: Weath	Notes IZ 19 Bricker & Sunny
Date Phote Note Temp (°C) . S I Site Date Phote Note	(mg/L) 9,92 Location:	0 (%) 84.8	Conductivity (µS/cm) 8.5 Conductivity	In situ Specific Conductance (mS/cm) O 1 7 In situ Specific Conductance	(s.u.)	Turbidity (NTU) GPS: Time: Weath	Notes IZ 19 Bricker & Sunny

(6)	3
Stillwater	Sciences

	_		7
Page_	2	of	- 1

Site I Date: Photo Notes	os:	IS:	- 5 - C ₇ (GPS: Time: Weath	1254 E. (bar # Sunny
				In situ			
Temp	_	0	Conductivity	Specific Conductance	pН	Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
7.68	10.18	85.3	7.6	0.0 11	7.00	0.08	
	Location:					GP:S:	
Site I Date: Photo Notes	: \\/0 os:	Ts - 4/202		In situ		Time:	_1313 enclose \$ 5400y
Date: Photo	: \\/ 0 os: s:			In situ Specific Conductance	рН	Time:	
Date: Photo Notes	: \\/ 0 os: s:	41202	20		pH (s.u.)	Time: Weath	erclear & sunny
Photo Notes Temp	s: \\/ 0 ps:	4/202	Conductivity (µS/cm)	Specific Conductance		Time: Weath	erclear & sunny
Date: Photo Notes Temp (°C)		0 (%) 82.7	Conductivity (µS/cm) 8. 4	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) GPS: Time:	erclear & sunny
Temp (°C) Site I Date: Photo Notes	\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4/202 (%) 82.7	Conductivity (µS/cm) 8. 4	Specific Conductance (mS/cm) O.OOZ In situ Specific	(s.u.) 6.90	Turbidity (NTU) 0.15 GPS: Time: Weath	Notes 1334 er: Claar 3 Sunny
Date: Photo Note: Temp (°C) Site I Date: Photo Photo Output Date: Photo Output Date: Photo Output	\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 (%) 82.7	Conductivity (µS/cm) 8. 4	Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) GPS: Time:	Notes

(60	23)
Stillwater	Sciences

SMUD In situ Monitoring in the Upper

Stillwater	Sciences	Amer					
strument	(s) used:	EX0				Crew:	AML, EES
			7- 5FR	R		GPS:	
Date Phot Note	os:	04/20)20			Time: Weath	er: (lear B cool
				In situ			
Temp	D	0	Conductivity	Specific Conductance	рН	Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
7.38	10.32	85.9	9.3	0.014	7.05	0.09	
							9
Site	Location:	Is-	- 8 - SE	PP		GPS-	
Site Date			8- SE	RR		GPS:	1423
	: <u>\\\\\</u> os:			RR		Time:	1423 er: clear \$ (001
Date Phot	: <u>\\\\\</u> os:			In situ		Time:	
Date Phot Note	: _\\/ C os: s:	4/202 o	Conductivity		рН	Time:	
Phot Note	: _\\/ C os: s:	4/202	2.0	In situ Specific	pH (s.u.)	Time: Weath	er: cliar \$ cool
Date Phot Note	: _\\/ C	0 (%)	Conductivity	In situ Specific Conductance		Time: Weath	er: cliar \$ cool
Date Phot Note Temp	: \\\/ C	0 (%)	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Time: Weath	er: cliar \$ cool
Date Phot Note Temp (°C)	: _\\/ 0 os: s: [mg/L]	0 (%) 86.8	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU)	er: cliar \$ cool
Temp (°C) Site Date	: _\\/ 0 os: s: [mg/L] Location: : _\\/ 0	0 (%) 86.8	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) GPS: Time:	Notes
Date Phot Note Temp (°C)		0 (%) 86.8	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) GPS: Time:	er: cliar \$ cool
Temp (°C) Site Date Phot		0 (%) 86.8	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	(s.u.)	Turbidity (NTU) GPS: Time:	Notes
Temp (°C) Site Date Phot Note	: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 (%) 86.8	Conductivity (µS/cm) 8.8	In situ Specific Conductance (mS/cm) O. 013	(s.u.) 7.02	Turbidity (NTU) GPS: Time: Weather	Notes
Temp (°C) 1.20 Site Date Phot Note	\(\lambda \lambda \l	0 (%) 86.8 57202	Conductivity (µS/cm) 8.8	In situ Specific Conductance (mS/cm) 0.013	(s.u.) 7.02	Turbidity (NTU) O.09 GPS: Time: Weath	Notes 1347 er: (lear & Sunny

Page 7 of 7

Date: Photo Notes	:		-18 - SF			GPS: Time: Weathe	0857 Blovercast & Miss
				In situ			
Temp		00	Conductivity	Specific Conductance	pH	Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
.41	11.12	97.2	21.4	0,030	7.38	0.55	
Site I	:					_ Time:	er:
Temp		00	In situ Conductivity Specific Conductance PH			Turbidity	Notes
(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	
	os:					GPS: Time: Weath	er:
Site I	:			In situ		Time:	er:
Site I	os: s:	00 (%)	Conductivity (µS/cm)	In situ Specific Conductance (mS/cm)	pH (s.u.)	Time:	er: Notes

Stillwater Sciences	SMUD In situ Monitoring in the Upper American River Project and Chill Bar Project	Page 1 of 1 Date: 5/26/2020 Time: 1/50	
Site Location Lat/Long (NAD83)	Reservoir - Water Quality Vertical Profiles	Instrument used: YS1 EX0 Water depth: 57.6 ←	
_	EES DLB	Secchi (ff): 32,5	
Site Notes:	Photos 124-0127, 0128		

Deg	oth	Temp	D	0	Conductivity	Specific Conductance	pH	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	linotas .
surf	ace	13,25	2,92	85.0	6.1	0,008	6.34	0.00		
3.3	1	12,65	9,00	24,8	6,0	8000	627	0,01		
6.6	2	11,98	9,11	84.5	5,9	800,0	6,20	0,01		
9.8	3	11.72	9, (3	84,2	5.9	0,008	6,10	0.03		
13.1	4	11,45	9,15	239	5.9	800,0	6.10	0,09		
16.4	5	11,07	9.18	23,4	5.8	0,002	6,05	0,05		
19.7	6	10,70	9.21	22.9	5.8	0,008	6.02	80,0		
23.0	7	10,61	9,20	82.6	5.7	800.8	5,93	0,08		
26.2	8	10,29	9,20	82,0	5,6	0.008	5.90	0,08		
29.5	9	10,02	9,22	81.8	5.6	800,0	5.85	0,08		
32.8	10	9.79	9.24	81.5	5.6	0.008	5.89	0,08		
36.1	11	9,65	9,20	80.8	5,6	0,008	5.91	0.07		
39.4	12	9,51	9,21	80,6	515	0.008	5.83	0,09		
42.7	13	9.36	9,18	80,1	5.5	0,008	5,84	0,09		
45.9	14	9,30	9.13	79.6	5,6	0,008	5,83	0,12		
49.2	15	9,27	9,14	79.6	515	0,008	5,80	0,10		
52.5	16	9,22	9.14	79,5	5.5	0.008	5178	0.10		
55.8	17	9,15	9,14	79,4	515	0,008	5,78	0.12		bottom
59.1	18									
62.3	19									
65.6	20									
68.9	21									
72.2	22									
75.5	23									
78.7	24									
82.0	25			1						
85.3	26									
88.6	27									
91.9	28									
95.1	29									
98.4	30									
101.7	31									
105.0	32									
108.3	33.									
111.5	34									

SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project

Page / of / Date: 5/26/2020

Reservoir - Water Quality Vertical Profiles

Water depth: 62.5 KF

Site Location: <u>R-15-2-1L</u>
Lat/Long (NAD83):

Personnel: <u>EE5</u> <u>DLB</u>

Secchi (ft): 31.2

Site Notes: __

Photos 124-0124, 0125

Dep	pth	Temp		10		Specific Conductance	рН	Turbidity	Water	Water ample Notes
(ft)	(m)	(°C)	(mg/L)	- (%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	12,65	9.05	85,1	6,0	500,00	6.45	0.00		
3.3	1	12,15	9,10	84.8	5,9	0.008	6.38	5.00		
6.6	2	11,94	9,09	84,3	5,9	10,008	6,30	0,01		
9.8	3	11,21	9.17	83.6	5.8	0.008	6.22	0.08		
13.1	4	11.05	9,18	89.3	518	10,008	6.15	0.05		
16.4	5	1078	9.19	829	5.7	0.008	6.12	0.04		
19.7	6	10.65	9,21	82.9	5,7	0.008	6.11	0.03		
23.0	7	10.58	9,20	82.7	5.7	0.008	80.9	0.06		
26.2	8	10.41	9,18	82.1	516	0,008	6.08	0.06		
29.5	9	10.12	9,21	81.8	5.6	0.003	6,01	0.04		
32.8	10	9,90	9,19	81.3	516.	0,008	6.05	0.06		
36.1	11	9,88	9,18	81,1	516	0,008	5,99	0,06		
39.4	12	9,69	9,18	80,8	5,5	0.008	5,99	0.06		
42.7	13	9.58	9,20	80,8	5.5	0,008	5,92	0.05		
45.9	14	9,45	9.19	80,4	5.5	0.008	5,88	0.07		
49.2	15	9.34	9,17	79.9	5.5	0,008	5.85	0.07		
52.5	16	9,31	9,16	79.8	5,5	0,008	5,85	0,05		
55.8	17	9,28	9,17	79.9	5.5	0,008	5,84	0,06		
59.1	18	9.22	9,15	79.6	5,5	0.008	5.80	0,07		bottom
62.3	19	***************************************								
65.6	20									
68.9	21								8	
72.2	22									
75.5	23									
78.7	24									
82.0	25									
85.3	26			_						
88.6	27									
91.9	28									
95.1	29									
98.4	30	9								
101.7	31									
105.0	32									
108.3	33									
111.5	34									

	0	8	2	9
Sti	Ilwa	ter	S	iences

5-26-2020

Reservoir - Water Quality Vertical Profiles

R-15-3-LL Site Location: Lat/Long (NAD83):

Instrument used: 151 EXU
Water depth: 50, 1 ft

Personnel:

Secchi (ft): 344

Site Notes:

Deg	oth	Temp	Temp DO		Conductivity Specific Conductance	pH	Turbidity .	Water	Notes	
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(a.u.)	(NTU),	Sample	
surf	ace	11.70	9.07	83.6	5,8	0.008	6.60	01,00	**	
3.3	1	11,17	9.14	83,2	5.7	8000	6,40	0.00	f.	
6.6	2	10.97	9,18	23,2	5,7	0.008	6.33	0,01		
9.8	3	10,85	9.20	83.1	5,7	8,00,0	6,21	0.03	1	
13.1	4	10.79	9,18	82.8	5.7	0:008	6.25	0.03	1	
16.4	5	10.69	9,20	82.8	5,7	0,008	6.20	0:04	1	-
19.7	6	10.63	9.21	82.8	5.7	800.0	6.15	0.07		
23.0	7	10,57	9,21	82.7	5.7	800,0	6.58	0.05		,
26.2	8	B139	9,19	82.2	5.6	800,0	6,03	0.05	1	
29.5	9	10,16	9.20	81.9	5.6	0,008	5.95	0.04		
32.8	10	10.02	9,20	81.6	516	800,0	5,89	0,08	1	
36.1	11	9,98	9,18	81.2	516	840,0	5,88	0,86	1	
39.4	12	9.79	9,16	80.8	5,6	0.008	5.86	0.08	100	
42.7	13	9,71	9.14	80,4	5,6	5.008	5,81	2,08		
45.9	14	9,54	9.11	79.8	5,6	1008	5,78	0,07		
49.2	15	9,40	9.06	79.1	516	0,008	5173	0.08		bottom
52.5	16								100	
55.8	17									
59.1	18								9.	
62.3	19									
65.6	20								10	
68.9	21									
72.2	22				2 6				1.	
75.5	23									
78.7	24									
82.0	25				0					
85.3	26		i .						,	
88.6	27									
91.9	28				-					
95.1	29								- 1	
98.4	30									
101.7	31									
105.0	32									
108.3	33									
111.5	34									

@	SMUD In situ Monitoring in the Upper Ameri Project and Chili Bar Project	
Stillwater Sciences	Reservoir - Water Quality Vertical Prof	
Site Location: _ Lat/Long (NAD83): _	R-15-4-GC	Instrument used: <u>Y3/− E</u> X ○ Water depth: <u>Z6.</u> ↓ →
Personnel:		Secchi (ft): ZC,
Site Notes:	Photo 127-0142	
	630,4 mmha	

Dep	oth	Temp	D	0	Conductivity	Specific Conductance	pН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	11.38	9,50	86,9	6.8	0,009	6,59	0.20		
3.3	1	11.08	9,55	86.7	6,6	0.009	6,50	8,22		
6.6	2	11,06	9,53	86,5	6,6	0,009	6,51	0,20		
9.8	3	11.00	9,54	86,6	6,6	0.009	6,51	0,24		
13.1	4	10,97	9,53	86.3	6,6	0,009	6.48	0,25		
16.4	5	10.98	9.52	86.3	6.6	0.009	6.49	0.24		
19.7	6	10.95	9,53	26.3	6.6	0,009	6.48	0,23		
23.0	7	10.94	9,52	26.2	6.5	0,009	6.45	0.27		Bottom
26.2	8									
29.5	9									
32.8	10									
36.1	11									
39.4	12									
42.7	13									
45.9	14									
49.2	15									
52.5	16									
55.8	17									
59.1	18									
62.3	19									
65.6	20									
68.9	21									
72.2	22									
75.5	23									
78.7	24									
82.0	25									
85.3	26									
88.6	27									
91.9	28									
95.1	29									
98.4	30									
101.7	31									
105.0	32									
108.3	33									
111.5	34									

Stillwater Sciences	SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project	Page _/ of _/_ Date:
	Reservoir - Water Quality Vertical Profiles	
Site Location: Lat/Long (NAD83):	R-15-5-UVR	Instrument used: YSI EXO Water depth: 47.7-4
	EES DLB	Secchi (ft): 24, 2
Site Notes:	Photos 125-0135,136	
	_	

Dep	ith	Temp	D	0	Conductivity	Specific Conductance	pН	Turbidity	Water	
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	Notes
surf	ace	17.95	8,29	93,8	10,6	0.012	7,08	0.12		
3.3	1	17.67	8,92	93.6	10.5	0.012	7.07	0.14		
6.6	2	16,36	8,97	92,4	10,3	0,012	7,09	0.16		
9.8	3	15,69	2,17	92.3	10.0	1.012	7,95	0.18		
13.1	4	15.02	9.17	91.2	9,7	0,012	7.04	0.16		
16.4	5	13.28	9.38	29,6	9.1	0,012	6.95	0,18		
19.7	6	13.01	9,43	89.5	9.1	0,012	6.92	0,18		
23.0	7	12.60	9,48	89,3	8,9	0,0/2	6,91	0.17		
26.2	8	11.95	9,54	88.5	8,6	0.011	6.84	0.17		
29.5	9	11.79	9,53	25'0	8.5	0.011	6,84	0,14		
32.8	10	11.38	9.55	87,3	8,4	0.011	6,82	0,14		
36.1	11	11.00	9,60	87,1	8,3	0.011	6,82	0.23		
39.4	12	10.42	9,64	86.3	8. 2	0,011	6.78	0,19		
42.7	13	9.96	9,67	85,5	8:1	0,011	6,74	0,17		
45.9	14	9,32	9,75	85.0	7.9	0,011	6.72	0.18		
49.2	15	3,92	9,76	84.3	7.8	0.011	6,69	0,20		
52.5	16	2,64	9,74	23,5	7.7	0,011	6.66	0,18		
55.8	17	7,74	9.69	21,2	7.8	0,012	6,60	0.19		
59.1	18	7,37	9,65	80,3	7.8	0,012	6,58	0,17		
62.3	19	7.03	9.52	78.4	7,9	0,012	6,55	0,18		42.11
65.6	20	6,69	9,38	767	8,0	6.012	6,52	38,43		Bottom
68.9	21									
72.2	22									
75.5	23									
78.7	24									
82.0	25									
85.3	26									
88.6	27									
91.9	28									
95.1	29						-			
98.4	30									
101.7	31									
105.0	32									,
108.3	33									
111.5	34									

SMUD In situ Monitoring in the Upper American River Project and Chill Bar Project

Page 1 of 2

Date: 5/27 /2020
Time: /4/0

Reservoir - Water Quality Vertical Profiles

Instrument used: YSI-EXO
Water depth: | ZI F

Site Location: R-/S-6-UVR
Lat/Long (NAD83):

Personnel: EES DLB

Site Notes: _ Photos 125 - 01

640,1 mmho

Dep	oth	Temp	D	0	Conductivity	Specific Conductance	pH	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	18,25	2,76	93.0	10,9	0.012	7.05	0.14		
3.3	1	17.66	8,85	92,1	1016	0.0/2	7,06	0,16		
6.6	2	15.87	9.07	91.6	10.2	0,012	7,07	0,17		
9.8	3	15.08	9,20	91.4	9.9	0.012	7.10	0,17		
13.1	4	14.57	9,28	9/1	9.8	0,012	7,12	0.18		
16.4	5	13.77	9.36	90,4	9,6	0,012	7.10	0,21		
19.7	6	13.54	9.38	90,1	9.5	0.012	7.10	0.19		
23.0	7	13.12	9,51	90.6	9,4	0.012	7.08	0.20		
26.2	8	12,25	9.71	90.6	9,2	0.0/2	7.03	0,20		
29.5	9	11.98	9.73	90,2	9.0	0.012	6.99	0.18		
32.8	10	11.38	9,79	29.6	88	0,012	6.94	0,21		
36.1	11	10,96	9.86	89,3	8.8	0,012	6.91	0,26		
39.4	12	10.74	9.85	88.7	8,7	0,012	6.87	0,19		
42.7	13	10,35	9,85	68.0	8.7	216.0	4.84	0.19		
45.9	14	9.63	9,87	86,6	8,7	0.012	08.2	0,18		
49.2	15	9,40	9,97	87.1	8.5	0.012	6.79	0.18		
52.5	16	9.05	10.04	87.1	8.5	0,012	6178	0.20		
55.8	17	8,59	10,12	86.7	8,4	0.012	6.76	0.19		
59.1	18	8,10	10.07	85,2	8,4	0.012	6,73	0.2/		
62.3	19	7.62	9.74	21.6	2,4	0.013	6,65	0,19		
65.6	20	7,37	9.73	81.0	2.3	0,013	6,63	0.18		
68.9	21	6.91	9,70	79.7	8.3	0.013	6,61	8,16		
72.2	22	6.74	9775	79.8	813	0,013	6.61	0.17		
75.5	23	6,70	9,73	79.6	8.3	0,013	6,61	0.18		
78.7	24	6,63	9.74	79.5	8,3	0,013	6,62	0.15		
82.0	25	6,53	9,76	79.5	8,3	0,013	6.61	0,17		
85.3	26	6,47	9,76	79,4	8.2	0.013	6,61	0.17		
88.6	27	6,45	9,75	79.3	815	0,013	6.61	0.15		
91.9	28	6,41	9,73	79.0	8,2	0,013	8,62	0114		
95.1	29	6.32	9.68	78,4	8,2	0,013	6.59	0.17		
98.4	30	6131	9,66	7812	8.2	0,013	6.59	0.14		
101.7	31	6,31	9,65	78,2	8,2	0,013	6,60	0,14		
105.0	32	6,26	9162	77.8	312	0.013	6,59	0114		
108.3	33	6,20	9,59	77,4	8,2	0,013	6:59	0,14		
111.5	34	6,17	9,56	77.1	8,2	0,013	6,58	0,14		

Page Z of Z

Stillwater Sciences

Reservoir - Water Quality Vertical Profiles

R-15-6-UVR 5/27/2020

Dep	oth	Temp	D	0	Conductivity	Specific Conductance	pH	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	Notes
	-					(CONTINUE)	0)			
114.8	35	6.09	9,40	75,7	812	0.013	6,56	0.15		
118.1	36	6.08	9,41	75.7	8,2	0,013	6.55	0.14		BoHom
121.4	37	_								
124.7	38									
128.0	39									
131.2	40									
134.5	41									
137.8	42									
141.1	43									
144.4	44									
147.6	45									
150.9	46									
154.2	47									
157.5	48									
160.8	49									
164.0	50									
167.3	51									
170.6	52									
173.9	53									
177.2	54									
180.4	55									
183.7	56									
187.0	57									
190.3	58									
193.6	59									
196.8	60									
200.1	61									
203.4	62									
206.7	63									
210.0	64									
213.3	65									
216.5	66									
219.8	67									
223.1	68									
226.4	69									
229.7	70									
232.9	71									
236.2	72									

(((3)) Stillwater Sciences

Site Location: _

SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project

Page_I of Z Date: 5/27/2020

Reservoir - Water Quality Vertical Profiles

Water depth: 451 EX0

Lat/Long (NAD83):

R-15-7-UVR

Secchi (ft): 25,5

Personnel: EES DLB

Site Notes: Photos 125-0129, 13)

Dep	oth	Temp	D	0	Conductivity	Specific Conductance	pН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	16,50	8.98	92,0	10,3	0.012	6.94	0.14		
3.3	1	16,24	9,01	91.7	10.2	0,012	6.96	0.16		
6.6	2	15.79	9,12	92.0	10.1	0,012	695	0,17		
9.8	3	14.67	9.27	91.2	9.7	0.012	6.93	0.16	1	
13.1	4	14.11	9.33	90.8	9,5	0.012	6.89	0,19		
16.4	5	13.74	9.36	90.2	9.3	0,012	6.88	0,19		
19.7	6	13.33	9,41	89.9	9,2	0.012	6,85	0,19		
23.0	7	12,91	9.43	89.4	9.0	0.012	6.83	0,/2		
26.2	8	12,25	9,49	88.5	2,2	0,012	6.80	0.17		
29.5	9	11,71	9,61	88,6	8.7	0,012	6.78	0.16		
32.8	10	11.11	9,70	53' (2.6	0.012	6.76	0,16	,	
36.1	11	10,73	9,80	88,4	2,6	0,012	6.72	0,16		
39.4	12	10,49	9.82	88.0	8.6	0,012	6.71	0,17		
42.7	13	9.96	9,78	86,6	2.2	0,012	6.67	0.16		
45.9	14	9,32	9.85	85,9	8.1	0.012	6.64	0.18		
49.2	15	8,70	9.92	25,2	8,0	0,012	6.57	0.18		
52.5	16	8,04	10:11	85, 4	8,2	0,012	6.46	0,19		
55.8	17	7,62	10.05	84.1	8.0	0.012	6,44	0.15		
59.1	18	7,32	10.09	23.8	801	0,012	6,38	0.18		
62.3	19	7,14	9,99	82.6	8/1	0,012	6,33	0.16	9	
65.6	20	6.80	9,93	81.4	8.(0,012	6,33	0.18		
68.9	21	6,74	9.8.3	80,4	2.1	0,012	6.31	0.17		
72.2	22	6.63	9.73	79,4	8,0	0,012	6.30	0.16		
75.5	23	6.57	9.71	79.1	8.0	0,012	6.28	0,17		
78.7	24	6,49	9,68	78,8	8,0	0,012	6,22	0.15		
82.0	25	6,47	9.64	78,4	5.0	0,012	6.24	0.13		
85.3	26	6.37	9.61	77.9	8,0	0,012	6.23	0.13		
88.6	27	6.31	9.56	77,4	8.1	0.013	6,21	0113		
91.9	28	6.22	9.53	77.0	8.1	0,013	6.21	0:13		
95.1	29	6,21	9.53	76,9	811	0.013	6.17	0.14		
98.4	30	6.19	9.52	76.8	8.1	0.013	6.18	0.15		
101.7	31	6.18	9.52	76.8	81	0,013	6,19	0.13		
105.0	32	6,16	9.51	76.7	8.1	0.013	6.15	0.14		
108.3	33	6:14	9.51	76.7	8.1	0.013	6.18	0.12		
111.5	34	6,13	9.51	76,7	8,1	0.013	6.17	0.14		

Page Z of Z

Stilluster Sciences

Stillwater Sciences Reservoir - Water Quality Vertical Profiles

R-15-7-UVR 5/27/2020

Dep	oth	Temp		DO Conductivity Specific Conductance pH Turbit		Turbidity	Water	Notes		
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	Thomas and the same and the sam
						(CONTINUE	0)			Parallel and the
114.8	35	6.13	9.51	76,6	8,1	0,013	6.22	0.13		
118.1	36	6.08	9,51	76,5	8.1	0,013	6,22	0.13		
121.4	37	6,07	9.49	74.3	8.1	0.013	6,23	0.12		
124.7	38	6.06	9,47	76.2	3.1	0,013	6.22	0.13		
128.0	39	6.03	9.46	76.0	211	0.013	6.25	0,13		
131.2	40	6.01	9,46	76.0	8,1	0.013	6.23	0.13		
134.5	41	5,98	9,43	75.7	8,2	0.013	6,25	0,13		
137.8	42	5,97	9,40	75.4	8,2	0.013	6,20	0.13		
141.1	43	5.97	9,39	75,4	8,2	0,013	6.23	0.11		
144.4	44	5.95	9,38	75.2	8,2	0.013	6.22	0.13		
147.6	45	5,95	9.37	75.2	8,2	0,013	6.19	0:12		
150.9	46	5.93	9.36	75.0	212	0,013	6,18	0,11		
154.2	47	5,93	9,35	75,0	812	0.013	6.18	0.12		
157.5	48	5,93	9.34	24.9	8,2	0.013	6,20	6.15		
160.8	49	5,92	9,33	74,8	8,2	6,013	6,17	81,0		bottom
164.0	50									
167.3	51									
170.6	52									/
173.9	53									
177.2	54									
180.4	55									
183.7	56									
187.0	57									
190.3	58					9				
193.6	59									
196.8	60									
200.1	61		1							
203.4	62									
206.7	63									
210.0	64								1	1
213.3	65									4
216.5	66									
219.8	67									
223.1	68				J.,					
226.4	69									
229.7	70					3				
232.9	71					1				
236.2	72									

Stillwater Sciences	SMUD In situ Monitoring in the Upper American Project and Chill Bar Project Reservoir - Water Quality Vertical Profiles	Date: 5-27-280 Time: ///2	
		Instrument used: YS Exp	
Site Location: Lat/Long (NAD83):	R-188-UVR	Water depth: 309 41	$\langle i \rangle$
Personnel:	-	Secchi (ft): 21.5	
		& Ending April = 349 F+	
Site Notes: [10]	pt 125-0135,0134	P /	
	040, z mmhg		

Dep	pth	Temp	D	0	Conductivity	Specific Conductance	рН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	16,75	8.93	92.0	10,4	0.012	7.13	0.16		
3.3	1	16:10	8,96	91.0	10.3	0,012	7.04	0,18		
6.6	2	15,99	8,95	90.7	10,2	0,012	7,04	0,18		
9.8	3	15,92	8,94	90,4	10,2	0,012	7.04	0.18		
13.1	4	15.64	8,97	90,2	10.1	0.012	7.05	0.17		
16.4	5	15:37	8,97	89.9	10.1	0.012	7.05	0.18		
19.7	6	14.38	9.17	89.7	9.8	0.012	7,05	0,22		
23.0	7	13.26	9,44	90,1	9,5	0,012	7,04	0,20		
26.2	8	/2.27	9,78	91.3	9.1	510.0	6,99	0,19		
29.5	9	11.73	981	90.5	2,9	0,012	6.93	0,20		
32.8	10	11.31	9,82	89,7	8,7	5.012	6,87	0.18		
36.1	11	10.79	9.87	1,98	8,6	0,012	6.84	0,19		
39.4	12	10,23	9,87	87,9	8,5	0,012	6,78	0.18		
42.7	13	9,87	10,09	89,2	8,4	0,012	6,80	0,18		
45.9	14	9,55	10,14	88,9	8.5	0,012	6.78	0,18		
49.2	15	8.97	10,18	28.0	8,5	0,012	6,75	0,17		
52.5	16	8.35	10,31	87,8	8,5	0,012	6.74	0,2		
55.8	17	7,72	10,25	86.0	8,5	0,013	6,73	0,19		
59.1	18	7,22	10,20	84.5	8,4	0,013	6.71	0.16		
62.3	19	6.73	10.03	82.0	8,3	0.013	6,66	0:17		
65.6	20	6,63	9,94	81.5	8,3	0,013	6,43	0.16		
68.9	21	6,57	9.91	89.88	8,2	0,013	6,40	0,18		
72.2	22	6,52	9,91	80.6	8,3	0,013	6,61	0,19		
75.5	23	6,46	9.90	20,4	2.3	0,013	6,60	0,19		
78.7	24	6,38	9,80	79,4	8,2	0,013	6.55	0,16		
82.0	25	632	9.76	79,1	8.2	0.013	6,55	0.16		
85.3	26	6.27	9.76	79,0	811	0.013	6.57	0.14		
88.6	27	6,23	9,80	79,2	2.2	0.013	6.57	0.16		
91.9	28	6.19	9,77	78.8	8,2	0,013	6,57	0114		
95.1	29	6.17	9.75	78,6	8,2	0,013	6,55	0.15		
98.4	30	6.14	9.72	78,4	8,2	0,013	6,55	0.13		
101.7	31	6.13	9,73	78,5	8,2	0,013	4.54	0.15		
105.0	32	6.12	9.74	78.5	812	0.013	6.55	0,14		
108.3	33	6,10	9.74	78.4	8.2	0.013	6.54	0116		
111.5	34	6,06	9,71	78,1	8.2	0.013	6,55	0,12		

Page Z of 3

Reservoir - Water Quality Vertical Profiles

R-15-8-UVR 5/27/2020

Dep	th	Temp		10	Conductivity	Specific Conductance	рН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS.icm)	(mS/cm)	(s.u.)	(NTU)	Sample	11044
						(CONTINUE				
114.8	35	603	9.70	77.9	8,2	0,013	6.56	0.14		
118.1	36	6.03	9.69	77.9	8,2	0.013	6.56	0,13		
121.4	37	6.01	9.66	77.7	8,2	0,013	6.56	0,14		
124.7	38	5,99	9,66	77.6	8,2	0,013	6,56	0,13		
128.0	39	5,98	9,66	77.5	8:2	6.013	6,53	0,14		
131.2	40	5,97	9.64	77.4	2,2	0,013	6.55	0,14		
134.5	41	5,96	9,63	77.3	8,2	0,013	4-55	6,13		
137.8	42	5.96	9,62	77.2	8.2	0,013	6,54	0.65		
141.1	43	5,96	9,62	77,2	812	0,013	6,54	0.13		
144.4	44	5,94	9,41	72.1	8,2	0,013	6,54	0,13		
147.6	45	5,92	9,60	77.0	8,2	0,013	6,55	0,13		
150.9	46	5.91	9,59	76,8	8,2	0,013	6,54	0.13		
154.2	47	5,89	9,57	76.7	8,2	0,013	6.54	0,15		
157.5	48	5,89	9,56	76.5	\$12	0,013	6,54	0,13		
160.8	49	5,87	9,54	76,3	8.2	0,013	6,53	0.12		
164.0	50	5,87	9,53	76,3	8,2	0,013	6.53	0,14		
167.3	51	5,86	9,51	7601	8,2	0,013	6.52	0,13		
170.6	52	5,84	9,47	75,2	8.2	0,013	653	0,14		
173.9	53	5,84	9,47	75.7	8,2	0,013	6,52	0,16		
177.2	54	5,84	9,46	75.6	812	0,013	6.52	0.15		
180.4	55	5,84	9,45	75,6	8,2	0,013	6,52	0.12		
183.7	56	5,83	9,44	75.5	8,2	0,013	6.51	0,15		
187.0	57	5,83	9,43	75.4	8,2	0,013	6.51	0,12		
190.3	58	5183	9,42	7513	812	0,013	6,52	0.13		
193.6	59	5,82	9,42	75.3	8,2	0.013	6,50	0,15		
196.8	60	5,82	9,40	75,2	8,2	0,013	6,50	0,14		
200.1	61	5,82	9,40	75,1	8,2	0,013	6,50	0,14		
203.4	62	5.81	9,39	75,0	812	0,013	6,50	0,13		
206.7	63	5,80	9.36	74.8	8,2	6,013	6,49	0,14		
210.0	64	5,79	9,34	746	812	0.013	6,49	0.14		
213.3	65	5,78	9,30	74.3	8,2	0,013	6,50	0,13		
216.5	66	5,77	9,28	74.1	812	0.013	6,49	0.14		
219.8	67	5,76	9,25	73,8	8.2	0.013	6,47	0,15		
223.1	68	5,76	9,23	73,7	8,2	0,013	6,46	0.14		
226.4	69	5.76	9:23	73.7	8,2	0,013	6.46	0,14		
229.7	70	5,75	9.22	93,6	8.2	0,013	6,47	0,14		
232.9	71	5,75	9.21	73,5	8,2	6.013	6,46	0,17		
236.2	72	5,75	9.20	73,4	8,2	0,013	6,46	0.15		

Page 3 of 3

(33)

Stillwater Sciences Reservoir - Water Quality Vertical Profiles

R-15-8-UVR 5/27/2020

Dep	th	Temp	0	0	Conductivity	Specific Conductance	pН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
						(CONTINUED	0)			December 1997
239.5	73	5,74	9,19	73.3	8,2	0.013	6145	0,15		
242.8	74	5.74	9,19	73,3	8,2	0.013	6,45	0,16		
246.1	75	5,74	9,18	73.3	8,2	0.013	6:45	0,16		
249.3	76	5,74	9,18	73.3	812	0.013	6.45	0.16		
252.6	77	5174	9.18	73,2	8,2	0,013	6.46	0.17		
255.9	78	5,74	9,17	73.1	8,2	0,013	6,45	0,16		
259.2	79	5,73	9,16	73.1	8,2	0.013	6,45	0.16		
262.5	80	5,73	9,15	73.0	8,2	0.013	6,44	0,17		
265.7	81	5173	9,15	73.0	8,2	0.013	6,44	0.18		
269.0	82	5,73	9.15	73.0	8.2	0.013	6,45	3.17		
272.3	83	5,73	9.15	73,0	8,2	0.013	6,44	0.15		
275.6	84	5.73	9.14	72.9	8,2	0.013	6.44	0.17		
278.9	85	5,74	9114	73.0	8,2	0.013	6.45	0.17		
282.1	86	5,74	9.15	73,0	8,2	0.013	645	0.15		
285.4	87	5.73	9.15	73.0	8,2	8,013	6,46	0,14		
288.7	88	5,73	9.13	72.8	8,2	0,013	6,45	0.18		
292.0	89	5173	9,13	72.9	8.2	0,013	6,44	0.16		
295.3	90	5,73	9,13	72.9	8,2	0.013	6.44	0.14		
298.6	91	5,73	9,13	72.8	8,2	0.013	6.44	0,17		
301.8	92	5,73	9,13	72,8	2,2	0,013	6.44	0,17		
305.1	93	5.73	9,13	72.8	812	0,013	6,44	0.17		
308.4	94	5,73	9,13	72.8	2,2	0,013	6,45	0.15		
311.7	95	5,73	9.13	72.8	8,2	0,013	6,44	0,19		
315.0	96	5.73	9.13	72.8	8.2	0,013	6,44	0,19		
318.2	97	5,73	9,12	72.8	8,2	0.013	6.44	0.17		
321.5	98	5,73	9.13	72.8	8.2	0.013	6,44	0.18		
324.8	99	5,73	9.13	72,8	8,2	0.0/3	6.45	0.15		End of Cable
328.1	100									THE PARTY OF THE P
31.4	101									
34.6	102									

Stillwater Sciences	SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project Reservoir - Water Quality Vertical Profiles	Page 1 of 1 Date: 5/22/2026 Time: 1010
Site Location: _ Lat/Long (NAD83): _	R-15-9-IHR	Instrument used: YSI EXO Water depth: 54.4 Fr
Personnel:	623.0 mmha	Secchi (ff): 20,8
	. 7	

De	pth	Temp	D	0	Conductivity	Specific Conductance	pH	Turbidity	Water	Notes	Photos	123-0
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample			116,117
surf	face	/2.91	9,01	85,1	7.9	0,010	6.42	0,24				
3.3	1	12,75	9.01	25.0	7.9	0.010	6.38	0,25				
6.6	2	12.58	9102	84.8	7,9	0,010	6,36	0.25				
9.8	3	12.54	9,03	84,9	7,9	0,0,0	6.35	0,27				
13.1	4	12.53	9.03	24,8	7,9	0,010	6,33	0,26				
16.4	5	11.98	9,15	85,0	7,7	0,010	6,32	0,25				
19.7	6	11.40	9.25	84.8	7,4	0.010	6.30	0,26				
23.0	7	10,45	9,44	84.6	7,1	0.010	6.28	0,30				
26.2	8	9,92	9,54	84.4	6.9	0.010	6.26	0,26				
29.5	9	9,80	9,54	24,1	6.8	0,0,0	6.23	0,28				
32.8	10	8.73	9,65	83,1	616	0,010	6,18	0,29				
36.1	11	7,97	9,68	81,7	6,5	0,0,0	613	0,32				
39.4	12	7.70	9,67	81.0	6,4	0,010	6007	0,33				
42.7	13	7,47	9:61	80,1	6,5	01010	6.00	0.34				
45.9	14	7,37	9,59	79.7	415	0,00	5,95	0.37		É	strom	1
49.2	15											
52.5	16											
55.8	17											
59.1	18											
62.3	19											
65.6	20											
68.9	21											
72.2	22											
75.5	23											
78.7	24											
82.0	25											
85.3	26			-								
88.6	27											
91.9	28											
95.1	29											
98.4	30											
101.7	31											
105.0	32											
108.3	33											
111.5	34											

Stillwater Sciences	SMUD In situ Monitoring in the Upper Ame Project and Chili Bar Project	Page of Date:	20
	Reservoir - Water Quality Vertical Pro	rofiles	
Site Location: _ Lat/Long (NAD83): _	R-15-10-IHQ	Instrument used: \(\frac{15}{32.84}\)	
Personnel:	ES DLIB	Secchi (ft): 23.2	
	105 123-0118,049	622.9 mm Hg	

Dep	oth	Temp	D	0	Conductivity	Specific Conductance	pН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	notes
surf	ace	1271	9.06	85.4	7.9	0.010	7.01	0.52		
3.3	1	1268	9.07	85.5	7.9	0.010	6.8	0.23		
6.6	2	12.69	9.06	85.4	7.9	0,010	6.85	0.22		
9.8	3	12.65	9.05	85.2	7.8	0.010	675	0.75		
13.1	4	12,50	9.06	85.0	7.9	0.010	6.75	0.25		
16.4	5	12.14	9.16	85.3	7.7	0,010	6.68	0.23		
19.7	6	11.01	9.41	85.3	7.3	0.010	6.60	0.28		
23.0	7	9.91	9.56	84.6	6.9	0.010	6.50	0,31		
26.2	8	9.42	9.68	84.5	6.7	0.010	6.42	124.29		
29.5	9									
32.8	10									
36.1	11									
39.4	12									
42.7	13									
45.9	14									
49.2	15									
52.5	16									
55.8	17									
59.1	18									
62.3	19									
65.6	20									
68.9	21									
72.2	22									
75.5	23									
78.7	24									
82.0	25									
85.3	26									
88.6	27									
91.9	28									
95.1	29									
98.4	30									
101.7	31									
105.0	32								1	
108.3	33									
111.5	34									

SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project

Page 1 of 1

Date: 5/22/2020
Time: //26

Reservoir - Water Quality Vertical Profiles

Instrument used: 451 EX 5
Water depth: 114

Site Location: R-/S-//-T#R
LatLong (NAD83):

Secchi (ft): 23,3

Personnel: EES- DLB

Site Notes: Photos

Photos 123 0120, 0121

623.	maha

De	pth	Temp	0	0	Conductivity	Specific Conductance	pН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	face	12.63	9.08	85.5	8.0	0,010	6,90	0,25		
3.3	1	12,57	9,06	85,1	7,9	0,010	6,78	0.23		
6.6	2	12:24	9:07	84.7	7.9	0,010	6.72	0,20		
9.8	3	12,17	9.10	84.7	7,9	0,010	6,75	0,28		
13.1	4	12,13	9,09	845	7,9	0.010	6.72	0.21		
16.4	5	1z.08	9.08	94,4	7.9	0,0,0	6,64	0.26		
19.7	6	11.94	9,11	84,5	7: 7	0,010	6,59	0,23		
23.0	7	10.32	9,96	88.9	7,1	8,010	6.49	0,26	-	
26.2	8	9,50	10.06	88.0	7./	0,010	6,29	0,33		
29.5	9	8.37	10.20	86.9	7.1	0.010	6,30	0.34		
32.8	10	7,76	10.17	85.4	7,1	0,011	6,21	0,31		
36.1	11	7,21	9,84	81.4	712	0,01	6,12	0,36		
39.4	12	7.02	9.81	90,9	7,1	0,011	6.07	0,36		
42.7	13	6,99	9.78	80.5	7,0	0,011	6,02	0,29		
45.9	14	6.79	9.73	79.6	710	0.011	5,93	0,31		
49.2	15	6.78	9,67	79,2	6,9	0,011	5,78	0.32		
52.5	16	6.74	9,64	78,8	6.9	6.011	5187	0.38		
55.8	17	6.70	9,60	78.5	6.9	0.011	5.86	0,35		
59.1	18	6.65	9.56	78,0	6,9	0,011	582	0,38		
62.3	19	6.61	9.51	77.6	6.9	0,011	5,78	0.35		
65.6	20	6.59	9.49	77,4	6,9	0,011	5,77	0.32		
68.9	21	6.57	9,46	72.0	6.9	0,011	5,74	0,33		
72.2	22	6,56	9,42	76.7	6.9	0,011	5,73	0.35		
75.5	23	4.56	9.40	76.5	6.9	0,011	5,71	0,40		
78.7	24	6,52	9,35	76.0	6,9	0.011	5,69	0,36		
82.0	25	6.52	9,32	75,8	6,9	0,011	6170	0.38		
85.3	26	6,52	9.31	75,7	6,9	0.011	5,68	0.37		
88.6	27	6,50	9,28	75,5	6,9	0.011	5.64	0,42		
91.9	28	6,49	9:27	7513	6.9	0.011	5,65	0,40		
95.1	29	6.49	9,24	75,2	6.9	0.011	5.64	0.36		
98.4	30	6,49	9,23	75,1	6.9	0.011	5143	0,35		
101.7	31	6.49	9,21	74.9	6.9	0.01	5,63	0,36		
05.0	32	6.47	9,17	74.5	619	0,011	5162	0.36		
08.3	33	6,43	9.11	73.9	7.0	0.011	5,61	0,41		bottom
111.5	34		-	-						

CCC	3
Stillwater	Sciences

Page __l of _l_

Date: 5/29/2020 Time: 1445

Reservoir - Water Quality Vertical Profiles

Instrument used: YS 1 €X0
Water depth: 93.7 €+

Site Location: R-IS-1Z-JR
Lat/Long (NAD83):

Secchi (ft): 27. 4

Personnel: <u>EES DLB</u>

Site Notes: <u>Photos</u> 127 - 145, 146

647.3 mm 1+4

Dep	oth	Temp	D	0 ′	Conductivity	Specific Conductance	pН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf		17.66	8.64	90.6	13.3	0.015	6.92	0.30		
3.3	1	16.20	8.73	8.8	129	0.015	6.90	0.34		
6.6	2	15.34	9.12	90.6	12.5	0.015	6.84	0.34		
9.8	3	13.81	9.51	88.0	12.0	0.015	6.81	0.34		·
13.1	4	12.80	9.57	89.8	120	0.016	6.75	0.33		
16.4	5	1214	9.57	88.9	lig	0.016	6.69	0.40		
19.7	6	11.66	9.48	88.0	11.6	0.016	6.65	0.37		
23.0	7	11.33	9.45	86.6	().4	0.015	6.66	0.35		
26.2	8	10.99	4.46	85.6	11.3	0.015	6.62	0.39		
29.5	9	10.66	9.46	85.1	11.3	0.016	6.55	0.42		
32.8	10	10.35	9.45	84.5	11.2	0.016	6.48	0.40		
36.1	11	10.05	9.51	84.4	10.9	0.015	643	0.46		
39.4	12	9.70	4.65	84.9	10.4	0.015	6.40	0.32		
42.7	13	9.40	9.58	83.7	10.3	0.015	6.36	0.33		
45.9	14	9.18	9.70	84.3	10.1	0.014	6.3-1	0.33		Butter
49.2	15									
52.5	16									
55.8	17									
59.1	18								-	
62.3	19									
65.6	20									
68.9	21			-						
72.2	22									
75.5	23									
78.7	24									
82.0	25						-			
85.3	26									
88.6	27									
91.9	28									
95.1	29								-	
98.4	30									
101.7	31									
105.0	32									
108.3	33									
111.5	34									

Stillwater Sciences	SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project	Page of Date:5/29/2020	
	Reservoir - Water Quality Vertical Profiles	Time: <u>12.30</u>	
Site Location: Lat/Long (NAD83):	R-15-13-CR	Nater depth: YSI EXO 17.5	
Personnel:	SES OLB	Secchi (ft):17.5	
Site Notes: GR	3.3 444 104		

		Pho	105 01	27-014	3,0144					
Deg	oth	Temp	0	0	Conductivity	Specific Conductance	pН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	15.66	9.35	93.6	13.8	0.017	6.86	0,40		
3.3	1	13.96	9.62	94.1	12.8	0.016	6.81	0.47		
6.6	2	13.40	9,75	93.1	12.4	0.016	6.82	0.50		
9.8	3	12.56	9.42	93.3	12.0	0.016	6.82	0.63		
13.1	4	11.34	10.16	92.8	11.3	0.015	6,69	0.48		
16.4	5	10.89	10,24	92.6	11.)	0.015	6.70	0.50		ROTTOM
19.7	6									
23.0	7									
26.2	8									
29.5	9									
32.8	10									
36.1	11									
39.4	12									
42.7	13									
45.9	14									
49.2	15									
52.5	16									
55.8	17									
59.1	18									
62.3	19									
65.6	20									
68.9	21									
72.2	22									
75.5	23									
78.7	24									
82.0	25					1				
85.3	26									
88.6	27									
91.9	28									
95.1	29									
98.4	30									
101.7	31									
105.0	32									
108.3	33									
111.5	34									

CO	30
Stillwater	Sciences

Page	_l	of	_	1	_	
	~	0	0	,	-	

Reservoir - Water Quality Vertical Profiles

Date: 5/28/70 Time: 1215

Site Location: R~IS-I-I ~SC
Lat/Long (NAD83):

Instrument used: EXO
Water depth: 31.9

Personnel: EES DLB

Secchi (ft): 13.1

Site Notes: 710,6 mm 179

Photos 126-139

Dep	th	Temp		10	Conductivity	Specific Conductance	рН	Turbidity	Water Sample	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	17.52	9.23	98.5	27.8	0.036	7.11	0.58		
3.3	1	16.01	9.43	955	21.5	0.026	7.00	0.68		
6.6	2	15.35	9.48	94.7	21.3	0.026	6.99	0.84		
9.8	3	15,76	9.52	94.9	21.3	0.026	6.98	0.87		
13.1	4	15.25	9.53	95.0	21.3	0.026	7.00	0.81		
16.4	5	15,22	9.56	95,2	21.3	0.026	7,00	0.71		
19.7	6	15,16	9.57	95.2	21.3	0.026	7.01	0.86		
23.0	7	15.05	9.60	95,3	21.3	0.026	7.02	0.77		
26.2	8	14.87	9.58	94.7	21.3	0.026	6,98	0.94		
29.5	9	1487	9.56	945	21.3	0.026	6,45	1.07		BOTION
32.8	10									
36.1	11									
39.4	12									
42.7	13									
45.9	14									
49.2	15									
52.5	16					1				
55.8	17									
59.1	18									
62.3	19									
65.6	20									
68.9	21									
72.2	22								_	
75.5	23								_	
78.7	24								_	
82.0	25									
85.3	26								-	
88.6	27								_	
91.9	28									
95.1	29								_	
98.4	30									
101.7	31								_	7
105.0	32									
108.3	33								_	
111.5	34									

CO	3
Stillwater	Sciences

Page / of Z

Date: 5/28/202 0

Time: //3/5

Reservoir - Water Quality Vertical Profiles

Instrument used: 45 EXO
Water depth: 126 4+

Site Location: R-/S-/5-SC
Lat/Long (NAD83):

Secchi (ft): 13,2

Personnel: EES DLB

Site Notes: 126 - 0140, 0141

710,4 mmha

	- Castific I									
Dep	oth	Temp	D	0	Conductivity	Specific Conductance	pН	Turbidity	Water Sample	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	30000
surf	ace	19,72	9,43	103,3	26.7	0,030	721	0,31		
3.3	1	18,58	9,53	101,9	2610	0.030	7.24	0,25		
6.6	2	17.57	9.62	100,7	25.4	0.030	7, 23	0.35		
9.8	3	17,20	9,50	98.7	25.0	0.029	7.19	0.42		
13.1	4	17.08	9.51	98,6	24.8	0.029	7,17	0.65		
16.4	5	15,90	9,53	96.4	23,4	0.028	708	0,94		
19.7	6	15,59	9,48	95,2	22.4	0.027	7.01	0.87		
23.0	7	15,36	9,49	94.8	22,0	F50.6	6.98	0,91		
26.2	8	15.26	9,47	94,4	22.0	0.027	6.96	1.00		
29.5	9	15,10	9,46	94,0	21.8	0,027	6,94	1.02		
32.8	10	15.05	9.45	93.9	21.5	0,026	6.92	4.27		
36.1	11	15,00	9,47	93.9	21,5	0.027	6,90	1,11		
39.4	12	14.96	9,47	93,9	21.3	0.026	6.87	1.19		
42.7	13	14.90	9,49	93.9	20,7	0,026	4.85	1.34		
45.9	14	14,84	9,51	94.0	2012	0,025	6,83	1.35		
49.2	15	14.21	9,51	93.9	20,3	0,025	4.83	1,46		
52.5	16	14.78	9,48	93.6	20.5	0.025	6,32	1.42		
55.8	17	14.74	9,44	93.1	21,0	0.026	4.80	1,51		
59.1	18	14.71	9,43	92.9	21.6	0,026	6.80	1.40		
62.3	19	14.70	9,42	92.7	21.4	0,027	6,80	1,58		
65.6	20	14.66	9,41	92.7	21.7	0,027	6.81	1,45		
68.9	21	14.58	9.42	92,6	2117	0.227	6.81	1,62		
72.2	22	14.53	9.41	92,4	21,7	0,027	6.80	1,63		
75.5	23	14,50	9,41	92.3	21.7	0.027	6,83	1,63		
78.7	24	14.45	9,42	9213	22,0	0,028	6,82	461		
82.0	25	14.37	9,41	92.1	22.2	0.028	6.80	1.75		
85.3	26	14.32	9,40	9/18	22.3	0,082	6,79	1,50		
88.6	27	14.31	9,39	91.7	22.4	0,028	6,80	158		
91.9	28	14.27	9.38	91.5	22,6	0.028	6.78	1,35		
95.1	29	14:19	9,38	91.4	22.9	0.029	6.80	1.33		
98.4	30	1416	9,38	9/13	22.9	0,029	6,39	1.59		
101.7	31	14.04	9.37	91.0	23.8	6.029	6.79	1,25		
105.0	32	13.90	9.36	90.6	23,5	0,030	6.78	1.07		
108.3	33	13.82	9.36	20,5	23, €	0.030	6,78	1,01		
111.5	34	13,70	9,33	89,9	23,9	0,030	6.77	0.93		

Page Z of Z

Reservoir - Water Quality Vertical Profiles

R-15-15-5C 5/28/2020

Dep	oth	Temp	DO		Conductivity Spe	Specific pH Conductance	Turbidity	Water	Notes	
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	THOUSE .
	C 22 9			SI WE'T		(CONTINUE	0)			
114.8	35	13,46	9,27	88.8	24.3	0,031	6,75	0,80		
118.1	36	13,29	9,22	88,0	24.3	0.032	6.74	0.85		
121.4	37	12,91	8.64	21,8	24.5	0,033	6.65	2,97		Bottom
124.7	38		7:30							
128.0	39									
131,2	40									
134.5	41									
137.8	42									
141.1	43				7					
144.4	44									
147.6	45									
150.9	46									
154.2	47									
157.5	48									
160.8	49									
164.0	50									
167.3	51									
170.6	52									
173.9	53									
177.2	54									
180.4	55									
183.7	56									
187.0	57									
190.3	58			V 1						
193.6	59									
196.8	60									
200.1	61									
203.4	62			7 (1)						
206.7	63									
210.0	64		/							
213.3	65									
216.5	66		1	100						
219.8	67									
223.1	68									
226.4	60									
229.7	70									
232.9	71									
236.2	72									

(3)	20)
Stillwater	Sciences

Page,		of ,			
Date:	10	129	1/2	02	ć

Reservoir - Water Quality Vertical Profiles

Time:	10	04		
Instrument us	ed:	Eχ	0	
Water den	.b	7.0		

Site Location:	R -15-1- LL
Lat/Long (NAD83):	

Water depth: 68

Personnel: ES, LY

Site Notes:

Dep	oth	Temp	D	0	Conductivity	Specific Conductance	рН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	11,21	8.49	77.4	6.7	0.009	6.81	0.15		
3.3	1	11.21	8.48	77-3	6,7	0.009	6.38	0.15		
6.6	2	11.20	8.47	77.1	6,7	0.009	6.84	0,13		
9.8	3	11-19	8.46	77.0	6.7	0.009	6.81	0.10		
13.1	4	11-18	8.45	76.9	6.7	0,009	6.83	0.08		
16.4	5	11-18	8.45	76.7	6.7	0,009	6.81	0.03		
19.7	6	11.17	8.44	76.9	6.7	0,009	6.81	0.13		
23.0	7	11.17	8.44	76.9	6.7	0.009	6.80	0.17		
26.2	8	11.17	8.43	76.8	6.7	0.009	6.79	0,13		
29.5	9	11.17	8, 43	76.7	6.7	0,009	6.74	0.18		
32.8	10	11-14	8.38	76.3	6.7	0,009	6.75	0.15		
36.1	11	11,14	8.38	76.2	6,7	0.009	6,73	0,14		
39.4	12	11.15	8.38	76.3	6.7	0.009	6.70	0.16		
42.7	13	11,14	8.35	76-0	6.7	0.009	6.72	0,10		
45.9	14	11-14	8.34	75,9	6,7	0.009	6.69	0,15		
49.2	15	11-13	8-33	75.8	6, 7	0,009	6.68	0,13		
52.5	16	11./3	8,33	75.8	6.7	0.009	6.71	0.18		
55.8	17	11-13	8,33	75.7	6.7	0,009	6.69	0.17		
59.1	18	11.13	8.30	75.5	6.7	0,009	6.66	0.06		
62.3	19	11.13	8.32	75.6	6.7	0,009	6.57	0.07		
65.6	20	11.12	8.32	75.6	6.7	0.009	6.50	0.22		
68.9	21	11.12	8,29	75,4	6.7	0,009	6,39	125.8		Button
72.2	22									
75.5	23									
78.7	24									
82.0	25									
85.3	26									
88.6	27									
91.9	28									
95.1	29									
98.4	30									
101.7	31									
105.0	32									
108.3	33									
111.5	34									

(000	200
Stillwater	Sciences

Page_	1	of	_	1	_
Date:	10	/2	9	1	202

Reservoir - Water Quality Vertical Profiles

Time: 1112

Site Location: R - 15 - 2 - LL	Instrument used: Water depth:	55,3
Personnel: ES, LY	Secchi (ft): _	26.
Site Notes:		

Dep	pth	Temp		10	Conductivity	Specific Conductance	pH	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	11.56	8.53	78.4	6.7	0.009	6,65	0.05		
3.3	1	11.55	8.53	78.4	6.7	0,009	6.62	0,04		
6.6	2	11.54	8.52	78.3	6.7	0,069	6,58	0.02		
9.8	3	11.53	8,52	78.2	6.7	0,009	6.57	0,01		
13.1	4	11.51	8,51	78.1	6.7	0,009	6,52	0,05		
16.4	5	11.50	8.51	78,0	6.7	0,009	6.52	0,07		
19.7	6	11.50	8,50	78,0	6.7	0.009	6,50	0.14		
23.0	7	11.50	8,49	77,9	6.7	0.009	6.56	0,03		
26.2	8	11,48	8.49	77.8	6. 7	0.009	6.55	0.07		
29.5	9	11.48	8,48	77-8	6.7	0.009	6.54	0,04		
32.8	10	11.46	8,47	77.6	6.7	0,009	6.50	115.3		Bottom
36.1	11									
39.4	12									
42.7	13									
45.9	14									
49.2	15									
52.5	16									
55.8	17									
59.1	18									
62.3	19									
65.6	20									
68.9	21									
72.2	22									
75.5	23									
78.7	24									
82.0	25									
85.3	26									
88.6	27									
91.9	28									
95.1	29									
98.4	30									
101.7	31									
105.0	32									
108.3	33									
111.5	34									

(CC	3
Stillwater	Sciences

Page	of
Date:	10/29/20
Time:	1131

Reservoir - Water Quality Vertical Profiles

EXO Instrument used: R-15-3-LL Site Location: Water depth: Lat/Long (NAD83): 24.6 Secchi (ft): Personnel:

Site Notes:	

Dep	oth	Temp	D	0	Conductivity	Specific Conductance	pH	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	11.30	8.64	78.9	6.6	0,009	6.78	0.02		
3.3	1	11.27	8.63	78.7	6.7	0,009	6.71	0,16		
6.6	2	11.25	8.62	78.6	6,7	0,009	6,69	0,12		
9.8	3	11,25	8,61	78.5	6.7	0,009	6.68	0.03		
13.1	4	11-23	8,60	78.4	6.7	0,009	6.67	0,07		
16.4	5	11.22	8.60	78.4	6,6	0,009	6.64	0.12		
19.7	6	11.20	8,59	78.3	6,6	0,009	6.63	0.02		
23.0	7	11-19	8.59	78,2	6,6	0,009	6.64	0.15		
26.2	8	11,18	8.58	78.1	6.7	0,009	6.65	0,16		
29.5	9	11-18	8.57	78.1	6.6	0,009	6.64	0,12		
32.8	10	11-18	8,57	78-0	6,6	0,009	6.67	10.40		Bottom
36.1	11									
39.4	12									
42.7	13									
45.9	14									
49.2	15									
52.5	16									
55.8	17									
59.1	18									
62.3	19									
65.6	20									
68.9	21									
72.2	22									
75.5	23									
78.7	24									
82.0	25									
85.3	26									
88.6	27									
91.9	28									
95.1	29									
98.4	30									
101.7	31									
105.0	32									
108.3	33									
111.5	34									

SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project

Page_	of/_
Date: Time:	1411

Reservoir - Water Quality Vertical Profiles

Site Location: R-15-4-6C	Instrument used: _ Water depth: _	E X0	
Personnel: EES, LHY	Secchi (ft): _	20.8	

Site Notes:	

Dep	pth	Temp	0	0	Conductivity	Specific Conductance	pН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	11.09	8,98	81.6	9,3	0.013	6.75	0.19		
3.3	1	10.54	9.01	80.8	9,2	0.013	6.74	0,24		
6.6	2	10,41	8.98	80.3	9,2	0.013	6,74	0,23		
9.8	3	10.30	8.98	80, 1	9.2	0,013	6.73	0,24		
13.1	4	10.28	8,98	80.1	9.2	0.013	6,75	0,21		
16.4	5	10,20	9.02	80.2	9.2	0,013	6.73	0.19		
19.7	6	9.73	8.89	78,3	9.1	0.013	6.67	0.15		
23.0	7	9,65	8.72	76.0	12.3	0,018	6,57	67.44		Bottom
26.2	8									
29.5	9									
32.8	10									
36.1	11									
39.4	12									
42.7	13									
45.9	14									
49.2	15									
52.5	16									
55.8	17									
59.1	18									
62.3	19									
65.6	20									
68.9	21									
72.2	22									
75.5	23									
78.7	24									
82.0	25									
85.3	26									
88.6	27									
91.9	28									
95.1	29									
98.4	30									
101.7	31									
105.0	32									
108.3	33									
111.5	34									

Stillwater Sciences Project and Chili Be	Date: 10/08/00
Site Location: F-15-5-UVR	Vertical Profiles Instrument used: EXO Water depth: 25-1 FF
Personnel: AML FES Site Notes:	Secchi (ft): 20.5

Depth		Temp	DO		Conductivity	Specific Conductance	рН	Turbidity	Water	Notes
(11)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	Notes
surf	ace	15.82	8.04	81.3	10.9	0.0/3	7.02	8.21		
3.3	. 1	15.54	8.05	20.7	10.8	0.013	7.01	0.20		
6.6	2	15.25	8.06	80.3	10.8	0.013	7.01	85.0	-	
9.8	3	15.09	8.07	80.2	10.3	0.013	7.01	0.24		
13.1	4	15.02	8.07	80.1	10.7	0.013	7.02	035		
16.4	5	14.86	8.11	80.2	10.7	0.013	7:01	0.24		
19.7	6	14.42	81.8	80.1	10.7	0.013	7.00	0.37		
23.0	7	13.94	8.21	79.5	10.8	0.014	6.93	0.44		bottom
26.2	8									5077077
29.5	9									
32.8	10	3								
36.1	11									
39.4	12									
42.7	13									
45.9	14									
49.2	15					3 -				
52.5	16					1				
55.8	17				7.1					
59.1	18					2				
62.3	19									
65.6	20									
68.9	21									
72.2	22									
75.5	23			1		1				
78.7	24						2		- 3	
82.0	25									
85.3	26						8			
88.6	27									
91.9	28									
95.1	29		-						6	
98.4	30								, ,	
101.7	31									
105.0	32				- 3					
108.3	33									
111.5	34	4		3		4	-			

CO	3
Stillwater	Sciences

Page_	_	of _	_
Date:	10	-28.	2020

Reservoir - Water Quality Vertical Profiles

Time: 1347

Site Location:	R-15-6-UVR	
.at/Long (NAD83): _		
-6	/_ A AAA	

Instrument used: 20.0
Water depth: 20.0
Secchi (ft): 19.9

Personnel: ELG AML

Deg	oth	Temp	D	0	Conductivity	Specific Conductance	рН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(m8/cm)	(s.u.)	(NTU)	Sample	
surf	ace	16.70	7.94	81.6	10.9	0.013	7.05	0.19		
3.3	1	16.66	7.93	81.4	10.9	0.013	7.00	0.17		
6.6	2	16.27	7, 93	80.8	10.8	0.013	7.00	0.23		
9.8	3	1(0.17	7.95	80.8	10.8	0.013	7.00	0.25		
13.1	4	16.12	7.94	80.6	10.8	0.013	7.01	0.36		
16.4	5	16.11	7.92	80.4	8.01	0.013	7.00	0.29		
19.7	6	16.08	7.91	80.3	10.8	0.013	7.01	0.3.0		
23.0	7	16.04	7.92	86.3	8.01	0.013	7.00	0.26		
26.2	8	16.03	7.93	80.3	10.8	0.013	6,99	0.22		
29.5	9	16.05	7.92	80.3	10.8	0.013	7.01	0.26		
32.8	10	16.02	7.92	80.2	10.8	0.013	7.01	0.26		
36.1	11	16.02	7.91	80.2	10.8	0.013	7.01	0.19		
39.4	12	16.02	7.90	800	108	0.013	7.01	0.24		
42.7	13	16.01	7.89	80.0	10.8	0.013	7.01	0.32		
45.9	14	16.01	7.88	79.9	10.8	0.013	7.00	0.18		
49.2	15	16.00	7.88	79.9	10.8	0.013	7.0	0.24		
52.5	16	15.99	7.87	79.6	10.8	0.013	7.00	0.31		
55.8	17	15.98	7.84	79.5	10.7	0.013	7.00	6.32		
59.1	18	15.98	7.34	79.4	10.8	0.013	6.98	0.24		
62.3	19	15.98	7.83	79.3	10.8	0.013	6.98	55.0		
65.6	20	15,98	7.82	79.2	10.8	0.013	6.95	0.21		
68.9	21	15.58	7.81	79.0	10.8	0.013	6,97	0,25		
72.2	22	15.94	7.75	77.7	10.8	0.013	6.96	0.18		
75.5	23	15.75	7.66	77.1	10.8	0.013	689	0.32		100+tom
78.7	24				T. No.	0.01				
82.0	25								_	
85.3	26									
88.6	27									
91.9	28									
95.1	29									
98.4	30									7
101.7	31									
105.0	32									
108.3	33									
111.5	34									

SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project

Page / of /

Date: 10/28/20 Time: 1240

Instrument used: FX0
Water depth: 116

Secchi (ft): ____25, Z

Reservoir - Water Quality Vertical Profiles

Site Location: R - 15 - 7 - U V R

Lat/Long (NAD83):

Personnel: EES, AML

Site Notes: __

Dep	oth	Temp	D	0	Conductivity	Specific Conductance	pH	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	16.32	7.92	80.7	10,9	0,013	7.04	0,36		
3.3	1	16.08	7,9/	80.3	10.9	0,013	7.01	0.22		
6.6	2	16.02	7.91	80,	10,8	0,013	7.00	0.30		
9.8	3	15,97	7.90	30,0	10,8	0,013	7.00	0,20		
13.1	4	15,96	7.89	79,9	10,8	0,013	7.00	0,24		
16.4	5	15,95	7-89	79.8	10,8	0.013	7,00	0.22		
19.7	6	15,93	7.90	79.8	10,8	0,013	7.01	0,30		
23.0	7	15.91	7.90	79.9	10.8	0.013	7.01	0,25		
26.2	8	15,89	7.89	79.3	10.9	0,013	7.00	0,26		
29.5	9	15,89	7.88	79.6	10,9	0.013	7.01	0.30		
32.8	10	15,87	7.87	79.5	10,8	0.013	7.00	0.36		
36.1	11	15.86	7.86	79.3	10.8	0.013	7.00	0,25		
39.4	12	15,85	7.84	79.2	10.8	0,013	6.99	0,36		
42.7	13	15,85	7.83	79.1	10.8	0,013	6.99	0,12		
45.9	14	15.83	7.82	78,9	10,8	0.013	6,98	0.46		
49.2	15	15,79	7.81	78.8	10.8	0,013	6.98	0,26		
52.5	16	15.77	7.82	78.8	10.8	0.013	6,97	0,34		
55.8	17	15.74	7.81	78.7	10.8	0.013	6.97	0,24		
59.1	18	15.68	7. 80	78.5	10,8	0.013	6.97	0.33		
62.3	19	15,66	7,79	78.4	10,8	0,013	6.96	0,22		
65.6	20	15,66	7,79	78.3	10.8	0.013	6.96	0,33		
68.9	21	15,65	7.78	78.2	10.8	0,013	6.95	0.21		
72.2	22	15,64	7. 77	78.2	10,8	0.013	6.95	0.31		
75.5	23	15,64	7.77	78.1	10,8	0,013	6.96	0,28		
78.7	24	15,64	7.76	78.1	10,8	0.013	6.95	0.34		
82.0	25	15,64	7.76	78.6	10.8	0.013	6.95	0.26		
85.3	26	15,64	7.76	78,0	10.8	0.013	6.95	0,30		
88.6	27	15,64	7.75	77.9	10.8	0,013	6,95	0,30		
91.9	28	15,56	7.76	77.9	10,8	0.013	6.93	0.34		
95.1	29	15,39	7.77	77.7	10,8	0,013	6.94	0.30		
98.4	30	14.74	7.53	74.2	10,9	0,014	6.79	0.41		
101.7	31	14.24	7-04	68.4	10.8	0.014	6,60	0,45		
105.0	32	13,74	6.59	63.1	10.8	0.014	6,46	0.43		
108.3	33	12.33	5-18	48.2	10.6	0.014	6.20	6.32		- 11
111.5	34	11-96	4-91	45,4	10,7	0.014	6.16	1.08		Bottom

SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project

Page,		of Z	_
Date:	10/	28/	2020

Reservoir - Water Quality Vertical Profiles

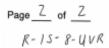
Date: 10/28/2020 Time: 1105

Site Location: R - IS - 8 - UVR
Lat/Long (NAD83):

Instrument used: EX0
Water depth: ZZ4

Personnel: EES, AML

Secchi (ft): 21.3


Site Notes:

Dep	oth	Temp	D	o	Conductivity	Specific Conductance	pН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	16.91	7.95	80,9	10,9	0,013	7.07	0,20		
3.3	1	16.17	7.94	80.7	10.8	0,013	7.04	0.19		
6.6	2	16,12	7.92	80.4	10.8	0, 013	7.03	0,24		
9.8	3	16.11	7-91	80.3	10.8	0.013	7.02	0,23		
13.1	4	16.10	7.90	80.3	10,8	0.013	7.00	0.26		
16.4	5	16,10	7.90	80.2	10,8	0,013	6.99	0.25		
19.7	6	16,09	7.89	80,[10.8	0.013	6,99	0.30		
23.0	7	16.07	7.88	80.0	10.8	0.013	6.78	0,29		
26.2	8	16.08	7.87	79.9	10.8	0.013	6.97	0,22		
29.5	9	16,08	7.86	79.8	10,8	0.013	6.97	0.24		
32.8	10	16,07	7.86	79.7	10,8	0.013	6.94	0.16		
36.1	11	16,07	7,85	79.6	10.8	0.013	6.94	0.34		
39.4	12	16.06	7.84	79.6	10,8	0.013	6.94	0,26		
42.7	13	16.06	7.83	79.4	10.8	0.013	6.91	0,28		
45.9	14	16.06	7.80	79.2	10,8	0.013	6.81	0,24		
49.2	15	16.06	7.80	79.1	10.8	0,013	6.80	0.26		
52.5	16	16.06	7.79	79.0	10.8	0,013	6.79	0.30		
55.8	17	16.06	7,78	79.0	16.8	0.013	6.77	0.15		
59.1	18	16.06	7.78	78.9	10.8	0,013	6.77	0.30		
62.3	19	16.06	7.78	78.9	10,8	0.013	6,74	0,22		
65.6	20	16,06	7.77	78.7	10.8	0.013	6,74	0-25		
68.9	21	16.05	7.76	78,7	10.8	0,013	6,72	0,24		
72.2	22	16.03	7-73	78,4	10,8	0,013	6.71	0,23		
75.5	23	16.03	7.73	78.3	10.8	0,013	6.68	0.20		
78.7	24	16.00	7.69	77.9	10,8	0.013	6.65	0.28		
82.0	25	15.99	7.65	77.5	10,8	0,013	6.60	0,26		
85.3	26	15.87	7.56	76,4	10.8	0,013	6.55	0.21		
88.6	27	15.64	7.47	75.0	10.8	0.0/3	6,40	0,11		
91.9	28	15,33	7.31	72.9	10,6	0,013	6,31	0.18		
95.1	29	14.12	6.99	67.8	10,2	0,013	6.07	0,08		
98.4	30	13.37	6.86	65,6	9.9	0,013	5,98	0,13		
101.7	31	12.89	6.93	65.7	9.8	0,013	6.01	0.10		
105.0	32	12,45	6.95	65,2	9.7	0.013	5.96	0,13		
108.3	33	12,25	6,98	65-1	9.6	0,013	5,97	0,23		
111.5	34	12.12	7.02	65.4	9.6	0,013	5,96	0.07		

Reservoir - Water Quality Vertical Profiles

Dep	oth	Temp		00	Conductivity	Specific Conductance	pH	Turbidity	Water	N
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	Notes
					ORDER DE	(CONTINUE		(11.0)		
114.8	35	12.01	6.96	64.6	9.5	0.013	5.97	0.14		
118.1	36	11.75	6-96	64.2	9.5	0.013	5.94	0.06		
121.4	37	11.58	6.93	63.7	9.5	0.013	5.94	0.05		
124.7	38	11.42	7.02	64.2	9.4	0.013	5.93	0.12		
128.0	39	11.18	7.01	63.8	9.4	0.013	5.31	0,03		
131.2	40	10.98	7.06	64.0	9.4	0.013	5.90	0.09		
134.5	41	10,83	7.10	64,1	9.3	0.013	5.91	0.10		
137.8	42	10.66	7.17	64.5	9.3	0,013	5.92	0.06		
141.1	43	10,50	7.19	64.4	9.3	0.013	5.92	0.03		
144.4	44	10,41	7.21	64.5	9.2	0.013	5,92	0.07		
147.6	45	10,28	7.19	64.1	9.2	0,013	5.89	0.02		
150.9	46	10,17	7.19	64.0	9.2	0.013	5.89	0.04		
154.2	47	10.09	7.21	64.0	9.2	0-013	5.88	0.06		
157.5	48	9,94	7.19	63.6	9-1	0.013	5-89	0.18		
160.8	49	9.80	7.20	63.5	9.1	0.013	5.87	0.05		
164.0	50	9-68	7-18	63.2	9-1	0.013	5.87	0,07		
167.3	51	9.53	7.14	62.5	9./	0.013	5.88	0.07		
170.6	52	9,42	7.08	61.8	9.2	0.013	5.82	0.07		
173.9	53	9.35	6.97	60.7	9.2	0.013	5.82	0.11		
177.2	54	9.26	6.88	59.8	4.2	0,013	5.81	0.09		
180.4	55	9.18	6,76	58.7	9.2	0,013	5.80	0.18		
183.7	56	9.12	6.72	58.3	9.2	0.013	5.78	0-10		
187.0	57	8,90	6.59	56.8	9.2	0.013	5,77	0.10		
190.3	58	8.78	6.49	55,8	9.2	0.013	5.76	0.10		
193.6	59	8,48	6.39	54.5	9.2	0-013	5.75	0.13		
196.8	60	8-17	6.31	53.5	9.2	0.014	5.75	0.14		
200.1	61	7. 82	6,30	53,0	9.1	0.014	5.73	0.15		
203.4	62	7.12	6.54	54.2	8.9	0-014	5.76	0-10		
206.7	63	6.76	8.81	55,8	8,8	0.014	5.77	0.17		
210.0	64	6,60	6,92	56.5	8.8	0.014	5.77	0.18		
213.3	65	6.58	6.98	56,9	8.8	0.014	5.79	0,23		
216.5	66	6,53	6.99	56.9	8.8	0.014	5,79	0.14		Bottom
219.8	67									
223.1	68									
226.4	69									
229.7	70									
232.9	71									
236.2	72									

SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project

Page	of
Date: Time:	0930

Reservoir - Water Quality Vertical Profiles

Dep	pth	Temp		00	Conductivity	Specific Conductance	рН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(μS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	13.95	7,90	76.6	8.9	0.011	6.96	0.13		
3.3	1	13,95	7.89	76.4	8.9	0.011	6.37	0.13		
6.6	2	13.95	7.88	76,4	8.9	0,011	6.85	0.09		
9.8	3	13,95	7.86	76.1	8.9	0.011	6.45	0.13		
13.1	4	13.94	7.86	76.2	8.9	0.011	6.38	0.12		
16.4	5	13.94	7.85	76-1	8.9	0.011	6.32	0.15		
19.7	6	13,94	7,85	76.1	8.7	0.011	6.34	0-08		
23.0	7	13.94	7.84	76.0	8.9	0.011	6,31	0.08		
26.2	8	13.94	7.83	75.9	8.9	0.011	6,31	0.08		
29.5	9	13,94	7.82	75.8	8.9	0.011	6.32	0,07		
32.8	10	13,94	7.82	75.8	8,9	0.011	6,31	0.13		
36.1	11	13.93	7,81	75.7	8.9	0.011	6.28	0.05		
39.4	12	13,92	7.80	75.6	8.9	0.011	6.31	0.08		
42.7	13	13.90	7.80	75.5	8.9	0.011	6,32	0.15		
45.9	14	13.88	7.79	75.4	8.9	0.011	6.33	0,08		
49.2	15	12.91	6.53	62.2	9.0	0.012	6,35	0.19		Bot tom
52.5	16									
55.8	17									
59.1	18									
62.3	19									
65.6	20									
68.9	21									
72.2	22									
75.5	23									
78.7	24									
82.0	25									
85.3	26									
88.6	27									
91.9	28									
95.1	29									
98.4	30									
101.7	31									
105.0	32									
108.3	33									
111.5	34									

SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project

Reservoir - Water Quality Vertical Profiles

R-15-10-IHR

Page_/_ of _/_

Date: 10/27/2626 Time: 10/1

Secchi (ft): _ 3 0 . 4

Personnel: EES, LHY

Site Notes:

Lat/Long (NAD83): _

Dep	oth	Temp	0	0	Conductivity	Specific Conductance	рН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	14.03	8.03	77.9	8.8	0,011	7.01	0.05		
3.3	1	14,03	8.02	77-9	8.8	0.011	6.91	0.08		
6.6	2	14.01	8.01	77,7	8.8	0,011	6.96	0.02		
9.8	3	14.01	8.00	77.6	8.8	0.011	6,96	0.03		
13.1	4	14,00	7,19	77.5	8.8	0,011	6.95	0.06		
16.4	5	13.99	7.98	77.4	8.8	0.011	6.93	0.02		
19.7	6	13,99	7.97	77.3	8.8	0.011	6.94	0.02		
23.0	7	13.99	7.96	77.3	8.8	0,011	6.92	0.04		
26.2	8	13,99	7. 95	77.1	8.8	0.011	6.91	0.03		
29.5	9	13,99	7.95	77.1	8.8	0.011	6.87	0.03		
32.8	10	13,99	7.94	77.0	8,8	0.011	6.88	0.04		
36.1	11	13.96	7.94	71,9	8,8	0.011	6.89	0.02		
39.4	12	13,93	7.94	77.0	8.8	0.011	6.88	0.10		Bottom
42.7	13									
45.9	14									
49.2	15									
52.5	16									
55.8	17									
59.1	18									
62.3	19									
65.6	20									
68.9	21									
72.2	22									
75.5	23									
78.7	24									
82.0	25									
85.3	26									
88.6	27									
91.9	28									
95.1	29									
98.4	30									
101.7	31									
105.0	32									
108.3	33									
111.5	34									

Page,		of _			
Date:	10	127	/2	0 Z	6

Reservoir - Water Quality Vertical Profiles

Time: 1038

Instrument used: E X 0
Water depth: 6 9

Site Location: R - IS - II - IHR
Lat/Long (NAD83):

Secchi (ft): 2 9. 7

Personnel: EES, LHY

Site Notes:

Dep	oth	Temp	D	10	Conductivity	Specific Conductance	pН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	14.06	8.01	77.8	8.8	0.011	6.98	0.15		
3.3	1	14.05	8,02	77-9	8.8	0.011	6.96	0.17		
6.6	2	14.04	8,01	77.8	8,8	0,01]	6.15	0.18		
9.8	3	14,03	8.01	77.7	8.8	0,011	6,75	0.05		
13.1	4	14,03	8.00	77.6	8.8	0,011	6.74	0.20		
16.4	5	14-03	7.99	77.6	8.8	0,011	6,94	0.18		
19.7	6	14-02	7.99	77.5	8.8	0,011	6-94	0.12		
23.0	7	14.01	7.97	77.4	8.8	0.011	6-94	0.16		
26.2	8	14.00	7.97	77.3	8.8	0,011	6,94	0-18		
29.5	9	14.00	7.96	77.2	8,8	0,011	6.93	0,20		
32.8	10	14-06	7.15	77.1	8.8	0.011	6.94	0.17		
36.1	11	14.00	7.94	77.1	8.8	0.011	6.91	0,14		
39.4	12	13.99	7.43	76.9	8.8	0,011	6.92	0.18		
42.7	13	13,98	7.92	76.8	8.8	0,011	6.92	0.09		
45.9	14	12.97	7.91	76,7	8.8	0.011	6-93	0.19		
49.2	15	13.74	7.72	74.5	8.8	0.01	6.77	0.18		
52.5	16	11.71	5.96	54.9	8.5	0.011	6.18	0.23		
55.8	17	10,14	4.71	41.7	8,4	0,012	5.97	0.31		
59.1	18	9,35	4.71	41.1	8.1	0,012	5,93	0.29		
62.3	19	8.87	4.65	40.1	8,0	0,012	5,90	0,15		
65.6	20	8.72	4.50	38.6	8.0	0,012	5.88	0,25		Buttum
68.9	21									
72.2	22									
75.5	23									
78.7	24									
82.0	25									
85.3	26									
88.6	27									
91.9	28									
95.1	29									
98.4	30									
101.7	31									
105.0	32									
108.3	33									
111.5	34									

((0)	3
Stillwater	Sciences

SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project

Page / of / Date: 10/30/2020 Time: 1150

Reservoir - Water Quality Vertical Profiles

Site Location: R = |S| = |S|

Site Notes:

Dep	oth	Temp	D	0	Conductivity	Specific Conductance	pН	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	9.34	8,05	70.2	9.4	0.013	6.34	0.13		
3.3	1	9.03	8,04	69.6	9,2	0.013	6.30	0.07		
6.6	2	8.96	8.11	70./	4. 2	0.013	6.30	0,03		
9.8	3	8,94	8,11	70,1	9, 2	0.013	6.30	0.09		
13.1	4	8.92	8,14	70.3	9, 2	0.013	6,29	0.08		
16.4	5	8.89	8,15	70,4	9.2	0.013	6.29	0.08		
19.7	6	8,88	8.15	70.3	9,2	0,013	6.27	0.06		
23.0	7	8.87	8.16	70.4	9.2	0.013	6,27	0.11		
26.2	8	8.86	8,18	70.5	9.1	0,013	6,28	0.14		
29.5	9	8.79	8,26	71.1	9. 2	0.013	6.30	0.12		
32.8	10	8.78	8,29	71.4	9,1	0,013	6.28	0,09		
36.1	11	8.76	8,30	71.4	9./	0,013	6.27	0.12		
39.4	12	8.71	8,34	71.7	9./	0,013	6,27	0.12		
42.7	13	8.71	8.35	71.7	9.1	0,013	6,27	0.09		
45.9	14	8,69	8,34	71.6	9.1	0.013	6,27	0.05		
49.2	15	8.68	8,33	71.5	9.1	0.013	6.27	0.12		
52.5	16	8-66	8,33	71.5	9.1	0.013	6.25	0.06		
55.8	17	8,62	8,36	71.7	9.1	0.013	6.21	0.11		
59.1	18	8,50	8,45	72.3	9.2	0.013	6.15	0.14		
62.3	19	8.38	8,59	73,3	9.3	0.014	6.16	0.15		
65.6	20	8,15	8.75	74.2	9.4	0,014	6.16	0,11		- 11
68.9	21	8.10	8.67	73,4	9.5	0.014	6.12	5.47		Bottom
72.2	22									
75.5	23									
78.7	24									
82.0	25									
85.3	26									
88.6	27									
91.9	28									
95.1	29									
98.4	30									
101.7	31									
105.0	32									
108.3	33									
111.5	34									

SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project

Page	/_ of/_
Date:	10/30/2020
Time:	1007

Reservoir - Water Quality Vertical Profiles

Site Location:	Instrument used: FXO Water depth: 2 2 . 3
Personnel: EES, LHY Site Notes:	Secchi (ft): Z 1.5 (max)
Olle Hotes.	

Dep	oth	Temp	D	0	Conductivity	Specific Conductance	pН	Turbidity	Water Sample	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/cm)	(mS/cm)	(s.u.)	(NTU)	Sample	
surf	ace	8.79	10.70	92.1	9.4	0.014	6.50	0.09		
3.3	1	8.78	10.76	92.0	9.3	0.013	6.46	0.13		
6.6	2	8.79	10.69	92.6	9.3	0.013	6.44	0.08		
9.8	3	8,79	10.68	72.0	9.3	0.013	6,42	0.13		
13.1	4	8,80	10.68	91.9	7.3	0,013	6.40	0.07		
16.4	5	8.79	10.67	91.8	4.3	0.013	6.39	0.05		
19.7	6	8.78	10,66	91.7	7.3	0,013	6,38	0,13		
23.0	7	8,65	10.65	91,3	9.5	0.014	6.44	5,57		Bettom
26.2	8									
29.5	9									
32.8	10									
36.1	11									
39.4	12									
42.7	13									
45.9	14									
49.2	15									
52.5	16									
55.8	17									
59.1	18									
62.3	19									
65.6	20									
68.9	21									
72.2	22									
75.5	23									
78.7	24									
82.0	25									
85.3	26									
88.6	27									
91.9	28									
95.1	29									
98.4	30									
101.7	31									
105.0	32									
108.3	33									
111.5	34									

((6.20)	SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project	Page of
Stillwater Sciences	Project and offili bar Project	Date: 11/05/2020
	Reservoir - Water Quality Vertical Profiles	
Site Location: Lat/Long (NAD83):	R-I3-14-5C	Instrument used:
Personnel: AM	, 665	Secchi (ft): 16.4 (max)
Site Notes:		

Dep	oth	Temp	D	0	Conductivity	* Specific Conductance	pH	Turbidity	Water	Notes
(ft)	(m)	(°C)	(mg/L)	(%)	(µS/om)	. (mS/cm)	(s.u.)	(NTU)	Sample	notes
surf	BC8	9.44	11.14	97.4	15.3	0.022	6.68	0.04		
3.3	1	9.41	(1.18	97.6	15.2	0.022	6.64	0.04		
6.6	2	9.39	11.17	97.5	15.2	5.022	6.60	0.05		
9.8	3	9.38	11.18	97.6	14.2	0.021	6.60	0.03		
13.1	4	9.36	11.20	97.7	14.5	150.0	6.59	0.03		
16.4	5	9.35	11.20	97.7.	14.3	10.020	6.63	0.25		
19.7	6									
23.0	7									
26.2	8					4				
29.5	9									
32.8	10				٠.					
36.1	11									
39.4	1,2									
42.7	13									
45.9	14									
49.2	15									
52.5	16									
55.8	17									
59.1	18									
62.3	19									
65.6	20									
68.9	21									
72.2	22									
75.5	23									
78.7	24									
82.0	25									
85.3	26									
88.6	27									'
91.9	28									
95.1	29									
98.4	30									
101.7	31						-			
105.0	32									
108.3	33									
111.5	34									

SMUD In situ Monitoring in the Upper American River Project and Chili Bar Project

Date: 11/05/7020 Time: 1230

Reservoir - Water Quality Vertical Profiles

Instrument used: ← x ○
Water depth: 11 ←

Site Location: R - IS - IS - SC Let/Long (NAD83):

Personnel: AML, CES

Secchi (ft): 16.1

Site Notes:

De	pth	Temp	D	0	Conductivity Specific Conducting	Specific Conductance	pH	Turbidity	Water	Notes
(11)	(m)	(°C)	(mg/L)	(%)	(uS/om) .	(mS/cn)	(s.u.)	(NTU)	Sample	
sur	face	10.82	9.98	90.1	17.5	0.024	6.74	0.35		
3.3	1	10.62	9.98	89.5	17.3	0.024	b.70	0.47		
6.6	2	10.23	10.05	89.5	14.1	0.024	60.68	0.51		
9.8	3	10.17	10.08	89.6	170	0.024	-	0.34		
13.1	4	10.12	10.08	89.5	14.0	0.014	6.67	0.41		
16.4	5	01.01	10.07	89.4	17.0	0.074	667	0.4%		
19.7	6	10.05	10.06	59.3	17.0	0 024	10.65	0.46		
23.0	7	10.07	10.07	89.3	14.4	0.024	10.600	0.46		
26.2	8	10.06	10.06	19.2	16.8	0.025	6.57	0.44		
29.5	9	10.04	10.05	89.2	16 7	0.023	6.44	0.22		
32.8	10	10.03	10.06	89.2	16.6	0.023	6.40	0.35		
38.1	11	10.00	10.0%	194	16.5	0.0.23	6.40	0.52		
39.4	12	9.95	10.14	89.7	16.1	0.0.23	6.50	0.34		
42.7	13	9.84	10.15	89.6	15.9	0.022	6.30	0.35		
45.9	14	9 KZ	10.12	89.2	160	0023	6.54	0. 56		
49.2	15	9.80	10.12	89.2	15.9	0.022	6.32	0.41	5	
52.5	16	9.78	10.18	89.7	15.6	0022	6.32	0,47		
55.8	17	9.77	15.01	90.0	15.6	0.022	6.53	0.43		
59.1	18	9.77	10.23	90.1	15,5	0.022	6,53	0.33		
62.3	19	9.75	10.35	90.4	15.4	0.022	6.33	0.30		
65.6	20	9.74	10.28	90.5	15.3	5500	6.34	0.26		
68.9	21	9.72	10.31	50.7	15.2	0.022	6.34	0.31		
72.2	22	9.72	10.52	90.8	15.2	0.021	6.34	0.26		
75.5	23	9.71	10.36	91.2	15.1	0.021	6.33	0.33		
78.7	24	9.69	10.40	91.5	14.9	0.021	6.33	0.27		
82.0	25	9.66	10.43	91.7	14.8	0.021	6.31	0.56		
85.3	26	9.65	10.43	91.6	14.8	0.021	6.31	0.36		
88.6	27	9.64	10.43	91.7	14.7	150.0	6.31	0.42		
91.9	28	9.62	10.43	91.6	(4.7	1500	(0.31	0.42		
95.1	29	9.40	10.47	91.9	145	0021	6.33	0.39		
98.4	30	9.58	10.47	91.9	14.3	0500	6.31	0.36		
101.7	31	9.55	10.44	915	14.1	0,020	6.30	0.74		
105.0	32	9,53	10.41	91.2	140	0.020	6.30	1,00		
108.3	33.	9.54	10.03	87.7	14.8	1500	6.21	525.02		hotton
111.5	34					0.0		0.		

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

APPENDIX E In situ Field Calibration Sheets

This Page Intentionally Left Blank

Stillwater Sc		Wet	0	Charles Constant and Carlotte Constant and C	pg 1 of 3
		wate	er Qual	lity YSI 6920 Sonde Calibration – Daily Use	
Project: _	UARP	WINTER	WQ	SUBJEY Y	
Unit ID: _	YSI	Ελυ			
. Sampling	Event Da	ite(s): 1/	22 -	24/2020	

Date and time // 22/2020 Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	16,45	978	1000	
Cond (uS/cm @ 25°C)	1,413	16.57	-	1447	
DO (%)	~ 100.5	16.59	100.8	100.8	766.4 mm Ha
D0 (mg/L)*	~ 9.8	16.59		9.82	Check solubility table*
pH4	pH4	16.6	4.30	4.00	
pH 7	pH 7	16.3	7.16	7.04	
pH 10	pH 10	16.5	10.25	10.10	
Turbidity	0.0	14.6	-0.08	0.0	
Turbidity	12.4	15.6	12.24	1240	

POST-SAMPLING CALIBRATION CHECK

Date and time 1/22/2010 /600 Name ERIC SOMMEDAUGE

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	16.77	985	N		Α	
Cond (uS/cm @ 25°C)	1,413	17.10	1438	N		A	
DO (%)	~94.5	16.52	95.5	Ν		A	717.4 mm 10a
DO (mg/L)	~9.2	16.52	9.31	N		Α	Check solubility table
pH4	pH 4	17.53	3.92	N		A	
pH 7	pH 7	17.11	6.89	\sim		Α	
pH 10	pH 10	17.43	10.02	\sim		A	
Turbidity	0,0	12.32	-0.62	N		Α	
Turbidity	12.4	17.42	12.24	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Stillwater Sciences Water Quality YSI 6920 Sonde Calibration - Daily Use	pg <u>Z</u> of <u>3</u>
Project: UARP WINTER W. O. SURVEY	
Unit ID: 451 EXO	
Sampling Event Date(s): 1/22-24/2020	

Date and time 1/23/2020 PRE-SAMPLING CALIBRATION Name ERIC SOMMERA UER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	15,5	10 23	1000	
Cond (uS/cm @ 25°C)	1,413	14.7	_	1407	
DO (%)	~94.5	16.8	93.8	94.4	717.8 MM Ha
DO (mg/L)*	~9.1	16.8	_	9.18	Check solubility table*
pH4	pH4	16.7	3,86	4.00	
pH 7	pH 7	16.3	6.88	7.04	
pH 10	pH 10	15.1	10.08	10.12	
Turbidity	0.0	16.8	-0.10	0.40	
Turbidity	12.41	17.2	11.87	12.40	

Date and time 1/23/2020 1706 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	18.23	983	\sim		A	
Cond (uS/cm @ 25°C)	1,413	18.25	1366	N		A	
DO (%)	~94	12.41	95.4	Ν		A	
D0 (mg/L)	~ 10.0	12.41	10.17	N		A	Check solubility table
pH4	pH 4	17.19	4.06	N		Α	715.5 mm Hg
pH 7	pH 7	17.86	7.02	\sim		A	,
pH 10	pH 10	17.85	10.07	N		A	
Turbidity	ð	17.92	0.04	N		A	
Turbidity	12.4	16.30	12.58	\sim		A	
¹ See Table 1		,					

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

((- - -
Stillwater	Sciences

pg3 of 3

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: VARP WINTER WE SURVEY

Unit ID: Υςι Ελο

Sampling Event Date(s): ____1/22 - 2ペノひての

PRE-SAMPLING CALIBRATION

Date and time 1/24/20 0630 Name ERIC SOMMER AUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	18.99	980	1000	
Cond (uS/cm @ 25°C)	1,413	16.54		1440	
DO (%)	94	17.8	93.9	94.2	
DO (mg/L)*	~9.0	17.8	~	8.48	Check solubility table*
pH4	pH4	18.9	4.08	4,00	715.9 mm Hy
pH 7	pH 7	19.0	7.03	7.03	7
pH 10	pH 10	19.1	10,09	10.07	
Turbidity	0.0	17.3	0.00	0.00	
Turbidity	12.4	17.7	12.76	12.40	

POST-SAMPLING CALIBRATION CHECK Date and time 1/24/2020 | 600 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	19.1	1015	N		Α	
Cond (uS/cm @ 25°C)	1,413	18.8	1424	N		A	
DO (%)	~100.5	17.5	100.2	N		A	
DO (mg/L)	~9.6	17.5	9,59	N		A	Check solubility table
pH4	pH 4	19.2	4.01	N		A	764, Omm 119
pH 7	pH 7	18.9	6.99	N		A	,
pH 10	pH 10	18.9	10-08	N		A	
Turbidity	0.0	16.0	0.89	N		Á	
Turbidity	12.4	18.8	12.46	~		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

pg 1 of 8

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SMUD IN SITU WATER QUALITY PRING SURVEY

Unit ID: YSI Exo

Sampling Event Date(s): 5/19 -29/2020

PRE-SAMPLING CALIBRATION

Date and time 5/19/2020 0615 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	20.6	1008	1800	,
Cond (uS/cm @ 25°C)	1,413	20.1	_	1395	
DO (%)	100	19.8	98.4	100.0	760.2 mm Ha
DO (mg/L)*	9.1	19.8		9.13	Check solubility table*
pH4	pH4	20.5	4.10	4.00	
pH 7	pH 7	20.8	7.00	7.02	
pH 10	pH 10	20.4	10.11	10.05	
Turbidity	0.0	20.9	-0.08	0.00	
Turbidity	12.4	21.0	12.30	12.40	

POST-SAMPLING CALIBRATION CHECK

Date and time 5/19/2020 1718 Name ERIC SOMMERAVER

000 22.4 413 21.76	1393	~		A	
413 21.76	1393	N			
20 17 17				A	
00 17.17	102.1	N		Λ	760.2 mm Ha
1.6 17.17	9.84	N		A	Check solubility table*
H4 21.36		N		A	
H7 21.29	7.00	\sim		Α	
H 10 21.87	10.02	\sim		A	
.0 21.17		N		Α	
		N		A	
ŀ	14 21.36 17 21.29 110 21.87 0 21.17	14 21.36 4.06 17 21.29 7.00 110 21.87 10.02 0 21.17 0.02	14 21.36 4.06 N 17 21.29 7.00 N 110 21.87 10.02 N 0 21.17 0.02 N	14 21.36 4.06 N 17 21.29 7.00 N 110 21.87 10.02 N 0 21.17 0.02 N	14 21.36 4.06 N A 17 21.29 7.00 N A 110 21.87 10.02 N A 0 21.17 0.02 N A

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

(Œ	220)
Stil	lwater	Sciences

pg 2 of 8

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SMul	N 51	TU WATER	QUALITY	SPRING	SURVEY	_
Unit ID: YSI	EXO			1		
Sampling Ever	nt Date(s):	5/19-29	12020			

PRE-SAMPLING CALIBRATION Date and time 5/20/1020 0530 Name ERK SOMMERALER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	20.4	989	1000	
Cond (uS/cm @ 25°C)	1,413	20.0	~	1400	
DO (%)	100	18.6	101.9	100.4	
D0 (mg/L)*	9.3	18.6	_	9.37	Check solubility table*
pH4	pH4	20.4	4.01	4.00	762.8 mm Ha
pH 7	pH 7	20.5	7.03	7.02	
pH 10	pH 10	20.8	10.00	10.05	
Turbidity	0.0	19.8	-0.03	0.00	
Turbidity	12.4	20.9	12.32	12.40	

POST-SAMPLING CALIBRATION CHECK Date and time 5/20/2020 1700 Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	23.70	1000	N		A	
Cond (uS/cm @ 25°C)	1,413	24.30	1409	N		Α	
DO (%)	100	21.02	99.6	N		A	761.7 mm Ho
DO (mg/L)	8.9	21.04	8.88	N		4	Check solubility table
pH4	pH 4	23.49	4.06	N		A	
pH 7	pH 7	23.78	7.04	N		A	
pH 10	pH 10	23.95	10.06	N		A	
Turbidity	0.0	22.62	0.05	N		A	
Turbidity	12.4	23.89	12.419	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Stillwater Sciences	pg 3 of 8
Water Quality YSI 6920 Sonde Calibration - Daily Use	
Project: SMUD IN SITE WATER QUALITY SARING SURVEY	
Unit ID: 「Śl Exo	
Sampling Event Date(s): 5/19-29 /2020	

PRE-SAMPLING CALIBRATION

Date and time 5/20/2020 2035 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	23.72	1000	1000	
Cond (uS/cm @ 25°C)	1,413	23.78	_	1409	
DO (%)	Low	19.0	99.2	100.2	761.7 mm /m
DO (mg/L)*	1.3	19.0	_	9.31	Check solubility table*
pH4	pH4	23.1	4.05	4.00	
pH 7	pH 7	22.7	7.03	7.01	
pH 10	pH 10	23.7	10.10	10.02	
Turbidity	0.6	23.5	0.11	0.00	
Turbidity	12.4	24.4	12.38	12.40	

POST-SAMPLING CALIBRATION CHECK

Date and time 5/21/20 1706 Name BIL SOMM ELAVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	25.89	984	N		A	
Cond (uS/cm @ 25°C)	1,413	25.71	1391	N		4	
DO (%)	100	23.97	100.9	N		A	758.0 mm He
D0 (mg/L)	8.4	23,97	8.48	~		A	Check solubility table
pH4	pH 4	24.89	4.12	N		4	
pH 7	pH 7	24.39	7.05	N		A	
pH 10	pH 10	24.85	10.06	\sim		A	
Turbidity	0.0	22.11	0.03	N		А	
Turbidity	12.4	24.13	12.46	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept Qualify		Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

CCC	· -
Stillwater	Sciences

pg 4 of 8

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SMUD IN SITU WATER QUALITY SPRING SURVEY

Unit ID: YSI EXU

Sampling Event Date(s): 5/19-29/2010

PRE-SAMPLING CALIBRATION

Date and time 5/12/2020 0600 Name ERIL SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	14.9	1002	1000	
Cond (uS/cm @ 25°C)	1,413	18.99	_	1409	757.6 mm Ha
DO (%)	100	17.8	100.5	99.7	7
DO (mg/L)*	9.4	17.8	-	9.47	Check solubility table*
pH4	pH4	18.3	4.08	4.00	
pH 7	pH 7	18.9	7.11	7.03	
pH 10	pH 10	19-1	10.12	10.07	
Turbidity	0.0	21.3	0.03	0.00	
Turbidity	12.4	21.4	12.65	12.40	

POST-SAMPLING CALIBRATION CHECK

Date and time 5/22/2020 1530 Name ERK SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	21.48	198	N		Α	
Cond (uS/cm @ 25°C)	1,413	22.12	1410	N		A	
DO (%)	100	20.70	99.6	N		A	757.6 mm Ha
D0 (mg/L)	8.9	20.70	8.92	N		A	Check solubility table
pH4	pH 4	22.95	4.00	N		Α	
pH 7	pH 7	22.57	6.98	N		A	
pH 10	pH 10	22.32	10.11	N		A	
Turbidity	0.0	20.62	0.07	N		A	
Turbidity	12.4	22.78	12.48	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

pg <u>5</u> of <u>8</u>

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SMUD 2020 IN SITU WATER QUALITY SPRING SURVEY

Unit ID: YSI EXO

Sampling Event Date(s): 5/19/2020 - 5/29/2020

Date and time 5/26/1020 PRE-SAMPLING CALIBRATION Name ERIC SOMMERANCE

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	26.42	994	1000	
Cond (uS/cm @ 25°C)	1,413	25.42	_	1410	
DO (%)	99.5	27.28	98.6	99.5	
DO (mg/L)*	7. 9	27.28		7.91	Check solubility table*
pH4	pH4	26.3	4.25	4.01	756.4 May 1/a
pH 7	pH 7	25.8	7.25	7.00	
pH 10	pH 10	27.9	10.33	9.97	
Turbidity	0.0	24.4	0.00	0.80	
Turbidity	12.4	26.3	12.23	12.40	

Date and time 5/26/200 2005 Name EQIC SOMMETIMUSE

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	32.24	1003	N		A	
Cond (uS/cm @ 25°C)	1,413	32.60	1377	N		14	
DO (%)	99.5	33.20	98.7	\sim		A	
DO (mg/L)	7.1	33.20	7.04	\sim		A	Check solubility table
pH4	pH 4	32.64	3.78	N		a	754-9 mm Hg
pH 7	pH 7	31.76	6.70	N		a	
pH 10	pH 10	31,44	9.72	N		Q	
Turbidity	6.0	19.8 4	0.02	N		B	
Turbidity	124	32,12	12.32	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept Qualify		Reject
Dissolved oxygen	% saturation	≤5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

(600	⋑					, ,
Stillwater Sci	iences					pg 6 of 8
		Water Qua	lity YSI 692	0 Sonde Calibra	tion – Daily Us	e
Project: _	SMUD	11/5170	WATER	QUALITY	SPRING	SUPVEY
Unit ID: _	Y51	EXO				
Sampling	Event Date(s	s): 5/19/7	.020 —	- 5/29/20	20	

Date and time 5/26/200 0545 Name GRIC SOM M GRAVEN

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	27. 7	1407	1000	
Cond (uS/cm @ 25°C)	1,413	28.6	_	1409	
DO (%)	99.5	35.30	99.5	99.3	
DO (mg/L)*	7.1	33.30	7.11	7.10	Check solubility table*
pH4	pH4	29.2	3.31	4.01	NEW PH sensor
pH 7	pH 7	29.0	6.27	6.99	NEW PH sensor
pH 10	pH 10	28.7	9.32	9.96	
Turbidity	0.0	25.2	0.04	0.00	
Turbidity	12.4	29.1	12.33	12.40	

Date and time 5/27/2020 1810 Name ERIC SOMMERANDER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	31,59	1005	~		A	
Cond (uS/cm @ 25°C)	1,413	31.72	1440	N		A	
DO (%)	99.5	29,35	100.1	N.		A	
D0 (mg/L)	7.5	29.85	7.65	N		A	Check solubility table
pH4	pH 4	32,31	4.07	\sim		Α	755.5
pH 7	pH 7	32.58		N		A	
pH 10	pH 10	32.23	9.92	N		A	
Turbidity	0.6	26.33	0,02	N		A	
Turbidity	12.4	31,48	12.52	N		A	
¹ See Table 1							•

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	06		Qualify	Reject
Dissolved oxygen			> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	Turbidity NTU ≤ 5%		> 5% and ≤ 10%	> 10%

pg 7 of 8

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SMUD IN SITU WATER QUALITY SPRING SURVEYS

Unit ID: YSI EXU

Sampling Event Date(s): 5/14/2020 - 5/29/2020

Date and time 5/8/200 PRE-SAMPLING CALIBRATION
0600 Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	25.68	1002	1000	
Cond (uS/cm @ 25°C)	1,413		_	1409	
DO (%)	99.5	23.03	100.5	99.6	
D0 (mg/L)*	~8.55	23.03		8.54	Check solubility table*
pH4	pH4	23.4	4.10	4.00	756.9 mm Hg
pH 7	pH 7	24.1	7.09	7.01	
pH 10	pH 10	23.8	10.13	10.01	
Turbidity	0,0	25.9	0.05	0.00	
Turbidity	12.4	25.1	172.74	12.40	

POST-SAMPLING CALIBRATION CHECK Date and time 5/28/2020 2000 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (68/cm @ 25°C)	1,000	27.36	0.999	~		A	
Cond (uS/cm @ 25°C)	1,413	27.00	1348	N		Ą	
DO (%)	~99.5	29.24	99.0	N		A	
DO (mg/L)	~7.6	29.24	7.59	N		A	Check solubility table
pH4	pH4	27.74	4.05	N		A	755.1 mm Hy
pH 7	pH7	26.71	6.98	N		A	,
pH 10	pH 10	26.75	10.01	N		A	
Turbidity	0.0	25.82	0.03	N		A	
Turbidity	12.4	27.08	12.40	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

pg 8 of 8

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SMUD IN SITU WATER QUALITY SPRING SURVEY

Unit ID: YSI EXO

Sampling Event Date(s): 5/19/2020 -> 5/29/2020

PRE-SAMPLING CALIBRATION Date and time 5/28/2020 2040 Name ERIC SOMMERAN ER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	26.20	999	1000	
Cond (uS/cm @ 25°C)	1,413	26.11	_	1409	
DO (%)	~99.5	25.55	98.9	99.4	75504 mm Ha
D0 (mg/L)*	8.1	25.55	_	8.12	Check solubility table*
pH4	pH4	26.5	4.08	4.01	
pH 7	pH 7	26.8	7.03	7.00	
pH 10	pH 10	26.7	10-09	9.48	
Turbidity	0.0	25.5	-0.13	0.00	
Turbidity	12.4	26.6	12.65	12.40	

POST-SAMPLING CALIBRATION CHECK Date and time 5/29/2020 2030 Name FRIC SOMMERAUST

Parameter Std. Std. Re-Cal Post-Cal Post-MQO Notes Value Temp Sampling Value Code¹ or No? (°C) Value 1002 Cond (uS/cm @ 25°C) 1,000 23.46 N N Cond (uS/cm @ 25°C) 1,413 23.48 A 1405 757.00 ma Ha 23.47 N DO (%) ~99.5 99.5 N À *DO (mg/L) ~8.5 23,47 8.46 A pH4 pH4 23.74 N 4.03 23.70 A pH7 N pH7 6.93 pH 10 N pH 10 10.61 0,0 23.49 Turbidity N 0.09 Turbidity 23.26 N 12.42 12-4 ¹ See Table 1

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

(CC	∞
Stillwater	Sciences

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SMUD WA INSHU SUMMER RIVERTUE WE

Unit ID: YSI EXU

Sampling Event Date(s): 8/3-6 1 2020

PRE-SAMPLING CALIBRATION Date and time 8/2/26 2130 Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	22.9	1005	1000	
Cond (uS/cm @ 25°C)	1,413	23.0	_	1409	
DO (%)	~100	23.2	101.3	100.0	
DO (mg/L)*	~8.6	23.2	8.86	8.52	Check solubility table* 758.8
pH4	pH4	23.0	3.96	4.00	100.8
pH 7	pH 7	22.8	7.04	7.01	
pH 10	pH 10	22.9	10.30	10.03	
Turbidity	0.0	24.9	-0.02	0.00	
Turbidity	12.4	26.5	10.19	12.40	

Date and time 8/3/20 2035 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	25.5	1000	N		A	
Cond (uS/cm @ 25°C)	1,413	25.2	1403	W		A	
DO (%)	~100	26.6	99.2	N		A	
DO (mg/L)	8.0	26.6	7.96	N		À	Check solubility table
pH4	pH 4	24.9	4,14	N		A	758.1
pH 7	pH 7	25.4	7.06	N		A	72011
pH 10	pH 10	25.1	10.07	N		A	
Turbidity	0.0	25.8	0.03	N		1	
Turbidity	12.4	24.9	12.49	N		A	
¹ See Table 1		•					

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

(CC	
Stillwater	Sciences

Water Quality YSI 6920 Sonde Calibration – Daily Use

CHIND WAS THE TO A PARTY

Project: SMUD WG IN SITU RIVERINE SURVEY

Unit ID: YS | Exo

Sampling Event Date(s): 8/3-6 /2020

PRE-SAMPLING CALIBRATION
Date and time 8/3/20 2730 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	24.8	1004	1000	
Cond (uS/cm @ 25°C)	1,413	24.8		1408	
DO (%)	~100	24.3	99.8	99.8	
DO (mg/L)*	~8.9	24.3	i	8.36	Check solubility table* 758.2 mm/b
pH4	pH4	23.8	4.15	4.00	708, 5 70000
pH 7	pH 7	24.5	7.01	7.01	
pH 10	pH 10	24.5	10.04	10.01	
Turbidity	0,0	25.6	0.67	0.00	
Turbidity	12.4	25,2	12.44	12.40	

Date and time 8/4/20 (815 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	25.9	1001	N		A	
Cond (uS/cm @ 25°C)	1,413	26.0	1404	N		A	
DO (%)	~ 99.5	26.5	99.2	v		A	756.1 may 44
DO (mg/L)	~8.0	26.5	8.1	N		A	Check solubility table
pH4	pH 4	24.6	3,99	N		A	
pH 7	pH 7	25.5	6.96	N		A	
pH 10	pH 10	25.8	10.07	N		A	
Turbidity	0.0	24.9	0.02	N		A	
Turbidity	12.4	25.8	12.44	N		Α	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

pg 3 of 4

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SAUD WE IN SITU RIVERINE

Unit ID: YS1 EXO

Sampling Event Date(s): 8/3-6/7020

PRE-SAMPLING CALIBRATION
Date and time 8/5/2020 0500 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	23,1	999	1000	
Cond (uS/cm@25°C)	1,413	22.9	-	1412	
DO (%)	~ 100	22.9	99,4	99.7	757.5 mm My
DO (mg/L)*	8.6	22.9	_	8.56	Check solubility table*
pH4	pH4	22.6	4.01	4.00	
pH 7	pH 7	22.9	6-93	7.01	
pH 10	pH 10	22.6	10.10	10.03	
Turbidity	0.0	24.0	-0.15	0.0	
Turbidity	12.9	22.5	12.40	12.40	

POST-SAMPLING CALIBRATION CHECK
Date and time 8/5/2020 2100 Name ERAVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	23.6	1001	N		Α	
Cond (uS/cm @ 25°C)	1,413	23.7	1402	N		Á	
DO (%)	N 100	75.4	100.0	N		A	
D0 (mg/L)	~8.2	25.4	8.20	N		A	Check solubility table
pH4	pH 4	24.2	4.06	N		A	757,4 mm 1/4
pH 7	pH 7	24.0	7.01	N		A)
pH 10	pH 10	24.0	10.07	N		A	
Turbidity	0.0	23.5	0.01	AJ		A	
Turbidity	12.4	23,8	12.48	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

(3)	3
Stillwater	Sciences

pg 4 of 4

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SMUD SUMMER INSTITU RIVERINE
Unit ID: YSI EXO

Sampling Event Date(s): 8/3~6/2020

Date and time 8/6/2020 OSOU Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	22.2	998	1000	
Cond (uS/cm @ 25°C)	1,413	22.1	-	1417	
DO (%)	~1b0	21.8	100.0	99.6	757.3 mm Ha
DO (mg/L)*	~ 8.7	21.8	_	8.74	Check solubility table*
pH4	pH4	22.2	4.36	4.00	
pH 7	pH 7	220	7.28	7.01	
pH 10	pH 10	23.3	10.37	10.02	
Turbidity	0.0	22.8	0.11	0.00	
Turbidity	12.4	23.0	12.67	12.40	

POST-SAMPLING CALIBRATION CHECK Date and time 8/6/200 2130 Name ELIC SOMMEDAVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	26.0	1002	N		Δ	
Cond (uS/cm @ 25°C)	1,413	26.1	1415	N		Ą	
DO (%)	~ 99.5	23.5	99.3	N		A	
DO (mg/L)	N8.4	23.5	8.44	N		A	Check solubility table
pH4	pH 4	25.9	4.07	N/		A	756.4
pH 7	pH 7	26.9	7.02	N/		A	mm 174
pH 10	pH 10	26.1	10.08	N		A	
Turbidity	0.0	24.2	-0.02	N		4	
Turbidity	124	25.6	1226	N		A	
¹ See Table 1	•						

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Stillwater Scien	nces	Water Quality YSI 6920 Sonde Calibration	pg ∫ of 9
Project:	SMUT W		
Unit ID:	EXU	FALL	
Sampling Ev	ent Date(s): _	10/27- 11/6/2020	

Date and time 10/27/2020 OFZZ Name Elle Sampling

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	14.91	1003	1000	
Cond (uS/cm @ 25°C)	1,413		~~	1418	
DO (%)	~82.5	16.8	84.9	82.4	
D0 (mg/L)*	~7.9	16,8	8.23	8.00	Check solubility table*
pH4	pH4	15.6	4,12	4.00	626, 1 mm 1+4
pH 7	pH 7	16.0	7.04	7.04	
pH 10	pH 10	15.5	9.86	10.12	
Turbidity	0.0	14.7	0.07	0.00	
Turbidity	12.4	14.6	12.69	12.40	

POST-SAMPLING CALIBRATION CHECK
Date and time 10/27/2020 1620 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	19.43	998	N		A	
Cond (uS/cm @ 25°C)	1,413	19.88	1408	N		A	
DO (%)	~100	20.98	97.8	N		A	
DO (mg/L)	28.9	20.98	8.71	N		A	Check solubility table
pH4	pH 4	19.32	3.92	~		A	761.3
pH 7	pH 7	19.59	7.06	N		A	
pH 10	pH 10	19.43	10.04	N		A	
Turbidity	0.6	10.05	0.05	N		Λ	
Turbidity	12.4	19.72	12.55	~		4	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

((()	220)
SetTherator	Salamana

pg 1 of 1

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SMUD Wa

Unit ID: Εχο

Sampling Event Date(s): 10/27 - 11/6 (2020

PRE-SAMPLING CALIBRATION

Date and time 10/27/1020 1655 Name ERIC SOMM ERAVER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	17,96	996	1000	
Cond (uS/cm @ 25°C)	1,413	18.27		1419	
DO (%)	~100		97.9	100.2	761.4 mm Hg
DO (mg/L)*	29.2	19.49	_	9.17	Check solubility table*
pH4	pH4	19.5	3.95	4.00	
pH 7	pH 7	18.0	7.02	7.03	
pH 10	pH 10	17.8	10.10	10.09	
Turbidity	0.0	20.8	-0.11	0.00	
Turbidity	12.4	20.5	12.56	12.40	

POST-SAMPLING CALIBRATION CHECK

Date and time 10/28/2020 1800 Name ERIC SOMMER AUER

Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code ¹	Notes
1,000	22,94	998	N		A	
1,413	23.06	1409	~		A	
~100	20.86	100.1	~		A	
~8.9	20.86	8.94	N		Α	Check solubility table*
pH 4	22.47	4.09	N		A	761.2 mm Hz
pH 7	22.76	7.11	N		A	,
pH 10	22.72	10.10	N		A	
0.0	20.83	0.02	N		A	
12.4	20.95	12.39	~		A	
	1,000 1,413 ~100 ~8.9 pH 4 pH 7 pH 10	Value Temp (°C) 1,000 22.94 1,413 23.06 ~100 20.86 ~8.9 20.86 pH 4 22.47 pH 7 22.75 pH 10 22.77 0.0 20.83	Value Temp (°C) Value 1,000 22.94 998 1,413 23.06 1409 ~100 20.86 100.1 ~8.9 20.86 8.94 pH 4 22.47 9.09 pH 7 22.75 7.11 pH 10 22.72 10.16 0.0 20.83 0.02	Value Temp (°C) Sampling Value Yes or No? 1,000 22.94 998 ✓ 1,413 23.06 1409 ✓ ~ 100 20.86 100.1 ✓ ~ 8.9 70.86 8.94 ✓ pH 4 22.47 4.09 ✓ pH 7 22.75 7.11 ✓ pH 10 22.72 10.16 ✓ 0.0 20.83 0.02 ✓	Value Temp (°C) Sampling Value Yes or No? Value 1,000 22.94 99 8 ✓ 1,413 23.06 1409 ✓ ~100 20.86 100.1 ✓ ~8.9 70.86 8.94 ✓ pH 4 22.47 4.09 ✓ pH 7 22.75 7.11 ✓ pH 10 22.72 10.16 ✓ 0.0 20.83 0.02 ✓	Value Temp (°C) Sampling Value Yes or No? Value Code¹ 1,000 22.94 998 N A 1,413 23.06 1409 N A ~ 100 20.86 100.1 N A ~ 8.9 70.86 8.94 N A pH 4 22.47 4.09 N A pH 7 22.75 7.11 N A pH 10 22.72 10.16 N A 0.0 20.83 0.02 N A

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Stillwater Sciences			pg 3 of 9
	Wate	Quality YSI 6920 Sonde Calibration -	
Project:	SMUD	Wa	
Unit ID:	×0		
Sampling Even	t Date(s):10/1	7-11/6/2020	

Date and time 10/29/2020 OBUS Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	14,17	995	1000	
Cond (uS/cm @ 25°C)	1,413	15.04	-	1405	
DO (%)	~80	17.2	80.1	79.9	607. 2
DO (mg/L)*	~7.7	17.2	-	7.73	Check solubility table*
pH4	pH4	16.9	4.07	4.00	
pH 7	pH 7	14.4	7.17	7.05	
pH 10	pH 10	15.3	10.15	10.12	
Turbidity	0.0	12.8	0.21	0.00	
Turbidity	12.4	16.7	12.13	12.40	

POST-SAMPLING CALIBRATION CHECK
Date and time 10/19/200 18/5 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	19.62	999	N		A	
Cond (uS/cm @ 25°C)	1,413	19.47	1409	N/		P	
DO (%)	~80	21.19	81.6	Ν,		A	605.0
DO (mg/L)	27.0	21.19	7.20	~		A	Check solubility table
pH4	pH 4	19.81	4.05	N		A	
pH 7	pH 7	19.16	7.10	N		A	
pH 10	pH 10	18.08	10.03	N		Α¹	
Turbidity	0.0	18.01	0.05	N		A	
Turbidity	12.4	17.96	12.38	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Stillwater S			Water Quality YSI 6920 Sonde Calibration - Daily Use	pg of ¶
Project:	SMUD	wa		
Unit ID: _	EXO			

PRE-SAMPLING CALIBRATION
0733 Name ERIC SAMERAUER Date and time 10/30/2020

Sampling Event Date(s): 10/27- 11/6/2020

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	14.57	1009	1000	
Cond (uS/cm @ 25°C)	1,413	19.34	~	1409	
DO (%)	~ 88	14.62	88.8	88.3	
DO (mg/L)*	~8.9	14.51	-	8.9	Check solubility table*
pH4	pH4	15.9	4.08	4.00	671.4 mm 1+9
pH 7	pH 7	15.2	7.07	7.04	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
pH 10	pH 10	15.1	9.98	10.12	
Turbidity	0.0	15.5	-0.15	0.0	
Turbidity	12.4	13.5	12.60	12.40	

POST-SAMPLING CALIBRATION CHECK Date and time 10/30/2020 1617 Name ERIL SOMMER AVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	19.48	195	N		A	
Cond (uS/cm @ 25°C)	1,413	18.95	1366	N		A	
DO (%)	~88	24.46	87.5	Ν		Α	
DO (mg/L)	~7.3	24.44	7.31	N		A	Check solubility table
pH4	pH 4	22.78	3.91	N		Α	669.8 mm Ha
pH 7	pH 7	20.02	7.08	N		A	
pH 10	pH 10	18.63	10.16	N		Α	
Turbidity	0.6	20.44	0.09	~		A	
Turbidity	12.4	18.57	12.54	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

pg <u>5</u> of 9

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SMVD WQ

Unit ID: YS1 EXO

Sampling Event Date(s): 10/27- 11/6/2000

Date and time 11/2/2020 DRE-SAMPLING CALIBRATION Name ERIC SOMMERAVER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	16.15	992	1000	
Cond (uS/cm @ 25°C)	1,413	15.78		1408	
DO (%)	~89	17.1	90.3	88.6	673.2
DO (mg/L)*	8.5	17.1		8.54	Check solubility table*
pH4	pH4	18-0	3.97	4.00	
pH 7	pH 7	17.6	7.16	7.03	
pH 10	pH 10	15.6	10.13	10.11	
Turbidity	0.0	15.7	0.14	0.0	
Turbidity	12.4	15.2	12.61	12.4	

POST-SAMPLING CALIBRATION CHECK
Date and time 11/2/2020 1020 Name CALL SOM MERAVER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	17.67	1601	~		A	
Cond (uS/cm @ 25°C)	1,413	17.34	1418	N		A	
DO (%)	~[00	18.02	98.7	~		A	
D0 (mg/L)	~9.4	18.02	9. 23	~		A	Check solubility table
pH4	pH 4	17.95	3.96	P		A	762 4
pH 7	pH 7	17,57	7.07	Ν		A	
pH 10	pH 10	(7.61	10.68	N		Α	
Turbidity	0.0	19.82	0.01	~		A	
Turbidity	124	19.64	12.36	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

	<u>~</u>	3
Sri	llwater	Sciences

pg Gof 9

Water Quality YSI 6920 Sonde Calibration - Daily Use

Project: SMVD W&

Unit ID: 151 EXU

Sampling Event Date(s): 10/17- 11/6/2010

PRE-SAMPLING CALIBRATION

Date and time 11/3 NOW 0905 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	17.75	1003	10 99	
Cond (uS/cm @ 25°C)	1,413	17.91	4	1347	
DO (%)	~94	19.0	92.1	94.)	715,3 mm/m
DO (mg/L)*	8.7	18.91	/-	8.74	Check solubility table*
pH4	pH4	19.2	4.06	4.00	
pH 7	pH 7	18.6	7.11	7.03	
pH 10	pH 10	17.9	10.10	10.09	*
Turbidity	0.0	11.5	-0.09	0.0	
Turbidity	12.4	17.9	11.92	12.4	

POST-SAMPLING CALIBRATION CHECK

Date and time 11/3/200 1524 Name ERIC SOMMERWER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	18.96	999	N		Α	
Cond (uS/cm @ 25°C)	1,413	18.12	1402	N		A	
DO (%)	~84	15.40	85.1	N		A	
DO (mg/L)	~8.3	15.56	8.48	N		Α	Check solubility table
pH4	pH 4	21.15	3.93	~		A	634.8
pH 7	pH 7	22.21	7.60	N		Α	
pH 10	pH 10	22.11	10.16	~		B	
Turbidity	0.6	22.81	-0.02	N		٨	
Turbidity	12.4	22.96	12.31	~		Α	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

CO333
car Sciences

Water Quality YSI 6920 Sonde Calibration - Daily Use pg 7 of 9

Project: SMUD Va

Unit ID: YS1 EXD

Sampling Event Date(s): 10/27/2000 - 11/6/2000

PRE-SAMPLING CALIBRATION

Date and time 11/4/600 0849 Name ERIC SAMMERAUSE

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	16.17	1011	1000	
Cond (uS/cm @ 25°C)	1,413	16.25		1398	
DO (%)	~85.5	17.7	86.0	85.7	
DO (mg/L)*	~B.1	17.6	-	8.19	Check solubility table*
pH4	pH4	16.9	3,92	LJ.00	651.1 mm Hos
pH 7	pH 7	16.8	7.09	7.64	1
pH 10	pH 10	16.7	16.19	34.10	
Turbidity	0,0	16.6	0.02	0.00	
Turbidity	12.4	15.7	12.44	12.40	

POST-SAMPLING CALIBRATION CHECK

Date and time 11/4/2020 1515 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQ0 Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	19.77	1004	\sim		A	
Cond (uS/cm @ 25°C)	1,413	18.44	1392	N		A	
DO (%)	~83	13.73	84.8	N		A	630.8 mm Ha
*D0 (mg/L)	~8.7	13.73	8.79	N		A	Check solubility table
pH4	pH 4	17.54	4.02	~		Α	
pH 7	pH 7	18.36	7.00	~		Α	
pH 10	pH 10	19.00	10.67	N		Α	
Turbidity	0.00	19.18	0-01	N		A	
Turbidity	12.4	19.69	12.52	~		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Stillwater Sc	riences	Water Quality YSI 6920 Sonde Calibration - Daily Use	pg 8 of 9
Project: _	TMUD FR		\
Unit ID: _	TSI EXU		
Sampling	Event Date(s):	10127 - 11/6/2020	

PRE-SAMPLING CALIBRATION

Name ERIC SOMMERAUER Date and time 11/5/2020 1000

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	(°C)	1000	1800	
Cond (uS/cm @ 25°C)	1,413	18,60	-	1410	
DO (%)	~94	18.6	94.6	94.3	
DO (mg/L)*	~8.8	18.7	1-	8.82	Check solubility table*
pH4	pH4	19.0	4.02	4.00	716.3 mm Hz
pH 7	pH 7	18.8	6.97	7.03	
pH 10	pH 10	19-1	9.88	10.07	
Turbidity	0.0	19.1	-0.07	0.00	
Turbidity	12.4	18.6	12.38	12.40	

POST-SAMPLING CALIBRATION CHECK
Date and time 11/5/1010 /6/5 Name Epil Sommerauer

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	21.15	1006	N		A	
Cond (uS/cm @ 25°C)	1,413	21.84	1391	N		A	
DO (%)	~100	21,52	99.6	~		A	759.3 man Hg
DO (mg/L)	8.8	22.52	8.79	N		A	Check solubility table
pH4	pH 4	21.57	3.90	N		A	
pH 7	pH 7	21.09	6.98	N		A	
pH 10	pH 10	21.65	9.95	N		A	
Turbidity	0.0	21.39	0.04	N		A	
Turbidity	12.4	24,27	12.92	N		A	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen % saturation		≤5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Stillwater Sciences Water Quality YSI 6920 Sonde Calibration - Daily Use	pg <u>9</u> of <u>9</u>
Project: SMUT WE	
Unit ID: YGV EXU	
Sampling Event Date(s): \0 f い ~ 1\/し/しつい	
PRE-SAMPLING CALIBRATION Date and time いしんしない ロロー Name ついい	

Parameter	Std. Value	Std. Temp (°C)	Pre-Cal Value	Post-Cal Value	Notes
Cond (uS/cm @ 25°C)	1,000	17.58	996	1000	
Cond (uS/cm @ 25°C)	1,413	17.27	-	1407	
DO (%)	~96	18.7	95.4	95.7	727.4 mm 13
DO (mg/L)*	8.9	18.75	~	8,93	Check solubility table*
pH4	pH4	18.8	3.97	4.00	
pH 7	pH 7	18.7	7.08	7.03	
pH 10	pH 10	(8.0	10.27	10.08	
Turbidity	0.0	20.1	-0.13	0.6	
Turbidity	12.4	19.5	12.35	12.9	

POST-SAMPLING CALIBRATION CHECK
Date and time 11/6/2020 1700 Name ERIC SOMMERAUER

Parameter	Std. Value	Std. Temp (°C)	Post- Sampling Value	Re-Cal Yes or No?	Post-Cal Value	MQO Code ¹	Notes
Cond (uS/cm @ 25°C)	1,000	19.94	1004	N		A	
Cond (uS/cm @ 25°C)	1,413	20,08	14b0	N		A	
DO (%)	~99	19.77	98.9	N		A	751.8
DO (mg/L)	~83	19.77	9.04	N		A	Check solubility table
pH4	pH 4	20.08	4.02	N		A	1
pH 7	pH 7	20.09	6.96	~		A	
pH 10	pH 10	19.80	10.11	N		A	
Turbidity	0,0	18.51	0.02	N		A	
Turbidity	12.4	19.71	12.46	N		4	
¹ See Table 1							

Table 1: Measurement Quality Objectives - comparisons are between Post-sampling Value and Post-calibration Value

Parameter	Units	Accept	Qualify	Reject
Dissolved oxygen	% saturation	≤ 5%	> 5% and ≤ 10%	> 10%
Conductivity	uS/cm	≤ 5%	> 5% and ≤ 15%	> 15%
pH	s.u.	≤ 0.2	> 0.2 and ≤ 0.5	> 0.5
Turbidity	NTU	≤ 5%	> 5% and ≤ 10%	> 10%

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

APPENDIX F Analytical Laboratory Bacteria Reports

This Page Intentionally Left Blank

Page 1 of 2 06/25/20 13:43

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring
2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20F1013
Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Microbiological Parameters by APHA Standard Methods

Analyte	Resul	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes					
Bac-7-UVR (20F1013-01) Water	Sampled: 06/18/20 08:55	Received: 06/1	8/20 14:20											
Fecal Coliforms	<1.8	1.8	MPN/100 mL	1	2004801	06/18/20 14:40	06/21/20	SM 9221						
E. Coli	1.0	1.0	mi.		2004812	06/18/20 14:30	06/19/20	SM9223						
Bac-8-UVR (20F1013-02) Water	Sampled: 06/18/20 09:20	Received: 06/1	8/20 14:20											
Fecal Coliforms	<1.8	1.8	MPN/100 mL	1	2004801	06/18/20 14:40	06/21/20	SM 9221						
E. Coli	1.0	1.0		**	2004812	06/18/20 14:30	06/19/20	SM9223						
Bac-6-GCR (20F1013-03) Water	Sampled: 06/18/20 09:55	Received: 06/1	8/20 14:20											
Fecal Coliforms	4.5	1.8	MPN/100 mL	1	2004801	06/18/20 14:40	06/21/20	SM 9221						
E. Coli	2.0	1.0			2004812	06/18/20 14:30	06/19/20	SM9223						
Bac-5-GCR (20F1013-04) Water	Bac-5-GCR (20F1013-04) Water Sampled: 06/18/20 10:15 Received: 06/18/20 14:20													
Fecal Coliforms	7.8	1.8	MPN/100	1	2004801	06/18/20 14:40	06/21/20	SM 9221						
E. Coli	5.2	1.0	mi.		2004812	06/18/20 14:30	06/19/20	SM9223						
Bac-10-UVR (20F1013-05) Water	Sampled: 06/18/20 10:45	Received: 06/	18/20 14:2	0										
Fecal Coliforms	4.5	1.8	MPN/100 mL	1	2004801	06/18/20 14:40	06/21/20	SM 9221						
E. Coli	<1	1.0	mi.		2004812	06/18/20 14:30	06/19/20	SM9223						
Bac-9-UVR (20F1013-06) Water	Sampled: 06/18/20 11:15	Received: 06/1	8/20 14:20											
Fecal Coliforms	<1.8	1.8	MPN/100 mL	1	2004801	06/18/20 14:40	06/21/20	SM 9221						
E. Coli	2.0	1.0	mi.		2004812	06/18/20 14:30	06/19/20	SM9223						

Report To:			Client Job Number 750.10 Task 0400.02				ANAI	ANALYSIS REQUESTED				OTR/	CKI	R		
Stillwater Sciences 2855 Telegraph Ave. Suite 400				Destination Laboratory Rancho Cordova X. CLS (916) 638-7301 3249 Fitzgerald Road Rancho Cordova, CA 95742 www.californialab.com				Fec	E. coli Quanti-tray			EDF REPORT				YES X NO
Berkeley, CA 94705							al c				GLOBAL ID.					
Project Manager Emily Applequist eapplequist@stillwatersci.com Project Name SMUD In situ, Bac-T, & Chemistry Monitoring							PRESER	Fecal coliform-15 Tube				FIELD CONDITIONS:				
Sampled B	rily A	plequit, Port Koonse		☐ OTHER			WATI	Tub								
Job Description Monitor seasonal function levels in UARP reaches.						VES	2.									
Sic Location UARP										TURNAROUN TIME IN DAY						
DATE	TIME	SAMPLE	FIELD		CONTAINER							1	2	3	5	
		IDENTIFICATION	ID.	MATRIX	NO.	TYPE			Н.				*			
/x rus	(3853	Box-7-WR	-	Surface water		_	6	X	-	1		-			-X	
18/76	0900	Bac - 8 - W.P. Bac - 6 - GCR Bac - 5 - GCR Bac - 10 - OV/2	+	Surface water Surface water		+	6	X	-	_		-	-		X	
18/4	0453	Bac-6-110	-	Surface water		-	6	×	,	-		-			Х	
119/20	1015	Dar- 3- 100-	_	Surface water		-	6	X	X				-		X	
118120	1040	Date = 10-01-	-	Surface water		+	6	X		0	-	-			X	
11/10	1112	Bac-9-UVP	-	Surface water		-	6	70	1	9		-			X	INVOICE TO:
_				Surface water		-	6	-	+++	+	\vdash			-	X	Stillwater Sciences
_				Surface water		+	-	-	-	+	\vdash	-		-	X	Same as above
				Surface water	_		6		++	+	\vdash			_	Х	OMINE NO MINORS
				Surface water			6		\Box						X	Project No. 750.10 Tasl 0400-02
				Surface water			6								Х	ONIGHEA
SUSPECTED CONSTITUENTS								SAMPLE REJENTION TIME PRESERVATIVES (1) HC				(3) = C(0.1) (2) HNO, (4) = B2SO4				
			ECOMPANY DATE/TIME				RECEIVED BY (Signature) PRINT NAME/COMPA									
met	Salas	2 Entry	Mpolegus	r/Stillwase	(4)	18/20 MZO										
DECETVI	ED AT LA	AB BV:		DATE/TIME:	6/13	120	co	ENDITION	NSIC DISC	MENTS	. /	6		12:	2	

June 25, 2020

CLS Work Order #: 20F1013

COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 06/18/20 14:20. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA SWRCB ELAP Accreditation/Registration number 1233

Page 2 of 2 06/24/20 11:25

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring

2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20F0957

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Notes and Definitions

BT-4a <1.8

BT-4 <1

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

06/24/20 11:25

Page 1 of 2

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring
2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20F0957

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bac-13-IHR (20F0957-01) Water	Sampled: 06/17/20 08:05	Received: 06/1	7/20 13:55						
Fecal Coliforms	<1.8	1.8	MPN/100 mL	1	2004762	06/17/20 14:20	06/20/20	SM 9221	
E. Coli	<1	1.0			2004767	06/17/20 14:30	06/18/20	SM9223	
Bac-12-IHR (20F0957-02) Water	Sampled: 06/17/20 08:25	Received: 06/1	7/20 13:55						
Fecal Coliforms	<1.8	1.8	MPN/100 mL	1	2004762	06/17/20 14:20	06/20/20	SM 9221	
E. Coli	<1	1.0	mL.		2004767	06/17/20 14:30	06/18/20	SM9223	
Bac-11-JR (20F0957-03) Water	Sampled: 06/17/20 09:20 I	Received: 06/17	20 13:55						
Fecal Coliforms	11	1.8	MPN/100 mL	1	2004762	06/17/20 14:20	06/20/20	SM 9221	
E. Coli	1.0	1.0			2004767	06/17/20 14:30	06/18/20	SM9223	
Bac-14-BCR (20F0957-04) Water	Sampled: 06/17/20 10:45	Received: 06/	17/20 13:55						
Fecal Coliforms	<1.8	1.8	MPN/100 mL	1	2004762	06/17/20 14:20	06/20/20	SM 9221	
E. Coli	<1	1.0	mL.		2004767	06/17/20 14:30	06/18/20	SM9223	
Bac-15-SCR (20F0957-05) Water	Sampled: 06/17/20 12:15	Received: 06/1	17/20 13:55						
Fecal Coliforms	4.5	1.8	MPN/100 mL	1	2004762	06/17/20 14:20	06/20/20	SM 9221	
E. Coli	2.0	1.0	mL.		2004767	06/17/20 14:30	06/18/20	SM9223	

		Report To:			Job Num Task 0400			ANAI	LYSIS RI	QUESTED	GE	OTHA	(K)	R	
	ter Scie elegrapi	nces n Ave. Suite 400			ion Labor ho Cordo			Fec	E 60		ED	1- 82 S-P	CHE		YES X NO
Berkel	ey, CA	94705		X CLS	(916)	538-7301		31 C	0		156	OSAL	(DX		
Project Mi Emily Project Na	Appleq	uist eapplequist@s	stillwatersci.com	3249 Ranc 9574	100	wa, CA	PRES	Fecal coliform-15 Tube	coli Quanti-tray		PH	100	OND	(TION:	s
		Bac-T, & Chemis	try Monitoring	www.cal	tormala	b.com	労	5							
Sampled E Envi Job Descri	Wade	quist, Pat Kouse	-	□ отн	ER		PRESERVATIVES	Tube							
vionitor sc	asonal back	ria levels in UARP reaches.					co								
Site Locati	on UAR	9										URN/			SPECIAL INSTRUCTIONS
DATE	TIME	SAMPLE	FIELD		CON	TAINER	_				1 2 3			5	
TO SECTION	1, 3, 3, 3, 5,	IDENTIFICAT	ION ID.	MATRIX	NO.	TYPE.	*				1 2 3				
est to	08.02	Bac-13-1HR		Sarface water		1	6	X	X					X	
17/20	0852	Bac-12-144 Bac-11-12 Bac-14-BCR Bac-15-5CR		Surface water			6	×	X					X	
117/14	0720	Bac-11-12		Surface water			6	X	X			Щ		X	
	1645	Bac- 4-14-14C		Surface water			6	X	l ×					X	
0/17/20	1215	Bee-15-5CR	3	Surface water			6	X	X					X	
3.3.3.2-1.1				Surface water			6							X	
				Surface water			6							X	INVOICE TO:
				Surface water			6							X	Stillwater Sciences
				Surface water			6							X	Some an above
				Surface water			6							X	
				Surface water			6							Х	Project No. 750.10 Tas 0400.02
				Surface water			6							X	QUOTEN
SUSPECT	FB CONS	TITUENTS						SAMPLI	ERETENTI	ON TIME	PRESERVATIVES (I				11 HCL (3) = COLD 2) HNO ₁ (4)= H2SO4
RELINGU	ISHED BY	(Signacure)		TEACOMPANY		DATE/TIME		R	ECEIVED	IV (Signature)	-			-	NT NAME/COMPANY
Ends	ay		Emily Applequer	484 house	6	17/20/1355									,
RECEIV	ED AT L	BBY:		DATE/TIME:	1011	1120	co	NBFFION	SCOMM	NTS:		_	-	11/	91
	ED BY:				41	1355	1							4	

June 24, 2020 CLS Work Order #: 20F0957

COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 06/17/20 13:55. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Page 2 of 2 07/23/20 10:39

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring

2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20G0924

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Notes and Definitions

BT-4a <1.8 BT-4 <1

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis

07/23/20 10:39

Page 1 of 2

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring
2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20G0924
Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bac-7-UVR (20G0924-01) Water	Sampled: 07/16/20 09:00	Received: 07/1	6/20 13:45	;					
Fecal Coliforms	7.8	1.8		1	2005647	07/16/20 14:00	07/19/20	SM 9221	
E. Coli	12.0	1.0	ml.		2005651	07/16/20 13:45	07/17/20	SM9223	
Bac-8-UVR (20G0924-02) Water	Sampled: 07/16/20 09:41	Received: 07/1	6/20 13:45						
Fecal Coliforns	<1.8	1.8		1	2005647	07/16/20 14:00	07/19/20	SM 9221	
E. Coli	1.0	1.0	mL.		2005651	07/16/20 13:45	07/17/20	SM9223	
Bac-6-GCR (20G0924-03) Water	Sampled: 07/16/20 10:10	Received: 07/1	16/20 13:45	;					
Fecal Coliforms	24	1.8		1	2005647	07/16/20 14:00	07/19/20	SM 9221	
E. Coli	6.3	1.0	mL.		2005651	07/16/20 13:45	07/17/20	SM9223	
Bac-5-GCR (20G0924-04) Water	Sampled: 07/16/20 10:30	Received: 07/1	16/20 13:45	;					
Fecal Coliforms	31	1.8		1	2005647	07/16/20 14:00	07/19/20	SM 9221	
E. Coli	11.0	1.0	ml.		2005651	07/16/20 13:45	07/17/20	SM9223	
Bac-10-UVR (20G0924-05) Water	Sampled: 07/16/20 11:05	Received: 07/	16/20 13:4	5					
Fecal Coliforms	<1.8	1.8		1	2005647	07/16/20 14:00	07/19/20	SM 9221	
E. Coli	<1	1.0	mL.		2005651	07/16/20 13:45	07/17/20	SM9223	
Bac-9-UVR (20G0924-06) Water	Sampled: 07/16/20 11:25	Received: 07/1	6/20 13:45						
Fecal Coliforms	6.8	1.8	MPN/100	1	2005647	07/16/20 14:00	07/19/20	SM 9221	
E. Coli	4.1	1.0	mL.		2005651	07/16/20 13:45	07/17/20	SM9223	

		Report To:			Job Numb Task 0400.			ANA	ALYSI	SRE	QUESTED	GF	OTR	ACKI	Œ.	
	ter Scier	oces Ave. Suite 400		Destina	tion Labora tho Cordov	tory		Fe		E. c			FRE			YES X NO
	ey, CA 9			CLS	(916) 63	38:7301	1	E .		οli C						
Project Na SMUI	Applequence D In situ.	ist_eapplequist@stillwat		3249 Ranc 9574	Fitzgerale ho Cordov	l Road va, CA	PRESERVATIVES	Fecal coliform-15 Tube		coli Quanti-tray			2 ELD C	56	70	724
Sampled I	hy Ame	lequist, David Rosen		□ отн	ER		WAT	Tub								
TOU DESCRI	JANESS .	ria levels in UARP reaches.					VES	KP.								
Site Locati	on UARF												TURN			SPECIAL INSTRUCTIONS
DATE	TIME	SAMPLE IDENTIFICATION	FIELD ID.	MATRIX	CONT NO.	TYPE						1 2 3		5		
1/16/2	COPCT	Bac-7-WR	-	Surface water	INC.	IXPE	6	A	+	X		1 2 3			X	
		Bac-8-UNF		Surface water			6	X		X					X	
14/20	1010	Bar- 6- (2CR		Surface water			6	X		X					X	
(16/20	1030	Bac - 5 - (2CR		Surface water			6	X		X					X	
16/20		Bac - 10 - WF		Surface water			6	X		X					X	
1/1/20	1125	Bac - 9- UVP		Surface water			6	×		X					X	
				Surface water			6			-					х	INVOICE TO:
				Surface water			6								х	Stillwater Sciences
				Surface water			6			П					х	Same as above
				Surface water			6								x	
				Surface water			6								х	Project No. 750.10 Tasi 0400.02
				Surface water			6								X	QUOTEN
USPECT	ED CONST	ITUENTS						SAMP	LERET	ENTIC	N TIME	PRI	ESER	VATI	VES (1	1) HCL (3) = COLD 2) HNO ₁ (4)= H2SO4
	ISHED BY	Signature)	PRINT NAM	ECOMPANY	D.	АТЕ/ПМЕ			RECEIV	ED B	Y (Signature)					NT NAME/COMPANY
msl	and	Emil	Applequis	Stillwater	7/1	W20/134	5				7					-
RECEIV	ED AT LA	RRV.		DATE/TIME:	11.10		-	MINERAL	ONS/CO		6	-	,	-	A	
The state of	SECTION AND ADDRESS OF THE PARTY ADDRESS OF THE PARTY AND ADDRESS OF TH	1		DATE TIMES	16/20	2013	100	MINITE.	Ma/CO	nintE:	N15: (2	-4	1	6.	4	1

July 23, 2020 CLS Work Order #: 20G0924

COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 07/16/20 13:45. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Page 2 of 2 07/22/20 12:10

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring

2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20G0880

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Notes and Definitions

BT-4a <1.8

BT-4 <1

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis

07/22/20 12:10

Page 1 of 2

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring
2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20G0880
Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bac-13-1HR (20G0880-01) Water	Sampled: 07/15/20 08:50	Received: 07/	15/20 14:40)					
Fecal Coliforms	<1.8	1.8	MPN/100 mL	1	2005590	07/15/20 15:00	07/18/20	SM 9221	
E. Coli	<1	1.0	mL.	**	2005598	07/15/20 16:00	07/16/20	SM9223	
Bac-12-1HR (20G0880-02) Water	Sampled: 07/15/20 09:10	Received: 07/	15/20 14:40)					
Fecal Coliforms	2.0	1.8	MPN/100 mL	1	2005590	07/15/20 15:00	07/18/20	SM 9221	
E. Coli	<1	1.0			2005598	07/15/20 16:00	07/16/20	SM9223	
Bac-11-JR (20G0880-03) Water 5	Sampled: 07/15/20 10:05 F	teceived: 07/15	/20 14:40						
Fecal Coliforms	540	1.8	MPN/100 mL	1	2005590	07/15/20 15:00	07/18/20	SM 9221	
E. Coli	387.3	1.0			2005598	07/15/20 16:00	07/16/20	SM9223	
Bac-14-BCR (20G0880-04) Water	Sampled: 07/15/20 11:30	Received: 07/	15/20 14:40)					
Fecal Coliforms	7.8	1.8	MPN/100	1	2005590	07/15/20 15:00	07/18/20	SM 9221	
E. Coli	1.0	1.0	mL.		2005598	07/15/20 16:00	07/16/20	SM9223	
Bac-15-SCR (20G0880-05) Water	Sampled: 07/15/20 12:50	Received: 07/	15/20 14:40)					
Fecal Coliforms	2.0	1.8	MPN/100 mL	1	2005590	07/15/20 15:00	07/18/20	SM 9221	
E. Coli	2.0	1.0	mL.	"	2005598	07/15/20 16:00	07/16/20	SM9223	

		Report To:			Job Num Task 6400			ANA	LYSIS	REQ	UESTED	GE	OTR/	CKE	R	
	ter Scie	nces h Ave. Suite 400			on Labor ho Corde			Fec	ti sou	10 10		140	FREE	ORT		VES 8 NO
Berkele	y, CA	94705		x CLS	(915) r	38-7301		2 0	1	5		-630	овла	TDO		
Project Ma Emily Project Sa	Appleq	uist eapplequist@stillwate	ersci.com	3249 Ranci 95742	Fitzgens no Cordo	d Road va, CA	PRESERVATIVES	oliform	Common only	ment frau					FEKINS	\$
		, Bac-T, & Chemistry Mor	nitoring	www.cali	forniala	b.com	第	5								
JOB DESCR	ily A	pplegist, David Ross eria levels in UARP texches.	p-	□ отні	ER		VATIVES	Tube								
Sice Locati	u UAR	P														SPECIAL INSTRUCTIONS
DATE	TIME	SAMPLE IDENTIFICATION	FIELD ID.		0.00	TAINER	w							3	5	
7/15/10	11820	Ba-B-IHR	117.	MATRIX Surface water	NO.	TYPE	6	A	+	X	-	1 2 3			X	-
	0910	BOL-IV IHL	_	Surface water			6	X	_	×					X	
/15/10	1085	Bar-11-JR		Surface water		1	6	X		X		\vdash			x	
1/5/20	1130	Bac-14-002		Surface water			6	79		00					X	
1/15/20		Bac-15-5CP		Surface water			6	×	_	30					x	
437.14		DA		Surface water			6								х	
				Surface water			6								X	INVOICE TO:
				Surface water			6								X	Stillwater Sciences
				Surface water			6:								X	Same as above
				Surface water			6			- 1					X	
				Surface water			6								X	Project No. 750.10 Tax 6400.02
				Surface water		1	6								X	OFOLES.
ESPECT	ED CONS	THUENTS						SAMP	E RETE	VIKE	TIME	PRESERVATIVES (I			1) HCL (2) = COLD 2) HNO ₃ (4)= H2SO4	
				ECOMPANY		DATE/TIME		- 1	RECEIVE	DBY	(Signoure)				PRE	NT NAME/COMPANY
gard.	di	EN	ily Applicague	11/Stillnet	1	N/10/14/1	0									
RECEIV	EDATE	AR DY	KINGDI K	DATE/TIME:	2-15	7 0	ce	NDETIO	NS/COM	MEN	TS: /44	15	- (15	12	2)
					7	-0	1				177	V_	C	, ,	1	

July 22, 2020 CLS Work Order #: 20G0880

COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 07/15/20 14:40. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Page 2 of 2 07/16/20 11:20

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring

2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20G0523

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Notes and Definitions

BT-4a <1.8

BT-4 <1

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis

07/16/20 11:20

Page 1 of 2

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring
2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20G0523
Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bac-7-UVR (20G0523-01) Water	Sampled: 07/09/20 08:50	Received: 07/0	9/20 12:10						
Fecal Coliforms	46	1.8		1	2005412	07/09/20 13:15	07/12/20	SM 9221	
E. Coli	866.4	1.0	ml.		2005421	07/09/20 15:15	07/10/20	SM9223	
Bac-8-UVR (20G0523-02) Water	Sampled: 07/09/20 09:20	Received: 07/0	9/20 12:10						
Fecal Coliforms	4.5	1.8		1	2005412	07/09/20 13:15	07/12/20	SM 9221	
E. Coli	1.0	1.0	mL.		2005421	07/09/20 15:15	07/10/20	SM9223	
Bac-6-GCR (20G0523-03) Water	Sampled: 07/09/20 09:45	Received: 07/0	9/20 12:10	,					
Fecal Coliforms	<1.8	1.8		1	2005412	07/09/20 13:15	07/12/20	SM 9221	
E. Coli	1.0	1.0	mL.		2005421	07/09/20 15:15	07/10/20	SM9223	
Bac-5-GCR (20G0523-04) Water	Sampled: 07/09/20 10:05	Received: 07/0	9/20 12:10	•					
Fecal Coliforms	4.5	1.8		1	2005412	07/09/20 13:15	07/12/20	SM 9221	
E. Coli	11.0	1.0	mL.		2005421	07/09/20 15:15	07/10/20	SM9223	
Bac-10-UVR (20G0523-05) Water	Sampled: 07/09/20 10:40	Received: 07	09/20 12:1	0					
Fecal Coliforms	<1.8	1.8		1	2005412	07/09/20 13:15	07/12/20	SM 9221	
E. Coli	<1	1.0	mL.		2005421	07/09/20 15:15	07/10/20	SM9223	
Bac-9-UVR (20G0523-06) Water	Sampled: 07/09/20 11:00	Received: 07/0	9/20 12:10						
Fecal Coliforms	13	1.8	MPN/100	1	2005412	07/09/20 13:15	07/12/20	SM 9221	
E. Coli	30.9	1.0	mL.		2005421	07/09/20 15:15	07/10/20	SM9223	

		Report To:				Joh Nu Task 04			ANA	LYSIS	REQU	ESTED	GE	OTRO	CKI	R	
	ter Scier elegraph	Ave. Suite 400			Destinat Ranc	ios Lab			Fee		E .		EĐ	EREP	ORT		YES X NO
	y, CA 9				x CLS	(916)	638-7301		1		0 10		720		Tra-		
Project Na SMUL Sampled H Ex Job Descri	Applequence In situ.	nist capplequist(a Bac-T, & Chemis dequal , lat k ris levels in UARP resente	stry Monit		3249	Fitzger ho Core 2 ifornial	ald Road lova, CA	PRESERVATIVES	Fecal coliform-15 Tube		coli Quanti-tray		GLOBAL ID. FIELD CONDIT TURNAROUS TIME IN DAY 1 2 3			EFIONS	S:
Site Locati	on UARI	>															SPECIAL, INSTRUCTIONS
DATE	TIME	SAMPLI IDENTIFICA		FIELD ID.	MATRIX	NO.	NTAINER						1	2	3	5	
119/2	0820	Bac-7-W1	e		Surface water	13624	7116	6	×	+	X					Х	
1/9/20	0920	Bac-8-UM			Surface water			6	8		X					X	
19/20	0945	Bac-6-GCF	_		Surface water			6	x		X					X	1
19/20	1005	Bac-5-GCK			Surface water			6	M		X			П		x	
19/20	1040	Bac-10-15VR			Surface water			6	x		X					X	
1/9/20	1100	Bac-9-UNL			Surface water			6	M		×					x	
					Surface water			6	1							x	INVOICE TO:
					Surface water			6								X	Still water Sciences
					Surface water			6								X	Santé as above
					Surface water			6								X	
					Surface water			6								х	Project No. 750.10 Tes 0400.02
NA SOR SEC.					Surface water			6								X	QUOTEN
SUSPECT	ED CONST	TITLENTS							SAMP	LERETE	NTION I	IME	PRI	SERV	ATI	VES (1	1) HCt. (3) = COLD 2) HNO ₁ (4)= H2SO4
	SRED BY	Signature)			ECOMPANY		DATE/TIME			RECEIV	ED BY (S	igas(ure)					NT NAMESCOMPANY
Ens)	N		Errily 1	"poliquist	Stillwater	7	19/0/1310						_	-	_		
RECEIVI	ED AT LA	BRY:	-	501.6	DATE/TIME: 7	tata	-2-6		NDELLO	N. STIFTEN	BULLET	1	5	1	. =	-	>

July 16, 2020 CLS Work Order #: 20G0523

COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 07/09/20 12:10. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Page 2 of 2 07/15/20 11:09

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring

2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20G0428

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Notes and Definitions

BT-4a <1.8

BT-4 <1

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis

07/15/20 11:09

Page 1 of 2

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring
2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20G0428

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bac-13-1HR (20G0428-01) Water	Sampled: 07/08/20 08:45	Received: 07/	08/20 14:20)					
Fecal Coliforms	<1.8	1.83	MPN/100 ml	. 1	2005359	07/08/20 14:30	07/11/20	SM 9221	
E. Coli	<1	1.0			2005374	07/08/20 15:30	07/09/20	SM9223	
Bac-12-1HR (20G0428-02) Water	Sampled: 07/08/20 09:05	Received: 07/0	08/20 14:20)					
Fecal Coliforms	<1.8	1.8	MPN/100 ml	. 1	2005359	07/08/20 14:30	07/11/20	SM 9221	
E. Coli	1.0	1.0			2005374	07/08/20 15:30	07/09/20	SM9223	
Bac-11-JR (20G0428-03) Water S	Sampled: 07/08/20 09:55 B	teceived: 07/08	/20 14:20						
Fecal Coliforms	170	1.8	MPN/100 ml	L 1	2005359	07/08/20 14:30	07/11/20	SM 9221	
E. Coli	137.6	1.0			2005374	07/08/20 15:30	07/09/20	SM9223	
Bac-14-BCR (20G0428-04) Water	Sampled: 07/08/20 11:15	Received: 07/	08/20 14:20	0					
Fecal Coliforms	<1.8	1.8	MPN/100 ml	L 1	2005359	07/08/20 14:30	07/11/20	SM 9221	
E. Coli	<1	1.0	-	"	2005374	07/08/20 15:30	07/09/20	SM9223	
Bac-15-SCR (20G0428-05) Water	Sampled: 07/08/20 12:40	Received: 07/	08/20 14:20)					
Fecal Coliforms	<1.8	1.83	MPN/100 ml	L 1	2005359	07/08/20 14:30	07/11/20	SM 9221	
E. Coli	<1	1.0		"	2005374	07/08/20 15:30	07/09/20	SM9223	

		Report To:			Job Numb Task 0400.			ANA	LYSIS	REQU	ESTED	GE	OTRA	CKE	R.	
	iter Scier	nces n Ave. Suite 400			ion Labora ho Cordov			Fec		F. CC		ED	E REPO	ORT		YES X NO
	ey, CA 9			× CLS	(916) 63	38-7301				Dii Q		CI	OBAL	III		
Project Na	Applequ	uist_eapplequist@stillwa Bac-T, & Chemistry M		3249 Ranci 95742	Fitzgerak ho Cordov	l Road za, CA	PRESERVATIVES	Fecal coliform-15 Tube		coli Quanti-tray					ITIONS	k:
Sampled I	by tril	y. Applequist, Pat Koo	.,	Отн	FD		Ã	Tu			Ш					
lob Descri	iption	1. Popperguest, Far 100	n)C				\equiv	be								
Monitor s	easonal bacte	ria levels in UARP reaches.					S									
site Locat	ion UARI)											URNA			SPECIAL
		COMPANY.	T		COM	TAINER	-					Т	IME I	N D.	AYS	INSTRUCTIONS
DATE	TIME	SAMPLE IDENTIFICATION	ID.	MATRIX	NO.	TYPE	₹					1	2	3	5	
18/20	6845	Bac-13-14K		Surface water			6	×		X					х	
18/10	0905	Bac-12-11-11		Surface water			6	X	\perp	X					x	
8/20	0955	Bar-11-12		Surface water			6	×		X					x	
8h	1115	Bar - 14-13CR		Surface water			6	×	\top	X			\Box		х	
8/20	1240	Buc-15-5CR		Surface water			6	X		X					X	
				Surface water			6		\top						х	
				Surface water			6								х	INVOICE TO:
				Surface water			6								х	Stillwater Sciences
				Surface water			6								Х	Same as above
				Surface water			6								х	
				Surface water			6								х	Project No. 750.10 Tas 0400.02
				Surface water			6								X	QUOTEW
USPECT	ED CONST	TTUENTS						SAMPI	LE RETE	NTION T	IME	PRI	ESERV.	ATI	VES (1	(3) = COLD 2) HNO ₃ (4)= H2SO4
ELINQU	ISHED BY	(Signature)	PRINT NAM	ECOMPANY	D	ате/рме)	RECEIV	ED BY (S	ignature)					T NAME/COMPANY
m	An	/ Gm	Ly Agglegin	Stillwar	7/8/	20/1420					9					-
		0	1			,								1	1	1

July 15, 2020 CLS Work Order #: 20G0428

COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 07/08/20 14:20. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Page 3 of 3 4 97/10/20 11:51

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring

2855 Telegruph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20G0129

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Notes and Definitions

BT-4 <1

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis

07/10/20 11:51

Page 2 of 3 4

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring
2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20G0129

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bac-7-UVR (20G0129-01) Water	Sampled: 07/02/20 08:50	Received: 07/0	2/20 14:00						
E. Coli	8.6	1.0	MPN/100	1	2005220	07/02/20	07/03/20	SM9223	
Fecal Coliforms	4.5	1.8	mL.		2005213	07/02/20	07/05/20	SM 9221	
Bac-8-UVR (20G0129-02) Water	Sampled: 07/02/20 09:25	Received: 07/0	2/20 14:00						
E. Coli	1.0	1.0	MPN/100	1	2005220	07/02/20	07/03/20	SM9223	
Fecal Coliforms	2.0	1.8	mL.		2005213	07/02/20	07/05/20	SM 9221	
Bac-6-GCR (20G0129-03) Water	Sampled: 07/02/20 09:55	Received: 07/0	2/20 14:00)					
E. Coli	275.5	1.0	MPN/100) 1	2005220	07/02/20	07/03/20	SM9223	
Fecal Coliforms	350	1.8	*		2005213	07/02/20	07/05/20	SM 9221	
Bac-5-GCR (20G0129-04) Water	Sampled: 07/02/20 10:20	Received: 07/0	2/20 14:00)					
E. Coli	48.7	1.0	MPN/100 mL	1	2005220	07/02/20	07/03/20	SM9223	
Fecal Coliforms	49	1.8			2005213	07/02/20	07/05/20	SM 9221	
Bac-10-UVR (20G0129-05) Water	Sampled: 07/02/20 11:00	Received: 07/	02/20 14:0	0					
E. Coli	<1	1.0	MPN/100	1	2005220	07/02/20	07/03/20	SM9223	
Fecal Coliforms	4.0	1.8	mL.		2005213	07/02/20	07/05/20	SM 9221	
Bac-9-UVR (20G0129-06) Water	Sampled: 07/02/20 11:25	Received: 07/02	2/20 14:00						
E. Coli	16.0	1.0	MPN/100	1	2005220	07/02/20	07/03/20	SM9223	
Fecal Coliforms	2.0	1.8	mL.		2005213	07/02/20	07/05/20	SM 9221	

		Report To:			Job Nu Task 04			ANA	LYSIS	REQ	UESTED	GE	OTR/	VCKE	K	
-	ter Seier elegraph	nces n Ave. Suite 400		Destinat Ranci	ion Lab ho Cord			Fec		8		(ED)	FREI	ORT		YES X NO
Berkel	ey, CA 9	4705		x CLS	(916)	638-7301		alo		0		GL	OBAI	ID.		
SMUI Samuled F	Appleque	hist capplequist@stillwat Bac-T, & Chemistry Mo		3249	ho Core 2 fornia	ald Road dova, CA lab.com	PRESERVATIVES	oliform-15 Tube		coli Ougni-trav		FIE	LD C	OND	ITIONS	Ď.
Job Desen	ftion	ria levels in UARP reaches.					IVES	ĕ								
Site Locat	ea UARI	,										TURNAROUN TIME IN DAY				SPECIAL INSTRUCTIONS
DATE	TIME	SAMPLE IDENTIFICATION	FIELD ID.	ALL THUS	NO.	NTAINER	v					1	2	3	5	
1/2/20	0750	Bac - 7-UVR		MATRIX Surface water	NO.	TYPE	6	×	+++	×	++-				X	
nho	1925	BAL-8-UVR	1	Surface water			6	X		x					X	
	0955	Bac-6-FICE		Surface water			6	X		×					X	
1/2/20		Bac- 5- GCE		Surface water			6	X		X					X	
/2/20		Bac - 10- UVR		Surface water			6	×		X	11				X	
1/2/20	1125	Bar-9- UVR		Surface water			6	74		0					Х	
		1		Surface water			6	,							X	INVOICE TO:
				Surface water			6								X	Stillwarer Sciences
				Surface water			6								X	Same as above
				Surface water			6								X	
				Surface water			6								Х	Project No. 750.10 Taxi 0400.02
				Surface water			6								X	QUOTER
USPECT	ED CONST	TITUENTS						SAMPL	ERRE	NODEN	TIME	DR3	ESER	VATI	VES (1	(3) = COLD 2) BNO ₃ (4)= B2SO4
	SHED BY	(Signature)	PRINT NAM	E/COMPANY		DATE/TIME			RECEIVE	DBY	(Segnature)				1000000	NT NAME/COMPANY
mA	al	e) Emily	Aguagust/	Stillwar		12h1/400										
	ED AT LA	nn 7 A	<u></u>	-	1	w.sa	-		000000000000000000000000000000000000000		2010			-	77	1
TECEIV	EDATLA	BBI		DATE/TIME: 7	1 -1	20	CO	NULTIO	NS/COM	IMEN	is:		1	10	1110	<i>e</i>)

July 10, 2020

CLS Work Order #: 20G0129 COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD in situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 07/02/20 14:00. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Page 2 of 2 07/09/20 15:16

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring

2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20G0083

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Notes and Definitions

BT-4a <1.8

BT-4 <1

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis

07/09/20 15:16

Page 1 of 2

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring
2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20G0083

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bac-13-IHR (20G0083-01) Water	Sampled: 07/01/20 08:10	Received: 07/0	1/20 13:20)					
Fecal Coliforms	<1.8	1.8	MPN/100 mL	1	2005176	07/01/20 13:30	07/04/20	SM 9221	
E. Coli	1.0	1.0			2005187	"	07/02/20	SM9223	
Bac-12-IHR (20G0083-02) Water	Sampled: 07/01/20 08:25	Received: 07/	01/20 13:20)					
Fecal Coliforms	2.0	1.8	MPN/100 mL	1	2005176	07/01/20 13:30	07/04/20	SM 9221	
E. Coli	<1	1.0		**	2005187		07/02/20	SM9223	
Bac-11-JR (20G0083-03) Water	Sampled: 07/01/20 09:15	teceived: 07/01	/20 13:20						
Fecal Coliforms	4.5	1.8	MPN/100 ml.	1	2005176	07/01/20 13:30	07/04/20	SM 9221	
E. Coli	3.0	1.0			2005187	**	07/02/20	SM9223	
Bac-14-BCR (20G0083-04) Water	Sampled: 07/01/20 10:35	Received: 07/	01/20 13:2	0					
Fecal Coliforms	2.0	1.8	MPN/100 mL	1	2005176	07/01/20 13:30	07/04/20	SM 9221	
E. Coli	<1	1.0			2005187		07/02/20	SM9223	
Bac-15-SCR (20G0083-05) Water	Sampled: 07/01/20 12:05	Received: 07/	01/20 13:20	•					
Fecal Coliforms	31	1.8	MPN/100 mL	1	2005176	07/01/20 13:30	07/04/20	SM 9221	
E. Coli	27.9	1.0			2005187	"	07/02/20	SM9223	

		Report To:			Job Nun Task 940			ANA	LYSIS R	EQUESTE	ED GE	OTRA	CKE	R	
	ter Scier elegraph	nces Ave. Suite 400			ion Labo ho Cordo			Fea	E. 60		ED	E REP	ORT		YES X NO
Berkele	y, CA 5	94705		CLS	(916)	638-7301		0	9		Gi	OBAL	m.		
Project Na	Applequ	uist capplequist@still	5-2- 701 Fe-1	3249	Fitzger: ho Cord 2	ald Road lova, CA	PRESERVATIVES	oliform-15	coli Quanti-tray		F13	FIELD CONDI		ITIONS	
Sampled B	1 . 0	dequist David Res		□ отня	PR.		A	급							
Job Descrip	ption	ria levels in UARP reaches.	(In		0.600		IVES	be							
Site Locati	on UARI	9										URN/			SPECIAL INSTRUCTIONS
DATE	TIME	SAMPLE IDENTIFICATION	FIELD ID.	MATRIX	NO.	TYPE			W. II		1	2	3	5	
7/1/20	0810	Bec - B-IHR	-	Surface water	.016	1176	6	X	>		-	Н	_	x	
7/1/20	1825	Bac - 12-14R		Surface water			6	X)	c				X	
7/1/20	0915	Be - 11-JF		Surface water			6	X	1					X	
11/20	1035	Bac-M-BCF		Surface water			6	X	3			П	П	X	
	12.05	Bac - 15-5CR		Surface water			6	36	1					X	
				Suctace water			6							X	
	1			Surface water			6							X	INVOICE TO:
				Surface water			6							X	Stillwater Sciences
				Surface water			6							N	Same as altered
				Surface water			6							Х	
				Surface water			6							X	Project No. 750,10 Tast 0400.02
				Surface water			6							N	QUOTIN
SUSPECT	ED CONST	TITUENTS						SAMPL	ERFTEN	TION TIME	PR	ESERY	ATI	VES ()) HCL (3) = COLD (1HNO) (6)= H2SO(
	ISHED BY	(Sugnature)	PRINT NAM	E/COMPANY		DATECTIME		- 1	ECEIVED	BY (Sugartica	e)			PRIN	IT NAME/COMPANY
WA	an	E	my Apploquist,	/Shillwake	- 3	1/20/1320							-	_	
es and characters	ED AT L	DAY - DAY	()	DATE/DME:	2/1/	W		e service	NS/COMB	en en es	1	- 8	12	9	

July 09, 2020 CLS Work Order #: 20G0083

COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 07/01/20 13:20. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Page 2 of 2 07/02/20 14:44

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring

2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20F1337

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis

Page 1 of 2 07/02/20 14:44

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring
2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20F1337
Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bac-7-UVR (20F1337-01) Water Sampled:	06/25/20 08:45 R	Received: 06/25	5/20 13:25						
Fecal Coliforms	4.0	1.8	MPN/100	1	2005013	06/25/20 13:30	06/28/20	SM 9221	
E. Coli	3.1	1.0	mL.		2005019	06/25/20 15:00	06/26/20	SM9223	
Bac-8-UVR (20F1337-02) Water Sampled:	06/25/20 09:20 R	Received: 06/25	5/20 13:25						
Fecal Coliforms	23	1.8	MPN/100 mL	1	2005013	06/25/20 13:30	06/28/20	SM 9221	
E. Coli	17.1	1.0	mi.		2005019	06/25/20 15:00	06/26/20	SM9223	
Bac-6-GCR (20F1337-03) Water Sampled:	06/25/20 10:00 R	Received: 06/25	5/20 13:25						
Fecal Coliforms	33	1.8	MPN/100 ml.	1	2005013	06/25/20 13:30	06/28/20	SM 9221	
E. Coli	26.9	1.0			2005019	06/25/20 15:00	06/26/20	SM9223	
Bac-5-GCR (20F1337-04) Water Sampled:	06/25/20 10:25 R	Received: 06/25	5/20 13:25						
Fecal Coliforms	240	1.8	MPN/100	1	2005013	06/25/20 13:30	06/28/20	SM 9221	
E. Coli	325.5	1.0	ml.		2005019	06/25/20 15:00	06/26/20	SM9223	
Bac-10-UVR (20F1337-05) Water Sampled:	06/25/20 11:00	Received: 06/2	25/20 13:25	;					
Fecal Coliforms	7.8	1.8	MPN/100	1	2005013	06/25/20 13:30	06/28/20	SM 9221	
E. Coli	17.3	1.0	mL.		2005019	06/25/20 15:00	06/26/20	SM9223	
Bac-9-UVR (20F1337-06) Water Sampled:	06/25/20 11:30 R	Received: 06/25	5/20 13:25						
Fecal Coliforms	4.5	1.8	MPN/100	1	2005013	06/25/20 13:30	06/28/20	SM 9221	
E. Coli	3.0	1.0	ml.		2005019	06/25/20 15:00	06/26/20	SM9223	

		Report To:			Job Nu Task 04			ANA	LYSIS R	EQUESTED	GE	OTRA	CKI	ar.	
	ter Scie			Destinat Ranc	tion Labo tho Cord			Fe	to to		FY	FREP	SET		YES X NO
		Ave. Suite 400					-	CH			3200	1 1555			
Berker	ey, CA 9	94 705		× CLS	(915)	638-7301		8	0		Gl	OBAL	ID.		
Project M.		and the second				ald Road lova, CA	2250	E .	coli Quanti-tray						
Emily Project No		uist eapplequist@stillv	vatersci.com	9574		MANAGE CO. R.	윤	B	100			15 13 -516	NATES.	******	
		, Bac-T, & Chemistry N	Annitorine	www.cali	ifornial	lab.com	SE	-	1		1931	aane.	ESL	TERONS	3.5
Samuled I	Sv.		· · · · · · · · · · · · · · · · · · ·				PRESERVATIVES	Fecal coliform-15 Tube							
Emile	1 HAPPLE	guist, David Rosen	K.	□ отн	ER		¥	De l							
Job Desco Monitor se		cris levels in UARP reaches.					S								
2000000		THE RESIDENCE OF THE PROPERTY.					1								
		0.00													
Site Locat	ion UAR	P										TIME I			SPECIAL INSTRUCTIONS
	Contractor Contractor	SAMPLE	FIELD		CO	INTAINER									1
DATE	TIME	IDENTIFICATION	ID.	MATRIX	NO.	TYPE					1	2	3	5	
0/25/26	0845	Bac - 7- WR		Surface water			6	X	7	6	Г			X	
0/15/16	0920	BUC-8-UVR		Surface water			6	×	y			x		X	
0/15/10	1000	Bac-6-(1CR		Surface water			6	×	1 1					X	
ohsho	1025	Bac-S. GCR		Surface water			6	X	7					х	
alesto	1100	Bac - 10 - UNR		Surface water			6	×	X					х	
125/20	1170	Bac-9-UVR		Surface water			6	>0	×	3				X	
72				Surface water			6							X	INVOICE TO
				Surface water			6							х	Stillwater Sciences
				Surface water			6							X	Same as obove
				Surface water			6							X	
				Surface water			6							×	Project No. 750.10 Tax 0400.02
				Surface water			6							X	QUOTE#
SUSPECT	EB CONS	ITTUENTS						SAMPI	E RETENT	TOS TIME	PR	SERV	ATI	VES (D HCL (3) = COLD 2) HNO ₃ (4)= H2SO4
RELINQU	ISHED BY		PRESTNAM	E/COMPANY		DATEMBE			RECEIVED	BY (Signature)	-				NT NAME COMPANY
900	0	J Fn	My Appleguis	r/Stillwar	1	histor 1525									
0.00	-	- 0	and the relative	1 4 10 10	1	myor son				/		1	1	1	
										-			-	-	

Page 2 of 4

July 02, 2020 CLS Work Order #: 20F1337

COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 06/25/20 13:25. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA SWRCB ELAP Accreditation/Registration number 1233

Page 1 of 4

Page 2 of 2 07/01/20 11:47

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring

2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20F1308

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Notes and Definitions

BT-4a <1.8 BT-4 <1

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis

07/01/20 11:47

Page 1 of 2

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring
2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20F1368
Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bac-13-IHR (20F1308-01) Water	Sampled: 06/24/20 08:50	Received: 06/2-	4/20 14:15						
Fecal Coliforms	<1.8	1.8	MPN/100 mL	1	2004962	06/24/20 14:30	06/27/20	SM 9221	
E. Coli	<1	1.0			2004990	06/24/20 15:30	06/25/20	SM9223	
Bac-12-IHR (20F1308-02) Water	Sampled: 06/24/20 09:10	Received: 06/2-	4/20 14:15						
Fecal Coliforms	<1.8	1.8	MPN/100 mL	1	2004962	06/24/20 14:30	06/27/20	SM 9221	
E. Coli	1.0	1.0			2004990	06/24/20 15:30	06/25/20	SM9223	
Buc-11-JR (20F1308-03) Water S	Sampled: 06/24/20 10:00 F	Received: 06/24/	20 14:15						
Fecal Coliforms	540	1.8	MPN/100	1	2004962	06/24/20 14:30	06/27/20	SM 9221	
E. Coli	39.9	1.0			2004990	06/24/20 15:30	06/25/20	SM9223	
Buc-14-BCR (20F1308-04) Water	Sampled: 06/24/20 11:30	Received: 06/2	4/20 14:15						
Fecal Coliforms	7.8	1.8	MPN/100 mL	1	2004962	06/24/20 14:30	06/27/20	SM 9221	
E. Coli	2.0	1.0			2004990	06/24/20 15:30	06/25/20	SM9223	
Bac-15-SCR (20F1308-05) Water	Sampled: 06/24/20 12:50	Received: 06/2	4/20 14:15						
Fecal Coliforms	1.8	1.8	MPN/100 mL	1	2004962	06/24/20 14:30	06/27/20	SM 9221	
E. Coli	4.1	1.0			2004990	06/24/20 15:30	06/25/20	SM9223	

		Report To:			Job Numb Task 0400.			ANA	LYSIS	REQ	UESTED	GE	OTRA	CKE	R	
The second second	ter Scier elegraph	ices Ave. Suite 400			ion Labora ho Cordov			Fec		E. 00		ED	FREP	ORI	9	YES X NO
Berkele	ey, CA 9	14705		x CLS	(916) 6	38-7301		0		0		- CR	OBAL	105		
Project Na SMUI Sampled B	Applequence In situ	ist capplequist@stillwate Bac-T, & Chemistry Moi Applequist David R	iitoring	3249	fornialal	va, CA	PRESERVATIVES	Escal coliform-15 Tube		coli Quanti-tray		I Garage			EVIONS	R .
Monutor se	asonal bacte	ria levels in UARP reaches.					S									
Site Locate	on UARI	,											URNA IME I			SPECIAL INSTRUCTIONS
DATE	TIME	SAMPLE IDENTIFICATION	FIELD ID.		11.77	FAINER						1	2	3	5	
124/20	0850	Bac-13-1HR	100.	MATRIX Surface water	NO.	TYPE	6	X	+	X					X	-
124/10		Bac-12-1HK	_	Surface water			6	X		X			X X			
/24/20		Buc 11-1/2		Surface water			6	X	+	YA					X	
hyto	1130	Bac-11- JR- Bac-14-BCR-		Surface water			6	X		X	++-	\vdash			x	
124/20		Bac-15-542		Surface water			6	X		X					X	
Andrew Marketon				Surface water			6			1					X	
				Surface water			6								х	INVOICE TO:
				Surface water			6								X	Stillwater Sciences
				Surface water			6								X	Same as above
				Surface water			6								X	
				Surface water			6								X	Project No. 750.10 Tast 0.000.02
				Surface water			6								X	OUSTEA
SUSPECT	EB CONSI	TTUENTS						SAMP	FRET	NTION	TIME	PRE	SERV	ATI	VES (1	0 HCL (3) = COLO 0 HNO: (4)= H2SO4
	ISHED BY			E/COMPANY	- D	ATEÇIME			RECEIV	ED BY	(Signature)				PRE	NE NAME/COMPANY
490	MP	Emb	y Mydegns	r Stillwar	(0/2	1/11/14/15							7	-		1
RECEIV	ED AT LA	BBY: 1960		DATECTIMES	alia	120	co	NDITIO	NS/CO	MEN	rs:	1	4	7	11	2

July 01, 2020 CLS Work Order #: 20F1308

COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 06/24/20 14:15. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Page 2 of 2 06/25/20 13:43

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring

2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20F1013

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Notes and Definitions

BT-4a <1.8

BT-4 <1

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis

Page 2 of 2 09/10/20 15:11

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring 2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 2010172

Berkeley, CA 94705 Project Manager: Emily Applequist COC#:

Notes and Definitions

BT-4

DET Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

Not Reported NR.

Sample results reported on a dry weight basis

Relative Percent Difference RPD

Page 1 of 2 09/10/20 15:11

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring

2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 2010172

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bac-1-B1 (20I0172-01) Surface Water	Sampled: 09/02/20 09:55	Received:	09/02/20	15:30		·		·	
Fecal Coliforms	2.0	1.8	MPN/100 mL	1	2007094	09/02/20 15:45	09/05/20	SM 9221	
E. Coli	1.0	1.0	mL.		2007110	09/02/20 16:00	09/03/20	SM9223	
Bac-2-B1 (2010172-02) Surface Water	Sampled: 09/02/20 10:20	Received:	09/02/20	15:30					
Fecal Coliforms	2.0	1.8	MPN/100	1	2007094	09/02/20 15:45	09/05/20	SM 9221	
E. Coli	1.0	1.0	mL.		2007110	09/02/20 16:00	09/03/20	SM9223	
Bac-4-LL (2010172-03) Surface Water	Sampled: 09/02/20 13:15	Received	09/02/20	15:30					
Fecal Coliforms	2.0	1.8	MPN/100 mL	1	2007094	09/02/20 15:45	09/05/20	SM 9221	
E. Coli	<1	1.0	mL.		2007110	09/02/20 16:00	09/03/20	SM9223	
Bac-3-LL (2010172-04) Surface Water	Sampled: 09/02/20 13:35	Received	09/02/20	15:30					
Fecal Coliforms	2.0	1.8	MPN/100 mL	1	2007094	09/02/20 15:45	09/05/20	SM 9221	
E. Coli	1.0	1.0	mil.		2007110	09/02/20 16:00	09/03/20	SM9223	

		Report To:			Job Numb Task 0400,			ANA	LYS	SIS	REQUESTE	ED G	EOTR	ACKE	:R	
	ter Scie	nces h Ave. Suite 400			ion Labora ho Cordov			Fee		- 1	E 6	Е	DE RE	PORT		YES X NO
Berkel	ey, CA	94705			(916) 63			al cc		1	i Q	G	LOBA	E.ID.		
Project M Emily Project No	Appleq	uist_eapplequist@stillwate	rsci.com		Fitzgerak no Cordov 2		PRESERVATIVES	liform			coli Quanti-tray		PL DV	NAME OF THE PARTY	ETTONS	
SMUI) In situ	, Bac-T, & Chemistry Mon	itoring	www.cali	fornialab	.com	SER	15				100	E:L.D.S.	ONL	01 II JNS	SC.
	Applego	ist, Pattoonse		□ отні	ER		VATIVE	Tube	1							
Monitor s	easonal back	eria levels in UARP reaches.					S									
Site Locat	ion UARI	P											TURN			SPECIAL INSTRUCTIONS
DATE	TIME	SAMPLE IDENTIFICATION	FIELD ID.	MATRIX	CONT NO.	TYPE						1	2	3	5	
7/2/20	0955	Bac. I-RI	100	Surface water	NU.	TYPE	6	X	+	-	X	-	+		X	
1/2/20	0301	Bac-2-81		Surface water			6	X	+		×	+	+		X	
3/1/20	1315	Bac-4-LL		Surface water			6	X	$^{+}$	1	X		+		X	
9/2/20	1335	Bac-3-LL		Surface water			6	X			>				X	
				Surface water			6			T			\top		х	
				Surface water			6			7			\top		X	
				Surface water			6			\top					X	INVOICE TO:
				Surface water			6			T					Х	Stillwater Sciences
				Surface water			6								X	Same as above
				Surface water			6								X	
				Surface water			6			T					X	Project No. 750.10 Task 0400.02
				Surface water			6	-	+	\dagger		_	+		X	QUOTEN
SUSPECT	TED CONS	IITUENTS						SAMP	LE RE	ETE	NTION TIME	PR	RESER	VATI	VES (I	
RELINO	ISHED BY	1- 1		ECOMPANY		ATEJIME			RECE	IVE	ED BY (Signature	e)			PRD	OT NAME/COMPANY
and	Zu	~ Emily	topologuist,	Shillworter	9/4	20/ 15:30							,			
RECEIV	ED AT LA	AB BW:		DATE/TIME: 9/	2/20	(530	co	NDITIO	NS/C	OM	MENTS:	0.	5			
SHIP	PED BY:	□ FED EX □ U	es 🗆	OTHER							AIR BILL#					

September 10, 2020

CLS Work Order #: 2010172

COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 09/02/20 15:30. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness. Any comments and exceptions are addressed under the Notes and Definitions section.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely.

James Liang, Ph.D. Laboratory Director

08/26/20 11:23

Page 3 of 3

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring

2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20H1077

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Notes and Definitions

BT-4a <1.8 BT-4 <1

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis

Page 2 of 3 8/26/20 11:23

Stillwater Sciences Project: SMUD In situ, Bac-T, & Chemistry Monitoring

2855 Telegraph Ave., Suite 400 Project Number: 750.10 Task 0400.02 CLS Work Order #: 20H1077

Berkeley, CA 94705 Project Manager: Emily Applequist COC #:

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Sampled: 08/19/20 10:40	Received	08/19/20	16:00		·	·	·	·
<1	1.0		1	2006689	08/19/20	08/20/20	SM9223	
<1.8	1.8	mL.		2006673		08/22/20	SM 9221	
Sampled: 08/19/20 11:05	Received	08/19/20	16:00					
<1	1.0		1	2006689	08/19/20	08/20/20	SM9223	
<1.8	1.8	mL.		2006673		08/22/20	SM 9221	
Sampled: 08/19/20 13:40	Received	: 08/19/20	16:00					
47.1	1.0		1	2006689	08/19/20	08/20/20	SM9223	
240	1.8	mL.		2006673	-	08/22/20	SM 9221	
Sampled: 08/19/20 14:10	Received	: 08/19/20	16:00					
2.0	1.0		1	2006689	08/19/20	08/20/20	SM9223	
2.0	1.8	mL.		2006673		08/22/20	SM 9221	
	Result Sampled: 08/19/20 10:40 <1 <1.8 Sampled: 08/19/20 11:05 <1 <1.8 Sampled: 08/19/20 13:40 47.1 240 Sampled: 08/19/20 14:10 2.0	Sampled: 08/19/20 10:40 Received:	Result	Result	Result	Result	Result	Result Limit Units Dilution Batch Prepared Analyzed Method Sampled: 08/19/20 10:40 Received: 08/19/20 16:00 3 08/19/20 08/20/20 5M9223 <1 1.0 MPN/100 mL 1 2006673 * 08/22/20 5M9221 Sampled: 08/19/20 11:05 Received: 08/19/20 16:00 * 2006673 * 08/22/20 5M9223 <1.8 1.8 * * 2006673 * 08/22/20 5M9223 <1.8 1.8 * * 2006673 * 08/22/20 5M9223 Sampled: 08/19/20 13:40 Received: 08/19/20 16:00 * 2006673 * 08/22/20 5M9223 47.1 1.0 MPN/100

		Report To:				Job Numb Task 0400.			ANA	LYSIS	REQU	ESTED	GEC	TR/	CKE	R	
	ter Scie	nces h Ave. Suite 400			Destinat	ion Labora ho Cordov:	tory		Fec		FF 60		EDF	REF	ORT		YES X NO
Berkel	ey, CA	94705				(916) 63		1	al co		coli Ouanti-tra		GLO	BAI	ID.		
Project Ma						Fitzgerald to Cordov		_	Effe		ant.						
roject Na	mc	uist eapplequist@ , Bac-T, & Chemi			95742 www.cali	2		PRESERVATIVES	m-15		drav		FIE	DС	ONDI	THONS	ē
sampled II	l	Applequist, Port	•		□ отн	ER		WAT	T.								
lob Descri Monitor se	ption (eria levels in UARP reache						VES	0								
site Locuti	ion UAR	P													AROI		SPECIAL INSTRUCTIONS
DATE	TIME	SAMPLI		FIELD		CONT	TAINER	1_						2		5	
DATE	TIME	IDENTIFICA	TION	ID.	MATRIX	NO.	TYPE	*					1	2	3	b	
/19/20	10:40	Bac-1-B1			Surface water			6	X		X					X	
19/20	11:05	Bac - Z-B1			Surface water			6	X		X					X	
19/20	1340	Bac-4-11 Bac-3- LL			Surface water			6	X		X					X	
119/20	1410	Bac-3-LL			Surface water			6	X		X					X	
					Surface water			6								X	
					Surface water			6								Х	
					Surface water			6								X	INVOICE TO:
					Surface water			6	П							X	Stillwater Sciences
					Surface water			6								X	Same as above
					Surface water			6								Х	
					Surface water			6								X	Project No. 750.10 Tasl 0400.02
					Surface water			6								Х	QUOTE#
SUSPECT	TED CONS	TITUENTS							SAME	LE RETE	NIIONT	IME	PRE	SER	VATI	VES (I	1) HCL (3) = COLD 2) HNO ₃ (4) = H2SO4
RELINQU	ISHED BY	(Signature)		PRINT NAM	E/COMPANY	1	АТЕДІМЕ			RECEIVE	D BY (S	gnature)				-	NT NAME/COMPANY
(A)	(A)	> ,	Enilyl	prolequist /	Stilleder	199	/w/low										
RECEIV	ED AT L	AB BY:			DATE/TIME: 8	3/19/2	29 - 160	co	NDITIO	DNS/CON	IMENTS		0.5	3			
SHIP	PED BY:	☐ FED EX		е П	OTHER	11 1122	100	1			AIR BII	1.9	_				

August 26, 2020

CLS Work Order #: 20H1077 COC #:

Emily Applequist Stillwater Sciences 2855 Telegraph Ave., Suite 400 Berkeley, CA 94705

Project Name: SMUD In situ, Bac-T, & Chemistry Monitoring

Enclosed are the results of analyses for samples received by the laboratory on 08/19/20 16:00. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director