Monitoring Program 2019 Final Annual Report Sacramento Municipal Utility District

Hydro License Implementation • June 2020 Upper American River Project FERC Project No. 2101

Powering forward. Together.

This Page Intentionally Left Blank

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

TABLE OF CONTENTS

1.0		INTRODUCTION AND BACKGROUND	
	1.1	Monitoring Sites	1-2
	1.2	Monitoring Frequency	1-4
	1.3	Literature Cited	1-5
2.0		TROUT	
	2.1	Objectives	2-1
	2.2	Methods	2-1
	2.3	Results	2-1
	2.4	Discussion	2-32
	2.5	Literature Cited	2-37
3.0		BENTHIC MACROINVERTEBRATES	
	3.1	Monitoring Plan Objectives	3-1
	3.2	Methods	3-1
	3.3	Results	
	3.4	Discussion	3-11
	3.5	Literature Cited	
4.0		GEOMORPHOLOGY	
	4.1	Monitoring Plan Objectives	4-1
	4.2	Methods	4-1
	4.3	Results	4-8
	4.4	Discussion	4-38
	4.5	Literature Cited	4-41
5.0		RIPARIAN	
	5.1	Monitoring Plan Objectives	5-1
	5.2	Methods	5-1
	5.3	Results	5-4
	5.4	Discussion	5-14
	5.5	Literature Cited	5-18
6.0		BALD EAGLE	6-1
	6.1	Monitoring Plan Objectives	6-1

	6.2	Methods	6-1
	6.3	Results	6-3
	6.4	Discussion	6-13
	6.5	Literature Cited	6-15
7.0		HARDHEAD	7-1
	7.1	Monitoring Plan Objectives	7-1
	7.2	Methods	7-1
	7.3	Results	7-1
	7.4	Discussion	7-13
	7.5	Literature Cited	7-15
8.0		AMPHIBIAN AND AQUATIC REPTILE	8-1
	8.1	Monitoring Plan Objectives	8-1
	8.2	Field Methods	8-1
	8.3	Results	8-8
	8.4	Discussion	8-32
	8.5	Literature Cited	8-33
9.0		SIERRA NEVADA YELLOW-LEGGED FROG	9-1
	9.1	Monitoring Plan Objectives	9-1
	9.2	Methods	9-1
	9.3	Results	9-8
	9.4	Discussion	9-25
	9.5	Literature Cited	9-27
10.0		BEAR MANAGEMENT MONITORING	10-1
	10.1	1 Monitoring Plan Objectives	10-1
	10.2	2 Study Area and Sampling Locations	10-1
	10.3	3 Methods	10-4
	10.4	4 Results and Discussion	10-4
	10.5	5 Literature Cited	10-6
11.0		LARGE WOODY DEBRIS	11-1
12.0		WATER TEMPERATURE	12-2
	12.1	1 Monitoring Plan Objectives	12-2

12.2 Methods	12-3
12.3 QA/QC	12-6
12.4 Decision-Making Thresholds	12-6
12.5 Adaptive management	12-7
12.6 Results	12-8
12.7 Literature Cited	12-9

LIST OF TABLES

Table 1-1.	Monitoring Program Frequency First Five Years	1-4
Table 2-1.	Fish Species Composition for the SMUD UARP Study Reaches, 2002–2019. ^a	2-2
Table 2-2.	Average Trout Density and Biomass, 2002–2019. ^{a,b}	2-4
Table 2-3.	Condition Factors for Rainbow and Brown Trout in the UARP Study Area by Site, 2002–2005 and 2019. ^a	2-8
Table 2-4.	Trout Length-at-Age Summary	2-8
Table 2-5.	Fisheries Objectives as Specified in the Rationale Report for the Settlement Agreement (Adapted from SMUD 2007)	2-35
Table 4-1.	Hydrologic Data Used to Assess Changes in the Geomorphic Study Sites.	4-1
Table 4-2.	2019 Upper American River Project Geomorphology Study Sites.	4-3
Table 4-3.	Cross-Section Data for Site RRD-G1 from 2003 and 2019	4-16
Table 4-4.	Pebble Count Data for Site RRD-G1 from 2003 and 2019	4-17
Table 4-5.	Dominant Sediment Facies at Site RRD-G1	4-17
Table 4-6. M	Iorphological characteristics for the 2003 and 2019 surveys	4-18
Table 4-7.	Cross-Section Data for Site LLD-G1 from 2003 and 2019	4-21
Table 4-8.	Cross-Section Endpins Used in the 2019 survey for Site LLD-G2	4-24
Table 4-9.	Cross-Section Data for Site LLD-G2 from 2003, 2106 and 2019.	4-25
Table 4-10.	Pebble Count Data for Site LLD-G2 from 2003 and 2019	4-25
Table 4-11.	Dominant Sediment Facies at Site LLD-G2	4-26
Table 4-12.	Cross-Section Data for Site IHD-G1 from 2003 and 2019	4-28
Sacramonto M	lunicipal Litility District	

Table 4-13.	Pebble Count Data for Site IHD-G1 from 2003 and 2019	4-28
Table 4-14.	Dominant Sediment Facies at Site IHD-G1	4-29
Table 4-15.	V* Survey Results for Site IHD-G1	4-29
Table 4-16.	Cross-Section Data for the IHD-G2 Site from 2003 and 2019	4-31
Table 4-17.	Pebble Count Data for Site IHD-G2 from 2003 and 2019	4-32
Table 4-18.	Dominant Sediment Facies at Site IHD-G2	4-32
Table 4-19.	Cross-Section Data for Site CD-G1 from 2003 and 2019	4-34
Table 4-20.	Pebble Count Data for Site CD-G1 from 2003 and 2019	4-35
Table 4-21.	Dominant sediment facies at Site CD-G1	4-35
Table 4-22.	Cross-Section Data for Site SCD-G1 from 2003 and 2019	4-37
Table 4-23.	Dominant Sediment Facies at Site SCD-G1.	4-38
Table 6-1.	Bald Eagle Observations During the 2019 Breeding Season Surveys at Union Valley Reservoir	6-3
Table 6-2.	Bald Eagle Observations During the 2019 Breeding Season Surveys at Loon Lake Reservoir.	6-7
Table 6-3.	Bald Eagle Observations During the 2019 Breeding Season Surveys at Ice House Reservoir	6-12
Table 7-1.	Physical Characteristics at Survey Sites During Hardhead Monitoring in the Slab Creek Dam Reach, August 2019	7-3
Table 7-2.	Water Quality Conditions at Survey Sites During Monitoring for Hardhead in the Slab Creek Dam Reach, August 2019	7-4
Table 8-1.	Amphibian and Aquatic Reptile Monitoring Sites, 2019	8-2
Table 8-2.	Amphibian and Aquatic Reptile Monitoring Survey Dates, 2019.	8-4
Table 8-3.	Foothill Yellow-legged Frog and Western Pond Turtle Survey Conditions, 2019.	8-8
Table 8-4.	Foothill Yellow-legged Frog Observation Locations and Data, 2019.	8-10
Table 8-5.	Edgewater Temperature Data Summarized by Month, 2019	8-21
Table 8-6.	Western Pond Turtle Observation Locations and Data at Site SCD-A1, 2019.	8-26
Table 8-7.	Additional Herpetofauna Species Observed, by Life Stage, 2019.	8-31
Table 9-1.	Sierra Nevada Yellow-legged Frog Monitoring Sites and Aquatic Features, 2019	9-2

Table 9-2.	Sierra Nevada Yellow-Legged Frog Monitoring Survey Dates, 2019	9-7
Table 9-3.	Sierra Nevada Yellow-Legged Frog Survey Conditions	9-9
Table 9-4.	Sierra Nevada Yellow-legged Frog Habitat Characteristics by Monitoring Site and Perennial Aquatic Feature, 2019	9-10
Table 9-5.	Additional Herpetofauna Species Observed, by Life Stage, 2019.	9-23
Table 10-1.	Sites associated with the UARP bear-human interaction 2019 monitoring program.	10-3
Table 12-1.	UARP Water Temperature Monitoring Site Locations	12-3
Table 12-2.	Specifications for monitoring equipment	12-5
Table 12-3.	Crossed Thresholds	12-7

LIST OF FIGURES

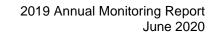

Figure 1-1.	Monitoring locations downstream of Rubicon Reservoir, Rockbound Lake, Loon Lake, and Gerle Creek Reservoir	1-1
Figure 1-2.	Monitoring locations downstream of Ice House Reservoir, Union Valley Reservoir, Junction Reservoir, and Camino Reservoir	1-2
Figure 1-3.	Monitoring locations downstream of Camino Reservoir (continued), Brush Creek Reservoir, and Slab Creek Reservoir	1-3
Figure 2-1.	Fish species relative abundance among UARP trout monitoring sites, 2002–2019.	2-3
Figure 2-2.	Trout density in the UARP study area by site, arranged left to right by decreasing elevation, 2002–2019	2-4
Figure 2-3.	Trout biomass in the UARP study area by site, arranged left to right by decreasing elevation, 2002–2019	2-5
Figure 2-4.	Number of catchable trout (>152 mm) per mile in the UARP study area by site, arranged left to right by decreasing elevation, 2002–2019	2-6
Figure 2-5.	Condition factors for rainbow trout captured by electrofishing in the UARP study area by site, arranged left to right by decreasing elevation, 2002–2019.	2-7

Figure 2-6.	Condition factors for brown trout captured by electrofishing in the UARP study area by site, arranged left to right by decreasing elevation, 2002–2019.	2-7
Figure 2-7.	Trout density and biomass at Site RRD-F1, Rubicon River, Rubicon Dam Reach, 2002–2019.	2-9
Figure 2-8.	Length-frequency and age-class distribution of rainbow trout at Site RRD-F1, Rubicon River, Rubicon Dam Reach, 2002– 2019.	2-10
Figure 2-9.	Length-frequency and age-class distribution of brown trout at Site RRD-F1, Rubicon River, Rubicon Dam Reach, 2002–2019.	2-11
Figure 2-10.	Trout density and biomass at Site RRD-F2, Rubicon River, Rubicon Dam Reach, 2002–2019.	2-12
Figure 2-11.	Length-frequency and age-class distribution of rainbow trout at Site RRD-F2, Rubicon River, Rubicon Dam Reach, 2002– 2019.	2-12
Figure 2-12.	Length-frequency and age-class distribution of brown trout at Site RRD-F2, Rubicon River, Rubicon Dam Reach, 2002–2019.	2-13
Figure 2-13.	Trout density and biomass at Site BID-F1, Little Rubicon River, Buck Island Dam Reach, 2002–2019.	2-14
Figure 2-14.	Length-frequency and age-class distribution of rainbow trout at Site BID-F1, Little Rubicon River, Buck Island Dam Reach, 2002–2019	2-14
Figure 2-15.	Length-frequency and age-class distribution of rainbow trout at Site LLD-F3, Gerle Creek, Loon Lake Dam Reach, 2019	2-15
Figure 2-16.	Length-frequency and age-class distribution of brown trout at Site LLD-F3, Gerle Creek, Loon Lake Dam Reach, 2019	2-16
Figure 2-17.	Trout density and biomass at Site LLD-F2, Gerle Creek, Loon Lake Dam Reach, 2002–2019	2-17
Figure 2-18.	Length-frequency and age-class distribution of rainbow trout at Site LLD-F2, Gerle Creek, Loon Lake Dam Reach, 2002– 2019.	2-18
Figure 2-19.	Length-frequency and age-class distribution of brown trout at Site LLD-F2, Gerle Creek, Loon Lake Dam Reach, 2002–2019.	2-18
Figure 2-20.	Trout density and biomass at Site GCD-F1, Gerle Creek, Gerle Creek Dam Reach, 2002–2019	2-19

Figure 2-21.	Length-frequency and age-class distribution of rainbow trout at Site GCD-F1, Gerle Creek, Gerle Creek Dam Reach, 2002–2019.	2-20
Figure 2-22.	Length-frequency and age-class distribution of brown trout at Site GCD-F1, Gerle Creek, Gerle Creek Dam Reach, 2002–2019.	2-20
Figure 2-23.	Trout density and biomass at Site RPD-F1, S.F. Rubicon River, Robbs Peak Dam Reach, 2002–2019	2-21
Figure 2-24.	Length-frequency and age-class distribution of rainbow trout at Site RPD-F1, S.F. Rubicon River, Robbs Peak Dam Reach, 2002–2019	2-22
Figure 2-25.	Length-frequency and age-class distribution of brown trout at Site RPD-F1, S.F. Rubicon River, Robbs Peak Dam Reach, 2002–2019.	2-22
Figure 2-26.	Trout density and biomass at Site IHD-F1, S.F. Silver Creek, Ice House Dam Reach, 2002–2019.	2-23
Figure 2-27.	Length-frequency and age-class distribution of rainbow trout at Site IHD-F1, S.F. Silver Creek, Ice House Dam Reach, 2002–2019.	2-24
Figure 2-28.	Length-frequency and age-class distribution of brown trout at Site IHD-F1, S.F. Silver Creek, Ice House Dam Reach, 2002–2019.	2-24
Figure 2-29.	Trout density and biomass at Site IHD-F2, S.F. Silver Creek, Ice House Dam Reach, 2002–2019.	2-25
Figure 2-30.	Length-frequency and age-class distribution of rainbow trout at Site IHD-F2, S.F. Silver Creek, Ice House Dam Reach, 2002–2019.	2-26
Figure 2-31.	Length-frequency and age-class distribution of brown trout at Site IHD-F2, S.F. Silver Creek, Ice House Dam Reach, 2002–2019.	2-26
Figure 2-32.	Length-frequency and age-class distribution of rainbow trout at Site CD-F1, Silver Creek, Camino Dam Reach, 2002– 2019.	2-28
Figure 2-33.	Length-frequency and age-class distribution of rainbow trout at Site SCD-F3, South Fork American River, Slab Creek Dam Reach, 2019.	2-29
Figure 2-34.	Length-frequency and age-class distribution of brown trout at Site SCD-F3, South Fork American River, Slab Creek Dam Reach, 2019.	2-30

Figure 2-35.	Trout density at Site SCD-F2, South Fork American River, Slab Creek Dam Reach, 2002–20192-31
Figure 2-36.	Length-frequency and age-class distribution of rainbow trout at Site SCD-F2, South Fork American River, Slab Creek Dam Reach, 2002–20192-32
Figure 3-1.	California Stream Condition Index scores and condition categories for Benthic Macroinvertebrate samples collected for the Upper American River Project in 2019
Figure 3-2.	California Stream Condition Index scores and condition categories for Benthic Macroinvertebrate samples collected for the Upper American River Project in 2002/2003, 2010, and 2019 (average where data for more than one sample [multiple years or replicates within a year] was available for a site)
Figure 4-1.	Daily average flow for 2003–2019 water years for the Rubicon River Below Rubicon Dam. Grey lines show data prior to the new license flow regime (2003–2014) and red lines show data after the new license flow regime (2015– 2019)
Figure 4-2.	Annual peak flows for gages in the study reaches from 2003–2019. All 2019 peaks and the entire Rubicon record were estimated from the daily average flows; otherwise peak flows were downloaded from the USGS (SF Silver = South Fork Silver Creek; SF American = South Fork American River)
Figure 4-3.	Daily average flow for 2003–2019 water years for Gerle Creek Below Loon Lake Dam. Grey lines show data prior to the new license flow regime (2003–2014) and red lines show data after the new license flow regime (2015–2019)4-11
Figure 4-4.	Daily average flow for 2003–2019 water years for South Fork Silver Creek Below Ice House Dam. Grey lines show data prior to the new license flow regime (2003–2014) and red lines show data after the new license flow regime (2015– 2019)
Figure 4-5.	Daily average flow for 2003–2019 water years for Silver Creek Below Camino Dam. Grey lines show data prior to the new license flow regime (2003–2014) and red lines show data after the new license flow regime (2015–2019)4-13
Figure 4-6.	Daily average flow for 2003–2019 water years for South Fork American River Below Slab Creek Dam. Grey lines show data prior to the new license flow regime (2003–2014) and

	red lines show data after the new license flow regime (2015– 2019)4-	·14
Figure 4-7.	Site RRD-G1 looking upstream from XS-2 in 2003 (left) and 2019 (right)4-	·15
Figure 4-8.	Site LLD-G1 looking downstream from XS-2 in 2003 (left) and 2019 (right)4-	·19
Figure 4-9.	Aerial photographs of the area surrounding Site LLD-G1 showing the forest die-off adjacent to the channel4-	·20
Figure 4-10.	Site LLD-G2 looking upstream from XS-2 in 2003 (left) and 2019 (right)4-	·23
Figure 4-11.	Site IHD-G1 looking upstream from XS-2 in 2003 (left) and 2019 (right)4-	-27
Figure 4-12.	Site IHD-G2 looking upstream from XS-1 in 2003 (left) and 2019 (right) showing the regrowth of vegetation since the 1992 Cleveland Fire4-	-30
Figure 4-13.	Site CD-G1 looking downstream from XS-2 in 2003 (left) and 2019 (right)4-	.33
Figure 4-14.	Site SCD-G1 looking upstream near XS-2 in 2003 (left) and 2019 (right)4-	-36
Figure 7-1.	Hardhead survey site locations in the Slab Creek Dam Reach of the South Fork American River	7-2
Figure 7-2.	Fish species observed during snorkel surveys in the Slab Creek Dam Reach, August 2019	7-4
Figure 7-3.	Length-frequency distribution for cyprinids observed during snorkel surveys in the Slab Creek Dam Reach in August 2019.	7-5
Figure 7-4.	Length-frequency distribution for salmonids observed during snorkel surveys in the Slab Creek Dam Reach in August 2019.	7-6
Figure 7-5.	Length-frequency distribution for Sacramento sucker and sculpin spp. observed during snorkel surveys in the Slab Creek Dam Reach in August 20197	7-7
Figure 7-6.	Species composition and distribution observed during snorkel surveys conducted in fall 2004 and summer 2007, 2016, 2017, and 2019 (larval fish [<25 mm] have been excluded)	
Figure 7-7.	Total number observed and average density of hardhead across sites within the Slab Creek Dam Reach, 2004–20197-	·10

Figure 7-8.	Longitudinal distribution of hardhead within the Slab Creek Dam Reach, 2004–2019 (larval fish [<25 mm] have been excluded)
Figure 7-9.	Longitudinal distribution of the hardhead population center within the Slab Creek Dam Reach, 2004–2019 (larval fish [<25 mm] have been excluded)7-11
Figure 7-10.	Hardhead density by site within the Slab Creek Dam Reach, 2004–2019 (larval fish [<25 mm] have been excluded)7-12
Figure 7-11.	Hardhead density before and after minimum flows changes in the Slab Creek Dam Reach, 2004–2019 (larval fish [<25 mm] have been excluded)7-12
Figure 7-12.	Mean monthly water temperatures and water year type ("D" = Dry, "AN" = Above Normal, "W" = Wet) in the South Fork American River above White Rock Powerhouse (SMUD Gage SFAR15, RM 0.0) and mean monthly flow below Slab Creek Dam, before (2004–2007) and after (2016–2019) the new minimum flow regime. (Note: the June 2017 water temperature is an estimate based on monthly temperature differentials from a similar water year [2018])
Figure 7-13.	Mean monthly water temperatures in the South Fork American River above White Rock Powerhouse (SMUD Gage SFAR15, RM 0.0) before and after the new minimum flow regime
Figure 7-14.	Mean daily water temperatures in the South Fork American River above White Rock Powerhouse (SMUD Gage SFAR15, RM 0.0) for each of the hardhead survey years. (Note: Location of 2007 data recording was 0.75 mi. upstream from SMUD Gage SFAR15)
Figure 8-1.	Temperature logger locations at amphibian monitoring site CD-A3, 2019
Figure 8-2.	Temperature logger locations at amphibian monitoring site CD-A4, 20198-6
Figure 8-3.	Temperature logger locations at amphibian monitoring site SCD-A1, 20198-7
Figure 8-4.	Foothill Yellow-legged Frog observation locations at or near site CD-A3, 20198-11
Figure 8-5.	Foothill Yellow-legged Frog tadpole (left) found in side- channel pool habitat (right) during the VES at site CD-A3 on 1 October 2019

Figure 8-6.	Adult female Foothill Yellow-legged and habitat found on 11 September 2019 (left column) and on 1 October 2019 (right column).	8-14
Figure 8-7.	Adult male Foothill Yellow-legged Frog found incidentally at site CD-A3 on 11 September 2019.	8-15
Figure 8-8.	Adult Foothill Yellow-legged Frog incidentally observed at site CD-A3 on 6 August 2019	8-15
Figure 8-9.	Two adult female Foothill Yellow-legged Frogs found at the seep on 18 July 2019.	8-16
Figure 8-10.	Adult Foothill Yellow-legged Frogs observed at the tributary near the trail to CD-A3 on 18 July 2019 (left) and 1 August 2019 (right)	8-16
Figure 8-11.	. Representative photo of suitable Foothill Yellow-legged Frog habitat along Silver Creek, JD-A15, 30 September 2019	8-17
Figure 8-12.	. Representative photo of suitable Foothill Yellow-legged Frog habitat along Silver Creek, CD-A3, 1 August 2019	8-18
Figure 8-13.	. Representative photo of suitable Foothill Yellow-legged Frog habitat along CD-A4, 27 August 2019	8-18
Figure 8-14.	. Representative photo of suitable Foothill Yellow-legged Frog habitat along on SCD-A1, 28 August 2019	8-19
Figure 8-15.	. Benthic green algae in Silver Creek, Site CD-A3, 1 August 2019	8-19
Figure 8-16.	Edgewater and Thalweg temperature data for Silver Creek near Camino Adit (CD-A3) and flow data for Silver Creek below Camino Dam, with foothill yellow-legged frog (FYLF) observations	8-22
Figure 8-17.	Edgewater temperature data for Silver Creek upstream of South Fork American River Confluence (CD-A4) and flow data for Silver Creek below Camino Dam.	8-23
Figure 8-18.	Edgewater and Thalweg Temperature Data for South Fork American River Upstream of White Rock Powerhouse (SCD- A1) and Flow Data for SF American River below Slab Creek Dam.	8-24
Figure 8-19.	Western Pond Turtle observation locations at site SCD-A1, 2019.	8-27
Figure 8-20.	. Adult female Western Pond Turtle and habitat on the South Fork American River (SCD-A1) on 31 July 2019	8-28

Figure 8-21.	Adult male Western Pond Turtle and habitat on the South Fork American River (SCD- A1) on 2 October 20198-	29
Figure 8-22.	Adult male Western Pond Turtle and habitat on the South Fork American River (SCD- A1) on 2 October 2019	30
Figure 8-23.	Western pearlshell mussel found at JD-A15, 15 July 20198-	32
Figure 9-1.	Aquatic features at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1), 2019)-3
Figure 9-2.	Aquatic features at the Rubicon Reservoir Outlet Monitoring Area (Site RUB-A2), 2019)-4
Figure 9-3.	Aquatic features at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1), 2019) - 5
Figure 9-4.	Aquatic features at the lower Highland Creek Monitoring Area (Site HC-A1), 2019)-6
Figure 9-5.	Representative photo of habitat at Site RUB-A1 along the Rubicon River, 24 September 20199-	13
Figure 9-6.	Representative photos at Site RUB-A1 of two locations along Rubicon Reservoir Inlet, 14 August 2019 (top) 24 September 2019 (bottom)	14
Figure 9-7.	Representative photo of habitat at Site RUB-A1 of the pond (perennial), 10 July 20199-	15
Figure 9-8.	Representative photos at Site RUB-A2 of downstream (top) and upstream (bottom) habitat along the Rubicon River, 25 September 20199-	16
Figure 9-9.	Representative photo of habitat at Site RUB-A2 along Rubicon Dam Seep, 9 July 20199-	17
Figure 9-10.	Ephemeral pond at Site RUB-A1 on 9 July 2019 (top) and 13 August 2019 (bottom)9-	18
Figure 9-11.	Representative photo at Site RCK-A1 of habitat along the stream margin located at Rockbound Lake Inlet, 15 August 20199-	19
Figure 9-12.	Representative photo at Site RCK-A1of habitat along the side-channel pond area located at Rockbound Lake Inlet, 15 August 20199-	20
Figure 9-13.	Representative photo at Site RCK-A1 of habitat along the wetland located at Rockbound Lake Inlet, 15 August 20199-	20
Figure 9-14.	Representative photos of habitat at Site RCK-A1 along upper Highland Creek upstream (top) and downstream (bottom) of the Rubicon Hiking Trail, 15 August 20199-	21

Figure 9-15.	Representative photo at Site HC-A1 along lower Highland Creek, 15 August 2019.	9-22
Figure 9-16.	Sierran tree frog tadpoles found at Site RUB-A2 on 9 July 2019 and Site RUB-A1 on 14 August 2019	9-24
Figure 9-17.	Sierran treefrogs found at Site RUB-A1 on 14 August (top left), Site RCK-A1 on 15 August (top right), Site RUB-A1 on 24 September 2019 (bottom left), and Site HC-A1 on 26 September 2019 (bottom right).	9-24
Figure 9-18.	Western toads found at Site RUB-A2 on 9 July 2019 (left) and Site RCK-A1 on 15 August 2019 (right)	9-25
Figure 10-1.	Bear-human interaction monitoring locations	10-2
Figure 11-1.	Log boom reconfiguration at Slab Creek Dam allowing large woody debris to move downstream	11-1
Figure 12-1.	Silver Creek Upstream of South Fork American River Confluence (SC8) block of water	12-8

LIST OF APPENDICES

- APPENDIX A1 Pre- and Post-License Minimum Streamflow Requirements for the Upper American River Project (FERC P-2101)
- APPENDIX B1 2019 Fish Survey Data
- APPENDIX B2 Fish Population Data
- APPENDIX B3 Trout Condition Table
- APPENDIX B4 2019 Scale Analysis Data
- APPENDIX B5 Site Photos
- APPENDIX B6 Site Conditions
- APPENDIX C1 Benthic Macroinvertebrate Site Photos
- APPENDIX C2 Interlaboratory Quality Control Report
- APPENDIX C3 Benthic Macroinvertebrate Taxonomic List
- APPENDIX C4 Benthic Macroinvertebrate Metric Values
- APPENDIX D1 Flow Data
- APPENDIX D2 Cross Section Location Data and Overview Maps
- APPENDIX D3 Photos
- APPENDIX D4 Longitudinal Profiles

APPENDIX D5	Cross-sections
APPENDIX D6	Pebble Counts
APPENDIX D7	Facies Maps
APPENDIX D8	Inventory of Large Woody Debris
APPENDIX D9	V* Fine Sediment Storage Data
APPENDIX D10	Rosgen Level III Analyses
APPENDIX D11	Bank Erosion and Vegetation
APPENDIX D12	Channel Stability (Pfankuch)
APPENDIX E1	2019 Riparian Site Photos
APPENDIX E2	2019 Riparian Vegetation Map
APPENDIX E3	2019 Riparian Vegetation Line-point Intercept Results
APPENDIX E4	2019 Riparian Vegetation Point-Centered Quarter Results
APPENDIX E5	2019 Riparian Vegetation Greenline Results
APPENDIX F1	Incidental Observations of Avian Species in the Study Area (2016–2019)
APPENDIX F2	Bald Eagle Survey Forms
APPENDIX H1	2019 Representative Amphibian and Aquatic Reptile Habitat Photos
APPENDIX I1	Sierra Nevada Yellow-legged Frog Habitat Photo Points
APPENDIX J1	2019 Bear Forms
APPENDIX J2	2019 Bear Encounter Results
APPENDIX K1	2019 Water Temperature Graphs



Acronyms and Abbreviations

Acronym	Definition
BLM	U.S. Bureau of Land Management
BMI	Benthic macroinvertebrate
CDFW	California Department of Fish and Wildlife
cfs	Cubic Feet Per Second
CSCI	California Stream Condition Index
CVRWQCB	Central Valley Regional Water Quality Control Board
DBH	Diameter at breast height
DWR	California Department of Water Resources
ENF	El Dorado National Forest
EPT	Ephemeroptera, Trichoptera and Plecoptera
FERC	Federal Energy Regulatory Commission
FL	Fork Length
ft	feet
FYLF	Foothill yellow-legged frog
GIS	Geographic Information System
GNSS	global navigation satellite system
GPS	Global Positioning System
in.	inches
LWD	Large woody debris
mi	mile
mm	Millimeters
MMI	Multi-metric index
NAIP	National Agriculture Imagery Program
new license	The FERC License for the Upper American River Project 2101 issued July 2014 for which new flow regimes and other terms and conditions were implemented beginning in October 2014
NOAA	National Oceanic and Atmospheric Administration
O/E	Observed-to-expected
old license	The original FERC License for Upper American River Project 2101 which concluded in July 2014 for which a different minimum flow regime and other terms and conditions were in place
OPUS	Online Positioning User Service

Acronym	Definition
Plan(s)	Trout Monitoring Plan, Aquatic Macroinvertebrate Monitoring Plan, Geomorphology Monitoring Plan, Riparian Vegetation Monitoring Plan, Bald Eagle Monitoring Plan, Hardhead Monitoring Plan, Amphibian and Aquatic Reptile Monitoring Plan, Sierra Nevada Yellow-legged Frog Monitoring, Bear Monitoring Plan, Large Woody Debris Monitoring Plan, and Water Temperature Monitoring Plan
PG&E	Pacific Gas and Electric Company
QC	Quality control
Report	Annual Monitoring Report
RTK	Real-time kinematic
RTS	robotic total station
RWB	Reach-wide benthos
SAFIT	Southwestern Association of Freshwater Invertebrate Taxonomists
SFAR	South Fork American River
Sierra IBI	Sierra Index of Biological Integrity
SL	Standard Length
SMUD	Sacramento Municipal Utility District
SNYLF	Sierra Nevada Yellow-legged Frog
SWAMP	Surface Water Ambient Monitoring Program
SWRCB	State Water Resources Control Board
TL	Total Length
UARP	Upper American River Project
USGS	U.S. Geological Survey
USFS	U.S. Department of Agriculture, Forest Service
USFWS	U.S. Fish and Wildlife Service
VESs	Visual Encounter Surveys
WPT	Western pond turtle
XS	Cross-section
YOY	young of-year

1.0 INTRODUCTION AND BACKGROUND

This Annual Monitoring Report (Report) addresses monitoring requirements set forth in Sacramento Municipal Utility District's (SMUD) Trout Monitoring Plan, Aquatic Macroinvertebrate Monitoring Plan, Geomorphology Monitoring Plan, Riparian Vegetation Monitoring Plan, Bald Eagle Monitoring Plan, Hardhead Monitoring Plan, Amphibian and Aquatic Reptile Monitoring Plan, Sierra Nevada Yellow-legged Frog Monitoring, Bear Monitoring Plan, Large Woody Debris Monitoring Plan, and Water Temperature Monitoring Plan (Plans). Requirements of the Plans are found in State Water Resources Control Board (SWRCB) Conditions 8 and 10, and U.S. Department of Agriculture, Forest Service (USFS) 4(e) Condition 31 and 35, located in Appendices A and B, respectively, of the Federal Energy Regulatory Commission's (FERC) Order Issuing New License for the Upper American River Project (UARP; FERC Project No. 2101), dated July 23, 2014 (FERC 2014) and the USFS section 4(e) Conditions 14 and 15 for the Slab Creek Flow Facility Project License Amendment (USFS 2015). The Plans were developed in consultation with the SWRCB, USFS, California Department of Fish and Wildlife (CDFW), and U.S. Fish and Wildlife Service (USFWS). This Report presents the results of implementing the Plans in 2019.

SMUD owns and operates the UARP which is licensed by FERC. The UARP lies within EI Dorado and Sacramento counties, primarily within lands of Eldorado National Forest (ENF). The UARP consists of three major storage reservoirs: Loon Lake, Union Valley, and Ice House (with a combined capacity of approximately 379,000 acre-feet), eight smaller regulating or diversion reservoirs, and eight powerhouses. The UARP also includes recreation facilities containing over 700 campsites, five boat ramps, hiking paths, and bicycle trails at the reservoirs.

All minimum streamflows required by the new FERC License were implemented in October 2014; therefore, Year 1 as it pertains to the Monitoring Program is 2015. Preand post-2014 minimum streamflow requirements (i.e., "old" license and "new" license) are provided in Appendix A1.

This Report summarizes results of Monitoring Year 5 (2019). Refer to Section 1.2 of this report for information about the frequency of resource-specific monitoring effort required by the License. Some monitoring activities have specific reporting requirements and deadlines in lieu of this Report.

For context in considering the monitoring results, the California Department of Water Resources (DWR) May Bulletin 120 forecast the 2019 water year type as Wet, and the UARP was operated under this scenario for the remainder of the water year. The final 2019 water year type remained classified as Wet based on DWR's Full Natural Flow record for the American River at Folsom in October 2019.

1.1 MONITORING SITES

Monitoring sites are depicted in Figure 1-1 through Figure 1-3 for all 2019 study locations.

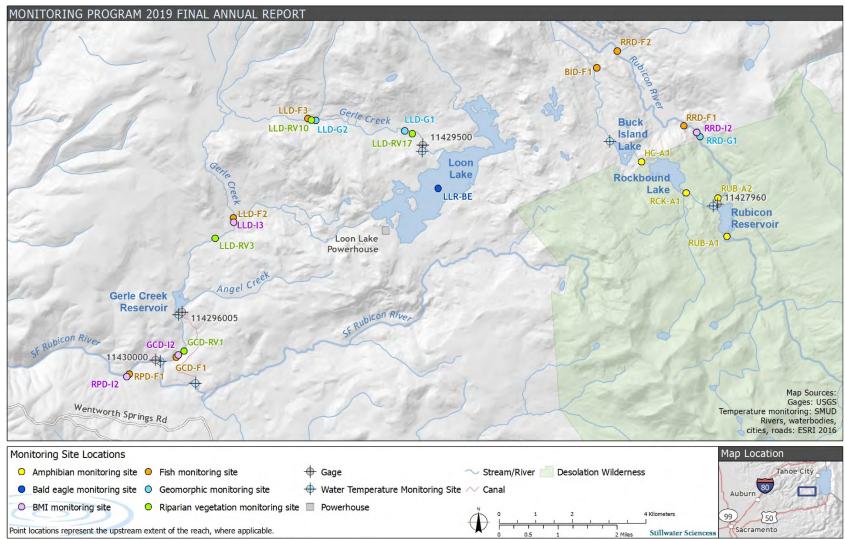


Figure 1-1. Monitoring locations downstream of Rubicon Reservoir, Rockbound Lake, Loon Lake, and Gerle Creek Reservoir.

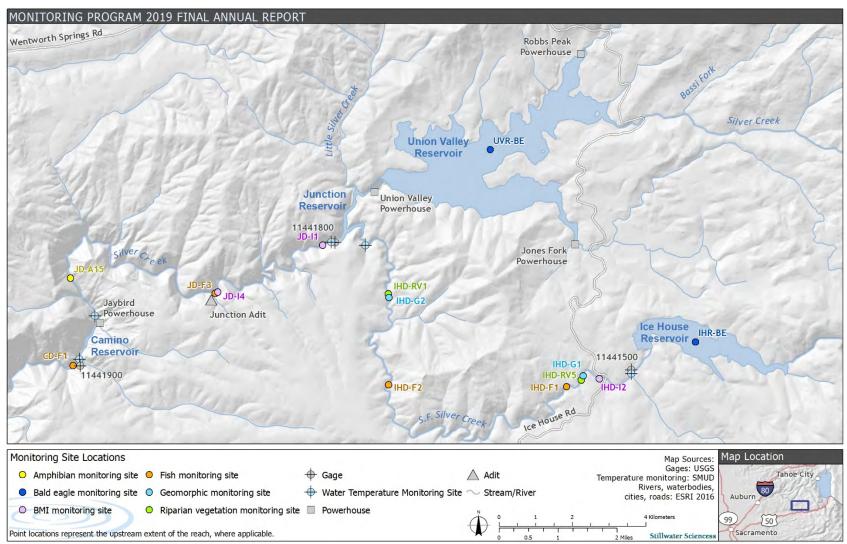


Figure 1-2. Monitoring locations downstream of Ice House Reservoir, Union Valley Reservoir, Junction Reservoir, and Camino Reservoir.

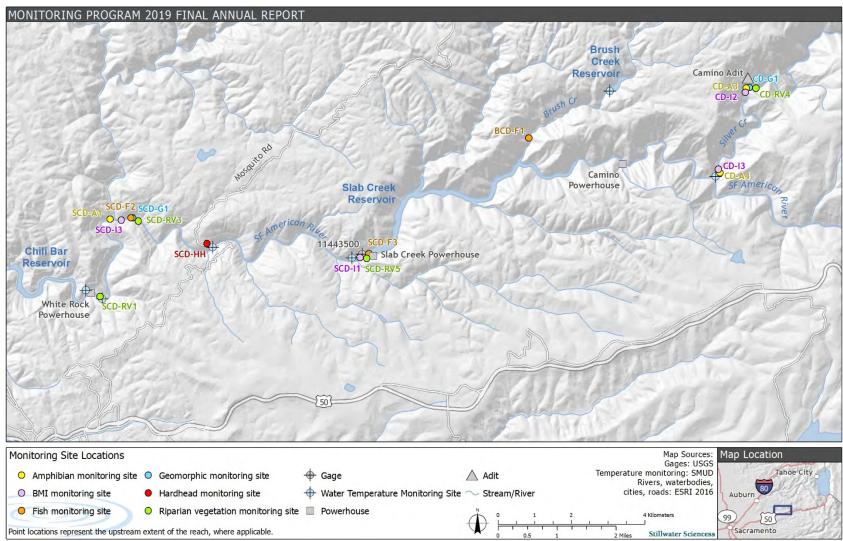


Figure 1-3. Monitoring locations downstream of Camino Reservoir (continued), Brush Creek Reservoir, and Slab Creek Reservoir.

1.2 MONITORING FREQUENCY

The Monitoring Program covers monitoring to be conducted during all years until a new license is issued. Table 1-1 describes the monitoring frequencies for the first five years of the License. As noted in Section 1.3, some monitoring activities have specific reporting requirements and deadlines in lieu of this Report.

Table 1-1.	Monitoring Program Frequency First Five Years.	

		License	Monitor	ing Year	
	1	2	3	4	5
Monitoring Effort	(2015)	(2016)	(2017)	(2018)	(2019)
Trout Population Monitoring					х
Hardhead Population Monitoring		Х	Х		х
Aquatic Macroinvertebrate					х
Amphibian and Aquatic Reptile Monitoring (including Foothill Yellow-legged Frog)		х	х	x	х
Sierra Nevada Yellow-legged Frog (formerly Mountain Yellow-legged Frog) Monitoring					х
Riparian Vegetation Monitoring					х
Algae Species Identification and Monitoring		х			
Geomorphology (Sensitive Site Investigation and Mitigation Plan Development)	x	х			
Geomorphology (Continuing Evaluation of Representative Channel Areas)					х
Water Temperature		х	х	х	х
In Situ Water Quality	х	х	Х	х	х
Bacteria Monitoring	х	х	Х	х	х
Metals bioaccumulation		х			
Water General Chemistry			Х		
Robbs Peak Powerhouse Entrainment	х	Х	Х		
Bear Management Monitoring		х	Х	х	х
Bald Eagle Monitoring		Х	Х	Х	Х
Large Woody Debris	Х	Х	Х	Х	Х

1.3 LITERATURE CITED

FERC (Federal Energy Regulatory Commission). 2014. Federal Energy Regulatory Commission Order 148 FERC 62,070 Issuing New License for the Sacramento Municipal Utility District Upper American River Hydroelectric Project No. 2101. Issued July 23.

2.0 TROUT

2.1 OBJECTIVES

The objective of the Trout Monitoring Plan is to evaluate changes in trout populations throughout the UARP area related to implementation of new minimum flow requirements under the 2014 FERC License (SMUD 2016).

2.2 METHODS

Site locations are shown in Figures 1-1 through 1-3, and methods are described in Section 4.0 of the Trout Monitoring Plan. The following methodological variations were implemented during the 2019 monitoring and analysis:

- Sites JD-F3 and SCD-F2 were surveyed via snorkeling rather than electrofishing due to access constraints (inability to safely transport gear to the site) and safety concerns caused by high flow conditions, respectively.
- The downstream extent of Site RRD-F2 and upstream extent of Site RPD-F1 were reduced by 45 feet and 20 feet, respectively, due to scour pools preventing effective block net placement.
- The upstream extent of Site LLD-F2 was extended 20 feet upstream. The original location of the upstream block net was immediately below a high gradient riffle, such that high flow through the riffle (under the new minimum flows) prevented block net deployment.
- A maximum-likelihood estimate was used to aid in the computation of trout density and biomass at sites RRD-F2 and IHD-F1, where low observation numbers and poor depletion patterns prevented reliable Zippin estimates. For these two sites, MicroFish 3.0 (Van Deventer and Platts 1989) was used to generate population estimates and capture probabilities, which were then used to estimate trout density and biomass.

2.3 RESULTS

Nine fish species were documented during the 2019 surveys, including six native and three non-native species, compared to 12 fish species previously documented during the 2002–2005 surveys (Table 2-1). The distribution of species observed among sites decreased from prior surveys to 2019; however, this may reflect a single year of sampling (in 2019) compared to multiple years of sampling in prior years (2002–2005; Table 2-1). The distribution of rainbow trout was similar to prior years, except for in the Buck Island Dam and Junction Dam reaches, where they were not observed in 2019. The distribution of brown trout was also similar to prior years, except for the Junction Dam and Camino Dam reaches, where they were not observed in 2019. The Slab Creek Dam Reach continued to have the greatest number (richness) of species, with

five species observed in 2019 (Table 2-1). Fish survey data are provided in Appendix B1.

Table 2-1.	Fish Species Composition for the SMUD UARP Study Reaches,
2002–2019. ^a	

		Stream Reach ^b								
Fish Species	RRD	BID	LLD	GCD	RPD	IHD	JD	CD	SCD	
			•	Native	•		•	•		
California roach	Hesperoleucus symmetricus	• 🗆	• 🗆							•
Hardhead	Mylopharodon conocephalus									•
Hitch	Lavina exilicauda	•								
Rainbow trout	Oncorhynchus mykiss	• 🗆	•	• 🗆	• 🗆	• 🗆	• 🗆	•	• 🗆	• 🗆
Riffle sculpin	Cottus gulosus									•
Sacramento pikeminnow	Ptychocheilus grandis									• 🗆
Sacramento sucker	Catostomus occidentalis	•					• 🗆	•	•	• 🗆
Sculpin spp.	Cottus spp.									• 🗆
Speckled dace	Rhinichthys osculus	• 🗆								•
			No	on-nativ	/e					
Brook trout	Salvelinus fontinalis	•								
Brown trout	Salmo trutta	• 🗆		• 🗆	• 🗆	• 🗆	• 🗆	•	•	• 🗆
Golden shiner	Notemigonus crysoleucas		• 🗆							
Sunfish spp.	Lepomis spp.									

^a ● 2002, 2003, 2004, and/or 2005 Surveys □ 2019 surveys

^b BID = Buck Island Dam IHD = Ice House Dam CD = Camino Dam GC = Gerle Creek Dam

JD = Junction Dam LLD = Loon Lake Dam RPD = Robbs Peak Dam RRD = Rubicon Dam SCD = Slab Creek Dam

Overall, rainbow and brown trout remained the dominant fish species throughout the UARP study area in 2019 (Figure 2-1); however, notable changes in species relative abundance occurred at several sites compared to prior survey years. For example, the relative abundance of trout increased in 2019 compared to prior survey years at sites IHD-F2 and SCD-F2, reflecting decreased abundance of sucker, sculpin, and minnow species. Also, the relative abundance of brown trout decreased in 2019 compared to prior survey years at several sites (GCD-F1, RPD-F1, IHD-F1, and LLD-F2), with Site LLD-F2 transitioning from brown trout to rainbow trout dominant (Figure 2-1).

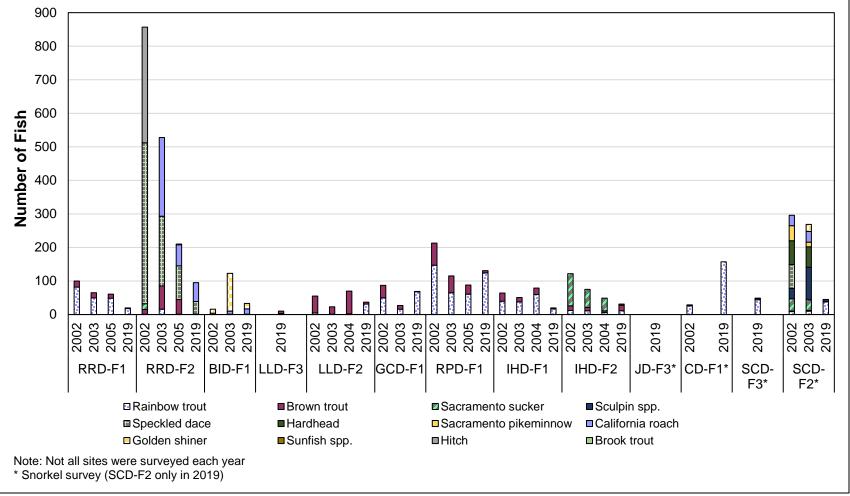


Figure 2-1. Fish species relative abundance among UARP trout monitoring sites, 2002–2019.

Trout biomass was estimated for sites that were sampled by electrofishing. Trout (rainbow and brown trout, combined) density was estimated for sites that were sampled by multiple-pass electrofishing and snorkel surveys. In general, trout densities were lower in 2019 than in 2002–2005 (Table 2-2); however, densities varied among sites. In 2019, trout densities at sites located at higher elevations (i.e., sites RRD-F1, RRD-F2, BID-F1, LLD-F3, and LLD-F2) were lower than in previous survey years, whereas trout densities at the middle and lower elevation sites (i.e., sites GCD-F1 and CD-F1, respectively) were either higher or within range of previous survey years (Figure 2-2). Similarly, average trout biomass was lower in 2019 than in previous survey years (Table 2-2) and included the lowest recorded levels at seven of the nine sites surveyed (Figure 2-3). Detailed trout biomass and density data are provided in Appendix B2.

20022003200420052019Density (trout/acre)278.2293.0432.9348.5167.9Biomass (lbs/acre)20.413.430.213.79.4												
(trout/acre) 278.2 293.0 432.9 348.5 167.9 Biomass 20.4 13.4 30.2 13.7 9.4	2002 2003 2004 2005 2019											
		278.2	293.0	432.9	348.5	167.9						
		20.4	13.4	30.2	13.7	9.4						

Table 2-2. Average Trout Density and Biomass, 2002–2019.^{a,b}

lbs = pounds

^a Averages for the monitoring years 2002–2005 exclude sites which were not surveyed in 2019.

^b Average density was computed from sites that were surveyed by electrofishing and snorkel methods, while biomass only included sites that were electrofished.

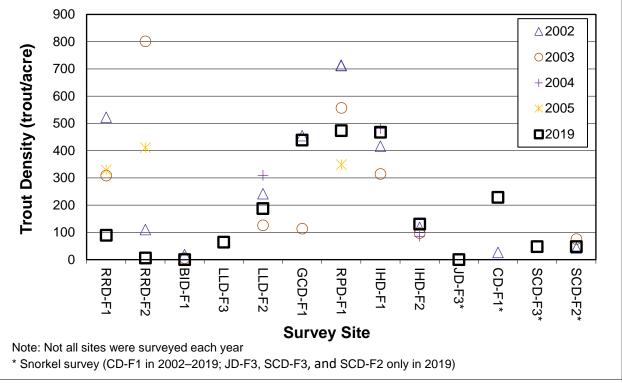


Figure 2-2. Trout density in the UARP study area by site, arranged left to right by decreasing elevation, 2002–2019.

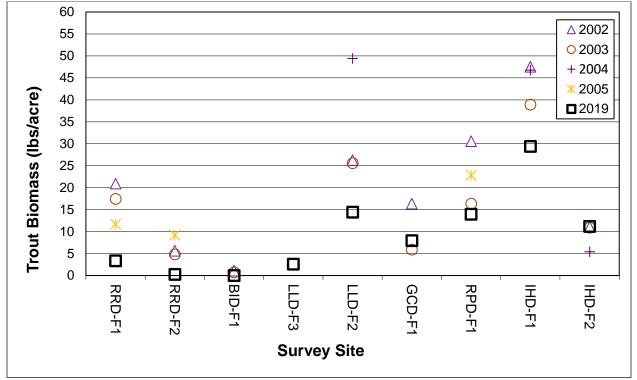
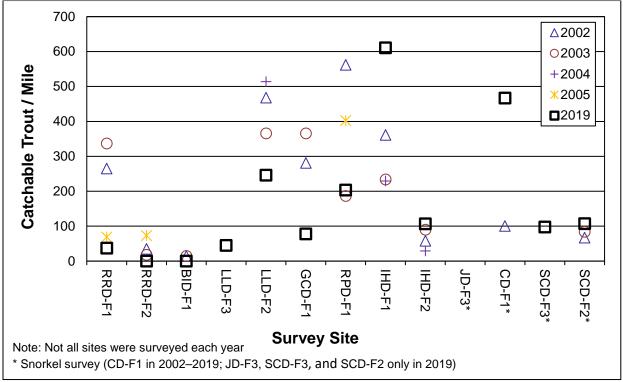



Figure 2-3. Trout biomass in the UARP study area by site, arranged left to right by decreasing elevation, 2002–2019.

Similar to trout density, the number of catchable trout per mile (trout that are greater than 152 millimeters (mm; 6 inches [in.]) decreased in higher elevation streams (Rubicon River, Little Rubicon River, Gerle Creek, and South Fork Rubicon River) and increased in lower elevation streams (South Fork Silver Creek, Silver Creek, and South Fork. American River) in 2019 compared to prior years (Figure 2-4).

Figure 2-4. Number of catchable trout (>152 mm) per mile in the UARP study area by site, arranged left to right by decreasing elevation, 2002–2019.

Condition factors (K-values) indicate that rainbow trout were generally in good condition in 2019¹; however, the average condition factor for all sites was lower than prior survey years (Figure 2-5, Table 2-3, and Appendix B3). The condition factors also indicate that brown trout were in good condition in 2019, and their average condition factor was comparable to previous survey years (Figure 2-6, Table 2-3, and Appendix B3).

¹ Condition factors in western Sierran streams typically range from 0.8 to 2.0, with a mean condition factor generally 1.2 or below (Beak 1991, EA 1986, Ebasco Environmental 1993, Wilcox 1994, Hanson Environmental 2005). Rabe (1967) reported the condition factor to be between 0.9 and 1.1 for rainbow trout in Alpine lakes. Arismendi et al. (2011) cites broader ranges (0.5 to 2.0); however, condition is dependent on the time of sampling, the species, the strain of trout, state of sexual maturity, and the way fish length is defined (e.g., fork length [FL], total length [TL], or standard length [SL]), which is not often documented with the results. Total length has been used as the standard of measurement throughout the 2002–2019 UARP trout monitoring surveys.

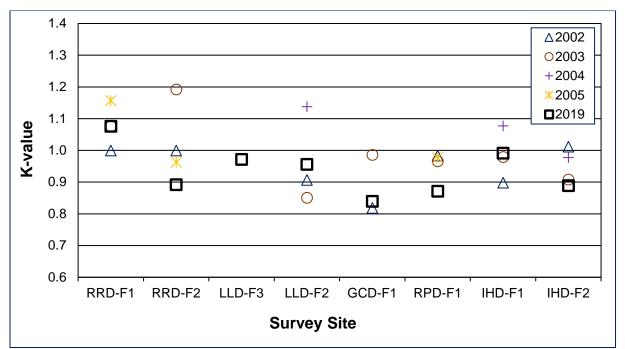


Figure 2-5. Condition factors for rainbow trout captured by electrofishing in the UARP study area by site, arranged left to right by decreasing elevation, 2002–2019.

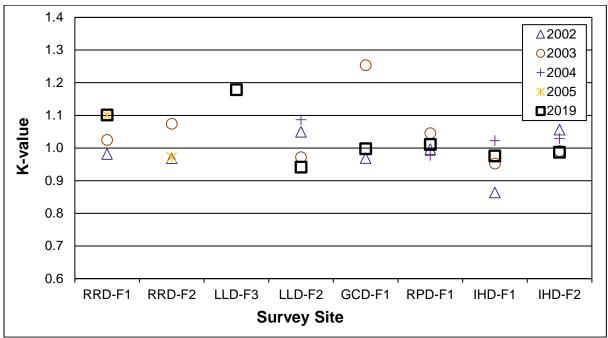


Figure 2-6. Condition factors for brown trout captured by electrofishing in the UARP study area by site, arranged left to right by decreasing elevation, 2002–2019.

	Survey Site										
Year	RRD-F1	RRD-F2	LLD-F3	LLD-F2	GCD-F1	RPD-F1	IHD-F1	IHD-F2	Average		
Rainbow trout											
2019	1.08	0.89	0.97	0.96	0.84	0.87	0.99	0.89	0.94		
2005	1.16	0.96				0.98			1.03		
2004				1.14			1.08	0.98	1.06		
2003	1.08	1.19		0.85	0.99	0.97	0.98	0.91	0.99		
2002	1.00	1.00		0.91	0.82	0.98	0.90	1.01	0.95		
Average	1.08	1.01	0.97	0.96	0.88	0.95	0.99	0.95	0.98		
				Brow	n trout						
2019	1.10		1.18	0.94	1.00	1.01	0.98	0.99	1.03		
2005	1.10	0.97							1.04		
2004				1.09		0.98	1.02	1.03	1.03		
2003	1.02	1.07		0.97	1.25	1.05	0.95	0.99	1.04		
2002	0.98	0.97		1.05	0.97	1.00	0.86	1.06	0.98		
Average	1.05	1.00	1.18	1.01	1.07	1.01	0.95	1.02	1.02		

Table 2-3.Condition Factors for Rainbow and Brown Trout in the UARP StudyArea by Site, 2002–2005 and 2019.^a

-- = not sampled

^a Condition factors calculated using TL as the metric for length measurement.

Length-at-age data used to determine approximate age classes of each trout species are provided in Table 2-4. Scale data from representative fish from all sites were combined for the analysis to supplement length-at-age data from the literature. Scale analysis data are provided in Appendix B4.

	Length-at-Age (mm TL)				
Reference	YOY	1+	2+	3+	4+
		Rainbow trout		·	
Snider and Linden (1981), Moyle (2002)	<100	130–170	180–220	230–260	b
2019 Scale Analysis	 a	122–181 (n=27)	187–212 (n=4)	 b	b
		Brown trout			
Moyle (2002)	<70	70–220	130–360	230–450	
2019 Scale Analysis	72–90 (n=15)	119–164 (n=6)	147–222 (n=6)	240–352 (n=4)	325 (n=1)

Table 2-4. Trout Length-at-Age Summary.

mm=millimeters; TL=Total Length; YOY=young-of-year

^a Rainbow trout YOY scales were not collected due to potential harm to the fish and the scale's small/developing nature

^b No fish in this size class collected

The following sections discuss results from individual reaches and sites. Site photos and habitat data are provided in Appendix B5 and Appendix B6, respectively.

2.3.1 Site RRD-F1

This sampling site is located approximately 1.6 miles downstream of Rubicon Dam, just upstream of Rubicon Springs. This site included bedrock and boulder-dominated riffle and run complexes with a small amount of pool habitat. The upper segment of this site had transitioned from almost entirely pool habitat in 2002 and 2003 to being run-dominant in 2019. This site was surveyed via electrofishing in 2002, 2003, 2005, and 2019; it was divided into upper and lower segments during sampling in all years for sampling efficiencies, although the data are presented for the entire site.

Both rainbow and brown trout were captured at this site in all survey years, with rainbow trout as the dominant species and little change in composition across years (Figure 2-1). Trout density and biomass in 2019 were much lower than all other years sampled (Figure 2-7).

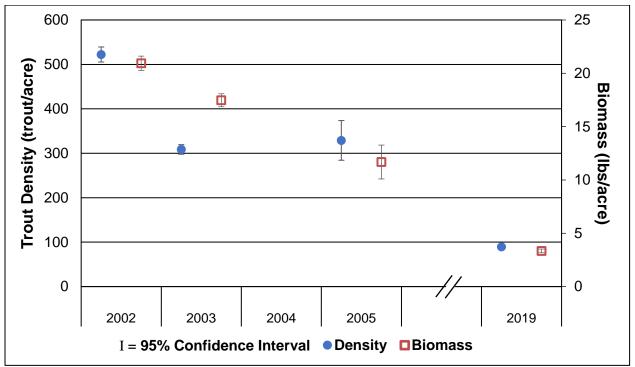


Figure 2-7. Trout density and biomass at Site RRD-F1, Rubicon River, Rubicon Dam Reach, 2002–2019.

Rainbow trout ranged in age from young-of-year (YOY) to age 2+ in 2019 (Figure 2-8). There was a flat distribution among age classes, which is not typical and indicates low recruitment in 2018 and 2019. Prior years, especially 2002, had a more typical length-frequency distribution, where highest numbers of YOY were followed by lower numbers of subsequent age classes.

Only two brown trout were observed at Site RRD-F1 in 2019. Both were YOY fish, indicating limited recruitment in late 2018 and early 2019. In previous monitoring years, small numbers of trout were observed in the 1+ and 2+ age classes which also indicated poor recruitment and low survival in those years (Figure 2-9).

The average condition factors for rainbow and brown trout (K=1.08 and 1.10, respectively) in 2019 suggests that trout were in good condition, which was generally consistent with previous monitoring years (Table 2-3, Figure 2-5, and Figure 2-6).

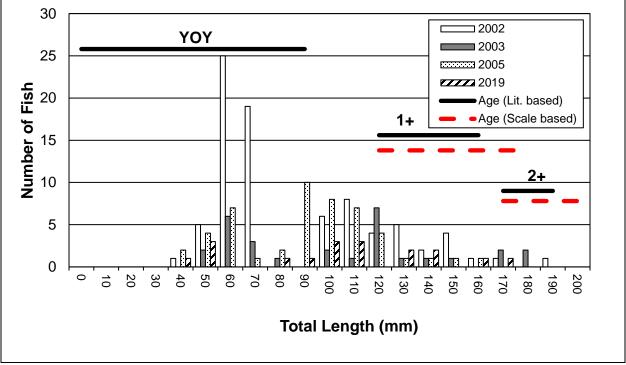


Figure 2-8. Length-frequency and age-class distribution of rainbow trout at Site RRD-F1, Rubicon River, Rubicon Dam Reach, 2002–2019.

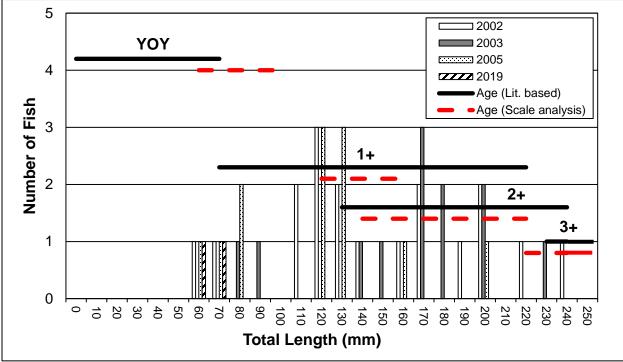


Figure 2-9. Length-frequency and age-class distribution of brown trout at Site RRD-F1, Rubicon River, Rubicon Dam Reach, 2002–2019.

2.3.2 Site RRD-F2

This sampling site is located at the downstream end of Rubicon Springs Valley, at the confluence of the Rubicon River and Miller Creek, 3.5 miles downstream of Rubicon Dam. The site included sand dominant pool and run habitat with limited riffle habitat. It was surveyed via electrofishing in 2002, 2003, 2005, and 2019 and was sampled as a single segment in 2019.

Fish species observed in 2019 included speckled dace, California roach, and rainbow trout, which is consistent with prior monitoring years; however, brown trout had also been previously observed (Figure 2-1). Trout density and biomass were lower in 2019 than all other monitoring years (Figure 2-10). The single rainbow trout observed was age 1+, indicating poor recruitment at this site in 2019. Previous monitoring years showed more typical length-frequency distributions for rainbow and brown trout, with higher numbers of YOY followed by lower numbers in subsequent age classes (Figures 2-11 and 2-12). The average condition factor for rainbow trout in 2019 (K=0.89) was also the lowest of all years sampled (Table 2-3, Figure 2-5).

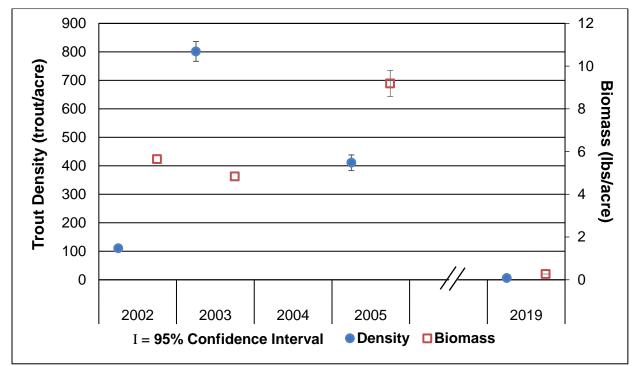


Figure 2-10. Trout density and biomass at Site RRD-F2, Rubicon River, Rubicon Dam Reach, 2002–2019.

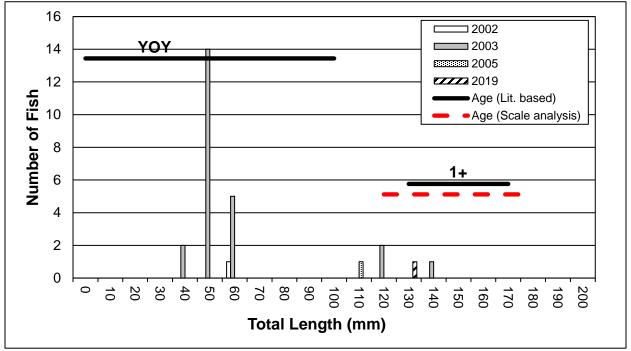


Figure 2-11. Length-frequency and age-class distribution of rainbow trout at Site RRD-F2, Rubicon River, Rubicon Dam Reach, 2002–2019.

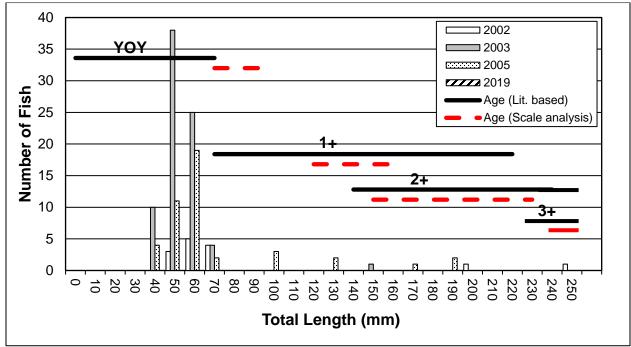


Figure 2-12. Length-frequency and age-class distribution of brown trout at Site RRD-F2, Rubicon River, Rubicon Dam Reach, 2002–2019.

2.3.3 Site BID-F1

This sampling site is located 1.5 miles downstream of Buck Island Dam at a 90-degree bend in the channel and the base of a short bedrock slab, which resulted in a large boulder and bedrock dominant backwater scour pool in the upper segment. The narrower, higher-gradient lower segment contained riffle and run habitat. This site was surveyed via electrofishing in 2002, 2003, and 2019 and was divided into upper and lower segments during sampling.

California roach and golden shiner were observed in 2019, similar to 2002 and 2003; however, Sacramento sucker were also observed for the first time. Rainbow trout, which were present in small numbers in 2002 and 2003, were absent in 2019 (Figure 2-1). Trout density and biomass were the lowest in 2019 of all monitoring years (Figure 2-13). In prior years, rainbow trout ranged from YOY to age 2+ (Figure 2-14).

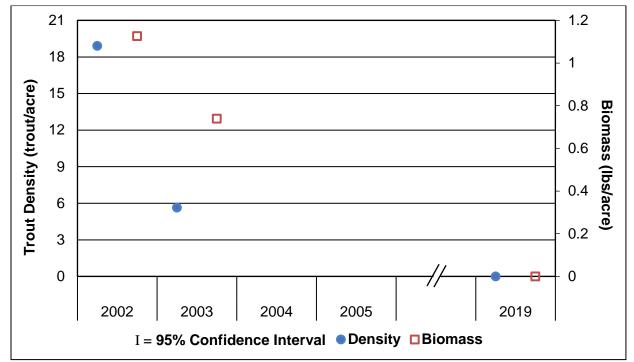


Figure 2-13. Trout density and biomass at Site BID-F1, Little Rubicon River, Buck Island Dam Reach, 2002–2019.

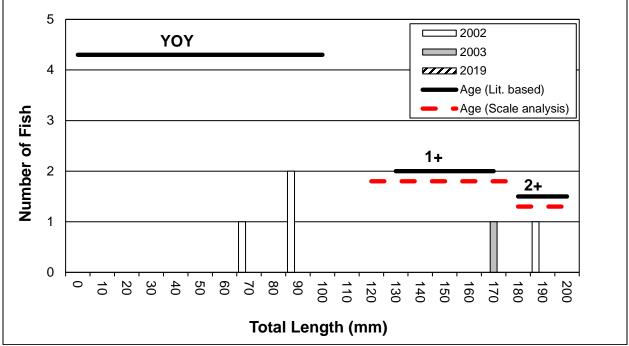


Figure 2-14. Length-frequency and age-class distribution of rainbow trout at Site BID-F1, Little Rubicon River, Buck Island Dam Reach, 2002–2019.

2.3.4 Site LLD-F3

Site LLD-F3 was sampled for the first time in 2019 as a replacement for LLD-F1. Site LLD-F1 is located on private land where access was restricted in 2019. Site LLD-F3 was determined to be a reasonable substitute for Site LLD-F1 because it is in close proximity to Site LLD-F1, contains multiple habitat types (run, pool, etc.), is of similar size and gradient to the area around Site LLD-F1, and is located on public land. This sampling site is located approximately 3 miles downstream of Loon Lake Dam and 0.5 miles downstream of Wentworth Springs. The site was composed primarily of run habitat with a small number of riffles and glides. It was surveyed via electrofishing and was divided into upper and lower segments during surveying.

Rainbow and brown trout were observed in 2019 (Figure 2-1). Trout density, biomass, and the number of catchable trout per mile were relatively low compared to other sites (Figures 2-2 through 2-4). Rainbow and brown trout ranged from YOY through age 2+, although the low abundance and flat age-class distributions indicate limited recruitment in 2018 and 2019 (Figures 2-15 and 2-16). Rainbow and brown trout were in good condition (K=0.97 and 1.18, respectively; Figures 2-5 and 2-6, Table 2-3).

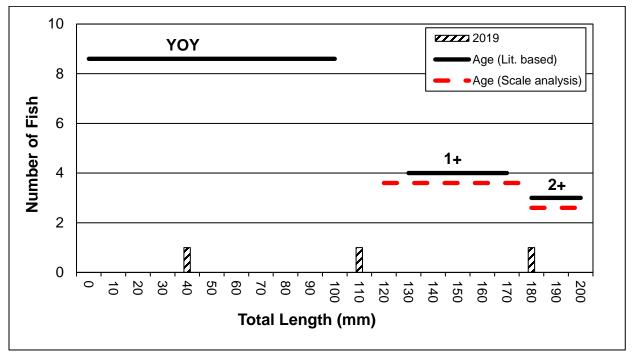


Figure 2-15. Length-frequency and age-class distribution of rainbow trout at Site LLD-F3, Gerle Creek, Loon Lake Dam Reach, 2019.

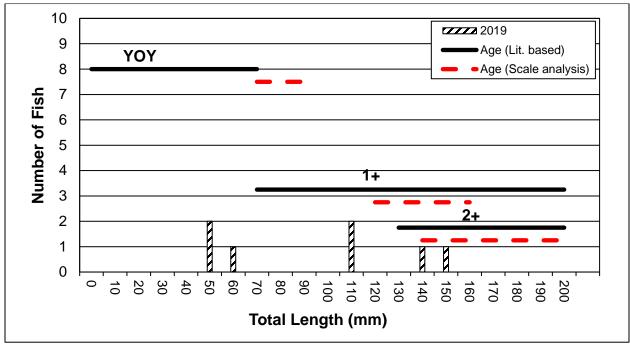


Figure 2-16. Length-frequency and age-class distribution of brown trout at Site LLD-F3, Gerle Creek, Loon Lake Dam Reach, 2019.

2.3.5 Site LLD-F2

Site LLD-F2 is located at the confluence of Gerle Creek with Rocky Basin Creek, approximately 4 miles downstream of Site LLD-F3 and 7 miles downstream of Loon Lake Dam. The site contained long runs with intermittent riffles, pools, and glide habitat. More riffle habitat was documented at the site relative to previous monitoring years. It was surveyed via electrofishing in 2002, 2003, 2004, and 2019 and was divided into upper and lower segments during sampling.

Rainbow and brown trout were observed at this site in all monitoring years. The site transitioned from brown trout dominant to rainbow trout dominant in 2019 (Figure 2-1). Trout density in 2019 was similar to other monitoring years, but biomass was slightly lower, which appears related to a decrease in the number of catchable trout per mile in 2019 (Figures 2-4 and 2-17).

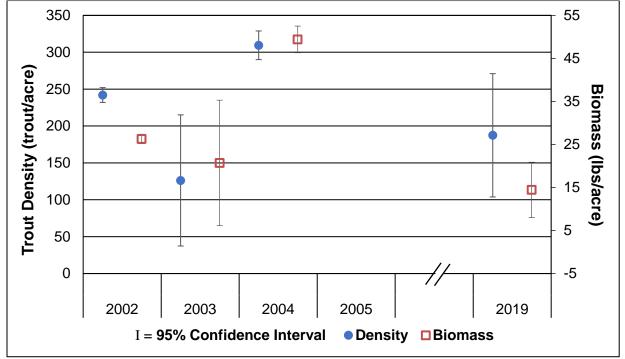


Figure 2-17. Trout density and biomass at Site LLD-F2, Gerle Creek, Loon Lake Dam Reach, 2002–2019.

Rainbow trout ranged from YOY through age 2+ in 2019; however, the age-class distribution was flat across all years and lacked older age classes, indicating both limited recruitment and survival success (Figure 2-18).

Brown trout belonged to the YOY through 3+ age classes in 2019; however, similar to rainbow trout, there was a flat distribution of age classes in 2019, indicating poor recruitment that year. The length-frequency distributions of previous monitoring years documented a more typical age-class distribution with higher recruitment and survival levels (Figure 2-19).

Rainbow and brown trout were in relatively good condition (K=0.96 and 0.94, respectively), which was consistent with previous monitoring years (Table 2-3, Figures 2-5 and 2-6).

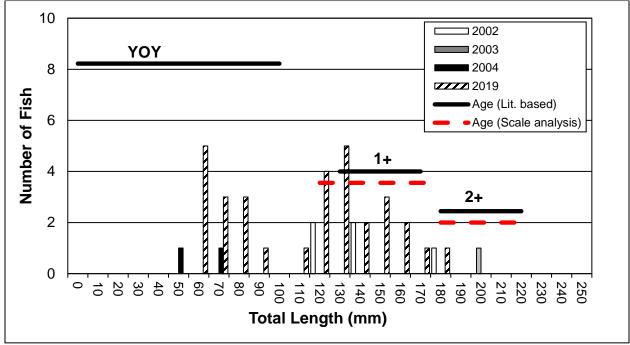


Figure 2-18. Length-frequency and age-class distribution of rainbow trout at Site LLD-F2, Gerle Creek, Loon Lake Dam Reach, 2002–2019.

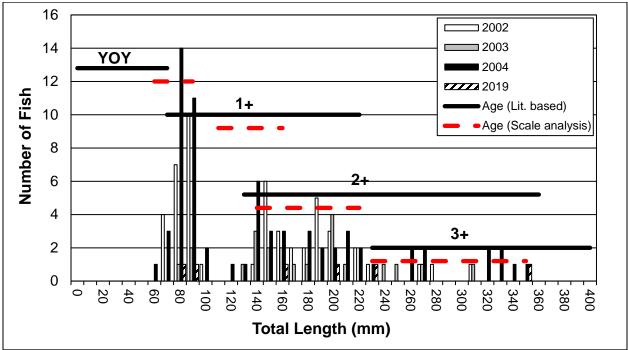


Figure 2-19. Length-frequency and age-class distribution of brown trout at Site LLD-F2, Gerle Creek, Loon Lake Dam Reach, 2002–2019.

2.3.6 Site GCD-F1

Site GCD-F1 is located approximately 1 mile downstream of Gerle Creek Dam and 0.25 miles upstream of the confluence with the South Fork Rubicon River. The site was characterized by run habitat and a large pool. It was surveyed via electrofishing in 2002, 2003, and 2019 and was divided into upper and lower segments during sampling.

Rainbow trout was the most abundant species observed across all three sampling years. Trout density and biomass in 2019 were within the range of levels observed in 2002 and 2003 (Figure 2-20). Although the number of catchable trout per mile was the lowest in 2019 of all years sampled (Figure 2-4).

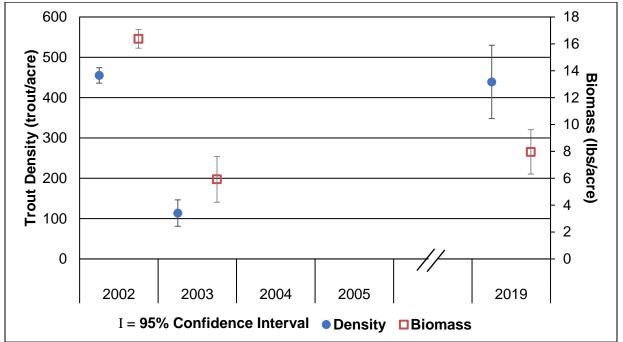


Figure 2-20. Trout density and biomass at Site GCD-F1, Gerle Creek, Gerle Creek Dam Reach, 2002–2019.

In 2019, rainbow trout ranged in age from YOY to age 2+ with a typical age-class distribution, where the highest number were YOY and fewer numbers were observed in each subsequent age class. A similar length-frequency distribution occurred in previous sampling years (Figure 2-21). Only one YOY brown trout was observed in 2019. In prior years, brown trout also demonstrated a more typical age-class distribution ranging up to age 3+ (Figure 2-22).

Rainbow trout condition was similar among years sampled, although the average condition was relatively low (K=0.84) at this site compared to the rest of the study area (Table 2-3, Figure 2-5). The single brown trout observed was in good condition (K=1.0) (Table 2-3, Figure 2-6).

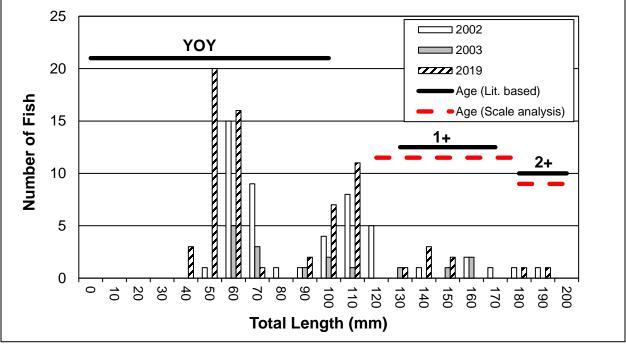
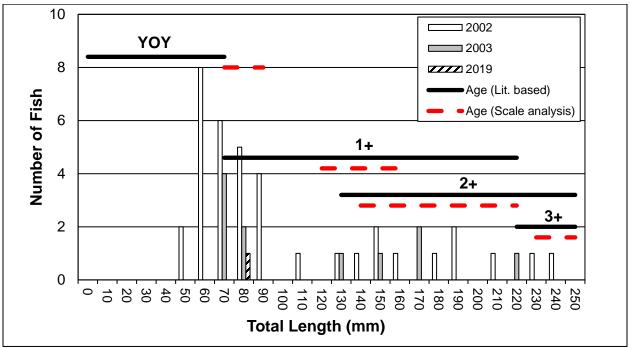
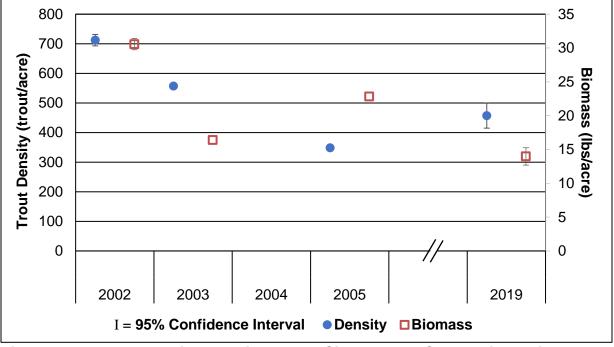


Figure 2-21. Length-frequency and age-class distribution of rainbow trout at Site GCD-F1, Gerle Creek, Gerle Creek Dam Reach, 2002–2019.




Figure 2-22. Length-frequency and age-class distribution of brown trout at Site GCD-F1, Gerle Creek, Gerle Creek Dam Reach, 2002–2019.

2.3.7 Site RPD-F1

Site RPD-F1 is located 3.5 miles downstream of Robbs Peak Dam and 0.75 miles below the confluence with Gerle Creek. It was surveyed via electrofishing in 2002, 2003, 2005, and 2019 and was divided into upper and lower segments during sampling. There was a large amount of riffle habitat at this site, with runs, pools, and glides interspersed throughout.

Rainbow trout and brown trout have been the only species observed at Site RPD-F1 in all years surveyed (Figure 2-1). Trout density in 2019 was similar to prior years; however, biomass was slightly lower in 2019 than prior years (Figure 2-23). Although trout density and biomass were at the lower range in 2019, compared to other survey years, density and biomass at Site RPD-F1 were still among the highest values recorded among sites in 2019 (Figures 2-2 and 2-3).

Figure 2-23. Trout density and biomass at Site RPD-F1, S.F. Rubicon River, Robbs Peak Dam Reach, 2002–2019.

Rainbow trout ranged from YOY through age 2+ in 2019 with a typical length-frequency distribution, suggesting strong recruitment, which is similar to prior years (Figure 2-24). Brown trout ranged from YOY through age 3+ in 2019, with a flat length-frequency distribution that suggests poor recruitment compared to prior years (Figure 2-25).

Rainbow trout condition (K=0.87) was lower than the previous sampling years, on average (Figure 2-5), whereas brown trout were of similar condition (K=1.01) to prior years (Table 2-3, Figure 2-6).

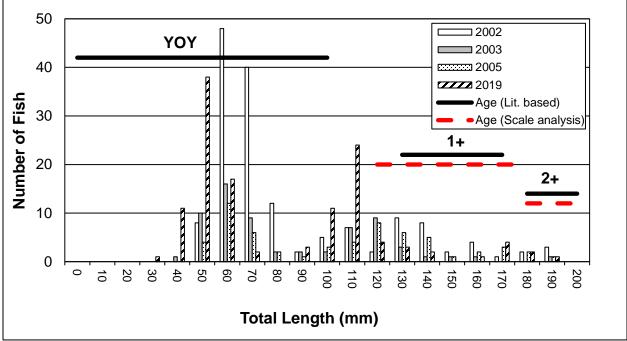


Figure 2-24. Length-frequency and age-class distribution of rainbow trout at Site RPD-F1, S.F. Rubicon River, Robbs Peak Dam Reach, 2002–2019.

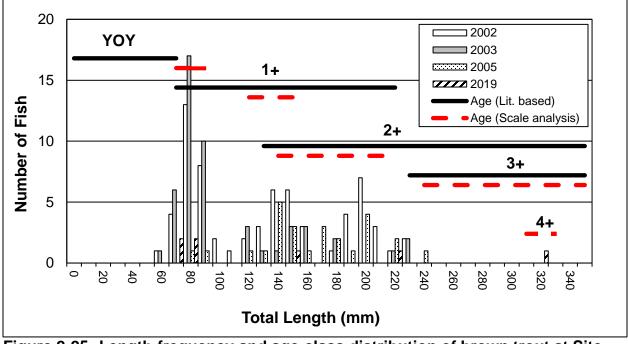


Figure 2-25. Length-frequency and age-class distribution of brown trout at Site RPD-F1, S.F. Rubicon River, Robbs Peak Dam Reach, 2002–2019.

2.3.8 Site IHD-F1

Site IHD-F1 is located approximately 0.25 miles downstream of Silver Creek Campground and 2.0 miles downstream of Ice House Dam. The site contained run and riffle habitat with smaller amounts of pool and glide habitat. The site was split into two segments during sampling and surveyed via electrofishing in 2002, 2003, 2004, and 2019.

Rainbow trout and brown trout have been the only species observed across all survey years, and rainbow trout was consistently the most abundant of the two. Trout density and biomass were relatively similar among survey years, and trout density at this site was the second highest of all sites surveyed in 2019 (Figures 2-2 and 2-26) (unfortunately, a poor depletion pattern in 2019 resulted in large confidence intervals at this site). Similarly, the number of catchable trout per mile in 2019 was also the highest of all sites for all years surveyed (Figure 2-4).

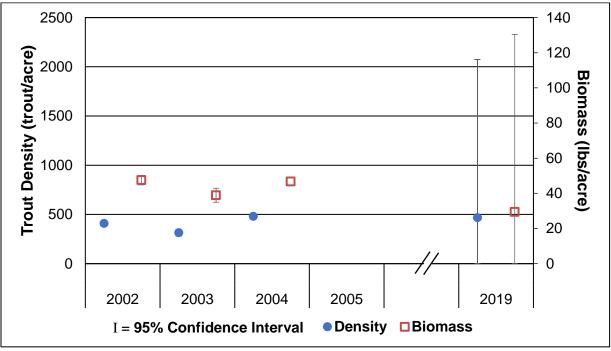


Figure 2-26. Trout density and biomass at Site IHD-F1, S.F. Silver Creek, Ice House Dam Reach, 2002–2019.

Rainbow trout ranged from YOY through age 2+ in 2019 with a somewhat typical lengthfrequency distribution, which is similar to prior years (Figure 2-27). Only three brown trout were observed in 2019, all belonging to the 1+ and 2+ age classes. The absence of a YOY age class in 2019, and the relatively flat age-class structure across all years, indicates limited brown trout recruitment (Figure 2-28).

The condition of rainbow and brown trout (K=0.99 and 0.98, respectively) suggests that trout were in good condition in 2019 (Table 2-3, Figures 2-5 and 2-6).

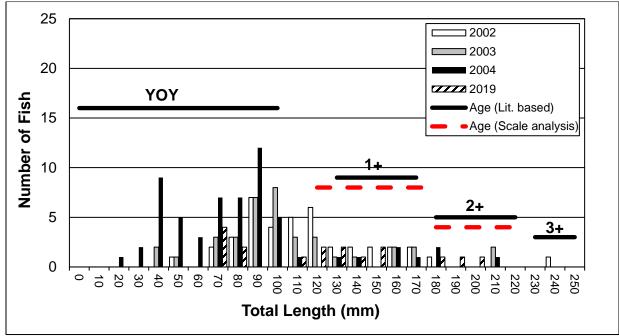
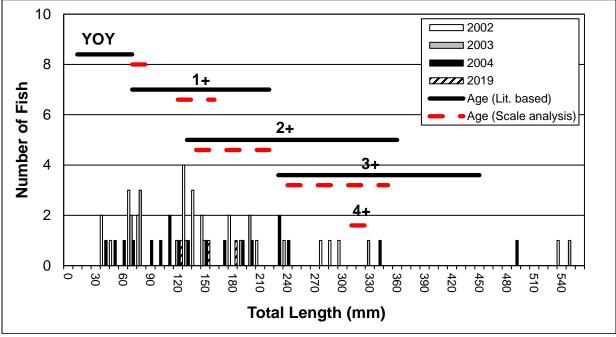
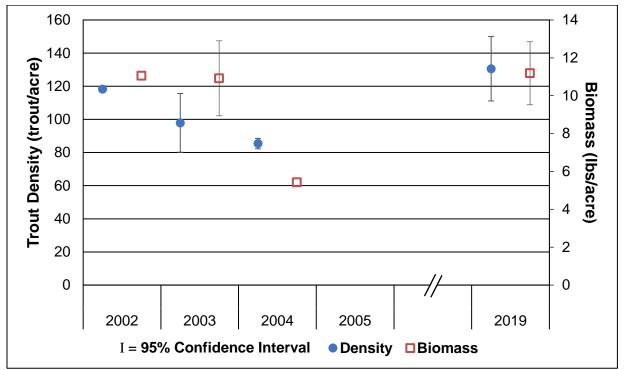


Figure 2-27. Length-frequency and age-class distribution of rainbow trout at Site IHD-F1, S.F. Silver Creek, Ice House Dam Reach, 2002–2019.




Figure 2-28. Length-frequency and age-class distribution of brown trout at Site IHD-F1, S.F. Silver Creek, Ice House Dam Reach, 2002–2019.

2.3.9 Site IHD-F2

Site IHD-F2 is located 7.5 miles downstream of Ice House Dam. There was a large amount of run habitat with several riffles and small pools interspersed. The site was split into two segments during electrofishing in 2002, 2003, 2004, and 2019.

Rainbow trout, brown trout, and Sacramento sucker were observed during all four survey years. Sacramento sucker were the most abundant species in 2002–2004; however, brown trout were most abundant in 2019 (Figure 2-1). Trout density, biomass, and the number of catchable trout were all similar, but slightly higher than previous survey years (Figures 2-2, 2-3, 2-4 and 2-29).

Figure 2-29. Trout density and biomass at Site IHD-F2, S.F. Silver Creek, Ice House Dam Reach, 2002–2019.

Rainbow trout ranged from YOY through age 2+ in 2019, but with an atypical distribution; the distribution of fish included higher numbers of age 1+ and 2+ than YOY, suggesting limited recruitment, but moderate survival, which is similar to prior survey years (Figure 2-30). Brown trout ranged from YOY through age 3+ with a slightly more typical distribution, although in low numbers, which is also similar to prior sampling (Figure 2-31).

Rainbow and brown trout were in generally good condition at this site in 2019 (Table 2-3, Figure 2-5 and 2-6). However, the condition of rainbow trout in 2019 (K=0.89) was the lowest of all sampling years, whereas brown trout had a higher than average condition factor (K=0.99) for this site.

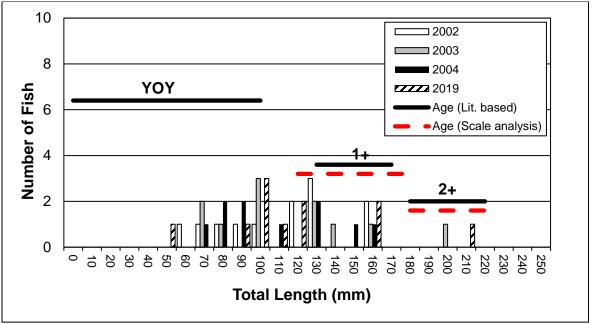


Figure 2-30. Length-frequency and age-class distribution of rainbow trout at Site IHD-F2, S.F. Silver Creek, Ice House Dam Reach, 2002–2019.

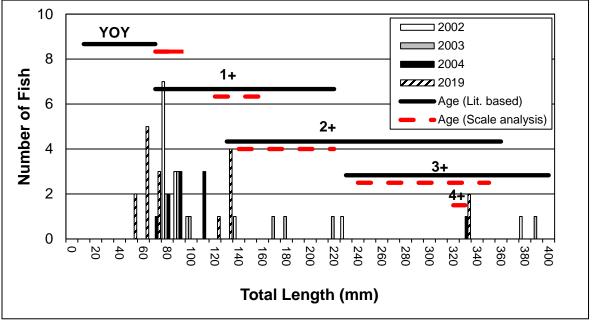


Figure 2-31. Length-frequency and age-class distribution of brown trout at Site IHD-F2, S.F. Silver Creek, Ice House Dam Reach, 2002–2019.

2.3.10 Site JD-F3

Site JD-F3 was sampled for the first time in 2019 as a replacement for JD-F1. Site JD-F1 is located on private land and access was restricted in 2019. Site JD-F3 was determined to be a reasonable substitute because it exhibits characteristics of other transitional sections in the reach and it is on public land where access is available. Site JD-F3 is located approximately 3.5 miles downstream of Junction Dam. The site was split up into four habitat units that were surveyed via snorkel methods. The habitat units consisted of a run, a high-gradient riffle, a long, deep pool, and a long riffle. 2019 was the first year of sampling at this location, since the site was selected to replace a prior sampling location where access was no longer available. No fish were observed during snorkel surveys in 2019; however, catchable rainbow trout were observed in the pool habitat unit during site reconnaissance the week prior. A river otter was observed foraging within the site during the snorkel survey, which likely influenced the results.

2.3.11 Site CD-F1

The Silver Creek, Camino Dam Reach was surveyed via snorkel methods at one site in 2019; it was also surveyed in 2002. Site CD-F1 is located approximately 0.50 miles downstream of Camino Dam and consisted of seven habitat units (all pool and riffle).

Rainbow trout were the only species observed at this site in 2019; in 2002 brown trout were also observed. Trout density and the number of catchable trout per mile increased in 2019 relative to 2002 (Figures 2-2 and 2-4). Rainbow trout age classes ranged from YOY through age 3+. Age 1+ fish had the greatest representation among all age classes in 2019 which could indicate poor recruitment; however, habitat at this site (larger pools and riffles) would favor older age classes, and YOY fish are more difficult to observe in larger rivers during snorkel surveys. Length-frequency was distributed more evenly in 2002 among the YOY through 3+ age classes, although the number of trout observed was low (Figure 2-32).

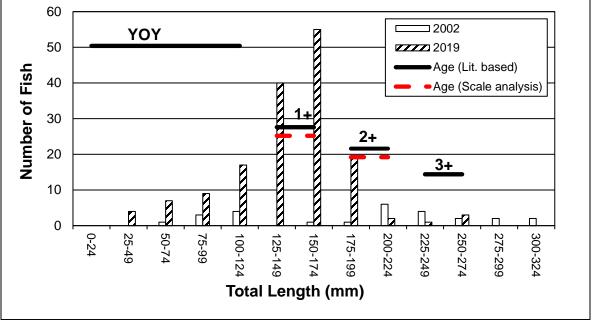


Figure 2-32. Length-frequency and age-class distribution of rainbow trout at Site CD-F1, Silver Creek, Camino Dam Reach, 2002–2019.

2.3.12 Site SCD-F3

The USFS 4(e) Condition No. 14 for the Slab Creek Flow Facility Project License Amendment (USFS 2015) specified that a new sampling site be established on the South Fork American River (SFAR) in the 0.25-mile reach between Slab Creek Dam and the proposed Slab Creek Flow Facility. Site SCD-F3 was located immediately downstream of the plunge pool below Slab Creek Dam and was surveyed for the first time in 2019 via snorkel methods. The site began at a section of pocket water just upstream of lowa Canyon Creek, and included the large, deep pool under the pedestrian bridge, as well as the newly constructed high-gradient riffle and run habitat downstream of the plunge pool. In 2018, prior to channel construction activities, this stream segment was dewatered and fish were relocated downstream of the new Slab Creek Powerhouse Facility.

Rainbow trout, brown trout, and an unidentified sunfish were observed during the trout monitoring surveys, with rainbow trout being most abundant. Even with the recent construction activities, the estimated minimum trout density and the number of catchable trout per mile were comparable to Site SCD-F2 during all monitoring years (Figures 2-2 and 2-4). Fish previously relocated from this site in 2018 included rainbow trout, brown trout, Sacramento sucker, Sacramento pikeminnow, hardhead, and green sunfish (Stillwater Sciences 2018).

After completion of the snorkel survey, the margins of Site SCD-F3 were electrofished opportunistically to confirm species identification of juvenile fishes and to survey for

species which may have been difficult to detect via snorkeling. Four rainbow trout were observed, all of which belonged to the YOY age class.

Rainbow trout age classes ranged from YOY through age 3+. Age 1+ had the greatest representation among age classes, followed by YOY (Figure 2-33); however, snorkel methods could bias against YOY fish, as they are more difficult to observe in larger rivers. The length-frequency distribution suggests higher recruitment of YOY in 2018 compared to 2019.

Brown trout age classes ranged from age 1+ through age 3+; a lack of YOY fish and limited numbers of older age classes suggests poor recruitment and/or survival between years (Figure 2-34).

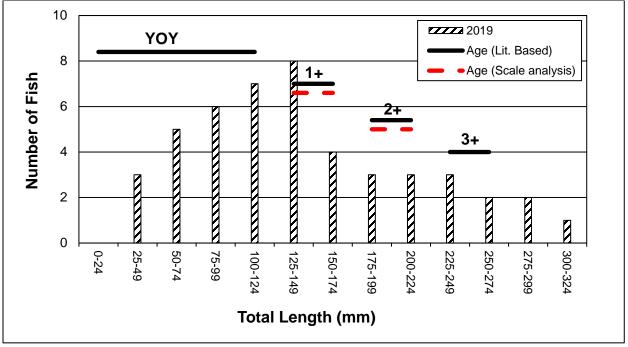


Figure 2-33. Length-frequency and age-class distribution of rainbow trout at Site SCD-F3, South Fork American River, Slab Creek Dam Reach, 2019.

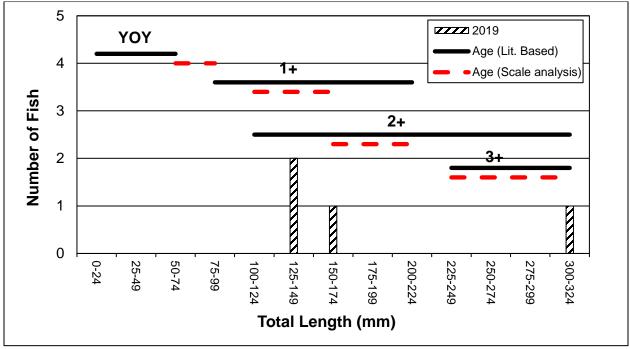


Figure 2-34. Length-frequency and age-class distribution of brown trout at Site SCD-F3, South Fork American River, Slab Creek Dam Reach, 2019.

2.3.13 Site SCD-F2

Site SCD-F2 was surveyed by electrofishing in 2002 and 2003. The site was surveyed via snorkel methods in 2019 because higher baseflows prevented effective electrofishing due to increased depths and water velocities. The site is located on the SFAR approximately 0.2 miles upstream of the confluence with Rock Creek. It was split into five units, including two runs, two pools, and one riffle.

Rainbow trout, sculpin, Sacramento sucker, and Sacramento pikeminnow were observed at this site in 2019, with rainbow trout being most abundant. In prior years, California roach, brown trout, hardhead, speckled dace, and smallmouth bass were also observed (Figure 2-1). The estimated minimum trout density and number of catchable trout per mile (based on snorkel observations) were similar to prior survey years (Figures 2-35 and 2-4). Brown trout were observed at this site during 2002 and 2003 in low numbers (n=1 and n=2, respectively), however they were not observed in 2019. After completion of the snorkel survey, the margins were electrofished opportunistically to confirm species identification and to survey for species which may have been difficult to detect via snorkeling. Two YOY Sacramento pikeminnow, three YOY Sacramento suckers, and 15 sculpin spp. were observed during the electrofishing.

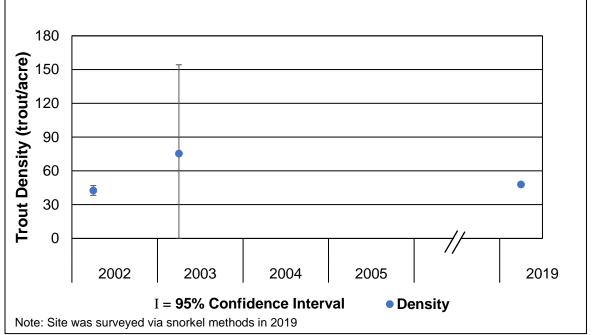


Figure 2-35. Trout density at Site SCD-F2, South Fork American River, Slab Creek Dam Reach, 2002–2019.

Rainbow trout age classes ranged from YOY through age 3+. The length-frequency distribution was atypical, with the highest number of fish belonging to the 1+ age class, although YOY fish can be difficult to observe in larger rivers during snorkel surveys; however, length-frequency distributions from the 2002 and 2003 electrofishing efforts showed a similar pattern (Figure 2-36).

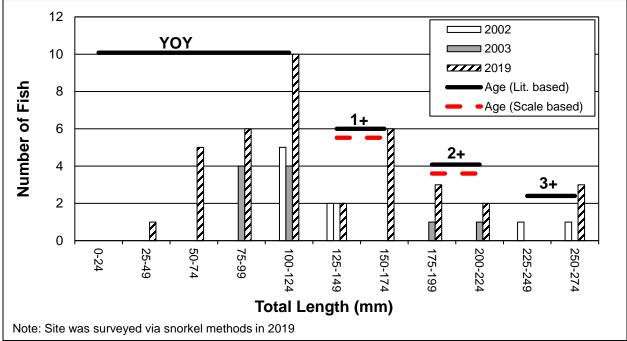


Figure 2-36. Length-frequency and age-class distribution of rainbow trout at Site SCD-F2, South Fork American River, Slab Creek Dam Reach, 2002–2019.

2.4 DISCUSSION

The number of fish species making up the community (i.e., richness) decreased throughout the UARP in 2019, although results varied on a site-by-site basis; species richness decreased from 12 species documented during the 2002–2005 surveys to 9 species during the 2019 surveys (Table 2-1). Decreases in species richness were particularly evident at sites RRD-F2 and SCD-F2, which transitioned from 4–7 species observed in 2002 to 2–3 species in 2019; the absence of some species at SCD-F2 (e.g., smallmouth bass) may improve conditions for native transitional zone species such as hardhead. However, 2019 results represent one year of monitoring, and future surveys may show an increase in richness. In addition, Site SCD-F2 was surveyed via electrofishing in 2002 and snorkeling in 2019, which may have affected the number of species observed. Subsequent monitoring years will determine if decreased species richness in 2019 was an anomaly or part of a greater trend throughout the UARP.

Trout populations varied across reaches in 2019 relative to previous surveys. Generally, trout density and biomass both decreased at upper elevation sites (sites RRD-F1, RRD-F2, BID-F1, LLD-F3, and LLD- F2), whereas trout density increased while biomass decreased at mid-elevation sites (sites GCD-F1, RPD-F1, IHD-F1, and IHD-F2), and both trout density and the number of catchable trout per mile increased or were within the range of previous years at the lower elevation sites (sites CD-F1, SCD-F3, and SCD-F2) (Figures 2-2, 2-3, and 2-4).

Trout recruitment in the upper reaches in 2019 may have been affected by peak storm runoff events. Unlike the 2002–2005 monitoring period, the 2019 monitoring year was preceded by high peak storm flows in both 2017 and 2019, particularly in the upper and middle reaches (Figure 4-2, *Geomorphology*). High storm flows have the potential to adversely affect trout density and biomass for 1–2 years following the event due to effects on recruitment. Cattanéo et al. (2002) reported strong negative correlations between YOY density and discharge rates, possibly due to displacement of YOY fish as a consequence of their inability to maintain stream position or to find shelter when water velocities increase during high discharges. High loss rates of alevins and fry during high discharge were also reported by Nicola et al. (2009). Multiple consecutive years of high discharge from peak storm events could depress trout biomass, as low recruitment would affect multiple year classes.

The 2019 monitoring year is the first year of sampling following implementation of new streamflow release schedules; there is not yet sufficient data to evaluate the influence of the modified minimum instream flow schedule on trout populations, and no conclusions are being drawn based on this first year of monitoring data. Future analyses will consider whether trends or patterns in trout populations within the UARP are developing, or whether the observed populations are within the range of variability observed under the prior flow regime.

2.4.1 Fisheries Objectives

The UARP and Chili Bar Hydroelectric Project Rational Report for the Relicensing Settlement Agreement (SMUD 2007) identifies ecological resource objectives and trout biomass goals (derived from Gerstung [1973] and SMUD 2004) for the UARP study reaches. These Fisheries Objectives aim to maintain, restore, or recover ecological conditions for all life stages of rainbow trout, other native fishes, and desired non-native fishes (namely brown trout) in their approximate range and habitat, accomplished by meeting components articulated in the "Fish Community Assessment Metrics" (SMUD 2004). Biomass for combined rainbow and brown trout is included as a metric because these species occupy the same ecological niche (SMUD 2004), and for consistency among reaches. Individual species are also evaluated based on relative abundance and other factors, such as recruitment success.

The Fisheries Objectives generally include goals of increasing trout populations and meeting biomass targets, but also include goals for maintaining fish communities in some reaches (Table 2-5). Generally, both trout populations and overall species richness declined in 2019 compared to prior sampling, and only two sites met the fisheries objectives. However, biomass goals derived from Gerstung (1973) were based on mean biomass estimates collected from 102 north Sierran streams assumed to be representative of California's cold-water streams; these goals may not be attainable in some UARP reaches. As noted above, decreased trout abundance and species richness within some UARP monitoring reaches may be a result of high peak storm flows in 2017 and 2019; it should be noted that the license-mandated change in

minimum flows is only one of many variables that can affect fish populations. This is the first year of the monitoring program, and future monitoring will help identify whether the lower numbers are anomalous or part of an overall trend within the UARP.

Table 2-5.Fisheries Objectives as Specified in the Rationale Report for the Settlement Agreement (Adapted
from SMUD 2007).

	-		Popul	ations	Trout Bioma	Trout Biomass or Catchable Trout				
Stream Reach	Site Name	Stream Width (ft)	Objective (SMUD 2007)	Post License status	Goal ^{a,b}	Pre-License (2002–2005 Mean) status	Post License (2019) status			
Rubicon River Below Rubicon Dam	RRD-F1	34	Increase rainbow trout	Declined	Biomass ≥24 Ibs/acre	16.7 Ibs/acre	3.4 Ibs/acre			
Rubicon River Below Rubicon Dam	RRD-F2	28	Increase rainbow trout	Declined	Biomass ≥24 Ibs/acre	6.9 Ibs/acre	0.3 Ibs/acre			
Little Rubicon River Below Buck Island Dam	BID-F1	27	Reduce or eliminate golden shiners and increase rainbow trout	Golden shiner reduced from 2003 levels (nearly equal to 2002); rainbow trout decreased	Reduce or eliminate golden shiners; move toward 33 lbs/acre	0.9 Ibs/acre	0 Ibs/acre			
Gerle Creek	LLD-F3	25			Biomass ≥33 Ibs/acre		2.4 Ibs/acre			
Below Loon Lake Dam	LLD-F2	34	Increase rainbow trout and maintain brown trout	Rainbow trout and brown trout decreased	Biomass ≥24 Ibs/acre	33.1 Ibs/acre	14.4 lbs/acre			
Gerle Creek Below Gerle Dam	GCD-F1	34	Increase rainbow trout and maintain brown trout	Rainbow trout increased; brown trout decreased	Biomass ≥24 Ibs/acre	11.1 Ibs/acre	8.0 Ibs/acre			
SF Rubicon Downstream of Robbs Peak Dam	RPD-F1	42	Increase rainbow trout and maintain brown trout	Rainbow trout increased from 2003 and 2005 levels, but slightly less than 2002; brown trout decreased	Biomass ≥24 Ibs/acre	23.2 Ibs/acre	15.3 Ibs/acre			
SF Silver Creek Below Ice House Dam	IHD-F1	26	Increase rainbow trout	e rainbow trout Rainbow decreased Biomass ≥24 44.5 Ibs/acre Ibs/acre		29.4 Ibs/acre				
SF Silver Creek Below Ice House Dam	IHD-F2	27	Increase rainbow trout	Rainbow trout declined slightly	Biomass ≥24 Ibs/acre	9.13 Ibs/acre	11.2 Ibs/acre			

			Popul	ations	Trout Biomass or Catchable Trout				
Stream Reach	Site Name	Stream Width (ft)	Objective (SMUD 2007)	Post License status	Goal ^{a,b}	Pre-License (2002–2005 Mean) status	Post License (2019) status		
Silver Creek Below Junction Dam	JD- F3	40					0 trout/mi.		
Silver Creek Below Camino Dam	CD- F1	32	Increase rainbow trout	Rainbow trout increased	Catchable trout 278/mi.	100.5 trout/mi.	467 trout/mi.		
SF American River below Slab Creek Dam	SCD-F3	40					98 trout/mi.		
SF American River below Slab Creek Dam	SCD-F2	52	Healthy age class distribution of transitional fishes, including hardhead	Fewer observations of transitional fishes, no hardhead observed ^c	Catchable trout 278/mi.d	76 trout/mi.	107 trout/mi.		

^a Biomass in Ibs/acre; goal based on Gerstung (1973)
 ^b Number of catchable trout per mile; goal based on Gerstung (1973)

^c Although hardhead were not observed at this site, they were observed upstream during the 2019 hardhead study (Section 7.0, Hardhead)

^d Trout biomass was listed as the goal in the rationale document, however because SCD-F2 was snorkeled in 2019 and therefore biomass estimates were not possible, catchable trout per mile was used instead.

2.5 LITERATURE CITED

Arismendi, I., B. Penaluna, and D. Soto. 2011. Body condition indices as a rapid assessment of the abundance of introduced salmonids in oligotrophic lakes of southern Chile. Lake and Reservoir Management, 27: 1, 61-69.

Beak Consultants Incorporated. 1991. Instream flow requirements for brown trout, Rush Creek, Mono County. California Department of Fish and Game Stream Evaluation Report 91-1. Sacramento, California.

Cattanéo, F., N. Lamouroux, P. Breil, and H. Capra. 2002. The influence of hydrological and biotic processes on brown trout (*Salmo trutta*) population dynamics. Canadian Journal of Fisheries Aquatic Sciences 59: 12-22.

EA (EA Engineering, Science, and Technology, Inc.). 1986. Instream flow and fisheries studies for the Mill Creek Hydroelectric Project. Prepared for Southern California Edison Company. Lafayette, California.

Ebasco Environmental (currently Tetra Tech). 1993. North Fork Stanislaus River Basin 1992 fish population surveys. Prepared for Northern California Power Agency. Sacramento, California.

Hanson Environmental. 2005. Analysis of the Condition of Rainbow Trout Collected from the Kings River Downstream of Pine Flat Dam 1983-2005.

Gerstung, E.G. 1973. Fish population and yield estimates from California Trout Streams. Cal-Neva Wildlife.

Nicola, G.G., A. Almodovar, and B. Elvira. 2009. Influence of hydrologic attributes on brown trout recruitment in low-latitude range margins. Oecologia 160:515-524.

Moyle, P.B. 2002. Inland fishes of California. University of California Press.

Rabe, F.W. 1967. The Transplantation of Brook Trout in Alpine Lake. The Progressive Fish Culturist. 29(1):53-55.

SMUD (Sacramento Municipal Utility District). 2004. Fish community assessment metrics. A handout to the Aquatic Working Group. Sacramento, California.

SMUD. 2007. Upper American River Project, FERC No. 2101, Chili Bar Hydroelectric Project, FERC No. 2155 Rationale Report for Relicensing Settlement Agreement. 29 January 2007.

SMUD. 2016. Trout Monitoring Plan. Hydro License Implementation for the SMUD Upper American River Project (FERC Project No. 2101).

SMUD and PG&E (Pacific Gas and Electric Company). 2005. Sacramento Municipal Utility District Upper American River Project (FERC Project No. 2101) and Pacific Gas and Electric Company Chili Bar Project (FERC Project No. 2155) Stream Fisheries Technical Report. Prepared for SMUD and PG&E by Devine Tarbell & Associates, Inc. and Stillwater Sciences. January, Version 2.

Snider, W.M. and A.L. Linden. 1981. Trout Growth in California Streams. The Resources Agency. California Department of Fish and Game. Inland Fisheries Administrative Report No. 81-1.

Stillwater Sciences. 2018. South Fork Powerhouse Fish Rescue and Relocation Project. Prepared by Stillwater Sciences, Davis, California for Sacramento Municipal Utility District, Sacramento, California.

Van Deventer, J. S., and W.S. Platts. 1989. Microcomputer software system for generating population statistics from electrofishing data. User's Guide for MicroFish 3.0. General Technical Report INT-254. USDA Forest Service, Intermountain Research Station.

USFS (U.S. Department of Agriculture, Forest Service). 2015. Final Section 4€ Conditions And Section 10(a) Recommendations Application for Amendment of License For Slab Creek Powerhouse and Flow Facility Upper American River Project, FERC No. 2101. December.

Wilcox, S.D. 1994. South Fork Power Project fish population monitoring 1993. Prepared by Ebasco Environmental for Oroville-Wyandotte Irrigation District. Sacramento, California. January.

3.0 BENTHIC MACROINVERTEBRATES

3.1 MONITORING PLAN OBJECTIVES

The primary goal of the Aquatic Macroinvertebrate Monitoring Plan (Macroinvertebrate Plan) is to monitor benthic macroinvertebrate (BMI) assemblages and utilize an aquatic ecosystem health index as an indicator of stream conditions during implementation of the modified flow regime associated with the new license (SMUD 2016).

3.2 METHODS

3.2.1 Benthic Macroinvertebrate Sampling and Physical Habitat Data Collection

Sampling was conducted using procedures based on the standard reach-wide benthos (RWB) method for documenting and describing BMI assemblages and physical habitat outlined by the Surface Water Ambient Monitoring Program (SWAMP; Ode et al. 2016). Sites were placed as close as possible to those stream sections sampled during the relicensing study (SMUD and PG&E 2005); however, in most cases site locations were adjusted slightly upstream or downstream to comply with contiguity of sampleable habitat recommendations described in the SWAMP protocol (Ode et al. 2016).

The SWAMP protocol was developed for wadeable streams and, as stated in the Macroinvertebrate Plan, collection procedures were modified as necessary to accommodate current stream conditions in the UARP. Modifications included crew members wearing dry suits instead of waders to increase accessibility, adjusting the standard length of the sample reach at some sites (typically based on average wetted width), and occasionally partitioning sample reaches within a site (e.g., adjusting transect placement to omit inaccessible or unsampleable habitat) for one or more of the following reasons: safe accessibility limitations (e.g., swift water), influence of tributary streams, and lack of contiguously sampleable aquatic habitat (e.g., large deep pools).

Sites were divided into 11 equidistant transects arranged perpendicular to the direction of flow and a single inter-transect was located between main transects. A total of 11 (1 per main transect) BMI subsamples were collected with a D-frame kicknet fitted with 0.02-inch diameter (0.5 mm) mesh to form a single RWB composite sample for each site (only physical habitat data were collected at inter-transects). Physical habitat and water quality parameters as described in the Macroinvertebrate Plan were also recorded. Additional detail on BMI and physical habitat data collection procedures is provided in the Macroinvertebrate Plan. Physical habitat data (e.g., substrate size) from points along transects that were not safely accessible (e.g., in a rapid) were not collected and recorded as inaccessible on the datasheet.

3.2.2 Laboratory Methods

As described in the Macroinvertebrate Plan, laboratory methods followed procedures outlined in the Standard Operating Procedures for Laboratory Processing and Identification of Benthic Macroinvertebrates in California (Woodard et al. 2012). At least 600 BMIs were subsampled from each composite sample and identified using standard aquatic BMI identification keys (e.g., Merritt et al. 2008, Stewart and Stark 2002, Thorp and Covich 2001, Wiggins 1996) and other appropriate references. All organisms from the subsample were identified to a minimum level 1 taxonomic effort as specified in the Southwestern Association of Freshwater Invertebrate Taxonomists (SAFIT; Richards and Rogers 2011) and an independent laboratory was contracted to conduct an external quality control (QC) of the BMI identification for 10 percent of the samples. Additional detail on standard laboratory procedures is provided in the Macroinvertebrate Plan.

3.2.3 Data Analysis

A suite of standard metrics describing richness, composition, and other characteristics that are often used to describe BMI assemblages (Karr and Chu 1999) was calculated for each sample; a detailed list of these metrics is provided in the Macroinvertebrate Plan. The Macroinvertebrate Plan describes using a subset of these metrics to calculate the Sierra Index of Biological Integrity (Sierra IBI) developed by Rehn (2009 and 2010). The more contemporary California Stream Condition Index (CSCI), also developed by Rehn et al. (2015), was calculated instead in order to maintain consistency with the current practices for BMI sample evaluation recommended by SWAMP (Rehn, pers comm, 2020). The CSCI is based on predictive modeling generated from a state-wide BMI database and is a more robust and computationally complex analytical tool than the Sierra IBI, requiring use of Geographic Information System (GIS) software and the statistical software R (R Core Team 2019) for its calculation (Rehn et al. 2015). The CSCI is used as a composite biological response variable to evaluate aquatic habitat quality at sites and identify overall trends related to stream condition as reflected by the BMI community.

The CSCI integrates two measures for evaluating sites: BMI taxonomic completeness, which is based on an observed-to-expected (O/E) ratio, and a multi-metric index (MMI). The O/E is a measure of taxonomic completeness between observed (O) taxa collected at a site and expected (E) taxa generated through predictive modeling from the input of site-specific environmental variables (e.g., climate, topography, and geology) that are known to influence BMI communities (Rehn et al. 2015). Based on these site-specific environmental variables, the MMI component of the CSCI generates anticipated values for six metrics² demonstrated to have a high signal to noise response (Rehn et al. 2015) and compares results with empirical values from the BMI sample collected from a given site. As observed taxa and metric values deviate from those predicted from reference sites using the site-specific environmental variables described above, scores for each

²Percent Clinger Taxa; Percent Coleoptera Taxa; Percent Ephemeroptera, Plecoptera, and Trichoptera (EPT) Taxa; Percent Intolerant Individuals; Shredder Taxa Richness and Taxonomic Richness.

measure (i.e., MMI and O/E) decrease. Conversely, as observed taxa and metric values approach similar distributions of expected taxa and metric values from reference sites, scores for each measure increase.

CSCI calculation integrates O/E taxonomic richness and MMI results into a single score typically ranging from 0.1 (great deviation from reference condition) to 1.4 (exceeding quality of reference condition). CSCI scores are further divided into three thresholds, based on the 30th, 10th, and 1st percentiles of CSCI scores at reference sites in the state-wide database. These three thresholds divide the CSCI scoring range into four categories of biological condition:

- $\geq 0.92 =$ likely intact condition;
- 0.91 to 0.80 = possibly altered condition;
- 0.79 to 0.63 = likely altered condition;
- $\leq 0.62 =$ very likely altered condition (Rehn et al. 2015).

CSCI scores were calculated for BMI samples collected in 2002 and 2003 for the relicensing study (SMUD and PG&E 2005) and in 2019. Historical scores were averaged where data for more than one sample were available for a given site (e.g., the site was sampled in 2002 and 2003). If a BMI sample was not collected from a current site during the relicensing study (i.e., sites JD-I4 and SCD-I3), data from the most proximal historical site was used as a comparative analogue. Additional information regarding data evaluation conducted as part of the BMI study, including standardization procedures for historical data and further description of individual metrics calculated is provided in the Macroinvertebrate Plan.

3.2.4 Variances and Problems Encountered

Variances from the Macroinvertebrate Plan referenced in previous sections of the methods included:

- Adjusting the length of the sample reach (typically based on average wetted width) due to safe accessibility limitations (e.g., swift water), influence of tributary streams, and/or lack of contiguously sampleable aquatic habitat (e.g., large deep pools) at the following sites: JD-I1, JD-I4, CD-I2, CD-I3, SCD-I1, and SCD-I3.
- Partitioning sample reaches (i.e., adjustments to transect placement) at sites CD-I2 and CD-I3 to avoid inaccessible or unsampleable habitat.
- Calculating the CSCI instead of the Sierra IBI for both the current (2019) and historical samples to maintain consistency with contemporary SWAMP analytical procedures, which have been updated since the Macroinvertebrate Plan was written.

These variances were made in consultation with authors of the current SWAMP collection and analytical procedures (Ode, pers comm, 2019 and Rehn, pers comm, 2020).

3.3 RESULTS

A total of 11 samples and one replicate were collected from 11 sites within the UARP (Figures 1-1 through 1-3 and Table 3-1). During an initial site assessment, one site described in the Macroinvertebrate Plan was not safely sampleable using the SWAMP methodology under the new minimum flow regime. This site, co-located with Site SCD-I1a, was identified as SCD-I1b in the Macroinvertebrate Plan and was replaced with an alternate (Site SCD-I3) farther downstream in the Slab Creek Dam Reach (Figure 1-1, Table 3-1). Accordingly, what was described as Site SCD-I1a in the Macroinvertebrate Plan is more simply referred to as Site SCD-I1 in this report.

Table 3-1.	Benthic Macroinvertebrate Sites Sampled in 2019 for the Upper
American R	iver Project.

Site Code	Sample Date	Stream (Reach)	Description	Coordinates (Northing/ Easting) ¹	Elevation (m)	Reach Length ² (m)
RRD-12	9/13/2019	Rubicon River (Rubicon Dam)	Upstream of Rubicon Springs	740001/ 4321159	1,865	150
LLD-I3	9/12/2019	Gerle Creek (Loon Lake Dam)	Upstream of Rocky Basin Creek Confluence	727272/ 4318674	1,653	150
GCD-I2	9/12/2019	Gerle Creek (Gerle Creek Dam)	e Creek Upstream of South 72568		1,532	150
RPD-I2	9/10/2019	South Fork Rubicon River (Robbs Peak Dam)	Fork Downstream of River Gerle Creek 4314517		1,495	150
IHD-12	9/10/2019	South Fork Silver Creek (Ice House Dam)	Downstream of Ice House Reservoir	727760/ 4299814	1,596	150
JD-I1	9/10/2019	Silver Creek (Junction Dam)	Downstream of Junction Reservoir	720200/ 4303286	1,303	150
JD-I4 ³	10/10/201 9	Silver Creek (Junction Dam)	Near Jaybird Adit access	737319/ 4302088	1,211	150
CD-I2	9/11/2019	Silver Creek (Camino Dam)	Near Camino Adit access	710090/ 4298471	730	90
CD-I3	9/11/2019	Silver Creek (Camino Dam)	Upstream of South Fork American River Confluence	709334/ 4296211	628	100
SCD-I14	9/11/2019	South Fork American River (Slab Creek Dam)	Downstream of Slab Creek Dam, upstream of Iowa Canyon Creek	699540/ 4293960	502	80
SCD-I3⁵	9/9/2019	South Fork American River (Slab Creek Dam)	Upstream of Rock Creek Confluence	692949/ 4295026	335	150

Notes: m=meter

¹ UTM, NAD83; located at Transect A as described in the SWAMP protocol and may differ slightly from historical site coordinates.

² See Section 3.2.1 for discussion on determining factors for reach length.

³As described in the Macroinvertebrate Plan, this site was not sampled during relicensing and was added to replace historical Site JD-I2 (SMUD and PG&E 2005), which is located on private property with unreliable access.

⁴ Identified as Site SCD-I1a in the Macroinvertebrate Plan; Site SCD-I1b was relocated farther downstream (see table note #5 below), therefore this sample location is referred to more simply as Site SCD-I1 herein.

⁵ Site not sampled during relicensing: replacement for Site SCD-11b described in the Macroinvertebrate Plan which was determined to be unsafe to sample using SWAMP methodology during site assessment in 2019.

3.3.1 Water Quality

Water quality parameters recorded at sites during BMI collection are shown in Table 3-2. Additional information and discussion on water quality within UARP stream reaches can be found in the annual water quality report (SMUD 2020).

Site Code	Water Temperature (°C)	рН (s.u.)	Alkalinity (mg/L)	Dissolved Oxygen (% sat.)	Dissolved Oxygen (mg/L)	Specific Conductance (µS/cm)
RRD-I2	17.2	7.3	14	81	7.8	5.7
LLD-I3	14.8	7.1	12	100	8.3	7.0
GCD-I2	14.5	7.2	15	85	8.6	10.6
RPD-I2	13.9	7.3	12	86	8.9	10.7
IHD-I2	10.1	7.3	12	85	9.6	13.5
JD-I1	9.8	7.3	12	101	9.9	10.0
JD-I4	7.7	7.6	15	86	10.3	14.3
CD-I2	13.9	7.4	12	106 ²	10.0	14.0
CD-I3	14.3	7.4	20	94	9.6	22.7
SCD-I1	12.9	6.9 ¹	12	100	10.0	13.0
SCD-I3	13.8	7.7	20	97	10.1	24.3

Table 3-2.	Water Quality Data by Site for Benthic Macroinvertebrate Samples
Collected in	2019 for the Upper American River Project.

Notes: °C=degrees Celsius, s.u. = standard unit, mg/L = milligram per liter, % sat. = percent saturation, µS/cm=microsiemens per centimeter

¹ Water quality pH probe malfunctioned during BMI survey and no data was collected. Value reported was collected during SMUD water quality monitoring at nearby Site IS-19-SFAR on 7 October 2019.

² Value taken in afternoon and may be attributable to high oxygen production by algae throughout the day.

3.3.2 Physical Habitat Assessment

Physical habitat data are summarized by site in Tables 3-3 and 3-4. Photographs of the sites are presented in Appendix C1. Physical habitat among sampling sites was diverse, ranging from lower gradient pools to high gradient cascade/falls with associated substrate size classes ranging from cobble/sand to bedrock/boulder (Table 3-3). Boulder was the primary instream habitat complexity component and its abundance was scored from sparse to heavy (Table 3-4). Other commonly occurring habitat complexity components included filamentous algae and aquatic macrophytes/emergent vegetation. All other instream habitat complexity components included filamentous algae and artificial structures were sparse or absent at most sites (Table 3-4). Average canopy cover was variable across sites, ranging from one to 42 percent (Table 3-3). At most sites the upper canopy was sparse and the middle canopy was sparse to moderate; ground cover was moderate at all sites.

Stream banks at most sites were categorized as stable, although bank vulnerability was noted at more than two transects at sites RRD-I2, GCD-I2, and IHD-2.

Due to the remoteness of most sites, evidence of in-channel human disturbance was minimal, although land use within the surrounding watershed by site becomes increasingly developed with decreasing elevation. Site SCD-I1 had the most evident human influence due a pedestrian bridge at the upstream end of the site, a river access trail on the north side of the river, and proximity to active construction for the new South Fork Powerhouse. Site SCD-I3 was near infrastructure associated with Rock Creek Powerhouse on the north side of the channel. At other sites, evidence of human disturbance was limited to minor amounts of trash.

Table 3-3.	Physical Habitat Data Collected by Site during Benthic
Macroinvert	ebrate Sampling in 2019 for the Upper American River Project

Site Code	Gradient (%) ¹	Discharge (cfs) ²	Average Wetted Width (m) ³	Average Canopy Cover (%)	Dominant Habitat (subdominant) ⁴	Dominant Substrate (subdominant) ⁴
RRD-I2	1.1	7.5	10.9	42	Riffle (Pool)	Cobble (Sand)
LLD-I3	3.1	26.9	13.8	25	Run (Pool)	Bedrock (Cobble)
GCD-I2	2.2	7.7	9.9	44	Riffle (Pool)	Bedrock, Cobble (Sand)
RPD-I2	2.8	8.5	11.5	11	Run (Cascade/Falls)	Bedrock (Sand)
IHD-I2	1.8	21.2	9.4	29	Run (Pool)	Bedrock (Sand)
JD-I1	4.9	19.9	15.4	20	Run (Glide, Rapid)	Small Boulder (Cobble)
JD-I4	3.2	17	19.3	26	Run (Pool)	Small Boulder (Large Boulder, Cobble, Bedrock)
CD-I2	2.0	27.6	10.5	8	Run (Pool)	Bedrock (Small Boulder)
CD-I3	2.7	29.9	10.3	20	Cascade/Falls (Run)	Cobble (Bedrock)
SCD-I1	1.3	88.9	14.6	1	Riffle (Rapid)	Small Boulder (Cobble)
SCD-I3	1.8	88.7	29.6	3	Run (Riffle, Pool)	Cobble (Large Boulder)

Notes: %=percent, cfs=cubic feet per second, m=meter

¹ Calculated using satellite imagery and the USGS National Elevation Dataset Digital Elevation Model

Estimated by discharge transect in field or recorded by nearest gage data
 Averaged everage 11 main transector

3 Averaged across 11 main transects

Multiple habitats and substrates listed were present in equal amounts.

Table 3-4. Instream Habitat Complexity and Riparian Vegetation Cover Data Collected by Site during Benthic Macroinvertebrate Sampling in 2019 for the Upper American River Project.

		Instream Habitat Complexity Elements ¹									parian Cove	ər ¹
Site	Filamentous Algae	Aquatic Macrophytes/ Emergent Vegetation	Boulders	Woody Debris (> 0.3 m)	Woody Debris (<0.3 m)	Undercut Banks	Overhang Vegetation	Live Tree Roots	Artificial Structures	Upper Canopy (>5m)	Lower Canopy (0.5–5 m)	Ground Cover (<0.5 m)
RRD-I2	Sparse	Sparse	Sparse	Sparse	Sparse	Sparse	Sparse	Sparse	Absent	Moderate	Moderate	Moderate
LLD-I3	Sparse	Sparse	Heavy	Sparse	Sparse	Sparse	Sparse	Sparse	Absent	Moderate	Moderate	Moderate
GCD-I2	Sparse	Sparse	Sparse	Sparse	Sparse	Sparse	Moderate	Sparse	Absent	Sparse	Moderate	Moderate
RPD-I2	Absent	Sparse	Sparse	Sparse	Sparse	Sparse	Sparse	Sparse	Absent	Sparse	Sparse	Moderate
IHD-I2	Sparse	Sparse	Moderate	Sparse	Sparse	Sparse	Sparse	Sparse	Absent	Sparse	Moderate	Moderate
JD-I1	Moderate	Sparse	Heavy	Sparse	Sparse	Sparse	Sparse	Sparse	Absent	Sparse	Moderate	Moderate
JD-I4	Sparse	Moderate	Heavy	Sparse	Sparse	Absent	Sparse	Sparse	Absent	Moderate	Sparse	Moderate
CD-I2	Sparse	Sparse	Moderate	Sparse	Sparse	Sparse	Sparse	Sparse	Absent	Sparse	Sparse	Moderate
CD-I3	Sparse	Sparse	Heavy	Sparse	Sparse	Absent	Sparse	Sparse	Absent	Sparse	Sparse	Moderate
SCD-I1	Sparse	Sparse	Heavy	Absent	Sparse	Sparse	Sparse	Sparse	Sparse	Sparse	Moderate	Moderate
SCD-I3	Sparse	Sparse	Moderate	Sparse	Sparse	Sparse	Sparse	Sparse	Absent	Sparse	Moderate	Moderate

Notes: m=meter

¹Presence averaged across 11 main transects: Absent = 0%, Sparse = <10\%, Moderate (Mod) = 10-40\%, Heavy = 41-75\%, Very Heavy (V. Heavy) = >75\%

3.3.3 Benthic Macroinvertebrate Assemblage Evaluation

A total of 7,448 BMIs representing 112 distinct taxa (identifiable to genus or species) were processed from the 11 composite samples and one replicate collected from the UARP BMI study sites in 2019. All composite samples contained more than the minimum 600 organism subsample size, and the average subsample size was 621 organisms (range: 603 to 647). Inter-laboratory Quality Control (QC) indicated a few minor sorting errors and one minor taxonomic discrepancy that is undergoing further review (Appendix C2). QC parameters for all samples were within the standardly accepted threshold for error rate. A complete taxonomic list with associated functional feeding group and tolerance value designations is presented in Appendix C3. Commonly reported metrics (e.g., the Shannon Weaver Diversity Index) including those that comprise the MMI component of the CSCI (Percent Clinger Taxa; Percent Coleoptera Taxa; Percent Ephemoptera, Plecoptera, and Trichoptera [EPT] Taxa; Percent Intolerant Individuals; Shredder Taxa Richness and Taxonomic Richness) are presented in Appendix C4.

Results of the application of the CSCI to the BMI samples collected in 2019 are presented in Figure 3-1. CSCI scores ranged from 0.71 to 1.26 with scores for samples collected from over half (six) of the sites exceeding the threshold for the highest categorical interpretation of the score, described as "likely intact" (Rehn et al. 2015). Scores for other sites ranked within the next two lower categorical tiers of "possibly altered" condition (0.80 to 0.91) or "likely altered" condition (0.63 to 0.79). None of the samples collected scored within the lowest tier, described as "very likely altered" condition (≤ 0.62) (Rehn et al. 2015). Application of the CSCI to historical BMI data from the relicensing study (SMUD and PG&E 2005) yielded very similar results with scores ranging from 0.63 to 1.17 (Figure 3-2). Historical samples from six sites scored above the threshold for the highest category, "likely intact" condition and scores for samples collected from other sites placed either within the "possibly altered" or "likely altered" conditions categories. None of the historical samples scored within the lowest condition category, "very likely altered" (Figure 3-2).

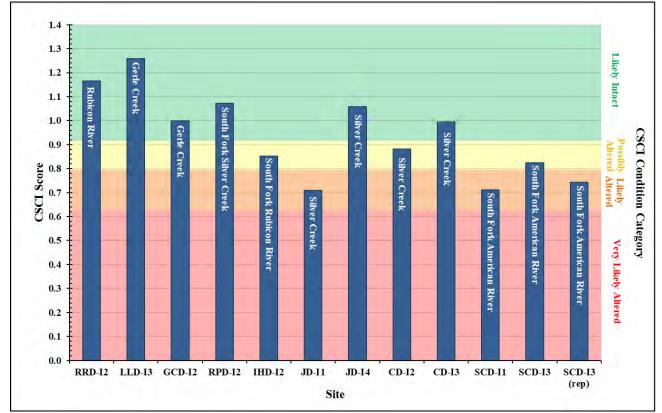


Figure 3-1. California Stream Condition Index scores and condition categories for Benthic Macroinvertebrate samples collected for the Upper American River Project in 2019.

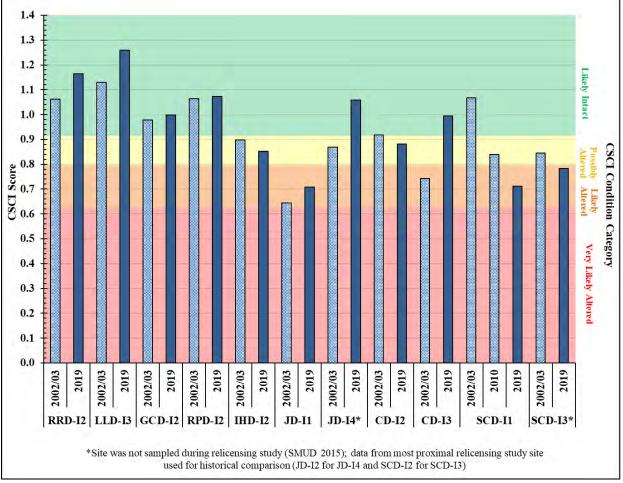


Figure 3-2. California Stream Condition Index scores and condition categories for Benthic Macroinvertebrate samples collected for the Upper American River Project in 2002/2003, 2010, and 2019 (average where data for more than one sample [multiple years or replicates within a year] was available for a site).

3.4 DISCUSSION

BMI assemblages collected from the UARP in 2019 were generally of good quality as indicated by CSCI scores for over half of the samples ranking within the highest condition category ("likely intact") of the index. CSCI scores for samples collected from sites in higher elevation reaches were typically higher than those collected from sites in lower elevation reaches, which could be attributable to increased human influence (e.g., development) affecting regulated UARP stream reaches and associated unregulated tributaries at lower elevation (Table 3-1 and Figure 3-1). Some of the other variation in CSCI scores for samples collected from the UARP in 2019 demonstrate a trend consistent with findings from a study on the effects of hydropower projects on BMI assemblages in which relatively low biological index values were documented immediately downstream of large reservoirs but increased with distance downstream

from the dam (Rehn et al. 2007). CSCI scores for samples collected in 2019 from the sites immediately below Junction Reservoir (Site JD-I1), Ice House Reservoir (Site IHD-I2), and Slab Creek Reservoir (Site SCD-I1) scored within the "possibly altered" or "likely altered" condition categories (Figure 3-1). An attenuating effect was evident with distance downstream in the Junction Dam Reach where the CSCI score for the sample collected downstream from Site JD-I4 was higher, placing within the "likely intact" condition category (Figure 3-1). There is not a current monitoring site farther downstream in the Ice House Dam Reach, however attenuation with distance downstream was documented in this reach during the relicensing study in which the composite metric score used for analysis was lowest at the site closest to Ice House Dam (Site IHD-I1) and gradually increased with distance downstream at Sites IHD-I2 through IHD-I4 (SMUD and PG&E 2005).

In 2019 attenuation was not as apparent, however, in the Slab Creek Dam Reach. The lower score (in the "likely altered" condition category) for the sample collected from Site SCD-I1 immediately below Slab Creek Dam is likely related to proximity to the dam and activities associated with the construction of the new South Fork Powerhouse. CSCI scores for the sample and replicate collected downstream from Site SCD-I3 were higher, yet still placed within the same condition category indicating possible impairment (Figure 3-1). There are a number of factors in the reach that could be contributing to this, including increased human influence (e.g., development) affecting regulated reaches of the UARP and associated unregulated tributaries at lower elevation (see Section 3.3.2) and flow fluctuation related to prolonged high-volume spill events in recent high water years (i.e., 2017 and 2019) and periodic recreational releases (Allen 2004, Kennedy et al. 2016, Olden and Naiman 2010, and Steel et al. 2018). Primary ways that flow fluctuation can influence BMI assemblages include (1) stranding on the margins, (2) thermal effects, and/or (3) velocity-related effects (e.g., increased drift or scour). Ramping the flow change minimizes but does not necessarily eliminate stranding effects and, while temperature differences between base flow and higher flow events in Slab Creek Dam Reach are not as great as those seen farther downstream in the Reach Downstream of Chili Bar due to differences in thermal conditions and hydro operations in the respective upstream reservoirs, thermal variation may still have an effect. The factors potentially contributing to the lower CSCI score for the sample collected from Site SCD-I3 are not mutually exclusive and, therefore, difficult to partition. However, CSCI scores for BMI samples in future water years during which spill events and/or recreational releases may or may not occur in Slab Creek Dam Reach will provide additional comparative information and may yield further insight regarding potential sources of impairment affecting the BMI community at Site SCD-I3.

Application of the CSCI to historical data for the current monitoring sites collected in 2002 and 2003 during the relicensing study (SMUD and PG&E 2005) and in 2010 from Site SCD-I1 for the license amendment request for the South Fork Powerhouse (ECORP 2011) demonstrated similar trends (Figure 3-2) with higher scores for samples collected from sites in higher elevation reaches compared to scores for samples collected from sites in lower elevation reaches in the hydrologic system (Figure 3-2).

Scores for historical samples collected at the same sites (or analogue sites as described in Section 3.2.3 and notes in Figure 3-2) ranked within the same condition category as scores for samples collected in 2019 for all but four sample locations (sites CD-I2, CD-I3, JD-I4, and SCD-I1). Of the four sample locations that had scores that placed in different condition categories, two sites (sites CD-13 and JD-14) had higher CSCI scores in 2019 compared to historical data, and two sites (site CD-I2 and SCD-I1) had a lower CSCI score in 2019 compared to historical data.

CSCI scores for samples collected at Site CD-I2 placed within different condition categories between datasets yet were numerically similar (historical = 0.92 and 2019 = 0.88) (Figure 3.2). The notably higher CSCI score for the sample collected downstream from Site CD-I3 in 2019 (0.99) compared to historical data (0.74) may be attributable to changes in physical habitat at the site, particularly large woody debris accumulation that has increased habitat complexity since the relicensing study. The difference in CSCI scores for samples collected from sites in the lower Junction Dam Reach (1.06 for Site JD-I4 sampled in 2019 and 0.87 for Site JD-I2 used as its historical analogue) is likely attributable to attenuation with increasing distance downstream of Junction Reservoir. Site JD-I2 was historically located approximately one mile downstream of the reservoir, whereas Site JD-I4 is located another mile farther downstream. The lower CSCI score for the sample collected from Site SCD-I1 in 2019 (0.71 in the "likely altered" condition category) in comparison to historical data (1.1 for 2002/03) is likely partially attributable to temporary dewatering of the reach in 2018 and ongoing construction activity (including channel bed disturbance) associated with the new South Fork Powerhouse. The quality of aquatic habitat at this site may increase over time following completion of construction; however, the score for the sample collected from this site in 2010 prior to construction of the powerhouse although higher (0.84) also fell within a condition category indicating possible impairment (Figure 3-2), suggesting that proximity to Slab Creek Dam may also be a factor.

Overall CSCI scores for historical samples versus those for samples collected in 2019 reflect a similar range (0.63–1.17 and 0.71–1.26, respectively) and average scores (0.93 and 0.94, respectively) for samples collected from each period exceed the threshold for the "likely intact" condition category. This suggests that overall stream condition and quality of aquatic habitat in the UARP stream reaches as reflected by the BMI community has not changed significantly with implementation of the new minimum flow regime under the current license. Additional BMI samples collected in future years will further facilitate identification of changes at monitoring sites or new system-wide trends in stream condition over time. In accordance with the frequency described in the Macroinvertebrate Plan, BMI samples will be collected again from the UARP in the following years: 2020, 2024, 2025, 2029, 2030, and thereafter for two consecutive years every 10 years for the term of the license.

3.5 LITERATURE CITED

Allan, J.D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35, pp. 257-284.

ECORP 2011. Benthic Macroinvertebrate Surveys in the South Fork American River and Lower Iowa Canyon Creek, 2010. Prepared for Sacramento Municipal Utility District, Power Generation Department, Sacramento, CA. May.

Karr, J.R. and E.W. Chu. 1999. Restoring life in running waters. Island Press, Covelo, CA.

Merritt, R.W., K.W. Cummins, and M.B. Berg. 2008. An introduction to the aquatic insects of North America. Fourth Edition. Kendall/Hunt Publishing Co., Dubuque, IA.

Ode, P.R., A.E. Fetscher, and L.B. Busse. 2016. Standard Operating Procedures for the Collection of Field Data for Bioassessments of California Wadeable Streams: Benthic Macroinvertebrates, Algae, and Physical Habitat. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 004.

Ode, P.R. 2019. Personal communication via email between Peter Ode with California Department of Fish and Wildlife, Water Pollution Control Laboratory, Krista Orr with Stillwater Sciences, and Tom King with Bioassessment Services. August.

Olden, J.D. and R.J. Naiman. 2010. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology 55: 86-107.

Kennedy, Theodore A, Jeffrey D. Muehlbauer, Charles B. Yackulic, David A. Lytle, Scott W. Miller, Kimberly L. Dibble, Eric W. Kortenhoeven, Anya N. Metcalfe, and Colden V. Baxter. 2016. Flow Management for Hydropower Extirpates Aquatic Insects, Undermining River Food Webs, BioScience, Volume 66, Issue 7, Pages 561-575.

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. R package version 1.1.2 (Tools for California Freshwater Biotic Assessment by M. Englen). http://www.R-project.org/

Rehn, A.C., N. Ellenrieder, and P.R. Ode. 2007. Assessment of ecological impacts of hydropower projects on benthic macroinvertebrate assemblages: A review of existing data collected for FERC relicensing studies. California Energy Commission, PIER-Energy Related Environmental Research Program. CEC-500-2007-040.

Rehn, A.C. 2009. Benthic macroinvertebrates as indicators of biological condition below hydropower dams on west slope Sierra Nevada streams, California, USA. River Research and Applications 25: 208–228.

Rehn, A.C. 2010. Benthic Macroinvertebrates as Indicators of Biological Condition Below Hydropower Dams. California Energy Commission, PIER Energy-Related Environmental Research Program. CEC-500-2009-060.

Rehn, A.C., R.D. Mazor and P.R. Ode. 2015. The California Stream Condition Index (CSCI): A New Statewide Biological Scoring Tool for Assessing the Health of Freshwater Streams. Swamp Technical Memorandum SWAMP-TM-2015-0002.

Rehn, A.C. 2020. Personal communication via email between Andy Rehn with California Department of Fish and Wildlife, Aquatic Bioassessment Lab and Krista Orr with Stillwater Sciences. January.

Richards, A.B., and D.C. Rogers. 2011. Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels. http://www.safit.org/ste.php

SMUD (Sacramento Municipal Utility District) and PG&E (Pacific Gas and Electric Company). 2005. Sacramento Municipal Utility District Upper American River Project (FERC Project No. 2101) and Pacific Gas and Electric Company Chili Bar Project (FERC Project No. 2155) Aquatic Bioassessment Technical Report. Prepared for SMUD and PG&E by Devine Tarbell & Associates, Inc. and Stillwater Sciences. April, Version 2.

SMUD. 2016. Aquatic Macroinvertebrate Monitoring Plan. Hydro License Implementation for the SMUD Upper American River Project (FERC Project No. 2101).

SMUD. 2020. Water Quality Monitoring Report. Hydro License Implementation for the Upper American River Project (FERC Project No. 2101). <u>https://www.smudlink.org/uarp-lic-imp.</u>

Steel, A.E, R.A. Peek, R.A. Lusardi, and S.M. Yarnell. 2018. Associating metrics of hydrologic variability with benthic macroinvertebrate communities in regulated and unregulated snowmelt-dominated rivers. Freshwater Biology 63: 844-858.

Stewart, K.W. and B.P. Stark. 2002. Nymphs of North American stonefly genera (Plecoptera). The Caddis Press, Columbus, OH.

Thorp, J.H. and A.P. Covich (eds). 2001. Ecology and classification of North American invertebrates. Second Edition. Academic Press, San Diego, CA.

Wiggins, G.B. 1996. Larva of North American caddisfly genera (Trichoptera), second edition. University of Toronto, Toronto.

Woodard, M.E., J. Slusark, and P.R. Ode. 2012. Standard Operating Procedures for Laboratory Processing and Identification of Benthic Macroinvertebrates in California.

California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 003.

4.0 GEOMORPHOLOGY

4.1 MONITORING PLAN OBJECTIVES

The primary objectives of this report as described in the Geomorphology Monitoring Plan (SMUD 2017) are to assess geomorphic changes associated with the change in minimum flow regime under the new license. Geomorphology monitoring site locations are shown in Figures 1-1 to 1-3.

4.2 METHODS

Methods used for this study are described in the Geomorphology Monitoring Plan. Additional methodological detail is provided below to further clarify implementation of the study and improve repeatability among years.

4.2.1 Hydrologic Data

Hydrologic data for the stream reaches of interest (see Table 4-1) were downloaded from the U.S. Geological Survey (USGS) for the period of record for each gage through Water Year 2018. Data for Water Year 2019 were provided by SMUD. For the Rubicon River below Rubicon Dam Reach, the discharge measured at the USGS gage was added to spill data over the dam provided by SMUD. The Rubicon Dam spill data extended from 01 January 2002 to 30 September 2019. The USGS gages used in this analysis are listed in Table 4-1. Annual peak flow data and monthly average flow for each gage are provided in Appendix D1.

Stream Reach	Study Site(s)	USGS gage number	Period of record	Drainage Area at gage (mi ²)
Rubicon River below Rubicon Dam ¹	RRD-G1	11427960	10/1/2002–9/30/2019	26.8
Gerle Creek below Loon Lake Dam	LLD-G1 LLD-G2	11429500	10/1/1962–9/30/2019	8.01
South Fork Silver Creek below Ice House Dam	IHD-G1 IHD-G2	11441500	10/1/1924–9/30/2019	27.5
Silver Creek below Camino Dam	CD-G1	11441900	10/1/1960–9/30/2019	171
South Fork American River below Slab Creek Dam	SC-G1	11443500	10/1/1922–9/30/2019	493

Table 4-1.	Hydrologic Data Used to Assess Changes in the Geomorphic Study
Sites.	

mi² = square miles; USGS = U.S. Geological Survey

¹Rubicon River discharge was calculated by adding daily average spill data provided by SMUD to daily average flow for USGS gage 11427960.

With the exception of the Rubicon River, instantaneous peak flow data through Water Year 2018 were downloaded from the USGS website for the gages listed in Table 4-1. Because instantaneous peak flow data were not available from the USGS for 2019, peak flows for 2019 were calculated using the Water Year 2019 maximum daily average flow.

Instantaneous data were not available for the Rubicon River below Rubicon Dam for its entire period of record. For the Rubicon River, the maximum daily average flow for each water year was used as the annual peak flow for the entire period from 2002–2019. This likely underestimates the instantaneous peak discharge but provides a reasonable estimate of the relative magnitude of peak flows through time.

4.2.2 Field Surveys

This study included seven study sites, all of which were originally surveyed in 2003 (SMUD 2005). Benchmarks and endpins (i.e., fixed elevation points at each end of the cross-section) at each study site were surveyed with a real-time kinematic (RTK) global navigation satellite system (GNSS) to ensure the coordinates and elevations were accurately recorded. GNSS positions were post-processed using the National Oceanic and Atmospheric Administration's (NOAA's) Online Positioning User Service (OPUS) to derive control point position accuracies with < 0.1 feet of horizontal and vertical error. The sites and their upstream and downstream extents are listed in Table 4-2. The locations of all survey points are shown in the overview maps in Appendix D2.

Table 4-2. 2019 Upper American River Project Geomorphology Study Sites.

						Upstream	n Extent ¹	Downstrea	m Extent ¹
Stream	Stream Reach	Site ID	Survey Date	Drainage Area (mi²)	Length (ft)	Northing (ft)	Easting (ft)	Northing (ft)	Easting (ft)
Rubicon	Below Rubicon Dam	RRD-G1	9/10/2019	33	500	2132902	7065109	2133230	7065089
Oorla Oreali	Below Loon Lake Dam Upper Reach	LLD-G1	7/18/2019	7	400	2133700	7038682	2133918	7038267
Gerle Creek	Below Loon Lake Dam Middle Reach	LLD-G2	8/7/2019	11	700	2134728	7030737	2134809	7029814
South Fork Silver Creek	Below Ice House Reservoir Upper Reach	IHD-G1	8/9/2019	33	1,200	2063499	7022990	2062667	7022344
	Below Ice House Reservoir Lower Reach	IHD-G2	8/9/2019	43	1,300	2071134	7005768	2072218	7005535
Silver Creek	Below Camino Dam	CD-G1	8/6/2019	175	700	2060492	6966631	2059877	6966196
South Fork American River	Below Slab Creek Dam	SC-G1	11/7/2019	516	650	2049397	6910900	2049326	6910890

¹ The Upstream and Downstream Extent are from the 2019 Surveys in California State Plane Coordinate System Zone 2 (NAD-1983).

 mi^2 = square miles

ft = feet

4.2.2.1 Site Description

At each site, representative photographs of the channel were taken from various locations within the study reach (see Appendix D3). Photographs were taken from positions to provide views of (1) cross-sections from both channel banks, (2) upstream and downstream views from each cross-section, (3) endpins at each cross-section, and (4) any observed sources of erosion or sedimentation. Locations of photographs were recorded with GPS enabled cameras, and reference points such as boulders or healthy, mature trees were identified within each photograph. Notes describing channel conditions were made during each site visit to summarize the morphology of the site and any controls on erosion and sedimentation.

4.2.2.2 Longitudinal Profile

A longitudinal profile of the channel thalweg was surveyed through the length of each study reach using either a robotic total station (RTS) or RTK GNSS depending on site condition. Northing and easting data were converted to distance by calculating the sum of squares differences between consecutive survey points. The survey interval was typically about five feet. At Site SCD-G1, dangerous depth and velocity conditions precluded a complete longitudinal profile survey. The longitudinal profile elevations were tied to the local datum used for the cross-section survey. The longitudinal profile survey followed procedures established by the USFS (Harrelson et al.1994), including surveying a sufficient number of points (6 feet spacing on average) with which to capture the topography of pool, riffles, and other habitat features, as well as other significant breaks in channel gradient. Longitudinal profiles are provided in Appendix D4.

Longitudinal profile data were used to determine reach-average slope and to compare with the results of previous surveys. Since 2003, survey equipment has changed considerably; the RTS and GNSS used for the 2019 study were much more accurate and facilitated more direct comparisons with future surveys. Modern surveying equipment also allowed a much higher density of survey points to be collected in a similar time frame, hence the 2019 survey points were much denser than the 2003 surveys. Because the 2003 surveys used an auto level and tape the distance calculations likely underestimated distances relative to the 2019 surveys. To compare the 2003 and 2019 longitudinal profile points, the 2003 survey stationing was corrected to match the 2019 stationing for the three cross-sections. Given the uncertainty of some of the cross-section locations described below, this likely leads to some differences between the two surveys, but in the absence of this correction the difference between known points were much greater. Differences between the 2003 and 2019 longitudinal profiles may therefore reflect differences in survey methodology and may not reflect topographic change. The reach-average slope measurements should be relatively insensitive to these differences and are therefore also described below.

4.2.2.3 Cross-Sections

Three cross-sections were surveyed at each representative site using either an RTS or RTK GNSS. At each cross-section, existing endpins were reoccupied where possible. Where endpin location was not clear, new endpins were established as close to the previous location as possible. The proximity of the relocated endpins to the original location is not known, but based on comparison with 2003 photographs, the relocated endpins were within 10 feet of the original location, with the exception of Site LLD-G1 where the floodplain had changed to a degree that made recreating the endpin location very difficult. The positions of both endpins for each cross-section were recorded using either an RTK or RTS to enable reoccupation during future monitoring efforts. At some sites, additional temporary benchmarks were established and their positions recorded. Cross-section figures are provided in Appendix D5.

The cross-section survey was conducted in sufficient detail (3 feet spacing on average) to capture any change in grade and to characterize channel geometry, following standard survey procedures established by the USFS (Harrelson et al. 1994). This included capturing the bankfull elevation on both banks, the edge of water during the surveys, and the thalweg elevation. The survey approach ensured that all topographic breaks across the channel cross-section and all cross-section elevations within a given representative site were measured and tied into a State Plane Coordinate System. Where both endpins of a cross-section were recovered, the 2019 surveys were compared with the original surveys from 2003. Identifying bankfull elevations is somewhat subjective for rivers without clear floodplains, such as the majority of the study sites in this report. Other evidence such as kinks in the bank topography and changes in vegetation can reflect local changes (i.e., wood deposition) and/or recent high flows. Bankfull characteristics can therefore adjust due to differences in the definition of bankfull elevations rather than a change in cross-section topography. Channel cross-section locations and endpin coordinates are provided in Appendix D2.

Cross sections in Site LLD-G2 were also surveyed in 2015 prior to a pulse flow test in Gerle Creek and in 2016 following the test (SMUD 2016). These survey data were included in our cross-section comparison for the site.

4.2.2.4 Bed Particle Size Distributions

Along each cross-section, a pebble count (Wolman 1954) was performed to characterize the bed particle size distribution. The count entailed measuring the intermediate axis (b-axis) of 100 particles to classify the bed particle size distribution. All silt- and sand-sized particles were classified as < 2mm and were included in the grain size distribution.

Bed particle size distribution data were used to calculate commonly used bed particle size metrics: the particle size for which 16% of the distribution is finer (D16), the particle size for which 50% of the distribution is finer (D50, or the median size), and the particle size for which 84% of the distribution is finer (D84). Where possible, these data were

compared with historical data to assess any recent trends in bed coarsening or fining (see Appendix D6).

4.2.2.5 Sediment Facies Mapping

Aerial imagery was collected at each representative site using an unmanned aerial vehicle to efficiently generate base maps for facies mapping during future monitoring efforts. Aerial imagery was captured from an elevation sufficient to show morphological features and extended several hundred feet upstream and downstream of the representative site boundaries. The imagery was orthorectified and tied into the local coordinate system. Orthorectified aerial images were used to characterize sediment facies size classes into textural patches throughout each representative study site. Sediment facies size classes were delineated by order of abundance of specific grain sizes following procedures established by Buffington et al. (1999). Facies maps are provided in Appendix D7.

4.2.2.6 Large Woody Debris

All large woody debris (LWD) longer than one-half bankfull width at least partially within bankfull stage were documented. We categorized LWD as either single pieces, pieces with rootwads, or aggregates (see Appendix D8). An aggregate was defined as four or more pieces in contact that each met the minimum length criterion. A root wad was defined as a root mass with a diameter equal to or longer than the trunk length.

4.2.2.7 V* (Fine Sediment Storage)

V* describes the volume of fine sediment stored in pools and is specifically designed for wadable pools (Lisle and Hilton 1992, Hilton and Lisle 1993). The Geomorphology Monitoring Plan included specific criteria for situations where V* should be measured (see Attachment 6 of the plan). These criteria were generally not met. In particular, pools often did not have clearly defined boundaries and fine sediment tended to deposit as a veneer over the entire bed rather than accumulate in pools. The lone exception was the upstream pool at Site IHD-G2 (see Appendix D9). The pool at Site IHG-G2 had a defined form and had extensive fine sediment (sand and silt) on the bed that was appropriate for a V* measurement. Because the pool was too deep to wade, the methods outlined in Hilton and Lisle (1993) and Attachment 6 of SMUD (2017) were adapted to estimate V* during a field survey on 9 September 2019. From a float tube, a graduated 8-foot-long steel rod was used to measure the water depth and thickness of fine sediment along three profiles of the pool (centerline, left edge, right edge). For each profile, the longitudinal area of the pool, fine sediment, and residual pool volume were calculated. The residual pool depth (the pool depth minus the depth at the pool outlet) was 0.4 feet for all three profiles as measured at the pool outlet. Locations where the pool plus fines thickness was greater than 8 feet (the length of the survey rod) were noted, but those locations were not included in the V* measurement because the depth

of fines couldn't accurately be measured. V* was calculated as the average of the three profiles.

SMUD (2017) states that if V^{*} is less than 0.1 or conditions are not suitable to survey fine sediment accumulation for 2 consecutive surveys (including the 2003 surveys) future V^{*} measurements will not be made at the site.

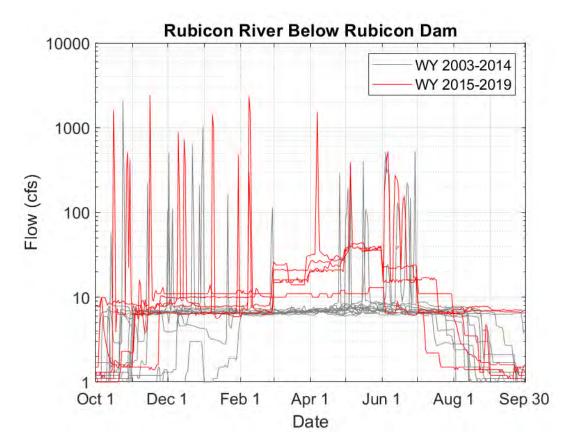
4.2.2.8 Additional Channel Condition Assessments

Rosgen Level III, Rosgen Bank Erosion and Riparian Vegetation, and Pfankuch Bank Stability Assessments (Rosgen 1994, Pfankuch 1975) were also conducted as part of the study. Amended Pfankuch ratings were used to characterize channel stability as a function of stream classification (Rosgen 1984). These data are provided in Appendix D10, Appendix D11, and Appendix D12, respectively.

4.2.3 Data Analysis

Where possible, results from the cross-section and longitudinal profile surveys were compared with surveys from 2003 to assess geomorphic change. Because the longitudinal profiles do not start and stop at endpins, there is likely some uncertainty in aligning the 2003 and 2019 surveys. Nevertheless, changes in slope and locations of aggradation and incision were noted to assess cross-section adjustments. Geomorphic change in cross-sections was quantified using the change in bed elevation and bankfull characteristics. Differences in the location of endpins can cause apparent cross-section changes between surveys primarily due to differences in the location sampled and the distance from the endpin. Cross-sections where one or both the endpins were not recovered were therefore not directly compared. Based on the photographs of the endpins in 2003, the endpins replaced in 2019 were estimated to be within 10 feet of the original endpin, although this estimate could not be tested. While these differences can affect the shape of the cross-section, they are less likely to affect the pebble counts, because the pebble counts are less sensitive to the distance from the endpin. Hence pebble counts at cross-sections where one or more of the 2003 endpins was missing were still compared. In all reaches, but particularly reaches confined by bedrock and boulders, the bankfull elevation was difficult to identify and differences in bankfull depth and width resulted more from differences in bankfull elevation estimates in the field than significant morphologic changes, as discussed in Section 4.3.2. The pebble count statistics and bankfull characteristics from the 2003 data were recalculated from the original surveys to be consistent with the 2019 analysis and to facilitate comparison with future survey data. This results in some differences between the 2003 data reported here and that reported in SMUD and PG&E (2005). Changes in longitudinal profiles were quantified by comparing reach-average slope between monitoring years.

4.3 RESULTS


4.3.1 Hydrology

To understand potential causes for geomorphic change between the 2003 and 2019 surveys, the hydrology under the old license from water years 2003–2014 was compared to hydrology under the new license from water years 2015–2019. In 2015, SMUD instituted new minimum instream and recreational flows as part of the new FERC License. These new flows are designed to better mimic the natural hydrograph in the spring. The new flows also include pulse flows in Below Normal, Above Normal, and Wet water year types for the Rubicon River below Rubicon Dam, South Fork Silver Creek below Ice House Dam, and Gerle Creek below Loon Lake Dam. Although operations under the new license do not affect peak flows, peak flows were analyzed because they can have a strong effect on channel morphology. Figures 4-1, 4-3, 4-4, 4-5, and 4-6 overlay the daily average flow for water years 2003–2014 (in grey) and water years 2015–2109 (in red) for the five flow gages used in the geomorphic assessment. Monthly average flows from 2003–2019 are included in Appendix D1.

4.3.1.1 Rubicon River Below Rubicon Dam

Flow downstream of Rubicon Dam consists of flow releases through the outlet works of the dam (measured by SMUD at the USGS gage) and spill over the dam (measured by SMUD). The daily average flows from 2015–2019 for the Rubicon River below Rubicon Dam have generally increased relative to 2003–2014 (Figure 4-1). The monthly average discharge in March to June ranged from 6–27 cubic feet per second (cfs) under the old license and 10–87 cfs under the new license (Figure 4-1, Appendix D1, Table D1-1). Since 2015, flows from July to February were higher, on average, than flows from 2003–2014; however, the range of flows was similar (Figure 4-1).

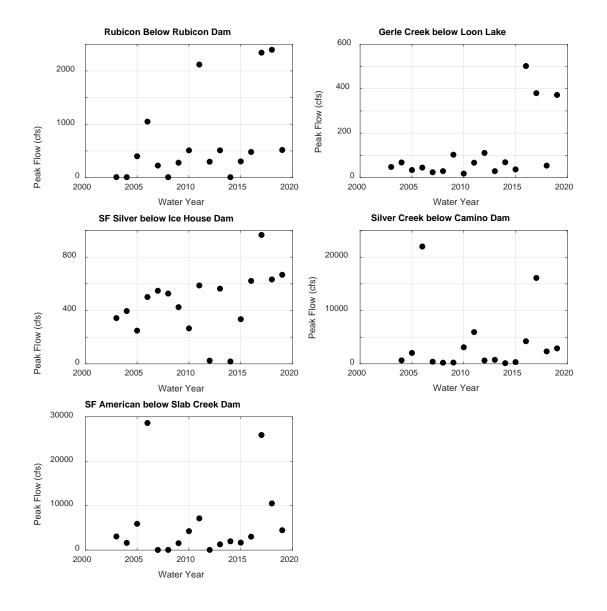
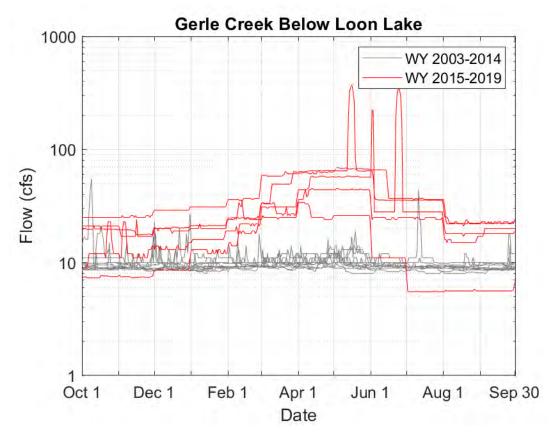


Figure 4-1. Daily average flow for 2003–2019 water years for the Rubicon River Below Rubicon Dam. Grey lines show data prior to the new license flow regime (2003–2014) and red lines show data after the new license flow regime (2015–2019).

Peak flows are associated with spill over the Rubicon Dam. Water spilled over the dam on 121 days during the period of record, 59 of these days occurred from 2003–2014 and 62 occurred from 2015–2019 (Figure 4-1). There were no spill events in 2003– 2004, 2008, and 2014. Throughout the period of record spills occurred from October through June with the majority of spills (63%) in May and June. Peak flows ranged up to 2397 cfs (Figure 4-2). Peaks greater than 1000 cfs occurred in 2006, 2011, 2017, and 2018. Of the 121 spill events during the period of record (Figure 4-2), 85 (70%) occurred during these four years.


Figure 4-2. Annual peak flows for gages in the study reaches from 2003–2019. All 2019 peaks and the entire Rubicon record were estimated from the daily average flows; otherwise peak flows were downloaded from the USGS (SF Silver = South Fork Silver Creek; SF American = South Fork American River).

4.3.1.2 Gerle Creek below Loon Lake Dam

Other than during 2015 (the only Critically Dry water year since implementation of new license flows), the January–September daily average flows at Gerle Creek below Loon Lake Reservoir from 2016–2019 were 2–5 times the flows from 2003–2014 (Figure 4-3).

Under the new license flow regime, the hydrograph has transitioned from one with nearly constant flows and periodic peaks typically less than 30 cfs, to a broad snowmelt-style hydrograph with February through July flows ranging from 26–69 cfs depending on the water year type (Figure 4-3).

Figure 4-3. Daily average flow for 2003–2019 water years for Gerle Creek Below Loon Lake Dam. Grey lines show data prior to the new license flow regime (2003–2014) and red lines show data after the new license flow regime (2015–2019).

The new license calls for managed pulse releases in Gerle Creek below Loon Lake Dam. During June 2016 a two-day managed pulse flow with a peak daily average discharge of 224 cfs and a 5-day managed pulse flow with a peak daily average discharge of 340 cfs were released by SMUD as part of the Gerle Creek Sensitive Site Investigation (SMUD 2016) (Figure 4 2). A five-day managed pulse flow with a peak daily average discharge of 371.8 cfs was released in May 2019 (Figure 4 2 and Figure 4 3). There were no pulse flows in 2017 and 2018. These pulses generally elevate flow over the course of one week and are the highest flows measured at the gage since 1996 (Appendix D1).

The annual peak flows averaged about 54 cfs from 2003–2014 and 268 cfs from 2015–2019 (Figure 4-2, Appendix D1).

4.3.1.3 South Fork Silver Creek below Ice House Dam

Prior to the new license flow regime, daily average flows were <15 cfs for most of the year and included large peak flows up to 500 cfs in the fall. The new license flow regime includes a broad snowmelt hydrograph that extends from May through July, with monthly average flows that were approximately 10 times higher than 2003–2014 (Figure 4-4, Appendix D1). In addition, winter base flows in South Fork Silver Creek below Ice House Dam have increased from 3–7 cfs to 7.5–19.0 cfs (Figure 4-4). Recreation flows between 200 and 600 cfs have also been implemented in addition to the higher snowmelt baseflow (Figure 4-4).

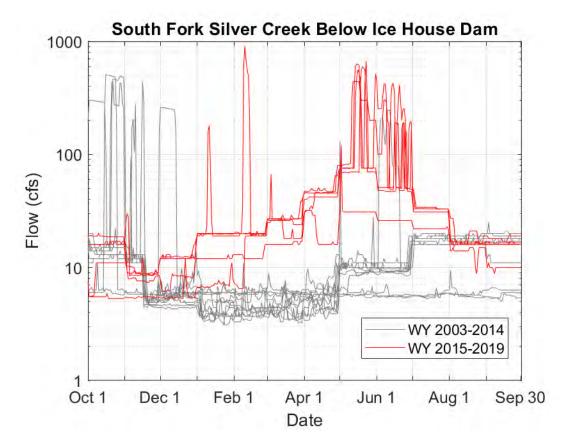


Figure 4-4. Daily average flow for 2003–2019 water years for South Fork Silver Creek Below Ice House Dam. Grey lines show data prior to the new license flow regime (2003–2014) and red lines show data after the new license flow regime (2015–2019).

The timing of instantaneous peak flows in South Fork Silver Creek has shifted from predominantly the fall to the spring (Figure 4-4) since recreation flows were implemented under the new license, and high flows (>500 cfs) have occurred regularly over the past 20 years (Figure 4-2).

4.3.1.4 Silver Creek below Camino Dam

The daily average flows in spring for Silver Creek below Camino Dam have increased from 12–23 cfs in 2003–2014 to 32–73 cfs in 2015–2019 (Figure 4-5). Fall and summer flows in 2015–2019 were within the range of summer flows from 2003–2014 (Figure 4-5). Flows in 2017 (a Wet water year) were consistently very high and ranged from 200 to 16,100 cfs and included a 3-month period where flows were continuously greater than 600 cfs (almost nine times greater than the highest minimum flow of 68 cfs).

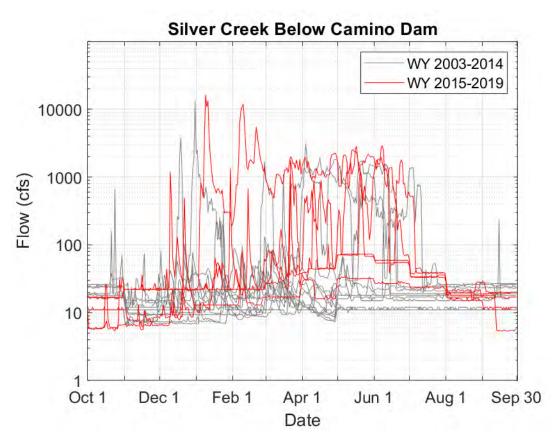


Figure 4-5. Daily average flow for 2003–2019 water years for Silver Creek Below Camino Dam. Grey lines show data prior to the new license flow regime (2003–2014) and red lines show data after the new license flow regime (2015–2019).

High instantaneous peak flows (>15,000 cfs) at Silver Creek below Camino Dam occurred in 2006 and 2017 (Figure 4-2).

4.3.1.5 South Fork American River below Slab Creek Dam

With the exception of spill periods, flows in the SFAR below Slab Creek Dam were typically 38–40 cfs year-round from 2003–2014 Figure 4-6). Under the new license flow regime, baseflows have increased to 60–220 cfs during all but the critically dry 2015. Discharge is highly variable at this site with frequent spills during the winter. During 2017, daily average discharge was generally above 2,000 cfs from March to mid-June.

There have been two high peak flows (>25,000 cfs) in this reach since 2003, occurring in 2006 and 2017 (Figure 4-6).

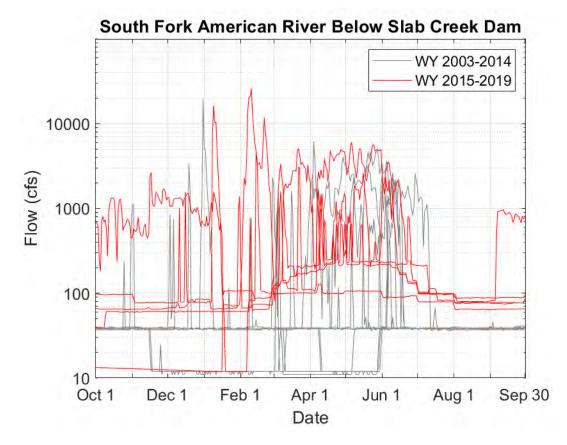


Figure 4-6. Daily average flow for 2003–2019 water years for South Fork American River Below Slab Creek Dam. Grey lines show data prior to the new license flow regime (2003–2014) and red lines show data after the new license flow regime (2015–2019).

4.3.2 Geomorphic Field Data

4.3.2.1 Site RRD-G1 (Rubicon River below Rubicon Dam)

Site Description

The site is located approximately 1.5 miles downstream of Rubicon Reservoir Dam and has a drainage area of about 33 square miles. Site RRD-G1 is immediately downstream of the Desolation Wilderness Boundary where roads are not a source of sediment supply. The site lies within a formerly glaciated valley with large areas of exposed granitic bedrock making up the moderately steep valley slopes (30–40%). There was little evidence of mass wasting near the study site. A well-established evergreen forest surrounded the channel, and the banks were well vegetated with thick grasses and deciduous understory. Survey measurements indicate that the channel in this reach was a Rosgen F4 (Rosgen 1994), with a moderately entrenched channel, a high width-todepth ratio (30-63), an average local bed slope of 0.008 (0.8%), a sinuosity of 1.35, and a gravel dominated substrate. The study site was in a relatively straight, pool-riffle reach with irregular meanders and well-vegetated, lateral and mid-channel gravel bars. Boulder and bedrock outcrops occurred on the channel margins (Figure 4-7). Recently eroded (raw) banks were small and infrequent and reflected local erosion around boulders, and there was no evidence of recent deposition or bar development. Woody debris was generally absent from the flood prone areas. Key LWD pieces that span the channel were not observed along this reach, and no evidence of beaver activity was noted. Representative photos of this site are included in Appendix D3.

Figure 4-7. Site RRD-G1 looking upstream from XS-2 in 2003 (left) and 2019 (right).

Longitudinal Profile

The longitudinal profiles from 2003 and 2019 are shown in Appendix D4, Figure D4-1. The 2019 profile was 450 feet long and extended 125 feet upstream of the upstream cross-section (XS-1) and 50 feet downstream of the downstream cross-section (XS-3). The mean local slope, calculated as a best-fit line to the long profile, was 0.007 (0.7%) during 2003 surveys and 0.008 (0.8%) during the 2019 surveys. This difference reflects the greater upstream extent of the 2019 surveys (as shown in Appendix D4, Figure D4-1) rather than topographic changes. The 2019 and 2003 longitudinal profiles were generally similar. There was 0.5 to 2 feet of local incision, but it was not systematic.

Cross-Sections

The Rubicon River cross-sections for 2003 and 2019 are shown in Appendix D5 Figures D5-1 to D5-3, and characteristics are summarized in Table 4-3. At this site, the three cross-sections surveyed in 2003 were re-occupied in 2019, although the elevation difference for endpins at XS-1 did not match the elevation difference in 2003 surveys or additional surveys at the site completed in 2005. The re-occupied cross-sections show up to 0.4 feet of incision relative to 2003 (Appendix D5 Figures D5-2 and D5-3), but in general the cross-section geometry is very similar. The differences in bankfull data reported in XS-3 reflect differences in the definition of bankfull indicators in the field rather than a change in geometry. The upstream cross-section shows the multiple channel section of the reach with a vegetated island on the left bank, while the other two cross-sections are single-threaded.

	Bankfull v	vidth (ft)	th (ft) Mean bankfull depth (ft)		W/D ratio	
Cross-Section (XS)	2003	2019	2003	2019	2003	2019
XS-1 (Upstream)	73	69	1.9	1.1	38	61
XS-2 (Intermediate)	60	47	1.4	1.6	43	30
XS-3 (Downstream)	75	41	1.1	1.4	68	30

Table 4-3.Cross-Section Data for Site RRD-G1 from 2003 and 2019.

ft = feet

W/D = bankfull width divided by bankfull depth

The 2003 bankfull parameters were recalculated using the original survey data.

Bed Particle Size Distributions

The bed at all three cross-sections was primarily made up of gravel with <5% boulders at the intermediate and downstream cross-sections and no boulders at the upstream cross-section (Appendix D6 Figures D6-1 to D6-3, Table 4-4). Sand content from the 2019 pebble counts was 6, 12, and 18% of the measured particles at the upstream, intermediate, and downstream cross-sections, respectively. Relative to the 2003

surveys, the amount of fine gravel (<20 mm) increased while coarse gravel and cobble decreased at all three cross-sections; the extent of sand in the pebble count was similar (Appendix D6 Figures D6-1 to D6-3, Table 4-4).

		Particle Size								
	D16	D16 (mm)		D50 (mm)		(mm)				
Cross-Section (XS)	2003	2019	2003	2019	2003	2019				
XS-1 (Upstream)	6	8	30	39	60	134				
XS-2 (Intermediate)	2	4	33	50	92	121				
XS-3 (Downstream)	4	2	31	44	66	136				

Table 4-4. Pebble Count Data for Site RRD-G1 from 2003 and 2019.

mm = millimeters

D16=particle size at which 16% of the bed is finer D50=particle size at which 50% of the bed is finer D50=particle size at which 84% of the bed is finer

Sediment Facies Mapping

The majority of the bed area (54%) had cobble-dominant substrate with gravel-dominant substrate comprising 30% of the bed area (Appendix D7 Figure D7-1, Table 4-5). There were no boulder-dominant facies at this site. Approximately half of the facies had sand as a dominant or sub-dominant component.

Table 4-5. Dominant Sediment Facies at Site RRD-G1.

Dominant Facies	Area (ft ²)	% Area
Sand	3,195	12
Gravel	8,514	30
Cobble	14,855	54
Boulder	-	-
Bedrock	1,159	4

ft²= square feet

Large Woody Debris

No large wood was observed at this site (see Appendix D8).

V* (Fine Sediment Storage)

V* was not measured because discrete fine sediment deposits were not observed in the pools in the site. Sand was generally mixed with gravel and occurred as a thin veneer over gravel where it was present in the reach. Because conditions did not meet the V* monitoring requirement for two consecutive surveys, V* will not be measured at this site for the remainder of the license.

Additional Channel Condition Assessments

The Rosgen Level III, Rosgen Bank Erosion and Riparian Vegetation, and Pfankuch Bank Stability assessments are provided in Appendix D10, Appendix D11, and Appendix D12, respectively. The overall Pfankuch stability rating was 76 (good). Morphological characteristics of the site are summarized in Table 4-6.

	2003 I	Reach C	haracteristics	2019 Reach Characteristics					
Study Site	Bed slope	Level II	Morphology	Reach- average Slope	Level II	Morphology	Туре	Pfankuch Stability Score	
RRD-G1	0.007	F4	Pool-riffle	0.008	F4	Pool-riffle	Response	76	
LLD-G1	0.007	E5	Pool-riffle	0.008	E5	Pool-riffle	Response	101	
LLD-G2	0.013	C3	Plane-bed	0.010	C3	Plane-bed	Response	56	
IHD-G1	0.002	C4	Pool-riffle	0.002	C4	Pool-riffle	Response	105	
IHD-G2	0.006	C3	Plane-bed	0.008	C3	Plane-bed	Transport	52	
CD-G1	0.016	B3c	Bedrock/ Step-pool	0.012	B3c	Bedrock/ Step-pool	Transport	61	
SCD-G1	0.028	B3	Cascade/ Step-pool	-	B3	Cascade/ Step-pool	Transport	62	

Table 4-6. Morphological characteristics for the 2003 and 2019 surveys.

4.3.2.2 Site LLD-G1 (Gerle Creek Below Loon Lake Dam, Upper Reach)

Site Description

This site is located approximately 0.75 miles downstream of Loon Lake Dam and has a drainage area of about 6.6 square miles. At this site, the creek flows through a glaciated valley. The right bank for most of the reach is the southern limit of an 88-foot wide by 1.400-foot-long meadow. The downstream end of the reach is constricted by bedrock which acts as the hydraulic control for the reach (Appendix D2). During the 2003 surveys, the meadow was forested with lodgepole pines. Subsequently, several beaver dams in the channel raised the water surface elevation and flooded the lodgepole pine forest (SMUD 2016). The die-off was apparent on Google Earth images starting in about 2010, and resulted in an incredibly high wood loading that dominates the flow and morphology of the channel (Figure 4-8 and Figure 4-9). The channel is characterized by vegetated point and lateral bars, regular meanders, and subtle pool-riffle morphology. The study site is a Rosgen E5 channel. There is very little entrenchment and the widthto-depth ratio ranged from 7-20. The bed slope is 0.008 (0.8%) over the whole reach and 0.0023 for the upstream portion of the profile. The bed material is primarily fine to coarse sand with patchy surficial silt deposits. Extensive fine sediment deposits were observed within the bankfull channel and on the floodplains. Representative photos of this site are included in Appendix D3.

Figure 4-8. Site LLD-G1 looking downstream from XS-2 in 2003 (left) and 2019 (right).

Figure 4-9. Aerial photographs of the area surrounding Site LLD-G1 showing the forest die-off adjacent to the channel.

Longitudinal Profile

The 2019 longitudinal profile is shown in Appendix D4, Figure D4-2. The 2019 profile was 690 feet long and extended 190 feet upstream of XS-1 and 275 feet downstream of XS-3. The slope steepened significantly downstream of XS-3, where the channel banks transitioned to bedrock and the valley was more confined. The slope from the upstream end of the reach to just downstream of XS-3 was 0.0023 (0.23%). The mean local slope for the entire reach was 0.007 (0.7%) during 2003 surveys and 0.008 (0.8%) during the 2019 surveys. Because longitudinal profiles were generally similar in 2003 and 2019, the difference in slope between years likely reflects a the much higher survey density in 2019 and different survey extents (approximately 690 feet in 2019 versus approximately 430 feet in 2003) rather than a change in the slope of the reach. Minor topographic adjustments are visible in Appendix D4, Figure D4-2, but for the most part the channel bed appears stable.

Cross-Sections

Site LLD-G1 cross-sections for 2019 are shown in Appendix D5, Figures D5-4 to D5-6, and characteristics are summarized in Table 4-7. The three cross-sections that had been surveyed in 2003 were not re-occupied in 2019. Cross-section endpins were not located due to frequent downed trees in the bankfull and flood prone areas. In lieu of locating original endpins, the approximate 2003 cross-section locations were relocated by using the 2003 site photos. Given the widespread changes due to the die-off of the forest and frequent downed trees, the new cross-sections were only roughly near the original cross-section location. The morphology of all three cross-sections was very similar in 2003 and 2019.

	Bankfull	II width (ft) Mean bankfull depth (ft)		W/D ratio		
Cross-Section (XS)	2003	2019	2003	2019	2003	2019
XS-1 (Upstream)	21.5	25	2.6	3.4	8.5	7.3
XS-2 (Intermediate)	34.1	34.1	3.8	4.7	8.9	7.3
XS-3 (Downstream)	23.2	28	2.7	3.7	8.5	7.6

 Table 4-7.
 Cross-Section Data for Site LLD-G1 from 2003 and 2019.

ft = feet; W/D = bankfull width divided by bankfull depth

The 2003 bankfull parameters were recalculated using the original survey data.

Bed Particle Size Distributions

Pebble counts were not performed at this site because the bed was entirely comprised of sand in both 2003 and 2019 and pebble counts are only intended for gravel beds.

Sediment Facies Mapping

Sediment facies was not mapped because the channel bed was entirely comprised of sand and silt and the bed was not sufficiently visible to differentiate sand and silt due to low visibility (high depth and turbidity).

Large Woody Debris

Wood loading was extensive in the reach. Rather than count the individual pieces, wood was counted and measured on the aerial photograph taken for the facies map. There were 564 logs that exceeded 6 feet in length in the 690-foot long reach (Appendix D8). The logs had a mean length of 14.6 feet and a standard deviation of 8.7 feet. The logs were randomly oriented, and many logs crossed the channel. Many logs were within the active channel, and log movement appeared to be minimal.

V* (Fine Sediment Storage)

V* was not measured because the bed was comprised of sand and no gravel was observed in the reach or noted below the sandy bed. V* is only a useful measure in a gravel bed channel with defined pools where fine sediment can be distinguished from coarser sediment by probing with a rod, which is not possible with the sand and silt that made up the bed of this site. V* is not intended to assess deposition in sand-bed reaches. Because conditions did not meet the V* monitoring requirement for two consecutive surveys, V* will not be measured at this site for the remainder of the license.

Additional Channel Condition Assessments

The Rosgen Level III, Rosgen Bank Erosion and Riparian Vegetation, and Pfankuch Bank Stability assessments are provided in Appendix D10, Appendix D11, and Appendix D12, respectively. The overall Pfankuch stability rating was 101 (poor). Morphological characteristics of the site are summarized in Table 4-6.

4.3.2.3 Site LLD-G2 (Gerle Creek Below Loon Lake Dam, Middle Reach)

Site Description

The site is located in a broad glaciated valley approximately 2 miles downstream of Loon Lake Dam and has a drainage area of about 11 square miles. The Wentworth Springs Road is 300–500 feet north of the stream for the entire length of the reach. Survey measurements indicated that this reach was a Rosgen C3 channel. The width-to-depth ratio ranged from 22 to 46 and the entrenchment ratio ranged from 9 to 25. The average local bed slope was 0.01 (1%) and the sinuosity was 1.1. For most of the reach length, the channel has a pool-riffle sequence with boulder steps at the upstream end of the reach. Pools had a residual depth less than 3.5 feet. Sand deposits were not

observed in the pools. The channel had alternate bars visible in cross-sections 1 and 3, and one mid-channel bar at the downstream end of the reach. The banks were made up of cobbles with an overlying fine sediment layer and were densely vegetated with riparian trees and conifers. Vegetation encroached on the channel throughout the reach (Figure 4-10). The floodplain was made up of sand and silt deposits at its downstream end and was not visible at its upstream end where the floodplain was densely vegetated. LWD had a moderate density, with the majority of logs deposited as individuals rather than in jams. Beaver activity was not noted during the 2019 survey but was observed close to the site in 2019 (E. Koenigs, SMUD, pers. comm., July 2019).

Figure 4-10. Site LLD-G2 looking upstream from XS-2 in 2003 (left) and 2019 (right).

Longitudinal Profile

The longitudinal profiles from monitoring years 2003 and 2019 are shown in Appendix D4 Figure D4-3. The 2019 longitudinal profile was 1,000 feet long and extended 100 feet upstream of XS-1 and 400 feet downstream of XS-3. The reach-average slope was 0.012 (1.2%) in 2003 and 0.011 (1.1%) in 2019. Comparison of the longitudinal profile between monitoring years shows very minor changes in thalweg elevation. Relative to the 2003 surveys, the channel bed incised in some locations and aggraded in others. The most notable location where incision was observed was approximately 40 feet downstream of XS-3, where the channel incised by one approximately one foot over a distance of 40 feet, but thalweg elevation changes were generally less than 0.2 feet.

Cross-Sections

Endpin recovery was complicated at Site LLD-G2 due to a mixture of endpins from the 2003 survey and endpins from the Gerle Creek Sensitive Site Investigation (SMUD 2016). The 2016 SMUD endpins that were recovered in 2019 for the intermediate cross-section (XS-2) and XS-3 were within 1 foot of the 2003 endpins, and the different endpins likely do not affect cross section geometry appreciably. The 2015 SMUD left

bank endpin was not found in 2019 and thus the difference between the endpins is not known. The 2019 surveys used a mixture of 2016 and 2003 endpins detailed in Table 4-8. Site LLD-G2 cross-sections for 2003 and 2019 are shown in Appendix D5 Figures D5-7 to D5-9, and characteristics are summarized in Table 4-9. The compilation of cross-section photos for this site is provided in Appendix D3. In general, the crosssections showed similar geometry between monitoring years (Table 4-9). The large difference in bankfull width between the 2003 and subsequent surveys reflects changes in the definition of bankfull width rather than large cross section changes. Comparison of the cross sections at Site LLD-G2 shows thalweg incision of approximately 0.5 feet following the 2016 pulse flows and approximately 0.2 feet of additional incision in the thalweg in 2019. XS-2 morphology was relatively stable since 2003 and during the pulse flow. Comparison of XS-3 (the downstream cross-section) shows that the channel had aggraded somewhat between 2003 and 2015. Following the 2016 pulse flow, the 2016 channel was very similar at XS-3 to 2003. The channel subsequently deepened by approximately 0.5 feet but maintained a similar width following the 2019 flows the main channel in XS-3 transitioned from a mid-channel bar to a single channel with a pool approximately 0.4 feet deeper than 2016 (Appendix D5 Figure D5-9). The two upstream cross-sections were generally similar in 2003 and 2019.

Cross Section (XS)	Left Bank Endpin	Right Bank Endpin
XS-1 (Upstream)	2003 Endpin	SMUD 2016 Endpin
XS-2 (Intermediate)	2003 Endpin	SMUD 2016 Endpin
XS-3 (Downstream)	SMUD 2016 Endpin	2003 Endpin

Table 4-8. Cross-Section Endpins Used in the 2019 su	rvey for Site LLD-G2
--	----------------------

Cross-Section	Ban	Bankfull width (ft)			Mean bankfull depth (ft)			W/D ratio		
(XS)	2003	2016	2019	2003	2016	2019	2003	2016	2019	
XS-1 (Upstream)	54	27	46	2.1	1.1	1.0	26	27	46	
XS-2 (Intermediate)	38	23	30	1.5	1.6	1.3	25	14	23	
XS-3 (Downstream)	51	35	38	1.1	1.0	1.1	46	32	35	

Table 4-9. Cross-Section Data for Site LLD-G2 from 2003, 2106 and 2019.

ft = feet; W/D = bankfull width divided by bankfull depth

The 2003 bankfull parameters were recalculated using the original survey data.

Bed Particle Size Distributions

The bed at all three cross-sections was primarily made up of cobbles with <10% boulders at the upper and middle cross-sections and no boulders at the lower cross-section (Appendix D6 Figures D6-4 to D6-6). Relative to the 2003 surveys, the bed coarsened at the upstream and intermediate cross-sections but fined slightly at the downstream cross-section (Table 4-10, Appendix D6 Figures D6-4 to D6-6).

Table 4-10.	Pebbl	e Count Data for Site	LLD-G2 from 2003 an	d 2019.
		D16 (mm)	D50 (mm)	D84 (m

Cross-Section	D16 (mm)			D50 (mm)			D84 (mm)		
(XS)	2003	2015	2019	2003	2015	2019	2003	2015	2019
XS-1 (Upstream)	14	57	39	69	113	95	137	231	190
XS-2 (Intermediate)	14	57	42	66	117	90	152	261	184
XS-3 (Downstream)	40	41	32	90	77	82	170	150	136

mm = millimeters

D16=particle size at which 16% of the bed is finer D50=particle size at which 50% of the bed is finer D84=particle size at which 84% of the bed is finer

Sediment Facies Mapping

The majority of the channel bed was cobble-dominated, and the floodplains were sanddominated (Appendix D7 Figures D7-2 to D7-3). Cobble-dominant facies comprised 54% of the bed area and gravel-dominant facies comprised 21% of the bed area (Table 4-11). Sand-dominant facies were primarily observed on the floodplains and cobbledominant facies made up the majority of the wetted channel. Sediment facies gradually fined from the upstream end to the downstream end of the site.

Dominant Facies	Area (ft ²)	% Area
Sand	2,381	12
Gravel	4,210	21
Cobble	10,527	52
Boulder	2,927	15
Bedrock	-	-

Table 4-11. Dominant Sediment Facies at Site LLD-G2.

ft²= square feet

Large Woody Debris

Site LLD-G2 had 108 logs that met the minimum length criteria of 12.5 feet (1/2 average bankfull width). Of these logs, 70 were individual pieces and 38 were in 4 aggregates of 4–17 logs (Appendix D8). There were no logs with rootwads in the site. Wood appeared to be relatively stable and was locally sourced based on the degree of weathering. LWD did not appear to be significantly affecting channel morphology.

V* (Fine Sediment Storage)

V* was not measured because fine sediment was not observed in the pools in the site. Because conditions did not meet the V* monitoring requirement for two consecutive surveys, V* will not be measured at this site for the remainder of the license.

Additional Channel Condition Assessments

The Rosgen Level III, Rosgen Bank Erosion and Riparian Vegetation, and Pfankuch Bank Stability assessments are provided in Appendix D10, Appendix D11, and Appendix D12, respectively. The overall Pfankuch stability rating was 56 (good). Morphological characteristics of the site are summarized in Table 4-6.

4.3.2.4 Site IHD-G1 (South Fork Silver Creek below Ice House Dam, Upper Reach)

Site Description

The Ice House upper site is located approximately 1.5 miles downstream of Ice House Dam and has a drainage area of about 33 square miles. At this site, the valley is densely vegetated and valley slope is less than 30%, and there is no evidence of major mass wasting events. Silver Creek Group Campground is on the south bank of the river, and rock weirs built by campers can alter low flow hydraulics. The banks were densely vegetated (Figure 4-11) with frequent terrace surfaces above the estimated bankfull elevation. Survey measurements indicated that the channel in this reach was a Rosgen C4 channel. It was slightly entrenched, with a width-to-depth ratio sufficient to support alternate bars (8-28). The average local bed slope was 0.002 (0.2%) and the sinuosity was 1.16. Bed material is primarily unconsolidated gravels and sands, which form frequent bars along the channel margins. Comparison of photographs from 2003 and 2019 shows that vegetation has encroached on the channel (Figure 4-11). Medium to

small sized woody debris is present in moderate amounts. Several key LWD pieces that span the channel are located in the lower part of the site. They are stable in the channel, form backwater pools, act as instream cover, and effectively reduce flow velocity. This reach exhibits pool-riffle morphology, with a vegetated mid-channel bar in the middle of the reach. Representative photos of this site are included in Appendix D3. Beaver activity was not observed at this site in 2019.

Figure 4-11. Site IHD-G1 looking upstream from XS-2 in 2003 (left) and 2019 (right).

Longitudinal Profile

The longitudinal profile for monitoring year 2019 is shown in Appendix D4 Figure D4-4. The 2019 profile totaled 1,200 feet and extended 360 feet upstream of XS-1 and 275 feet downstream of XS-3. The mean slope was 0.002 (0.2%) in 2003 and 2019. Overall, the longitudinal profile was relatively similar from 2003 and 2019. The largest change was approximately 2 feet of thalweg aggradation near the downstream distance of 1100 feet. The surveys also show about 2 feet of incision in the pool at the upstream end of the reach (where the V* measurement was taken). Given that the bed was primarily gravel and cobble at this site in 2003 and has up to 3 feet of sand on the bed now, the total gravel incision was approximately 5 feet. There is also no evidence of deposition of the missing material downstream. This is a relatively large amount of incision without a record of extraordinarily large flows that may have caused it. It is also possible that the "incision" is an artificial artifact of a somewhat different alignment of the profile and the higher density of survey points in 2019.

Cross-Sections

Site IHD-G1 cross-sections for 2019 are shown in Appendix D5 Figures D5-10 to D5-12, and characteristics are summarized in Table 4-12. The compilation of cross-section photos for this site is provided in Appendix D3. At this site, only XS-1 was re-occupied in 2019. In lieu of locating original endpins at XS-2 and XS-3, the approximate 2003 cross-

section locations were relocated by using the 2003 site photos. The geometry of XS-1, which is immediately downstream of the pool where V* was measured, shows very little change between 2003 and 2019, and the differences in bankfull characteristics in Table 4-12 are primarily due to differences in bankfull estimation in the field and the inclusion of a side channel within the bankfull channel in 2003. XS-2 (where neither end pin was recovered in 2019) and XS-3 (where only one end pin was recovered in 2019) both had significantly different morphology than the 2003 surveys. Although the orientation of the original surveys is not known, differences in the cross-section location or orientation across the channel in 2019 and 2003 would cause this apparent change rather than morphological adjustments.

	Bankfull width (ft)			kfull depth t)	W/D ratio	
Cross-Section (XS)	2003	2019	2003	2019	2003	2019
XS-1 (Upstream)	53	45	2.7	1.6	20	28
XS-2 (Intermediate)	59	26	1.8	3.4	33	8
XS-3 (Downstream)	49	26	2.8	1.6	18	17

Table 4-12. Cross-Section Data for Site IHD-G1 from 2003 and 2019.

ft = feet

W/D = bankfull width divided by bankfull depth

The 2003 bankfull parameters were recalculated using the original survey data.

Bed Particle Size Distributions

The bed at all three cross-sections was primarily made up of gravel with <15% cobbles and no boulders (Appendix D6 Figures D6-7 to D6-9, Table 4-13). Sand content totaled <15% in all three pebble counts, although pebble counts typically underrepresent the portion of sand on the bed (Bunte and Abt 2001). Relative to the 2003 surveys, the bed coarsened at all three cross-sections (Appendix D6 Figures D6-7 to D6-9, Table 4-13), but as noted above the location of XS-2 and XS-3 may have differed in 2003 and 2019.

 Table 4-13.
 Pebble Count Data for Site IHD-G1 from 2003 and 2019.

	D16 (mm)		D50	(mm)	D84 (mm)	
Cross-Section (XS)	2003	2019	2003	2019	2003	2019
XS-1 (Upstream)	2	14	16	35	30	59
XS-2 (Intermediate)	2	5	10	11	18	18
XS-3 (Downstream)	2	3	10	15	24	34

mm = millimeters

D16=particle size at which 16% of the bed is finer

D50=particle size at which 50% of the bed is finer D84=particle size at which 84% of the bed is finer

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

Sediment Facies Mapping

The facies maps for this site are located in Appendix D7 Figures D7-4 through D7-6 The majority of the channel bed was gravel-dominated with substantial amounts of sand observed intermixed with gravel-dominant facies and on the floodplains. Boulders were commonly observed along the banks but often poorly visible due to being buried in sand. Gravel-dominant facies comprised 50% of the channel bed and sand-dominant facies comprised 43% of the channel bed (Table 4-14).

Dominant Facies	Area (ft ²)	% Area
Sand	20,461	43
Gravel	23,905	50
Cobble	112	<1
Boulder	3,580	7
Bedrock	-	-

ft²= square feet

Large Woody Debris

Site IHD-G1 had 58 logs: 39 individual pieces without rootwads, 5 individual pieces with rootwads, and 14 additional logs in two jams (Appendix D8). Thirteen logs were observed during the 2003 surveys, none with rootwads.

V* (Fine Sediment Storage)

As stated above, only one pool met the conditions to survey V* at IHD-G1. Due to pool depth that exceeded wadable conditions, the V* survey methods outlined in SMUD (2017) could not be applied. The methods were therefore adapted to measure V* under the conditions at the site. Other pools in the study reach did not have clear hydraulic controls or were associated with mid-channel bars and did not meet the pool-width criteria outlined in SMUD (2017). The average V* of the pool in Site IHD-G1 was 0.32 (Table 4-15, Appendix D9). The profile on river left had the thickest deposits of fine sediments and included extensive silt deposits as well as sand. All three profiles had V*>0.25. If we assume the fine sediment had an average width of 25 feet based on the facies mapping, the total volume of fine sediment in the pool was 4,200 cubic feet. Fine sediment was not observed at this site during the 2003 surveys.

Profile	Fine sediment area (ft ²)	Residual pool area (ft ²)	Profile V*
Centerline	158.0	593.9	0.27
River Right	141.1	554.1	0.25
River Left	207.6	480.5	0.43
Average	168.9	542.8	0.32

 $ft^2 = square feet$

Additional Channel Condition Assessments

The Rosgen Level III, Rosgen Bank Erosion and Riparian Vegetation, and Pfankuch Bank Stability assessments are provided in Appendix D10, Appendix D11, and Appendix D12, respectively. The overall Pfankuch stability rating was 105 (fair). Morphological characteristics of the site are summarized in Table 4-6.

4.3.2.5 Site IHD-G2 (Ice House Lower)

Site Description

For most of this reach, South Fork Silver Creek is confined by hillslopes and bedrock outcrops. A small, ephemeral unnamed tributary joins South Fork Silver Creek between XS-2 and XS-3. Grain size distributions and sediment facies maps indicate that coarse cobble and small boulder are the dominant size classes in the channel. Recent sand deposits are present on floodplain and terraces, with moderate deposition of new gravel and coarse sand on old and new bars. The stream was slightly entrenched with a widthto-depth ratio sufficient to support alternate bars (23-34). The channel slope was 0.008 (0.8%) with a sinuosity of 1.1. Survey measurements indicated that the channel in this reach was a Rosgen C3 channel, but with a much lower sinuosity than expected for a C3 channel due to hillslope and bedrock control of the channel form. This reach primarily exhibits pool-riffle morphology. LWD does not provide significant scour or habitat within the bankfull channel. The area around the site burned during the Cleveland Fire in 1992. Comparison of photographs shows that vegetation regrowth on the hillslopes and adjacent to the channel has been significant since 2003 (Figure 4-12). There is little to no evidence of mass wasting along the site. Stands of willow and alder line the channel banks. No beaver activity was observed at this site.

Figure 4-12. Site IHD-G2 looking upstream from XS-1 in 2003 (left) and 2019 (right) showing the regrowth of vegetation since the 1992 Cleveland Fire.

Longitudinal Profile

The longitudinal profile for monitoring years 2003 and 2019 is shown in Appendix D4 Figure D4-5. The 2019 profile totaled 1,200 feet and extended 240 feet upstream of XS-1 and 315 feet downstream of XS-3. The mean local slope was 0.009 (0.9%) during 2003 surveys and 0.008 (0.8%) during 2019 surveys. The difference in slope is likely due to the 2019 longitudinal profile extending farther downstream than the 2003 longitudinal profile. Comparison of the longitudinal profile between monitoring years shows minor changes in thalweg elevation. Relative to the 2003 surveys, aggradation ranging from 0.3 to 1.7 feet was observed throughout most of the reach. Notable aggradation was observed between XS-1 and XS-2, where the channel aggradation ranged from 0.2 to 0.9 feet. Other notable aggradation was observed approximately 100 feet downstream of XS-2, where the channel aggraded by up to 1.7 feet over a distance of 80 feet.

Cross-Sections

The cross-sections for 2003 and 2019 are shown in Appendix D5 Figures D5-13 to D5-15, and characteristics are summarized in Table 4-16. The compilation of cross-section photos for this site is provided in Appendix D3. At this site, all three 2003 cross-sections were reoccupied in 2019. Comparisons of the 2003 and 2019 cross-sections show very little aggradation or degradation and little change in cross-section geometry (Table 4-16). The large differences in the bankfull characteristics of XS-1 reflected differences in the identified bankfull depth rather than differences in topography because the bankfull depth was overestimated in 2003.

	Bankfull	full width (ft) Mean bankfull depth (ft)		W/D ratio		
Cross-Section (XS)	2003	2019	2003	2019	2003	2019
XS-1 (Upstream) ^a	124	53	2.8	2.3	44	23
XS-2 (Intermediate)	62	56	2.6	1.7	24	34
XS-3 (Downstream)	57	47	2.6	1.8	22	26

^a2003 characteristics for XS-1 (Upstream) overestimated the bankfull depth.

ft = feet

W/D = bankfull width divided by bankfull depth

The 2003 bankfull parameters were recalculated using the original survey data.

Bed Particle Size Distributions

Pebble counts were only conducted at XS-1 and XS-2 during 2019 monitoring (Appendix D6 Figures D6-10 to D6-12 and Table 4-17). The pebble count at XS-3 was not measured in 2019 because the bed was predominantly bedrock. The bed material at XS-1 and XS-2 was cobble-dominant with <5% sand and <15% boulder. The grain size

distribution finer than the 75th percentile coarsened at XS-1 and XS-2 in 2019 relative to 2003. The coarsest 25 percent of the particles had similar grain sizes in 2003 and 2019, suggesting that these coarser particles are immobile (Appendix D6 Figures D6-10 to D6-12).

	D16 (mm) D50 (mm)		D84 (mm)			
Cross-Section (XS)	2003	2019	2003	2019	2003	2019
XS-1 (Upstream)	25	32	45	85	150	148
XS-2 (Intermediate)	20	51	80	106	300	210
XS-3 (Downstream)	2	-	45	-	125	-

Table 4-17. Pebble Count Data for Site IHD-G2 from 2003 and 2019.

mm = millimeters

D16=particle size at which 16% of the bed is finer

D50=particle size at which 50% of the bed is finer

D84=particle size at which 84% of the bed is finer

Sediment Facies Mapping

The channel bed at this site was predominantly bedrock with boulder and cobbledominant facies occurring as a thin surficial layer covering the bedrock (Appendix D7, Figures D7-7 through D7-9). Bedrock comprised 49% of the channel bed, and cobbledominant facies comprised 34% of the channel bed (Table 4-18). Sand was rarely observed within the bankfull area and primarily located on the floodplains.

Table 4-18. Dominant Sediment Facies at Site IHD-G2.

Area (ft ²)	% Area
-	-
129	<1
21,198	34
10,170	17
30,672	49

ft²= square feet

Large Woody Debris

Two logs meeting the length criteria were observed at Site IHD-G2 in 2019. None of the logs had rootwads or were in jams. Sixty-eight logs were observed during the 2003 surveys, but only nine of them met the length criteria (> ½ bankfull width or 28 feet) (Appendix D8).

V* (Fine Sediment Storage)

V* was not measured because there were no pools in the reach and there was little fine sediment accumulation in the active channel. Because conditions did not meet the V* monitoring requirement for two consecutive surveys, V* will not be measured at this site for the remainder of the license.

Additional Channel Condition Assessments

The Rosgen Level III, Rosgen Bank Erosion and Riparian Vegetation, and Pfankuch Bank Stability assessments are provided in Appendix D10, Appendix D11, and Appendix D12, respectively. The overall Pfankuch stability rating was 52 (good). Morphological characteristics of the site are summarized in Table 4-6.

4.3.2.6 Site CD-G1 (Silver Creek Below Camino Dam Study Reach)

Site Description

A landslide from the tailings pile on the right (north) valley occurred in the upstream end of the site between 2014 and 2016. The landslide entered the channel and likely was a source of coarse and fine sediment to the river reach. The bedrock valley slopes are moderately steep (40–60%) and confine the stream in a relatively narrow channel with low sinuosity (1.21). The two to three smaller landslides/debris flows that enter the reach on the right (north) bank are visible in aerial imagery. The riparian zone is relatively narrow, with low plant diversity and density. Channel character and hydraulics are primarily controlled by large flow obstructions created by frequent bedrock outcrops and large boulders (Figure 4-13). Survey measurements indicate that the channel in this reach is a Rosgen B3c channel, with moderate entrenchment, a moderate to high widthto-depth ratio (18-25). The average bed slope is 0.012 (1.2%), and the bed has a cobble dominated substrate. Bedrock and step-pool morphology dominates with occasional cascades. This reach has a stable substrate with little to no LWD present within the active channel. Pockets of gravel and cobble are deposited in the low velocity zones on the downstream sides of large flow obstructions and along the channel margins. No beaver activity was observed at this site.

Figure 4-13. Site CD-G1 looking downstream from XS-2 in 2003 (left) and 2019 (right).

Longitudinal Profile

The 2019 profile was 915 feet long and extended 200 feet upstream of XS-1 and 190 feet downstream of XS-3. The mean local slope was 0.016 (1.6%) during 2003 surveys and 0.012 (1.2%) during 2019 surveys, but this difference was due to differences in the beginning and ending location of the surveys and to the density of survey points, which was higher in 2019 (Appendix D4 Figure D4-6). Overall, there was little systematic change in the thalweg profile from 2003 to 2019 (Appendix D4 Figure D4-6).

Cross-Sections

Site CD-G1 cross-sections for 2003 and 2019 are shown in Appendix D5 Figures D5-16 to D5-18, and characteristics are summarized in Table 4-19. The compilation of cross-section photos for this site is provided in Appendix D3. At this site, both endpins were recovered for XS-2 and XS-3 in 2019, while only one endpin was recovered for XS-3. Comparisons of the 2003 and 2019 cross-sections show very little change in cross-section morphology (Appendix D5 Figures D5-16 to D5-18). Differences between 2003 and 2019 at XS-3 for distance greater than about 70 feet likely reflect alignment differences and differences between the survey methodology rather than topographic change. Similarly, the differences in Table 4-19 reflect changes in the identification of bankfull depth and width rather than erosion or deposition. This is not surprising given that identification of bankfull characteristics in a canyon channel confined by boulders and bedrock is highly subjective.

	Bankfull width (ft)		Mean bankfull depth (ft)		W/D ratio	
Cross-Section (XS)	2003	2019	2003	2019	2003	2019
XS-1 (Upstream)	73	57	2.7	3.1	27.0	18.5
XS-2 (Intermediate)	89	74	3.8	3.0	23.4	24.5
XS-3 (Downstream)	77	61	3.2	2.7	24.1	23.2

Table 4-19. Cross-Section Data for Site CD-G1 from 2003 and 2019.

ft = feet

W/D = bankfull width divided by bankfull depth

The 2003 bankfull parameters were recalculated using the original survey data.

Bed Particle Size Distributions

The bed at XS-1 is primarily comprised of coarse gravels and small cobbles. The bed at the intermediate and downstream cross-sections is primarily made up of cobbles with <20% boulders. (Appendix D6 Figures D6-13 to D6-15, Table 4-20). Bedrock substrate was frequently observed at all three cross-sections. No sand was measured during the pebble counts. Relative to the 2003 surveys, the bed fined slightly at the upper and middle cross-sections but coarsened at the lower cross-section (Appendix D6 Figures D6-13 to D6-15, Table 4-20). In general, the particle size distributions between 2003 and 2019 are similar, with XS-1 and XS-2 finer in 2019 than 2003 and XS-3 coarser in 2019 than 2003.

	D16 (mm)		D50 (mm)		D84 (mm)	
Cross-Section (XS)	2003	2019	2003	2019	2003	2019
XS-1 (Upstream)	45	30	71	64	156	157
XS-2 (Intermediate)	46	41	82	80	143	135
XS-3 (Downstream)	38	42	74	103	189	280

Table 4-20. Pebble Count Data for Site CD-G1 from 2003 and 2019.

mm = millimeters

D16=particle size at which 16% of the bed is finer

D50=particle size at which 50% of the bed is finer

D50=particle size at which 84% of the bed is finer

Sediment Facies Mapping

Site CD-G1 is dominated by boulders and bedrock (Appendix D7 Figures D7-10 and D7-11). Cobble and gravel facies are present in low velocity zones and were commonly observed on channel margins and downstream of flow obstructions. During the 2019 surveys, the wetted area of the channel was predominantly comprised of bedrock and boulder-dominant facies (Table 4-21). The channel banks and flood prone area were dominated by bedrock (sand and gravel comprised <1% of the mapped area).

Table 4-21. Dominant sediment facies at Site CD-G1.

Dominant Facies	Area (ft ²)	% Area
Sand	36	<1
Gravel	1,001	<1
Cobble	3,626	3
Boulder	33,054	30
Bedrock	75,025	67

ft²= square feet

Large Woody Debris

Two logs were observed in Site CD-G1 in 2019, and only one log (categorized as 3–10 feet long) was observed in 2003 (Appendix D8). Two additional logs were located just downstream of the study reach in 2019.

V* (Fine Sediment Storage)

V* was not measured because fine sediment was not observed in the pools in the site. Because conditions did not meet the V* monitoring requirement for two consecutive surveys, V* will not be measured at this site for the remainder of the license.

Additional Channel Condition Assessments

The Rosgen Level III, Rosgen Bank Erosion and Riparian Vegetation, and Pfankuch Bank Stability assessments are provided in Appendix D10, Appendix D11, and

Appendix D12, respectively. The overall Pfankuch stability rating was 61 (fair). Morphological characteristics of the site are summarized in Table 4-6.

4.3.2.7 Site SCD-G1 (South Fork American River below Slab Creek Dam Study Reach)

Site Description

It was not possible to conduct a complete survey at Site SCD-G1 due to the higher minimum flows in this reach. The new license minimum flows were double the flows during the 2003 survey, precluding a safe survey of the channel. The study reach morphology is comprised of high gradient boulder steps and pools. The site is in the Slab Creek recreation boating run which is ranked Class IV/V (SMUD 2004), and even at lower flows (approximately 90 cfs) was not safely wadable. Channel banks are predominantly comprised of bedrock and very large boulders (Figure 4-14). Very little fine sediment was observed in the study reach. Fine sediment was only observed in the wake of larger particles. Particles are strongly imbricated. There is a cobble boulder point bar on river left at the upstream end of the study reach. The bed slope in 2003 was about 0.015 (1.5 %).

Figure 4-14. Site SCD-G1 looking upstream near XS-2 in 2003 (left) and 2019 (right).

Longitudinal Profile

Under the new flow regime, the thalweg is not wadable in this reach, and frequent boulders makes surveying the channel bottom by boat dangerous. The long profile was therefore not surveyed in this reach. In the 2003 survey, the reach had a slope of 0.024 (2.4%), which is by far the steepest of the study reaches and helps to explain why the reach was so difficult to survey.

Cross-Sections

Although the deepest portion of the bed could not be surveyed, the majority of XS-1 and XS-2 were reoccupied in 2019, and the entirety of XS-3 was resurveyed. The crosssections were generally similar between 2003 and 2019, and differences in bed elevation are at least partially due to differences in cross-section alignment in 2003 and 2019 arising from the difficulty of wading the site (Appendix D5 Figures D5-19 to D5-21, Table 4-22). Bankfull depth and width-depth ratio were not calculated for XS-1 and XS-2 because depth could not be calculated over the entire length. The differences in bankfull characteristics between 2003 and 2019 were due to differences in the definition of bankfull, rather than topographic changes, and if the 2019 definition of bankfull was used for the 2003 surveys, the bankfull width would be similar. Bankfull characteristics are generally difficult to estimate in confined sites such as SCD-G1.

	Bankfull	width (ft)	Mean bankfull depth (ft)		W/D ratio	
Cross-Section (XS)	2003	2019	2003	2019	2003	2019
XS-1 (Upstream)	32.8	122	5.6	n/a	5.8	n/a
XS-2 (Intermediate)	62.8	163	3.4	n/a	18.4	n/a
XS-3 (Downstream)	61.3	122	3.0	6.6	20.2	18.7

Table 4-22. Cross-Section Data for Site SCD-G1 from 2003 and 2019.

ft = feet;

W/D = bankfull width divided by bankfull depth

The 2003 bankfull parameters were recalculated using the original survey data.

Bed Particle Size Distributions

Pebble counts were not conducted in this boulder and bedrock reach because the bed could not safely be measured.

Sediment Facies Mapping

The sediment facies were dominated by boulder and bedrock, with boulder-dominant substrate totaling 97% of the mapped channel area and bedrock-dominant comprising the additional 3% (Table 4-23). The remaining <1% of the mapped area was cobble-dominate substrate (Appendix D7, Figures D7-12 and D7-13).

Table 4-23.	Dominant Sediment Facies at Site SCD-G1.
-------------	--

Dominant Facies	Area (ft ²)	% Area
Sand	-	-
Gravel	-	-
Cobble	397	<1
Boulder	89,791	97
Bedrock	2,624	3

ft²= square feet

Large Woody Debris

No wood was observed in this reach.

V* (Fine Sediment Storage)

V* was not measured because fine sediment was not observed in the pools in the site. Because conditions did not meet the V* monitoring requirement for two consecutive surveys, V* will not be measured at this site for the remainder of the license.

Additional Channel Condition Assessments

The Rosgen Level III, Rosgen Bank Erosion and Riparian Vegetation, and Pfankuch Bank Stability assessments are provided in Appendix D10, Appendix D11, and Appendix D12, respectively. The overall Pfankuch stability rating was 62 (fair). Morphological characteristics of the site are summarized in Table 4-6.

4.4 DISCUSSION

4.4.1 Changes between 2003 and 2019

4.4.1.1 Site RRD-G1 (Rubicon River below Rubicon Dam)

Downstream of Rubicon Dam, March through June daily average flows have increased by at least 50% under the new license. Approximately 44% of the days with spill over the dam occurred in 2017 and 2019 just prior to the most recent surveys. Comparison of the 2003 and 2019 surveys shows little change in the overall cross-section. Overall, the bed at all three cross-sections coarsened, but the fraction of the bed covered by fine gravel (<20 mm) and sand increased. The degree to which this change reflects a longterm trend or is due to the occurrence of two of the highest daily average peak flows since 2002, in 2017 and 2018 is not clear.

4.4.1.2 Site LLD-G1 (Gerle Creek Below Loon Lake Dam, Upper Reach)

The most significant change at Site LLD-G1 since the 2003 surveys was the increase in the wood load due to tree mortality induced by beaver dam flooding (SMUD 2016). During the 2003 surveys, Site LLD-G1 contained 63 logs with part of their length in the active channel; this was the among highest wood loading observed for the sites

surveyed in 2003. By 2019, the number of LWD pieces has increased to 563, a nearly nine-fold increase. The increase in LWD likely affects the channel in several ways. First, it represents a dramatic increase in the channel roughness with a corresponding decrease in flow velocity and increase in flow depth. The water surface was 0 to 0.5 feet below the top of the bank during the 2019 survey during a flow of 35.9 cfs. Although the flows were considerably lower during the 2003 survey (11 cfs), the flow was also close to overtopping the bank. The water surface slope using the three cross-sections was -0.001 (i.e., the water surface increased downstream). The water surface elevation profile is strongly influenced by local backwater conditions behind logs.

Site LLD-G1 is anomalous in that it has a sand rather than gravel bed. The sand bed was also present in 2003, and its origin is not clear. While the bed slope (0.007) is sufficiently steep to move gravel, the combination of extensive wood and downstream bedrock control imparted a negligible water surface slope at the time of the surveys. Recent overbank deposits suggest that sand is transported to the reach, but the degree to which sand moves through the reach is unknown.

4.4.1.3 Site LLD-G2 (Gerle Creek Below Loon Lake Dam, Middle Reach)

Site LLD-G2 has multiple channels at high flows. During the 2019 surveys, water was present and flowing in the side channels. Similar to Site LLD-G1, Site LLD-G2 had increased LWD loading since the original surveys, albeit of a lower magnitude. The grain size distribution of the bed coarsened in two of the three cross-sections and fined slightly in XS-3 at the downstream end of the reach. Comparison of the cross-sections at Site LLD-G2 show that in one of the three cross-sections, the 2016 and 2019 pulse flows caused some incision of the thalweg and that additional thalweg deepening occurred in 2019 associated with a transition from a mid-channel bar to a single channel at the lowermost cross-section. Subsequent 5-year monitoring will help to assess the impacts of these pulse flows more fully.

4.4.1.4 Site IHD-G1 (South Fork Silver Creek below Ice House Dam, Upper Reach)

The increase in both spring snowmelt flows and short-term peak flow on South Fork Silver Creek below Ice House Dam (up to 967 cfs in 2017) are well below the peak flows in 1996 and 1997 of 7,530 and 4,440 cfs, respectively. The channel narrowed slightly at XS-1 between 2003 and 2019, likely due to the LWD jam immediately downstream of the cross-section, but otherwise the cross-section morphology was largely similar. The trends in sediment at the site between 2003 and 2019 are somewhat contradictory. There was less sand in the pebble counts in 2019 than 2003 and the bed coarsened considerably during that period at XS-1 and to a lesser degree at XS-2 and XS-3. Pebble counts often under-represent sand which is not accurately measured using that method (Bunte and Abt 2003), but the sand content is generally 10–20 percent greater in the pebble counts in 2019. This change is likely greater than the uncertainty in the method. Sand was a common subdominant facies in 2003 and 2019. The main change is the deposition of sand in the upstream pool where

V* was measured. This sand was not observed in 2003 and may reflect sand transported since the initiation of the new license flow regime. Because sand is trapped in the pool, it may be reducing sand supply to the lower end of the site, hence the decreased sand content of the pebble counts.

The large sand deposit in the upstream pool could originate due to increased sand supply to the reach or a decreased ability to transport the sand. Given that the flows have increased substantially, it is likely that more sand is being delivered to the reach due to higher flows and the sand is being trapped in the pool.

4.4.1.5 Site IHD-G2 (South Fork Silver Creek below Ice House Dam, Lower Reach)

The hillslopes and riparian zone at this study site have seen significant regrowth of vegetation since 2003. The cross-section surveys showed little change, but the pebble counts showed that the channel bed coarsened from 2003 to 2019, with extensive bedrock and cobbles for the majority of the reach. LWD continues to play little role in channel morphology in the reach. The channel is relatively wide (> 50 feet) and is generally confined by relatively steep hillslopes on one bank and a terrace on the other with little variation in bed elevation (and extensive bedrock at the downstream end of the reach). This morphology is likely to promote log movement and unlikely to trap fluvially transported wood delivered from upstream (Braudrick and Grant, 2001). The fine sediment accumulation observed upstream at Site IHD-G1 was not observed in this reach. The higher peak flows and snowmelt pulses have likely increased the magnitude and duration of sediment transport, causing the bed to coarsen. Some continued grain size adjustment at this site is possible, but the bedrock and coarse materials that make up the majority of the reach make cross-section adjustments unlikely.

4.4.1.6 Site CD-G1 (Silver Creek Below Camino Dam Study Reach)

Changes to the flow regime in the reach downstream of Camino Dam under the new flow regime caused increased baseflows but have not altered peak flows. These hydrologic changes are unlikely to affect sediment transport which typically occurs during high flows. The landslide that occurred between 2014 and 2016 likely increased sediment supply to the reach but caused few morphological changes or changes to the bed between 2003 and 2019, with the exception of a slight coarsening at the downstream cross-section (XS-3). The degree of future sediment supply from the landslide due to erosion of the landslide toe is unknown. Given the steep and confined channel morphology and the lack of alteration to peak flows, geomorphological adjustments to the site are unlikely in the absence of large increased in sediment supply. Given the widespread bedrock, the morphology of the site is unlikely to adjust in response to the new flow regime.

4.4.1.7 Site SCD-G1 (South Fork American River Below Slab Creek Dam Study Reach)

Due to unsafe higher minimum flows, Site SCD-G1 could not be completely resurveyed in 2019. The reach is a very steep and confined rapid with frequent boulders, and

geomorphic change is highly unlikely to occur in response to the new minimum flow regime and the lack of changes to high flows. Given the safety issues associated with the reach and the low likelihood of channel adjustment due to the very coarse and steep nature of the bed, it is recommended that this reach be dropped from the monitoring program since there are little useful data to be gained.

4.5 LITERATURE CITED

Buffington, J.M. and Montgomery, D.R., 1999. A procedure for classifying textural facies in gravel-bed rivers. Water Resources Research, 35(6), pp.1903–1914.

Braudrick, C.A. and Grant, G.E., 2001. Transport and deposition of large woody debris in streams: a flume experiment. Geomorphology, 41(4), pp. 263–283.

Bunte, K. and Abt, S.R., 2001. Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. Gen. Tech. Rep. RMRS-GTR-74. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 428.

Harrelson, C.C., Rawlins, C.L. and Potyondy, J.P., 1994. Stream channel reference sites: an illustrated guide to field technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61.

Hilton, S. and Lisle, T.E., 1993. Measuring the fraction of pool volume filled with fine sediment. Res. Note PSW-RN-414. Albany, CA: Pacific Southwest Research Station, Forest Service, US Department of Agriculture.

Lisle, T.E. and Hilton, S., 1992. The volume of fine sediment in pools: an index of sediment supply in gravel-bed streams 1. JAWRA Journal of the American Water Resources Association, 28(2), pp.371–383.

Pfankuch, D.J., 1975. Stream Reach Inventory and Channel Stability Evaluation. U.S. Department of Agriculture, Forest Service, R1-75-002. Government Printing Office #696-260/200, Washington, D.C., pp. 26.

Rosgen, D.L., 1994. A classification of natural rivers. Catena, 22(3), pp.169–199.

SMUD (Sacramento Municipal Utility District) and PG&E (Pacific Gas and Electric Company). 2005. Sacramento Municipal Utility District Upper American River Project (FERC Project No. 2101) and Pacific Gas and Electric Company Chili Bar Project (FERC Project No. 2155) Channel Morphology Technical Report. Prepared for SMUD and PG&E by Devine Tarbell & Associates, Inc. and Stillwater Sciences. April, Version 2.

SMUD. 2004. Whitewater Boating Feasibility Technical Report. Hydro License Implementation for the SMUD Upper American River Project (FERC Project No. 2101). September.

SMUD. 2016. Gerle Creek Sensitive Site Investigation and Mitigation Monitoring Plan Final Report. Hydro License Implementation for the SMUD Upper American River Project (FERC Project No. 2101). September 2016.

SMUD. 2017. Geomorphology Monitoring Plan: Continuing Evaluation of Representative Channel Areas. Hydro License Implementation for the SMUD Upper American River Project (FERC Project No. 2101).

Wolman, M.G., 1954. A method of sampling coarse river-bed material. EOS, Transactions American Geophysical Union, 35(6), pp. 951–956.

5.0 RIPARIAN

5.1 MONITORING PLAN OBJECTIVES

The primary goals of this report are summarized in the Riparian Vegetation Monitoring Plan (Riparian Study Plan; SMUD 2016). Riparian vegetation monitoring site locations are shown in Figures 1-1 to 1-3 and representative photos of each site are included in Appendix E1.

5.2 METHODS

All plant species observed in the field were identified following the taxonomy of the *Jepson eFlora* (Jepson Flora Project 2019).

5.2.1 Vegetation Mapping

A preliminary map of vegetation communities was prepared for the 10 riparian vegetation monitoring sites in GIS using National Agriculture Imagery Program (NAIP) aerial imagery and ESRI World Imagery (1-ft resolution collected in July 2016, and 1.5-ft resolution collected in August 2018, respectively). The preliminary maps were verified during field surveys and subsequently revised in GIS. Vegetation types were categorized in accordance with the online *Manual of California Vegetation* (CNPS 2019a); a crosswalk with CalVeg types (USFS 2019) used in the 2004 riparian vegetation study (SMUD and PG&E 2004) was also conducted. The extent of mapping captured the three permanent transects at each site (including the transition to adjacent upland habitat) and a small area of vegetation just beyond the upstream- and downstream-most transects.

5.2.2 Transect and Greenline Surveys

Field methods were consistent with the Riparian Study Plan, except for the variances specified in Section 5.2.4. At each study site, data were collected at three transects which were selected to reoccupy the 2004 riparian vegetation study transects (SMUD and PG&E 2004). Each transect was perpendicular to the river and extended through the riparian corridor to the boundary with upland vegetation. Line-point intercept and point-centered quarter data were collected along these transects:

- Line-point intercept survey data were collected to assess riparian vegetation composition, canopy complexity, and the extent of riparian vegetation.
- Point-centered quarter data were collected to quantify riparian tree and shrub composition, successional stage, overall health, and density.

• Greenline location and composition were collected along the channel margin within each site to assess stability class.

5.2.3 Data Analysis

Data analysis methods conformed to the Riparian Study Plan, except for variances specified in Section 5.2.4. In addition, comparisons between 2004 and 2019 data required analysis of comparable datasets from both years. To compare changes in the ratio of dominant upland species to dominant wetland species, species from both years were categorized as wetland species when defined as hydrophytic (i.e., listed as facultative, facultative wetland, or obligate wetland plants [Lichvar 2016]). Dominant species from 2019 line-point intercept data were defined as all species that, either individually or together, accounted for over 50% of the total vegetative cover, plus any additional species that had at least 20% cover. Dominant species from the 2004 line-point intercept were taken from those listed as dominant in the 2004 riparian vegetation study (SMUD and PG&E 2004). To compare greenline stability classes between years, the 2004 data was assigned a stability class (Winward 2000) using the same methods used for the 2019 data.

5.2.4 Variances and Problems Encountered

Variances from the Riparian Study Plan and problems encountered during 2019 are itemized below:

- Vegetation mapping methodologies were consistent with the Riparian Study Plan, except where the specified minimum mapping unit of 0.25 acres was insufficient to capture fine scale changes in riparian vegetation along the channel margin, in which case smaller map units were used.
- Variances in transect data collection were made as necessary to improve data quality and ensure consistency would be achievable in future monitoring years. At sites where the 2004 riparian vegetation study had less than three transect locations (i.e., Sites GCD-RV1 and CD-RV4), additional transects were established in coordination with SMUD and Resource Agencies including CDFW, Bureau of Land Management (BLM), USFW, and SWRCB. At Sites LLD-RV10 and LLD-RV17, riparian vegetation communities extended well beyond the riparian corridor associated more closely with the stream channel. Therefore, transects at these sites were established to reoccupy the more limited extent of the 2004 riparian vegetation study and did not extend all the way to the boundary with upland vegetation. At Site SCD-RV1, Transect 2 was extended from the 2004 riparian vegetation study extent (right bank only) to cross the channel and capture both right and left banks.
- Variances from the point-centered quarter field methodologies specified in the Riparian Study Plan included the following:
 - Given that riparian vegetation corridors were often narrow, the riparian vegetation corridor was divided equally to accommodate seven point-

centered quarters, rather than spacing point-centered quarters according to woody stem density.

- A quarter was recorded as vacant if no tree or shrub was present within 10 meters of the transect.
- When upland species were observed within the riparian corridor, data were recorded on the upland species; however, at transect endpoints when quarters contained no riparian trees or shrubs before transitioning to the adjacent upland community located outside the transect extent, no data were taken on the adjacent upland community.
- Stem number and diameter at breast height (DBH) of each stem were recorded for both shrubs and trees.
- The point-center quarter methodology followed the final version of the National Riparian Core Protocol (USFS 2017) rather than the draft version (USFS 2014) that was referenced in the Riparian Study Plan.
- Variances from the point-centered quarter analytical methodologies specified in the Riparian Study Plan included the following:
 - In addition to the analysis of tree and shrub species, DBH, age, and vigor per USFS 2017, analysis of riparian tree and shrub density, cover, and frequency was performed using the methods outlined by Mitchell (2015) to utilize all data collected.
 - At transect endpoints with no riparian trees or shrubs, the adjacent upland community is included in the analysis of species composition (i.e., recorded as "upland") but not within the analysis of vegetative cover.
- Variances from the greenline field methodologies specified in the Riparian Study Plan included the following:
 - It was not always feasible to walk the greenline due to dense woody vegetation, swift flows, and/or deep water; therefore, the method of measuring one's pace and counting paces to determine greenline composition was modified. The greenline was sampled in segments by viewing from in the channel, on the bank, or a point that allowed sufficient viewing of the greenline. The percent composition of the greenline in each segment was recorded and segment endpoints were recorded on field maps. These annotations were then digitized in GIS and their lengths were calculated. Percent composition within the segment was translated into feet of each greenline element within each segment, then summed for the site and translated to percent composition of each greenline element for the site. This method was more feasible, accurate, and safer to apply in swift or deep water and in dense vegetation where it was not feasible to walk the greenline. Regardless, the minimum of 363 feet of greenline sampling was completed at all sites.
 - Where a segment had portions with no greenline (e.g., a lineal grouping of perennial vegetation was not present on the first or second terrace [or no terraces present] and not present within 20 feet of the edge of the stream,

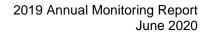
per Cowley et al. 2006), the greenline survey extent line was still indicated on the fieldmap and that distance was recorded as having no greenline.

 No significant problems were encountered such that data collection was not feasible. At a few transect endpoints, it was not possible to install rebar stake (e.g., transect endpoint located on bedrock); however, the locations were recorded with a sub-meter accuracy GPS unit and photographed to allow for accurate future relocation.

5.3 RESULTS

5.3.1 Vegetation Mapping

A total of 19 vegetation alliances were documented within the study area; dominant riparian vegetation types included lodgepole pine forest, mountain alder thickets, and torrent sedge patches. Appendix E2, Figures E2-1 through E2-10 show the mapped riparian vegetation alliances and Table 5-1 quantifies acreages of the vegetation alliances at each of the 10 monitoring sites.



Т	able 5-1.	Vegetation	Alliances Documente	d at Riparian Vege	tation N	<i>I</i> lonitoring		
S	Sites within the UARP in 2019.							

Site	Community Type	Manual of California Vegetation Type	CalVeg Type	Acres	Sensitive Natural Community ¹ ?
		Lodgepole pine forest	Lodgepole pine	0.85	No
	Riparian	Mountain alder thicket	Mountain alder	1.55	Yes (S3)
	Tupanan	Torrent sedge patches	Wet grasses and forbs	4.11	Yes (S3)
LLD-RV17		Huckleberry oak chaparral	Huckleberry oak	0.33	No
	Upland/other	Open w	vater	0.92	n/a
		White fir forest	White fir	2.25	No
	LLD-RV17 Tota	al		10.01	
		Lodgepole pine forest	Lodgepole pine	7.39	No
	Riparian	Mountain alder thicket	Mountain alder	0.57	Yes (S3)
		Red osier thickets	Dogwood	0.29	Yes (S3?)
LLD-RV10	Linlow d/oth or	Open water			n/a
	Upland/other	White fir forest	White fir	0.40	No
		9.12			
	Riparian	Lodgepole pine forest	Lodgepole pine	0.19	No
		Mountain alder thicket	Mountain alder	0.89	Yes (S3)
LLD-RV3	Upland/other	Incense cedar forest	Incense-cedar	2.21	Yes (S3.2)
LLD-RV3		Jeffrey pine forest	Jeffrey pine	0.21	No
		Open w	0.63	n/a	
		LLD-RV3 Total	4.14		
	Dinarian	Lodgepole pine forest	Lodgepole pine	0.12	No
	Riparian	Mountain alder thicket	Mountain alder	0.12	Yes (S3)
		Douglas fir forest	Pacific Douglas-fir	1.16	No
GCD-RV1	Upland/other	Incense cedar forest	Incense-cedar	1.34	Yes (S3.2)
	Opiand/other	Open w	vater	1.11	n/a
		White fir forest	White fir	1.27	No
		GCD-RV1 Total		5.11	
	Riparian	Lodgepole pine forest	Lodgepole pine	2.03	No
		Mountain alder thicket	Mountain alder	1.16	Yes (S3)
IHD-RV5	Upland/other	Open w	vater	0.54	n/a
	Upland/other	White fir forest	White fir	2.03	No
		IHD-RV5 Total		5.76	

Site	Community Type	Manual of California Vegetation Type CalVeg Type		Acres	Sensitive Natural Community ¹ ?
IHD-RV1	Riparian	Arroyo willow thickets	Willow	0.14	No
		Mountain alder thicket	Mountain alder	0.22	Yes (S3)
		Red osier thickets	Dogwood	0.09	Yes (S3?)
	Upland/other	Green leaf manzanita chaparral	Greenleaf manzanita	1.75	No
		Mountain whitethorn chaparral Mountain whitethorn		0.48	No
		Open w	0.83	n/a	
		Ponderosa pine forest Ponderosa pine			No
	IHD-RV1 Total				
	Riparian	Himalayan blackberry - rattlebox - edible fig riparian scrub	Non- native/ornamental shrub	0.03	No
		White alder groves	White alder	0.24	No
CD-RV4	Upland/other	Bedrock/boulder			No
00 1004		Canyon live oak forest Canyon live of		0.53	No
		Gravel bar			n/a
		Open w	0.73	n/a	
	CD-RV4 Total				
		Arroyo willow thickets	Willow	0.24	No
	Riparian	Himalayan blackberry - rattlebox - edible fig riparian scrub	Non- native/ornamental shrub	0.20	No
SCD-RV5		Bedrock/boulder			No
	Upland/other	Canyon live oak forest	Canyon live oak	0.53	No
		Open water		0.65	n/a
		Poison oak scrub not treated		0.06	No
	SCD-RV5 Total				
SCD-RV3	Riparian	Arroyo willow thickets	Willow	0.56	No
		Sandbar willow thickets	Willow	0.15	No
		White alder groves White alder		0.02	No
	Upland/other	Bedrock/boulder		0.33	n/a
		Canyon live oak forest Canyon live oak		1.31	No
		Open water			n/a
	SCD-RV3 Total				

Site	Community Type	Manual of California Vegetation Type CalVeg Type		Acres	Sensitive Natural Community ¹ ?
SCD-RV1	Riparian	Arroyo willow thickets Willow		0.96	No
		Red willow thickets Willow		0.40	Yes (S3)
		Torrent sedge patches Wet grasses and forbs		0.24	Yes (S3)
		White alder groves White alder		0.75	No
	Upland/other	Bedrock/boulder		0.31	n/a
		Canyon live oak forest Canyon live oak		3.78	No
		Gravel bar		1.43	n/a
		Open water		2.28	n/a
	SCD-RV1 Total				

Sensitive natural communities were defined as those natural community types with a state ranking of S1 (critically imperiled), S2 (imperiled), or S3 (vulnerable) as listed in the most recent *California Sensitive Natural Communities List.* A ranking of S3.2 indicates vulnerable and threatened, while a ranking of S3? indicates vulnerable but with an inexact numeric rank due to insufficient samples over the full expected range of the type (CDFW 2018); n/a is not applicable.

5.3.2 Transect and Greenline Surveys

Results of the riparian vegetation composition and greenline surveys are presented below. Average transect lengths within a site ranged from just 96-ft (Site CD-RV4) to 281-ft (Site IHD-RV1) (Figure 5-1). In addition to the results detailed below, one special-status plant species was documented: Sierra bayberry (*Myrica hartwegii*), which has a California Rare Plant Rank of 4.3 (i.e., watch list, not very threatened in California [CNPS 2019b]) but is not listed on the ENF sensitive plant list (USFS 2016), was observed at Sites IHD-RV1 and IHD-RV5. Approximately 150 individuals were found at the low flow water's edge or slightly higher in silty sand among boulders in moderate shade; plant associates included white alder (*Alnus rhombifolia*), Oregon ash (*Fraxinus latifolia*), torrent sedge (*Carex nudata*), and Himalayan blackberry (*Rubus armeniacus*).

5.3.2.1 Line-point Intercept

A total of 138 plant species were recorded during line-point intercept surveys, 20 of which were non-native plant species. Species diversity documented at each site ranged from eight species at Site SCD-RV5 to 38 species at Site IHD-RV5 (Figure 5-2). Of the total species documented, 59 species are considered to be hydrophytic: 27 species (20%) are facultative, 22 species (16%) are facultative wetland, and 10 species (7%) are obligate wetland species (Lichvar 2016). The most commonly observed species across all sites were mountain alder (*Alnus incana* subsp. *tenuifolia*) and torrent sedge. Nativity, wetland indicator status, and percent cover of each species (relative canopy cover) are presented in Appendix E3, Table E3-1; percent cover of vegetated canopy (absolute vegetative cover) is presented by site in Appendix E3, Table E3-2.

Figure 5-1. Average riparian vegetation study transect length (in feet) by site within the UARP in 2019.

Figure 5-2. Plant species diversity documented by site within the UARP in 2019.

Of the ten sites surveyed, Site SCD-RV5 had the lowest absolute cover of vegetation documented across all canopy classes; vegetation canopy cover was minimal in the understory (i.e., 24% cover of vegetation under one meter tall) and the mid-story (i.e., 10% cover of vegetation one to five meters tall), and the overstory canopy was absent (i.e., no vegetation over five meters tall). Site IHD-RV5 had the highest vegetative cover in both the understory (i.e., 87% cover) and mid-story canopy (i.e., 63% cover, tied with Site LLD-RV10), with relatively high cover in the overstory canopy (i.e., 29% cover). Figure 5-3 shows the percent cover by canopy height class, as observed along line-point intercept transects.

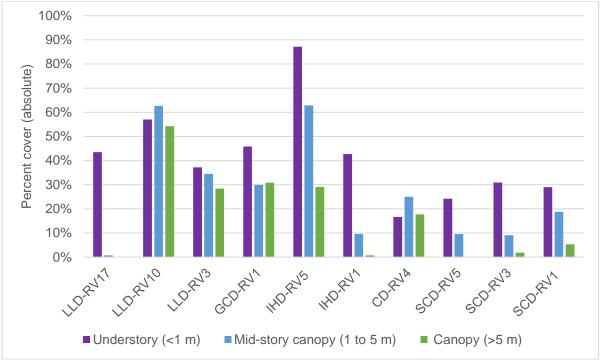


Figure 5-3. Vegetative cover (absolute) in each canopy class documented during line-point intercept surveys within the UARP in 2019.

Natural recruitment of woody vegetation was observed at all sites, except Site SCD-RV5. Seedlings and saplings of white fir (*Abies concolor*), mountain alder, and narrowleaf willow (*Salix exigua*) were the most commonly observed recruits. Recruitment of upland species (e.g. Douglas-fir [*Pseudotsuga menziesii*], incense cedar [*Calocedrus decurrens*], and white fir) was observed at Sites IHD-RV1, IHD-RV5, and GCD-RV1.

Non-native plant species were documented at all sites except Sites CD-RV4 and GCD-RV4. Himalayan blackberry was the most commonly observed non-native species. Although it was only detected via line-point intercept surveys at Sites SCD-RV1, SCD-RV3, and SCD-RV5, additional incidental observations of this species were made throughout the UARP. Site SCD-RV5 had the highest relative cover of Himalayan blackberry (i.e., 55%). Site SCD-RV1 had the most non-native species: Scotch broom

(*Cytisus scoparius*), white sweetclover (*Melilotus albus*), and Himalayan blackberry. Both Sites IHD-RV1 and IHD-RV5 had the lowest cover (i.e., 1%) of non-native species, sheep sorrel (*Rumex acetosella*) was documented at Site IHD-RV1 and Klamath weed (*Hypericum perforatum* subsp. *perforatum*) was documented at Site IHD-RV5.

5.3.2.2 Point-centered Quarter

Point-centered quarter results of tree and shrub composition, successional stage, and overall vegetative health are presented by site in Appendix E4, Table E4-1; Figure 5-4 depicts vegetation composition and relative cover of each plant species by site. Overall, the composition of riparian tree and shrub species shifted from predominantly mountain alder in the upper reaches of the UARP to predominantly willows (Salix exigua, S. laevigata, and S. lasiolepis) in the lower reaches (Figure 5-4). American dogwood (Cornus sericea), Jepson's willow (Salix jepsonii), and conifers including lodgepole pine (Pinus contorta), ponderosa pine (Pinus ponderosa), and white fir were also often observed at sites in the upper reaches below Loon Lake, Gerle Creek, and Ice House Dams. Where conifers were present (i.e., at Sites LLD-RV17, LLD-RV10, IHD-RV5, and IHD-RV1) they often provided the majority of the cover. Similarly, in the lower reaches, white alder was observed at most sites, and although less frequent than other species, it often provided a large proportion of the cover (e.g., absolute cover of 13.11ft²/ac for 99% relative cover at Site CD-RV4). Upland plant species (e.g., ponderosa pine, greenleaf manzanita [Arctostaphylos patula]) and upland habitats were observed within the riparian corridor at six sites (i.e., Sites LLD-RV3, GCD-RV1, IHD-RV1, CD-RV4, SCD-RV5, and SCD-RV1).

Disparities between plant species composition and cover can be attributed, at least in part, to the difference in DBH between shrubs and trees. While shrubs like mountain alder and willows occurred frequently and often had multiple stems, each stem's DBH rarely exceeded 1 inch. Trees, however, while typically only having one stem, had average DBH values reaching 13.0 in. (e.g., Jeffrey pine [*Pinus jeffreyi*] at IHD-RV5).

The average density (i.e., number of individuals per acre) of trees and shrubs ranged from ten individuals per acre at Site SCD-RV5 to 1,226 individuals per acre at Site LLD-RV10. In general, the sites in the reaches below Slab Creek and Camino dams had much lower tree and shrub density than sites higher in the watershed.

Sites lower in the watershed, particularly the sites below Slab Creek Dam, averaged higher vigor than the higher elevation reaches, except for Site LLD-RV17 which also averaged very high vigor across all species (e.g., <10% of canopy had reduced vigor). None of the species observed at any site displayed significant amounts of leaf death, branch dieback, or other indicators of poor health. The average proportion of canopy with signs of reduced vigor rarely exceeded 20% across all sites and species.

Finally, no overall pattern of average age class was documented either by site or by species. In general, shrub species averaged a mature age class (i.e., >4 years old)

while trees averaged a young age class (i.e., 4–10 years old); however, individuals in all age classes were observed at all sites.

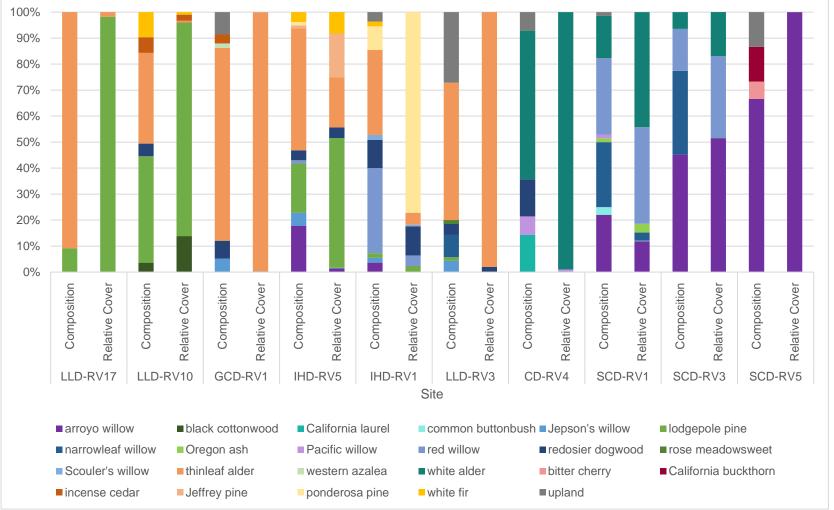


Figure 5-4. Percent composition and relative cover of species detected using the point-center quarter method, within the UARP in 2019.

5.3.2.3 Greenline

Greenline results are presented in Appendix E2, Figures E2-1 through E2-10; Table 5-2; and Appendix E5, Table E5-1. In addition to numerous perennial vegetation types, the greenline also included wood, boulders, and bedrock at some sites. Overall site stability ranged from 6.5 at Site SCD-RV1 to 9.7 at Site SCD-RV5 (Table 5-2); a crosswalk of vegetation alliances, their closest related Winward (2000) cover type, and the successional status and stability class is provided in Appendix E5, Table E5-2.

Site	Stability Class ¹
LLD-RV17	8.9
LLD-RV10	7.3
LLD-RV3	7.6
GCD-RV1	9.4
IHD-RV5	7.7
IHD-RV1	7.6
CD-RV4	8.1
SCD-RV5	9.7
SCD-RV3	8.0
SCD-RV1	6.5

Table 5-2. Average Bank Stability Class Based on Greenline Composition at Each Site within the UARP in 2019 (Per Winward 2000).

¹ Stability classes range from 1 to 10, with 1–2 indicating very low stability and 9-10 indicating excellent stability.

5.4 DISCUSSION

5.4.1 Vegetation Mapping

There was high variability in vegetation composition and complexity across sites in 2019. Comparisons to 2004 riparian vegetation study (SMUD and PG&E 2004) results are largely qualitative, as quantitative comparisons of this parameter are confounded by nuanced differences in mapped acreages, site boundaries, data availability and precision, and vegetation classification systems between 2004 and 2019. However, field observations indicated some sites have changed significantly since the 2004 riparian vegetation study.

Site LLD-RV17 experienced a dramatic change in both vegetation composition and channel alignment, likely due to beaver dam flooding that caused tree and shrub mortality and initiated geomorphic change (E. Koenigs, SMUD, pers. comm., July 2019). In addition, Site LLD-RV17 Transect 1 appeared perpendicular to the channel in 2004, but was positioned oblique to the channel – at a 25-degree angle – in 2019.

Sites CD-RV4, SCD-RV1, SCD-RV3, and SCD-RV5 appeared to have been affected by high flows. Evidence of significant scour and damage to riparian vegetation on gravel bars was observed at these sites; however, many of the damaged willow branches remained in place and had evidence of resprout at the base of branches. Large white alders appeared to have also been affected but had less evidence of resprout occurring.

5.4.2 Transect and Greenline Surveys

A comparison of 2004 and 2019 data showed no established trend in the percentage of wetland and upland species observed (Figure 5-5). Sites with a high percentage of dominant upland species detected during transect surveys in 2004 generally retained a high incidence of dominant upland species in 2019 (i.e., Sites GCD-RV1, IHD-RV5, and IHD-RV1). The biggest change between years was observed at Site IHD-RV1, where dominant upland species increased by 38% (i.e., upland plant species increased from 40% to 78% of the total dominant plant species). This change is likely attributed to the colonization of the large floodplain by upland plants, which was mapped as unconsolidated shore in 2004 (i.e., ponderosa pine, greenleaf manzanita, and mountain whitethorn [*Ceanothus cordulatus*] colonized the unconsolidated shore).

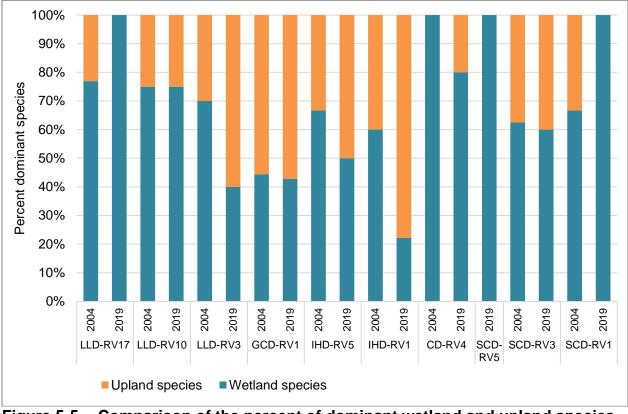
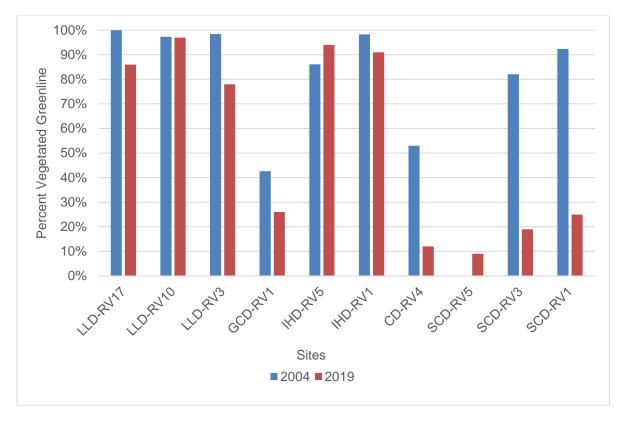


Figure 5-5. Comparison of the percent of dominant wetland and upland species observed at sites within the UARP in 2004 and 2019 (Site SCD-RV5 was not monitored in 2004).



Recruitment of woody riparian species was observed at all sites except Site SCD-RV5. At this site, substrate composed of bedrock and boulder, and high flows from dam releases immediately upstream likely inhibit the establishment and survival of recruited riparian species. In addition, this site was temporarily dewatered in 2018 to facilitate construction of the South Fork Powerhouse and during this timeframe substrate at the site was engineered to create the low-flow channel associated with the South Fork Powerhouse Project Habitat Improvement Plan (SMUD 2018); as such, recruitment may be documented in the future.

Conifer encroachment into the riparian zone was observed at the same three sites that showed the highest percent of dominant upland species in both 2004 and 2019 (Sites GCD-RV1, IHD-RV5, and IHD-RV1). Although narrow riparian corridors and presence of upland species was documented in 2004, results from 2019 surveys show an increase in encroachment of conifers and upland species into the riparian zone (Figure 5-5). At one transect within Site IHD-RV5 (i.e., Transect 3), a lodgepole pine was documented within the active channel. Additional conifer encroachment (i.e., ponderosa pine) was observed on both banks at Site GCD-RV1, with more severe encroachment documented on the right bank: ponderosa pine, white fir, incense cedar, and lodgepole pine were all documented along the right bank channel margin. Finally, Site LLD-RV3 had both conifer encroachment as well as encroachment of another upland species, greenleaf manzanita, along the channel banks. The observed changes in species dominance and composition may be a function of a variety of factors (e.g., changes in transect extent since 2004, variances between years in methods used to determine dominance, or other data collection methods) rather than real changes in the riparian vegetation community or a narrowing of the riparian corridor since 2004. Consistency in the use of the 2019 methods and precise site boundaries will facilitate more detailed comparisons in the future and help determine if changes may be attributed to infrequent scour events higher in the watershed, changes to flow, or other mechanisms (e.g., fire frequency, fire recovery, climate change).

A comparison of percent vegetated greenline in 2004 and 2019 generally shows a decrease in vegetation stabilizing banks at most sites (Figure 5-6). This trend is most pronounced at sites lower in the watershed that are largely composed of bedrock and boulder, which also showed evidence of scour from high flow events (i.e., Sites CD-RV4, SCD-RV3 and SCD-RV1). Site LLD-RV17, the beaver affected reach, maintained a high percent of vegetated greenline, but with changes to vegetation composition; in 2004, approximately half of the greenline was composed of mature shrubs and trees while in 2019, the greenline was entirely herbaceous, composed of sedges (*Carex* spp.) and rushes (*Juncus* spp.).

Figure 5-6. Comparison of percent vegetated greenline at sites within the UARP in 2004 and 2019 (Site SCD-RV5 was not monitored in 2004).

Despite a reduction in the percent vegetated greenline observed at many sites, the average greenline stability class did not change significantly between 2004 and 2019 (Figure 5-7). Nearly all sites' average stability class was within one unit of that measured in 2004. Relative comparison of a site's bank stability indicates areas that may be more or less susceptible to damage from higher flow events. A low bank stability score could indicate that vegetation has not yet become established. The site with the highest stability class was Site SCD-RV5, largely due to the portion of the greenline composed of bedrock and boulder (i.e., 91% combined). The greenline at Sites CD-RV4, SCD-RV3 and GCD-RV1 also was predominately composed of bedrock or boulder (i.e., 70% or greater). Site CD-RV4 had the greatest change between years, with an average stability class increase of 1.2. This increase in stability documented at Site CD-RV4 is likely due to scour from high flows removing vegetation and exposing bedrock, which has the maximum stability ranking of 10. Of the sites where banks were stabilized by riparian vegetation (i.e., Sites IHD-RV1, IHD-RV5, LLD-RV10 and LLD-RV17), over 85% of the greenline was vegetated. At Site LLD-RV17, a site with one of the higher overall stability classes, the greenline was vegetated by herbaceous plants: torrent sedge, southern beaked sedge (Carex utriculata), and iris-leaved rush (Juncus *xiphioides*). Because bank materials are generally made up of boulders and bedrock,

little change in stability due to either a change in bank materials or vegetation is expected over time.

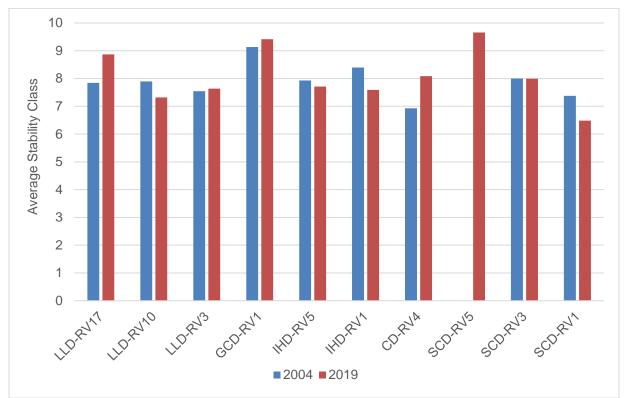


Figure 5-7. Comparison of average stability class of greenline at sites within the UARP in 2004 and 2019 (Site SCD-RV5 was not monitored in 2004).

5.5 LITERATURE CITED

CNPS (California Native Plant Society). 2019a. A Manual of California Vegetation, Online Edition. http://www.cnps.org/cnps/vegetation/; accessed on 18 October 2019. California Native Plant Society, Sacramento, CA.

CNPS. 2019b. CNPS Rare Plant Ranks. <u>https://www.cnps.org/rare-plants/cnps-rare-plant-ranks</u>; accessed on 18 October 2019. California Native Plant Society, Sacramento, CA.

Cowley, E. R., T. A. Burton, and S. J. Smith. 2006. Monitoring Streambanks and Riparian Vegetation – Multiple Indicators. U.S. Department of the Interior, Bureau of Land Management. Boise, ID.

CDFW (California Department of Fish and Wildlife). 2018. List of California Sensitive Natural Communities. Vegetation Classification and Mapping Program, California

Department of Fish and Game, Sacramento, California. 22 October 2019. https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=153609&inline.

ESRI. "World Imagery" [basemap]. Various Scales. "High Resolution Imagery". August 26, 2018. <u>https://services.arcgisonline.com/arcgis/rest/services/</u> World_Imagery/MapServer. (October 2019).

Jepson Flora Project. 2019. Jepson eFlora. Website. http://ucjeps.berkeley.edu/eflora [Accessed October 2019].

Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The national wetland plant list: 2016 wetland ratings. Phytoneuron 2016-30: 1–17.

Mitchell, K. 2015. Quantitative Analysis by the Point-Center Quarter Method. Hobart and William Smith Colleges, Geneva, NY.

SMUD (Sacramento Municipal Utility District) and PG&E (Pacific Gas and Electric Company). 2004. Sacramento Municipal Utility District Upper American River Project (FERC Project No. 2101) and Pacific Gas and Electric Company Chili Bar Project (FERC Project No. 2155) Riparian Vegetation and Wetlands Technical Report. Prepared for SMUD and PG&E by Devine Tarbell & Associates, Inc. October, Version 2.

SMUD. 2016. Riparian Vegetation Monitoring Plan. Hydro License Implementation for the SMUD Upper American River Project (FERC Project No. 2101).

SMUD 2018. South Fork American River Habitat Improvement Plan (Version 2). Upper American River Project FERC Project No. 2101. June 2018. 43 p.

USFS (U.S. Department of Agriculture, Forest Service). 2014. National Riparian Vegetation Monitoring Core Protocol: Coterminous U.S. 2014 Draft prepared by the National Riparian Technical Team. 45 pp.

USFS. 2016. Eldorado Sensitive Plant List. Prepared February 19, 2016.

USFS. 2017. The National Riparian Core Protocol: A riparian vegetation monitoring protocol for wadeable streams of the conterminous United States. Gen. Tech. Rep. RMRS-GTR-367. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 37 pp.

USFS. 2019. Classification and Assessment with Landsat of Visible Ecological Groupings. U.S. Department of Agriculture, Forest Service, Region 5. 22 October 2019. https://www.fs.fed.us/r5/rsl/projects/classification/system.shtml

Winward, A.H. 2000. Monitoring the vegetation resources in riparian areas. General Technical Report RMRSGTR-47. Ogden, Utah: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 49 pp.

6.0 BALD EAGLE

6.1 MONITORING PLAN OBJECTIVES

The primary objectives of the bald eagle monitoring program are to monitor bald eagle nesting activity in the study area (see Section 1.0) and ensure that bald eagle nest sites are not adversely affected by activities related to the UARP. The results of the monitoring are intended to inform future bald eagle management in the UARP area (SMUD 2015).

6.2 METHODS

Bald eagle surveys were conducted during the 2019 breeding season at Union Valley Reservoir, Loon Lake Reservoir, and Ice House Reservoir. Surveys for new nests and at known nest sites were conducted in accordance with protocols described in the *Protocol for Evaluating Bald Eagle Habitat and Populations in California* (Jackman and Jenkins 2004) and *Bald Eagle Breeding Survey Instructions* (CDFG 2010). Where possible (i.e., weather-related conditions permitting), surveys were conducted at each reservoir during the following time periods: late February through March (early breeding season), late April through May (mid-breeding season), and early June to early July (late breeding season). If weather conditions precluded surveying during the early breeding season, an additional survey was performed during the mid- or late breeding season so that three surveys in total were performed at each reservoir.

Surveys typically began at dawn and concluded in the late afternoon. Nest sites documented during the previous year of surveys were revisited (SMUD 2018) and other areas with suitable habitat surrounding each reservoir, including historical nest sites documented during relicensing surveys (SMUD 2004), were evaluated for signs of bald eagle nesting activity. Observations were made using binoculars and/or a spotting scope from a boat and land-based vantage points accessed by vehicle and/or foot (Figure 6-1). Detailed notes on the location, age class, activity, movement, and behavior of bald eagles were taken and incidental observations of other avian species and recreational activities on the day of the survey were recorded (Appendices F1 and F2). Bald eagle perches and nests located during the surveys were mapped using a handheld Global Positioning System (GPS) unit. Using the California Bald Eagle Nesting Territory Form (CDFG 2010), a detailed summary of all bald eagle observations at each reservoir was submitted to CDFW at the end of the breeding season (Appendix F2).

SMUD UARP BALD EAGLE SURVEYS

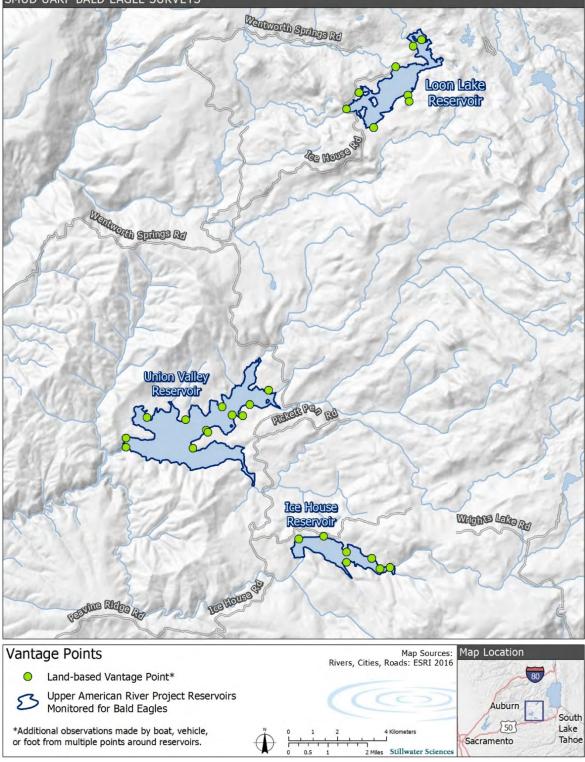


Figure 6-1. Land-based vantage points used for monitoring in the Upper American River Project bald eagle study area.

6.3 RESULTS

6.3.1 Union Valley Reservoir

Surveys for bald eagles during the 2019 breeding season were conducted at Union Valley Reservoir on 24 March, 13 May, and 10 June; additional reproductive status checks, beyond the required protocol, were performed on 14 May, 11 June, and 12 June. Table 6-1 summarizes bald eagle observations made during the surveys and status checks.

Surveys at Onion valley Reservoir.					
Date (Time)	Number of Eagles	Age Class	Notes		
03/24/19 (10:15)	1	Adult	Adult observed in foraging perch on southeast side of Union Valley Dam.		
03/24/19 (11:45)	1	Adult	Adult departing foraging perch on southeast side of Union Valley Dam, flying west toward Fashoda Sunset Peninsula.		
03/24/19 (13:30)	1	Adult	Adult (female) observed in nest, actively lining nest with fresh greenery.		
03/24/19 (15:00)	1	Adult	Adult (male) heard vocalizing, then seen in previously documented roost south of nest tree.		
05/06/19	1	Adult	Observation by SMUD staff of an adult perched in nest tree above the nest approximately one week prior to mid- breeding season survey.		
05/13/19 (11:25)	1	Adult	Adult flying in from north and landing in previously documented foraging perch along shore, approximately 500 ft from nest tree.		
05/13/19 (11:30)	1	Adult	Adult departing foraging perch, flying over nest, and continuing southwest towards Jones Fork.		

Table 6-1.Bald Eagle Observations During the 2019 Breeding SeasonSurveys at Union Valley Reservoir.

Results of the survey conducted in the early breeding season of 2019 at Union Valley Reservoir indicated occupancy and initiation of reproductive activity. The nest located in Sunset Campground (Figure 6-2) that was utilized successfully in 2016 and 2017 and partially rebuilt in 2018 during a failed reproductive attempt had deteriorated substantially, but rebuilding activity was documented and an adult bald eagle was observed in incubation position in the nest during the early breeding season survey (Table 6-1). Subsequent surveys, however, indicated that the reproductive attempt was not successful. The nest structure was intact during the mid-breeding season survey, but bald eagle presence in the area was limited to an adult male observed in a nearby perch (Figure 6-3, Table 6-1) and there was no activity observed in the nest. Despite extended observation during the late breeding season survey and additional follow-up reproductive status checks described above,

no additional bald eagle activity or evidence of nesting was observed at Sunset Campground or elsewhere on Union Valley Reservoir in 2019. Surveyors visited the historical nest site (2015) and the USFS nest platform on Granlees Point (Figure 6-4) during each of the 2019 breeding season surveys and, although there was continued evidence of bald eagle roosting in the vicinity, there was no indication of nesting at either of these locations (Figure 6-2). Additional detail regarding surveys and reproductive status checks conducted in 2019 at Union Valley Reservoir is provided in Appendix F2.

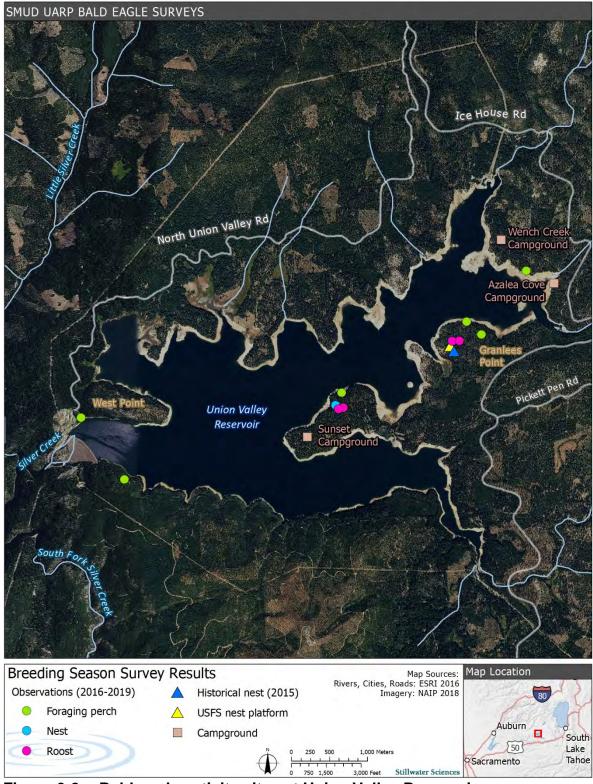


Figure 6-2. Bald eagle activity sites at Union Valley Reservoir.

Figure 6-3. Adult bald eagle in foraging perch in Sunset Campground during the mid-breeding season survey in 2019.

Figure 6-4. Unoccupied bald eagle nesting platform on Granlees Point at Union Valley Reservoir (May 2019).

6.3.2 Loon Lake Reservoir

Surveys for bald eagles during the 2019 breeding season were conducted at Loon Lake Reservoir on the following dates: 14 May, 12 June, and 09 July. Although bald eagles were observed during the early and late breeding season surveys, no evidence of a reproductive attempt was observed at Loon Lake Reservoir in 2019. The nest located on the south side of the reservoir (Figure 6-5) that was utilized successfully in 2018 was deteriorated and no evidence of rebuilding activity was observed. Table 6-2 summarizes bald eagle observations made during surveys at Loon Lake Reservoir in 2019; additional detail regarding surveys is provided in Appendix F2.

Table 6-2.	Bald Eag	le Observat	tions During	the 2019	Breeding Season
Surveys at	Loon Lake	Reservoir.	ı		

Date (Time)	Number of Eagles	Age	Notes
05/14/19 (09:10)	1	Adult	Adult flying east to west toward dam.
05/14/19 (10:15)	1	Adult	Adult perched in snag on northwest side of reservoir.
07/09/19 (11:30)	1	Adult	Adult flying west to east in southern section of Pleasant Lake.
		Adult	Adult flying south to north toward northern section of Pleasant Lake.

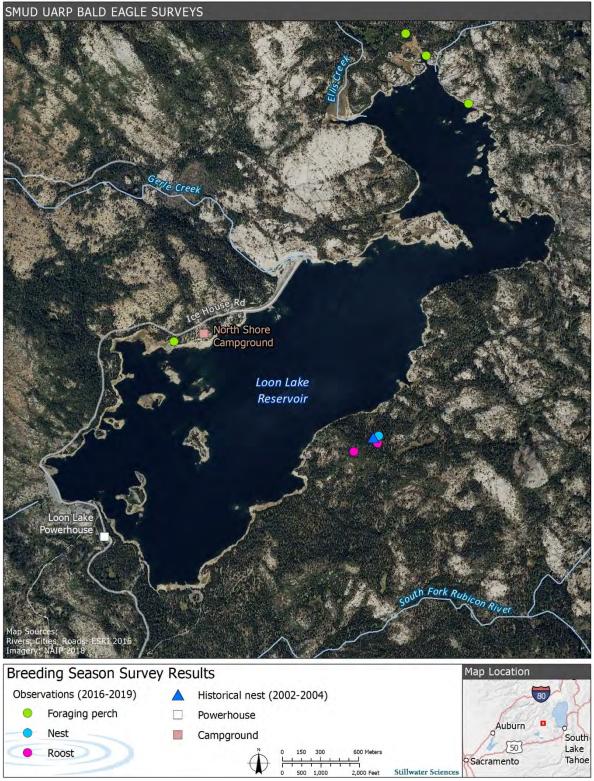


Figure 6-5. Bald eagle activity sites at Loon Lake Reservoir.

6.3.3 Ice House Reservoir

Surveys for bald eagles during the 2019 breeding season were conducted at Ice House Reservoir on the following dates: 25 March, 14 May, and 11 June; additional reproductive status checks, beyond the required protocol, were performed on 13 May, 12 June, and 09 July. Bald eagles were observed numerous times on the southeast side of the reservoir (Figures 6-6 through 6-8); however, despite extended observation and a thorough canvass of the area, no evidence of a reproductive attempt was observed at Ice House Reservoir in 2019. Table 6-3 summarizes bald eagle observations made during the surveys; additional detail regarding surveys is provided in Appendix F2.

Figure 6-6. Adult bald eagle on foraging perch along Ice House Reservoir (May 2019).

Figure 6-7. Adult bald eagle on foraging perch along Ice House Reservoir (July 2019).

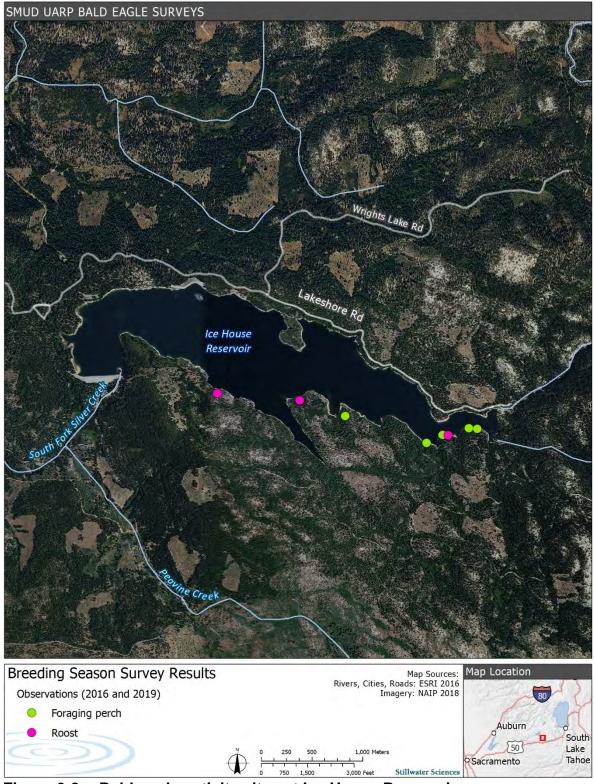


Figure 6-8. Bald eagle activity sites at Ice House Reservoir.

Table 6-3.Bald Eagle Observations During the 2019 Breeding SeasonSurveys at Ice House Reservoir.

Surveys at ice nouse hese			
Date (Time)	Number of Eagles	Age Class	Notes
05/13/19 17:30	1	Adult	Adult flying west from southeast end of reservoir, eventually perching in fir on southwest shore.
05/13/19 18:15	1	Adult	Adult departing perch in fir on southwest shore, flying northeast over reservoir.
05/14/19 16:30	1	Adult	Adult (male) perched in snag located on southeast perimeter of reservoir.
05/14/19 17:30	1	Adult	Adult (male) departing snag after altercation with osprey nesting nearby, relocating to alternate perch approximately 300 feet west.
05/14/19 18:00	1	Adult	Adult (female) observed in large snag on south side of reservoir.
05/14/19 18:25	1	Adult	Adult (female) departing snag on south side, relocating to dominant sugar pine also on south side.
05/14/19 20:15	2	Adults	Adults (male and female) observed in separate respective roosts, approximately 0.75 mi apart at survey conclusion just after sunset.
06/11/19 19:10	2	Adults	Pair perched in previously documented dominant sugar pine on south side of reservoir.
06/11/19 19:45	1	Adult	Adult (male) departing sugar pine, relocating in small fir approximately 150 ft east.
06/11/19 20:05	1	Adult	Adult (female) departing sugar pine, flying west.
06/12/19 07:00	1	Adult	Adult (female) perched in snag approximately 100 feet east of previously documented dominant sugar pine.
06/12/19 07:10	1	Adult	Adult (female) departing snag and relocating to nearby dominant sugar pine.
06/12/19 18:15	1	Adult	Adult (female) perched in previously documented dominant sugar pine.
06/12/19 19:00	1	Adult	Adult (female) departing dominant sugar pine, relocating to alternate sugar pine approximately 0.5 mi west.
07/09/19 18:15	1	Adult	Adult (female) perched in previously documented dominant sugar pine on south side of reservoir.
07/09/19 19:00	1	Adult	Adult (male) perched in snag on southeast end of reservoir.

6.4 DISCUSSION

6.4.1 Union Valley Reservoir

Bald eagles continue to use the habitat surrounding Union Valley Reservoir, although the reproductive attempt in 2019 was unsuccessful. Reservoir levels were unlikely to have affected bald eagle nesting success at Union Valley Reservoir in 2019 as they remained relatively consistent during the breeding season, gradually increasing from approximately 4,850 feet above mean sea level in March to approximately 4,870 feet by the end of May (DWR 2019 [UNV]). Weather, however, may have been an influencing factor. Snowpack (as measured by water content) at Robbs Peak Powerhouse peaked at close to 20 in. in late February, remained largely static through March, and dissipated by the end of April (DWR 2019 [RBP]). The 2019 water year was wetter than average and cumulative precipitation in the region was approximately 125% of normal (NOAA 2019). Cumulative precipitation during the breeding season at Moratinni Flat (the closest gage to Union Valley Reservoir with available data) was approximately 40 in. (DWR 2019 [MFT]). The most significant rainfall (approximately 30 in.) occurred by mid-April and a series of events in May brought another 10 in. of precipitation. Minimum air temperatures regularly dropped below freezing through mid-April and the portion of the lake to the north and east of Granlees Point was partially frozen during the early breeding season (DWR 2019 [RBP]). Wind speeds at Big Hill, approximately one mile south of Union Valley Reservoir, were highest early in the breeding season, surpassing 30 mph during five events in February and March and reaching a maximum of 40 mph on 6 March (DWR 2019 [BHS]). Peak wind speeds steadily decreased throughout the breeding season, with occasional recordings between 25 and 30 mph in April and May and only one recording exceeding 20 mph in June and July.

Recreational activity observed on or around the reservoir during breeding season surveys was low and consisted of occasional fishing and boating (see Appendix F2 for additional details). Maintenance or construction activities involving noise-generating equipment performed at Union Valley Reservoir during the breeding season in 2019 included improvements to North Union Valley Road along the northern perimeter of the reservoir approximately two to three miles from Fashoda Sunset Peninsula (Figure 6-2). Due to snow levels, construction associated with this improvement did not begin until mid-June and was completed by the end of October. No observations of bald eagles exhibiting agitation or appearing disturbed as a result of recreational or maintenance activity at Union Valley Reservoir were made during the surveys.

6.4.2 Loon Lake Reservoir

There is a limited season of suitable bald eagle reproductive habitat around Loon Lake Reservoir due to its high elevation (approximately 6,500 feet). The duration of this season varies with weather conditions from year to year. Although bald eagles were infrequently observed during surveys, there was no evidence of a reproductive

attempt at Loon Lake Reservoir in 2019. The reservoir remained largely frozen over through most of May and, as stated previously, the 2019 water year was wetter than average (NOAA 2019), which may have been an influencing factor. Cumulative rainfall at Loon Lake Reservoir during the breeding season was approximately 28 in., with the majority (19 in.) of it occurring before the middle of April and an additional 11 in. falling during precipitation events in late May (DWR 2019 [LON]). Minimum air temperatures regularly dropped below freezing through the month of May (DWR 2019 [LON]) and snowpack (as measured by water content) at the nearby Van Vleck Gage peaked at approximately 67 in. in early April and did not melt completely until mid-June (DWR 2019 [VVL]). Reservoir levels during the breeding season remained relatively consistent, ranging from approximately 6375 to 6410 feet above mean sea level (DWR 2019 [LON]).

There was no recreational activity observed on or around the reservoir during the early breeding season survey and surveyors noted a moderate increase in activity during the mid- and late breeding season surveys (see Appendix F2 for additional details). Maintenance and construction activities involving noise-generating equipment performed by SMUD during the 2019 breeding season included improvements to facilities at Northshore Campground (Figure 6-5) that began in June and were completed by mid-November. No observations of bald eagles exhibiting agitation or appearing disturbed as a result of recreational or maintenance activity at Loon Lake Reservoir were made during the surveys.

6.4.3 Ice House Reservoir

Bald eagles were observed more frequently at Ice House Reservoir during the 2019 breeding season surveys than they were in the previous surveys conducted in 2016, during which no adults were observed and two juveniles were seen only during the mid-breeding season survey (SMUD 2016). Despite increased bald eagle activity, no evidence of a reproductive attempt was observed at Ice House Reservoir during the 2019 breeding season. As stated previously, the 2019 water year was wetter than average (NOAA 2019), which may have been an influencing factor on reproductive activity. Ice House Reservoir was entirely frozen over during the early breeding season survey in late March but had thawed completely by the mid-breeding season survey in mid-May. Snowpack (as measured by water content) at Ice House Reservoir peaked at 21 inches in late February, remained largely static through March, and dissipated by the end of April (DWR 2019 [IHS]). Cumulative precipitation during the breeding season at Moratinni Flat (the closest gage to Ice House Reservoir with available data) was approximately 40 in. (DWR 2019 [MFT]). The most significant accumulation (approximately 30 in.) occurred by mid-April and a series of events in May brought another 10 in. of precipitation. Minimum air temperatures regularly dropped below freezing through mid-April (DWR 2019 [RBP]). Wind speeds at Big Hill, approximately 2.5 miles northeast of Ice House Reservoir, were highest early in the breeding season, surpassing 30 mph during five events in February and March and reaching a maximum of 40 mph on 6 March (DWR 2019 [BHS]). Peak wind speeds steadily decreased throughout the breeding

season, with occasional recordings between 25 and 30 mph in April and May and only one recording exceeding 20 mph in June and July. Reservoir levels during the breeding season remained relatively consistent, ranging from approximately 5405 to 5449 feet above mean sea level (DWR 2019 [ICS]).

There was little to no recreational activity observed on or around the reservoir during the mid- and early breeding season surveys; however, surveyors noted heavy recreational activity during the late breeding season survey (see Appendix F2 for additional details). Maintenance and construction activities involving noise-generating equipment performed by SMUD during the 2019 breeding season included improvements to Lakeshore Road (Figure 6-6) that began in May and were completed by mid-November. No observations of bald eagles exhibiting agitation or appearing disturbed as a result of recreational or maintenance activity at Ice House Reservoir were made during the surveys.

6.5 LITERATURE CITED

CDFG (California Department of Fish and Game). 2010. Bald eagle breeding survey instructions and California bald eagle nesting territory field form. Sacramento, CA.

DWR (California Department of Water Resources). 2019. Precipitation, snow water content, temperature, and reservoir level data from the following stations in California: Big Hill Met (Station ID: BHS), Ice House Reservoir (Station ID: ICH and ICS), Loon Lake Reservoir (Station ID: LON), Morattini Flat (Station ID: MFT), Robbs Powerhouse (Station ID: RBP), Union Valley Reservoir (Station ID: UNV), and Van Vleck Bunkhouse (Station ID: VVL). California Data Exchange Center, DWR, Sacramento, California. http://cdec.water.ca.gov/

Jackman, R.E. and J. M. Jenkins. 2004. Protocol for Evaluating Bald Eagle Habitat and Populations in California. Report prepared for USFWS. Sacramento, CA.

NOAA (National Oceanic and Atmospheric Administration). 2019. Precipitation data from the Sacramento and American River regions. California Nevada River Forecast Center. <u>https://www.cnrfc.noaa.gov/monthly_precip_2019.php</u>

SMUD (Sacramento Municipal Utility District). 2004. Bald Eagle and Osprey Technical Report. Prepared by Devine Tarbell and Associates and Santa Cruz Predatory Bird Research Group.

http://hydrorelicensing.smud.org/docs/reports/bald_eagle_osprey/BaldEagle.pdf

SMUD. 2015. Bald Eagle Monitoring Plan. Hydro License Implementation for the Upper American River Project (FERC Project No. 2101). <u>https://www.smudlink.org/uarp-lic-imp</u>.

SMUD. 2016. Bald Eagle Monitoring Report. Hydro License Implementation for the Upper American River Project (FERC Project No. 2101). https://www.smudlink.org/uarp-lic-imp.

SMUD. 2018. Bald Eagle Monitoring Report. Hydro License Implementation for the Upper American River Project (FERC Project No. 2101). <u>https://www.smudlink.org/uarp-lic-imp</u>.

7.0 HARDHEAD

7.1 MONITORING PLAN OBJECTIVES

The objective of the Hardhead Monitoring Plan (Plan) is to evaluate any long-term changes in longitudinal distribution and relative abundance of hardhead (*Mylopharodon conocephalus*) in response to higher flows following implementation of the 2014 license conditions in the SFAR downstream of Slab Creek Dam (SMUD 2016).

7.2 METHODS

7.2.1 Field Surveys

The hardhead monitoring location is presented in Figure 1-3. Detailed survey locations are depicted in Figure 7-1. Site locations and field methods were described in Sections 3.1 and 4.1 of the Plan (SMUD 2016).

7.2.2 Data Analysis

Analytical methods were described in detail in the Section 4.2 of the Plan (SMUD 2016).

7.3 RESULTS

Surveys were conducted on 12 and 13 August 2019. Conditions during the surveys included calm weather, clear skies, and water visibility that ranged from approximately 13 to 33 ft. Discharge from Slab Creek Dam during the snorkel survey effort was 88 cfs.

7.3.1 Habitat Characteristics

Survey sites ranged from approximately 157–433 ft in length and included at least two habitat units (e.g., run, pool, or pocket water). Most habitat units were dominated by boulder, cobble, and/or bedrock substrates (Table 7-1). Fish cover, primarily in the form of large boulders, was present in all units; other forms of cover included overhanging and instream vegetation and bubble curtains. Water quality conditions during the sampling effort included dissolved oxygen levels near or greater than saturation (average 102%), cool water temperatures (ranging from 13.7 °C [56.7 °F] to 18.0 °C [64.4 °F]), and low conductivity (ranging from 19.8 to 20.3 μ S/cm) (Table 7-2).

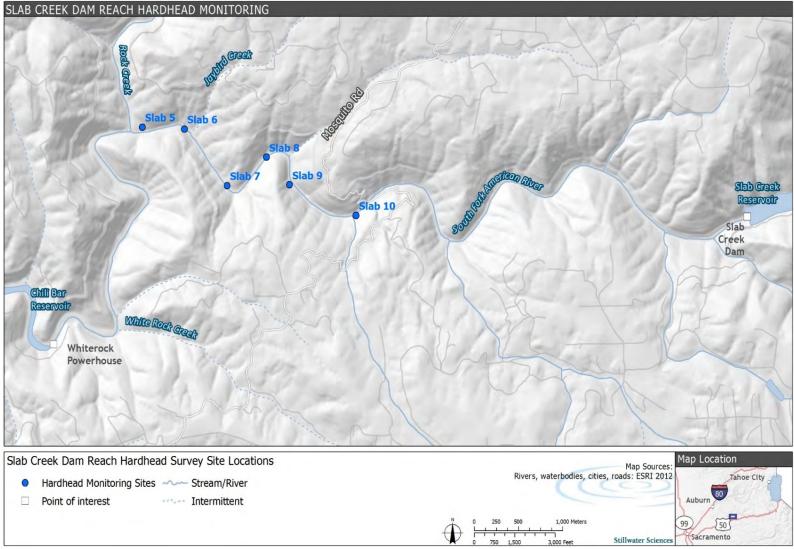


Figure 7-1. Hardhead survey site locations in the Slab Creek Dam Reach of the South Fork American River.

Table 7-1.Physical Characteristics at Survey Sites During HardheadMonitoring in the Slab Creek Dam Reach, August 2019.

		Subs	strate		Cover			
Survey Site	Habitat Type	Dominant	Sub- dominant	Dominant	Sub- dominant	Total %	Aver- age Width (ft)	Unit Length (ft)
	Run	Boulder	Cobble	Boulder	Instream/ Overhanging vegetation	20	87	230
Slab 5	Pool	Boulder	Bedrock/ Cobble	Boulder/ bubble	Overhanging vegetation	25	68	72
Slab 6	Pool	Boulder	Cobble		Overhanging vegetation	45	72	335
Siab 0	Run	Boulder	Cobble	Boulder	None	20	50	98
	Pool 1	Boulder	Bedrock/ Cobble		Instream vegetation	15	66	89
Slab 7	Pool 2	Boulder	Bedrock	Boulder/ Instream vegetation	Bubble	25	59	69
	Run 1	Cobble	Boulder	Boulder	None	15	55	128
Slab 8	Run 2	Bedrock	Boulder	Boulder	None	15	53	53
	Pool	Bedrock	Boulder		Overhanging vegetation/ Bubble	25	72	217
Slab 9	Pool	Bedrock	Boulder		None	15	41	115
SIGD 3	Run	Boulder	Bedrock	Boulder	None	40	44	98
Slab 10	Pocket Water	Cobble	Boulder		Instream vegetation	25	57	56
	Run	Boulder	Bedrock		Bubble	25	52	161

Table 7-2.	Water Quality Conditions at Survey Sites During Monitoring for
Hardhead in	the Slab Creek Dam Reach, August 2019.

		Conductivity	Temp	Dissolve	d Oxygen	
Survey Site	Habitat Unit	(µS/cm)	(°C/°F)	%	mg/L	
Slab 5	Run	20.3	17.5/63.5	109.3	10.40	
SIAD 5	Pool	20.3	17.5/65.5	109.3	10.40	
Slab 6	Pool	20.2	18/64.4	106.3	9.70	
SIAD 0	Run	20.2	10/04.4	106.3	9.70	
Slab 7	Pool 1	20	17.1/62.9	89.3	8.33	
SIAD 7	Pool 2	20	17.1/02.9	09.3	0.33	
	Run 1					
Slab 8	Run 2	19.9	15.4/59.7	95.6	9.18	
	Pool					
Slab 9	Run	20		102.0	10.28	
SIAD 9	Pool	20	14.1/57.4	102.9	10.28	
Slob 10	Pocket Water	10.9	10 7/66 7	106.0	10.60	
Slab 10	Pocket Water	19.8	13.7/56.7	106.2	10.60	

7.3.2 Snorkel Surveys

Five fish species were observed in the Slab Creek Dam Reach during the 2019 monitoring effort: hardhead, Sacramento pikeminnow (*Ptychocheilus grandis*), rainbow trout (*Oncorhynchus mykiss*), Sacramento sucker (*Catostomus occidentalis*), and sculpin (*Cottus spp.*) (Figure 7-2).

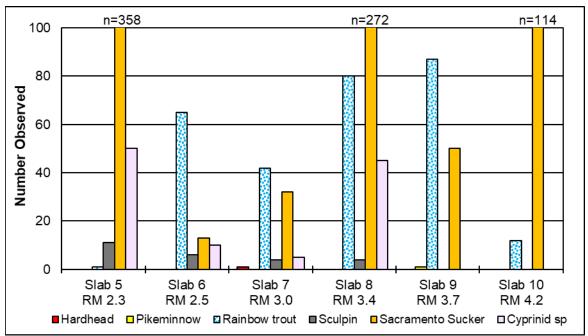


Figure 7-2. Fish species observed during snorkel surveys in the Slab Creek Dam Reach, August 2019.

7.3.2.1 Cyprinids

Cyprinids were observed at every survey site except for Site Slab 10 (Figure 7-2). Ninety-eight percent of the observed cyprinids were larval fish that could not be positively identified to species but were determined to be either Sacramento pikeminnow or hardhead (Figure 7-3). These larval observations occurred in the lower four survey sites (sites Slab 5 through Slab 8). One hardhead was observed at Site Slab 7 and one Sacramento pikeminnow was observed at Site Slab 9; they were estimated to be in the 200–224 mm TL and 75–99 mm TL size classes, respectively (Figure 7-3).

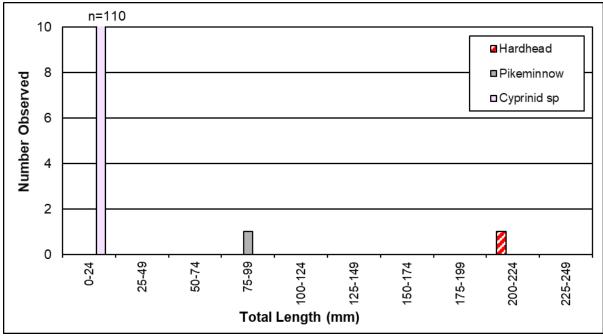


Figure 7-3. Length-frequency distribution for cyprinids observed during snorkel surveys in the Slab Creek Dam Reach in August 2019.

7.3.2.2 Salmonids

Rainbow trout were observed throughout the study reach and were the second most abundant species observed (Figure 7-2). Multiple size-classes were observed, ranging from 25–49 to 325–349 mm TL (Figure 7-4). Rainbow trout were observed in greatest concentrations at sites Slab 6 through Slab 9 (Figure 7-2).

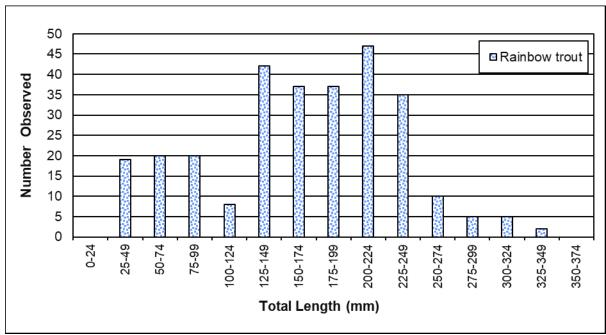


Figure 7-4. Length-frequency distribution for salmonids observed during snorkel surveys in the Slab Creek Dam Reach in August 2019.

7.3.2.3 Additional Species

Additional species observed included Sacramento sucker and sculpin³ (Figure 7-2). Sacramento sucker were the most abundant species observed during the survey and were observed at every survey site. The majority of Sacramento sucker were larval fish measuring 0–24 mm TL (Figure 7-5). Sculpin were distributed from sites Slab 5 through Slab 8 (Figure 7-2) and ranged from 0–24 mm TL to 75–99 mm TL (Figure 7-5).

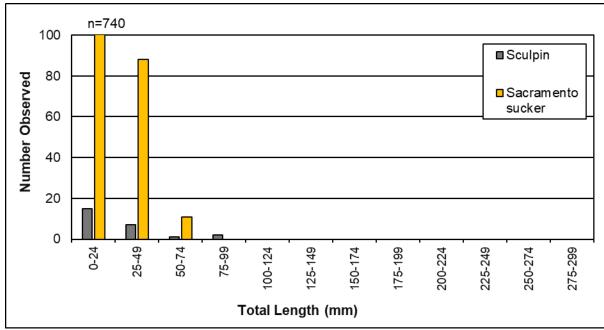


Figure 7-5. Length-frequency distribution for Sacramento sucker and sculpin spp. observed during snorkel surveys in the Slab Creek Dam Reach in August 2019.

³ Riffle sculpin and prickly sculpin have historically been documented in Slab Creek Dam Reach during electrofishing surveys (SMUD 2006), however these species cannot typically be differentiated during snorkel surveys.


7.3.3 Historical Comparison

The 2019 hardhead surveys showed decreased species diversity and shifting distributions compared to the 2004, 2007, 2016, and 2017 surveys. Whereas in previous survey years species observations included California roach (2004), brown trout (2007, 2016, 2017), speckled dace (2007, 2016, 2017), and smallmouth bass (2007), none of these species were encountered during the 2019 survey (Figure 7-6). Sacramento pikeminnow, which occurred at sites Slab 5 through Slab 10 in 2016 and at every site except for Site Slab 9 in 2017, was limited to Site Slab 9 in 2019. Rainbow trout, Sacramento sucker, and sculpin distribution remained similar to prior survey years (Figure 7-6). Rainbow trout continued to represent a large percentage of species observations in 2019, accounting for 60% or greater of observations at 4 of 5 sites Slab 6 through Slab 10) (Figure 7-6).

The total number and average density (hardhead/1,000 ft) of hardhead across sites was the lowest in 2019 of all five survey years (Figure 7-7). The average density of hardhead was highest in 2004, with a variable but downward trend to the low observed in 2019. Total numbers of hardhead followed a similar trend.

Hardhead observations occurred only at Site Slab 7 in 2019, representing one of the most restricted distributions of all survey years. A similarly restricted distribution was observed during the Fall 2007 survey, when hardhead were only observed at Site Slab 5. In all five survey years, observations of hardhead occurred in the lower 3.4 RM of the study reach at sites Slab 5 through Slab 8, with the exception of two hardhead observations at Site Slab 9 in 2004 (Figure 7-8). The greatest longitudinal extent of hardhead observations occurred in the fall of 2004, when they were documented at sites Slab 5 through Slab 7 and at Site Slab 9. A slightly more constricted distribution was observed during the 2016 and 2017 survey efforts, when hardhead were observed at all survey sites except sites Slab 9 and Slab 10 (Figure 7-8).

Figure 7-6. Species composition and distribution observed during snorkel surveys conducted in fall 2004 and summer 2007, 2016, 2017, and 2019 (larval fish [<25 mm] have been excluded).

The weighted "center" of the hardhead population⁴ within the study reach has not significantly shifted over time (Figure 7-9) and the lower sites continue to support more hardhead (Figure 7-8), even as overall densities have generally decreased (Figure 7-7). This suggests some proportionality in the hardhead population response from year to year (i.e., the densities may be decreasing over time, but the remaining hardhead are not clearly shifting their distribution within the study reach since the population "center" has only moved +/- 0.3 mile).

⁴ Calculated by weighting the density of hardhead by river mile.

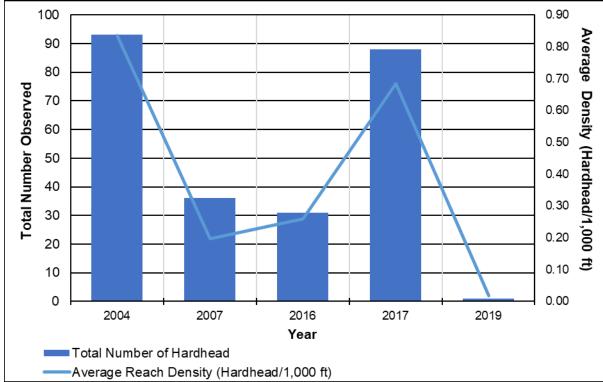


Figure 7-7. Total number observed and average density of hardhead across sites within the Slab Creek Dam Reach, 2004–2019.

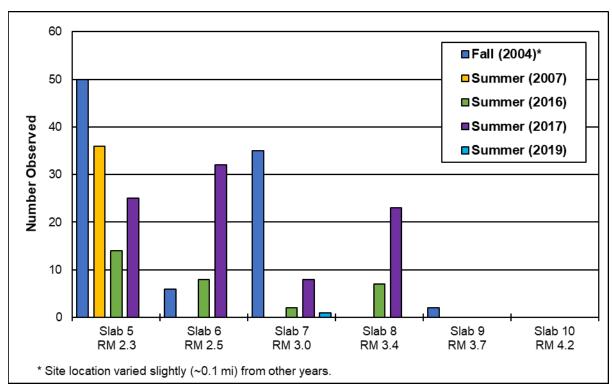


Figure 7-8. Longitudinal distribution of hardhead within the Slab Creek Dam Reach, 2004–2019 (larval fish [<25 mm] have been excluded).

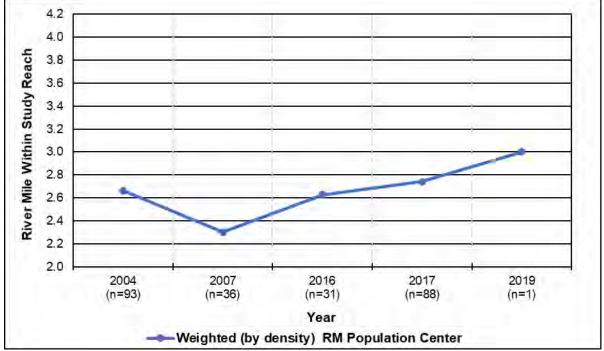


Figure 7-9. Longitudinal distribution of the hardhead population center within the Slab Creek Dam Reach, 2004–2019 (larval fish [<25 mm] have been excluded).

Hardhead density in 2019 was the lowest recorded at every site of every monitoring year, except for Site Slab 7 in 2007 in which no hardhead were observed (Figure 7-10). Reach-wide densities under the new flow regime have gone down (Figure 7-11), but results are mixed by site. High density sites have shown steep declines (e.g., sites Slab 5 and Slab 7), whereas some lower density sites have seen slight increases (e.g., sites Slab 6 and Slab 8). Because the locations of these sites are mixed relative to each other (i.e., not trending upstream or downstream), there is not a clear and consistent shift in the population center, as described above and illustrated in Figure 7-9.

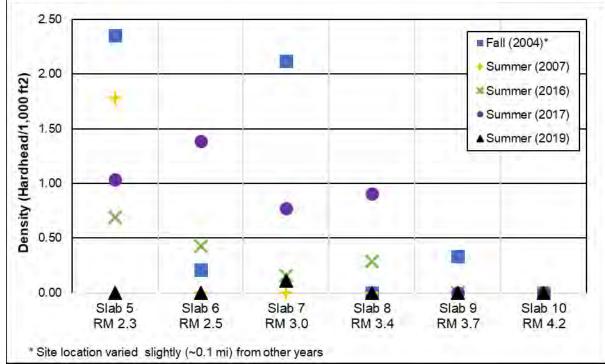


Figure 7-10. Hardhead density by site within the Slab Creek Dam Reach, 2004–2019 (larval fish [<25 mm] have been excluded).

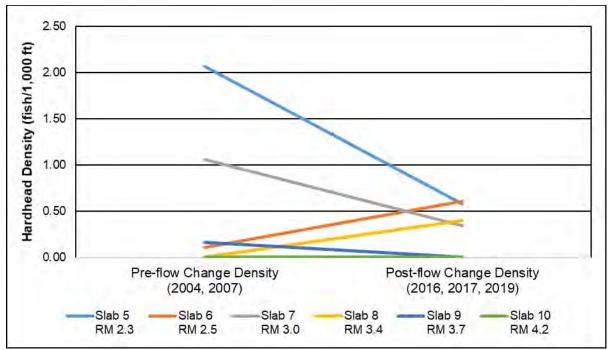


Figure 7-11. Hardhead density before and after minimum flows changes in the Slab Creek Dam Reach, 2004–2019 (larval fish [<25 mm] have been excluded).

7.4 DISCUSSION

A new minimum flow regime was implemented in the Slab Creek Dam Reach following issuance of the new FERC license in July 2014. As a result, the thermal regime changed (Figures 7-12, 7-13, and 7-14), mean summer water temperatures decreased, and it was originally hypothesized by members of the Relicensing Aquatic Technical Work Group that there may be a change in hardhead distribution as a result (which was the primary reason for implementing the monitoring plan). Hardhead continue to be present in the Slab Creek Dam Reach since implementation of the new minimum flow regime. There appears to be a net decline in hardhead numbers and densities following implementation of the new minimum flow regime (although summer flows are also affected by extended runoff periods depending on the water year type), but there is high variability in the hardhead data and additional years of survey results will be needed to assess whether there is a clear downward trend in the population or whether the observed populations are within the range of variability observed under the prior flow regime.

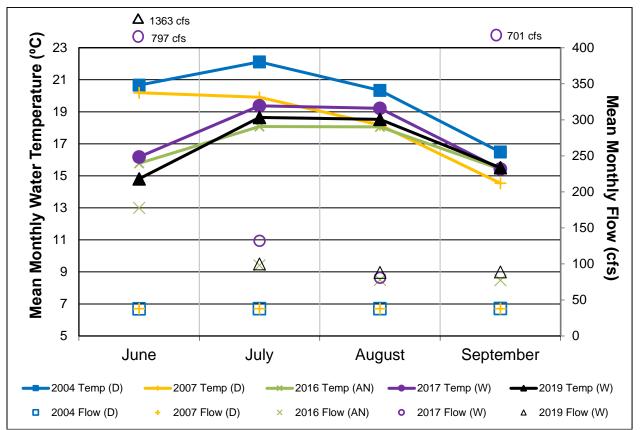


Figure 7-12. Mean monthly water temperatures and water year type ("D" = Dry, "AN" = Above Normal, "W" = Wet) in the South Fork American River above White Rock Powerhouse (SMUD Gage SFAR15, RM 0.0) and mean monthly flow below Slab Creek Dam, before (2004–2007) and after (2016–2019) the new minimum flow regime. (Note: the June 2017 water temperature is an estimate based on monthly temperature differentials from a similar water year [2018])

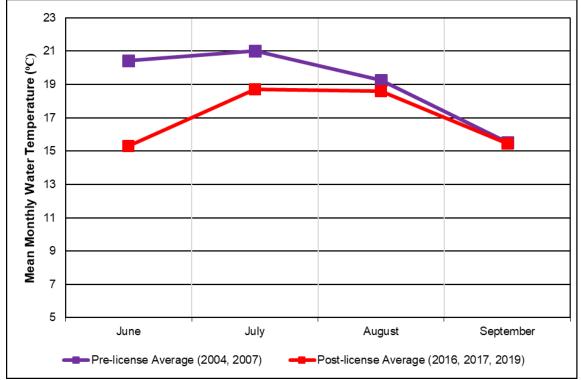


Figure 7-13. Mean monthly water temperatures in the South Fork American River above White Rock Powerhouse (SMUD Gage SFAR15, RM 0.0) before and after the new minimum flow regime.

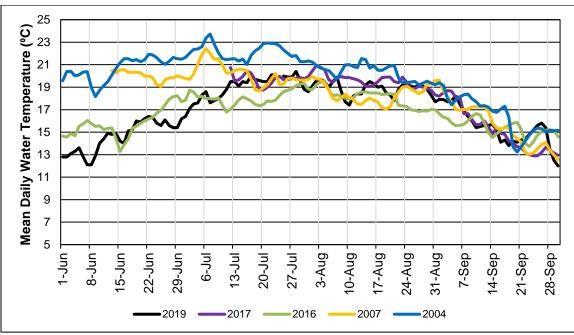


Figure 7-14. Mean daily water temperatures in the South Fork American River above White Rock Powerhouse (SMUD Gage SFAR15, RM 0.0) for each of the

hardhead survey years. (Note: Location of 2007 data recording was 0.75 mi. upstream from SMUD Gage SFAR15)

7.5 LITERATURE CITED

SMUD (Sacramento Municipal Utility District). 2006. Stream Fisheries Summary Report. February 2006.

SMUD. 2016. Hardhead monitoring plan. Hydro License Implementation for the Upper American River Project (FERC Project No. 2101). July.

Stillwater Sciences. 2018. South Fork Powerhouse Fish Rescue and Relocation Project. Prepared by Stillwater Sciences, Davis, California for Sacramento Municipal Utility District, Sacramento, California.

8.0 AMPHIBIAN AND AQUATIC REPTILE

8.1 MONITORING PLAN OBJECTIVES

The main objectives of the Amphibian and Aquatic Reptile Monitoring Plan (SMUD 2016) are to monitor for and document the presence and distribution of sensitive amphibians and aquatic reptiles, focused primarily on foothill yellow-legged frog (*Rana boylii*) (FYLF) and western pond turtle (*Actinemys marmorata*) (WPT), over the term of the License (SMUD 2016). Monitoring is being conducted to help determine if populations of these species in Project-affected streams are increasing or decreasing for any life stage as a result of Project streamflow changes or fluctuations; additional details of the objectives are presented in the monitoring plan. The monitoring plan also includes stream water temperature monitoring at specified sites with known breeding or suitable breeding habitat for FYLF. Temperature monitoring is intended to provide information about the relationship between water temperature and the initiation of FYLF breeding.

8.2 FIELD METHODS

8.2.1 Monitoring Sites

In accordance with the monitoring plan, four monitoring sites within three Project reaches⁵ were surveyed during License Year 5 (2019), as listed in Table 8-1 and illustrated in Figures 1-1 to 1-3. These sites include locations with either documented FYLF presence (sites Camino Dam CD-A3 and CD-A4) or potential habitat, as described in the monitoring plan. FYLF and WPT observations during relicensing studies (2003–2004) and new license implementation studies Years 1–3 (2016–2018) are provided in Table 8-1.

⁵ "Project reach" is a term used in this report to describe a segment of stream downstream of a dam (e.g., "Camino Dam Reach" is Silver Creek downstream of Camino Dam)

Project Site Code Reach		UTM Coordinates ^a				FYLF ^e Observed			WPT ^e Observed			Water	
	Site Description	Downstream End	Upstream End	Jpstream End	Site Length ^{b,c} Elevation ^{b,d}	2003/ 2004 ^f	2016/ 2017 ^f	2018 ^f	2003/ 2004 ^f	2016/ 2017 ^f	2018 ^f	Temperature Monitoring	
Junction Dam Reach	JD-A15	Silver Creek below Junction Reservoir Dam	4302306N/ 713564E	4302466N/ 713444E	653 ft/ 0.12 mi	3,045 ft	No	No	- 9	No	No	- 9	No
	CD-A3	Silver Creek below Camino Reservoir Dam (near Camino Adit)	4298484 N/ 710087 E	4298651 N/ 710236 E	735 ft/ 0.14 mi	2,336 ft	Yes	Yes	Yes	No	No	No	Yes
Camino Dam Reach	CD-A4	Silver Creek below Camino Reservoir Dam (at confluence with SF American River)	4296233 N/ 709331 E	4296310 N/ 709424 E	404 ft/ 0.08 mi	2,067 ft	Yes	No	Yes	No	No	No	Yes
Slab Creek Dam Reach	SCD-A1	SF American River below Slab Creek Reservoir Dam	4292873 N/ 692573 E	4295022 N/ 692931 E	10,404 ft/ 2.0 mi	1,007 ft	No	No	No	Yes	Yes	No	Yes

Table 8-1. Amphibian and Aquatic Reptile Monitoring Sites, 2019.

^a Projection: NAD83 UTM Zone 10 North, N = Northing, E = Easting
 ^b Site lengths and elevations are calculated in geographic information systems (GIS) (projection: NAD83 UTM Zone 10 North)

^c Site lengths are reported in feet (ft) and miles (mi)
 ^d Elev. = Elevation, which is for the most downstream survey location at the site
 ^e FYLF = Foothill yellow-legged frog; WPT = Western pond turtle

^f Relicensing studies (2003–2004) and new license implementation studies Years 1–3 (2016–2018).

⁹ Project reach not surveyed during 2018 as per the monitoring plan.

2019 Annual Monitoring Report June 2020

8.2.2 Foothill Yellow-legged Frog

8.2.2.1 Visual Encounter Surveys

Visual Encounter Surveys (VESs) were performed in all safely accessible and permissible areas within each site, following protocols outlined in the Visual Encounter Survey Protocol for *Rana boylii* in Lotic Environments (Peek et al. 2017), as well as protocols similar to those outlined in Heyer et al. (1994), Lind (1997), and Pacific Gas and Electric Company (PG&E) (2002a, 2002b). In addition to FYLF, all other amphibian and reptile species observed during the surveys were recorded, as well as any potential predators (e.g., fish, crayfish, and bullfrogs). The specific survey methodology for each species and site follows methods described in the monitoring plan (SMUD 2016) and expanded on in the 2017 and 2018 Annual Monitoring Reports (SMUD 2018 and 2019).

Four focused VESs were conducted at each site in 2019 as follows:

- two egg mass surveys during the late breeding and early tadpole development period (July–early August),
- one tadpole survey during the tadpole development period (August), and
- one survey for newly metamorphosed (YOY) FYLF in fall (September–October).

Survey dates for each site are listed in Table 8-2. VESs were conducted once crews were able to safely navigate study reaches downstream of dam infrastructure without risk of uncontrolled spill events. An unusually high snowpack in late spring/early summer⁶ resulted in high spring run-off and prolonged spills at Project dams, including Camino Dam upstream of the Silver Creek sites. While the typical egg-laying period for FYLF is often referenced as mid-April to late June, initial egg mass surveys were postponed until mid-July due to high flows and the expected onset of late breeding in Silver Creek (e.g., late July or early August, in part based on results of previous surveys including tadpole observations in Silver Creek during September 2018) (SMUD 2019).

⁶ Data from California Department of Water Resources (DWR 2019) indicated northern Sierra snowpack was 130% of average on May 1, 2019.

Site	Site Description	Survey Date (2019)						
Code	Site Description	VES 1	VES 2 ^a	VES 3	VES 4			
JD-A15	Silver Creek below Junction Reservoir Dam	7/15	7/29	8/26	9/30			
CD-A3	Silver Creek below Camino Reservoir Dam (near Camino Adit)	7/18	8/1	8/27	10/1			
CD-A4	Silver Creek below Camino Reservoir Dam (near confluence with SF American River)	7/16	7/30	8/27	10/1			
SCD-A1	SF American River below Slab Creek Reservoir Dam	7/17	7/31	8/28	10/2			

Table 8-2. Amphibian and Aquatic Reptile Monitoring Survey Dates, 2019.

^a Focused western pond turtle surveys were conducted at all sites during VES 2.

8.2.2.2 Water Temperature Monitoring

The monitoring plan (SMUD 2016) requires temperature monitoring as an indicator of FYLF breeding initiation at the two sites below Camino Reservoir Dam (historical breeding sites CD-A3 and CD-A4) and below Slab Creek Reservoir Dam (suitable breeding Site SCD-A1) during years 2 through 6 of the new License.

Two Onset Hobo[©] Pro v2 water temperature loggers ("temperature loggers") were deployed at each temperature monitoring site between October 2018 and July 2019. labeled as follows: CD-A3-1 and CD-A3-2 (at site CD-A3), CD-A4-1 and CD-A4-2 (at site CD-A4), and SCD-A1-5 and SCD-A1-6 (at site SCD-A1). These temperature loggers remained deployed over winter to ensure water temperature data were collected during the onset of the 2019 breeding season (April–June), anticipating site conditions in spring could preclude safe access for temperature logger installation. A total of six edgewater temperature loggers were then deployed at each site between July and October 2019, in addition to one thalweg temperature logger deployed at Site CD-A3. Temperature monitoring locations SCD-A1-5 and CD-A4-6 experienced equipment failure; because no temperature data were collected at these locations, they are not included in subsequent report figures or analyses. The approximate temperature monitoring locations are depicted in Figure 8-1 through Figure 8-3. Temperature logger location photos are provided in Appendix H1. Temperature logger deployment materials and methods follow those described in the monitoring plan (SMUD 2016) and expanded on in the 2017 and 2018 monitoring reports (SMUD 2018 and 2019).

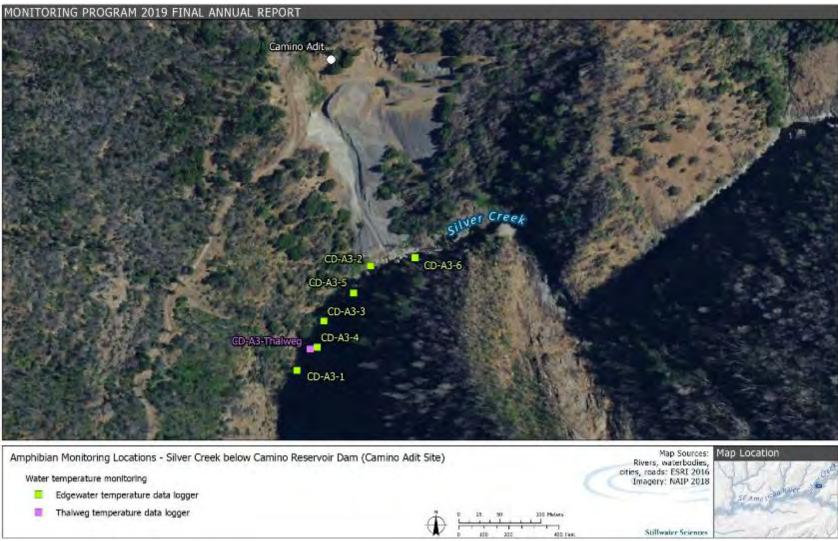


Figure 8-1. Temperature logger locations at amphibian monitoring site CD-A3, 2019.

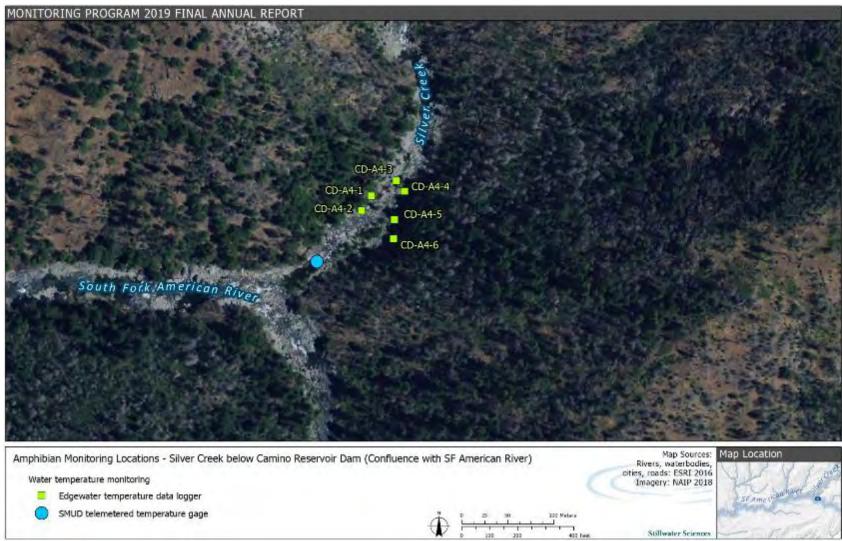


Figure 8-2. Temperature logger locations at amphibian monitoring site CD-A4, 2019.

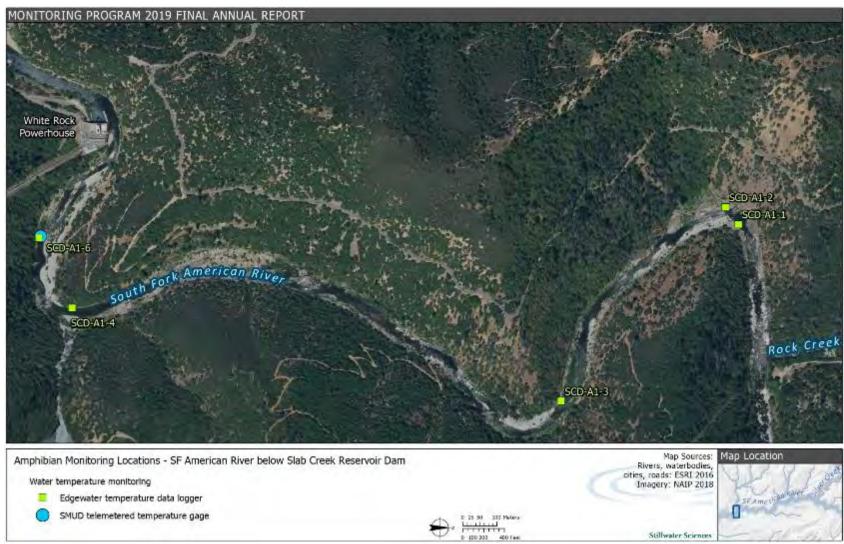


Figure 8-3. Temperature logger locations at amphibian monitoring site SCD-A1, 2019.

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

8.2.2.3 Adaptive Management Monitoring

As part of adaptive management, the monitoring plan outlines requirements for SMUD to monitor FYLF following spill events at Camino and Slab Creek reservoirs, and during flow fluctuations from Camino Dam (SMUD 2016). Monitoring for effects to FYLF include looking for evidence of damage, displacement, or scouring of egg mass or larvae, as well as evidence of egg mass or larval stranding/desiccation.

There was a prolonged spill event at Camino Reservoir and Slab Creek Reservoir during June 2019, occurring after temperatures exceeded a daily mean of 12°C for a 7-day running average at the associated water temperature monitoring site. The earliest that adaptive management surveys could be feasibly and safely performed (i.e., after surveyors were able to navigate study reaches downstream of dam infrastructure without risk of additional uncontrolled spill events) coincided with VES 1.

Flow fluctuations in Silver Creek below Camino Reservoir Dam did not meet criteria described in SMUD's Block of Water Plan (2016) to trigger FYLF adaptive management monitoring during 2019.

8.2.3 Western Pond Turtle

Focused WPT surveys were conducted concurrently with the mid-summer (late August) FYLF survey (Table 8-2), where one additional dedicated surveyor independently looked for WPT (for the survey on the SFAR, there were two surveyors due to the larger river channel width). In addition, during all other VESs, any incidental WPT sightings were noted. The survey methodology follows methods described in the monitoring plan (SMUD 2016) and 2017/2018 monitoring reports (SMUD 2018 and 2019).

8.3 RESULTS

Table 8-3 provides survey start and end times, along with water and air temperatures recorded during VESs at each site. Representative habitat photos are included in Appendix H1.

Site Cada	Survey	VES #	Tim	ne	Temperature Ranges		
Site Code	Date (2019)	VE5#	Start Time (hours)	End Time (hours)	Water (°C)	Air (°C)	
	7/15	1	1415	1535	17.5	30–31	
JD-A15	7/29	2	1555	1720	18–18.5	24–32	
JD-A15	8/26	3	1430	1510	18.5–19	34–38	
	9/30	4	1405	1440	9	12	
	7/18	1	1110	1225	14.5	28.5-33.5	
CD-A3	8/1	2	1050	1230	13–14	30.5–31.5	
	8/27	3	1355	1450	17	29–30	

Table 8-3.Foothill Yellow-legged Frog and Western Pond Turtle SurveyConditions, 2019.

Site Code	Survey	VES #	Tin	ne	Temperature Ranges		
Site Code	Date (2019)	VE3#	Start Time End Time (hours) (hours)		Water (°C)	Air (°C)	
	10/1	4	1501	1730	10–10.5	13.5–14	
	7/16	1	1215	1345	18	29–31	
CD-A4	7/30	2	1015	1145	16–17.5	28–30	
CD-A4	8/27	3	915	1010	17–18	19–22	
	10/1	4	945	1119	9.5–10	8–15.5	
	7/17	1	1010	1700	17–21	25.5–31	
SCD-A1	7/31	2	940	1610	14.5–19	22–32.5	
SCD-AT	8/28	3	1010	1550	15–19	20–24	
	10/2	4	1040	1750	10–13	12–12.5	

VES # = visual encounter survey number

°C = degrees Celsius

8.3.1 Foothill Yellow-legged Frog

8.3.1.1 Visual Encounter Surveys

Foothill Yellow-legged Frog Observations

FYLFs were found at or near CD-A3, and not documented at any of the other survey sites in 2019 (CD-A4 in Silver Creek near the SFAR confluence, JD-A15 in the Junction Dam Reach, or SCD-A1 in the Slab Creek Dam Reach) (Table 8-1). FYLFs have only ever been documented at sites CD-A3 and CD-A4 during relicensing studies (2003–2004) and new license implementation studies Years 1–3 (2016–2018) (Table 8-1).

FYLFs were found in three general locations around CD-A3 (Table 8-4, Figure 8-4). One of these locations, Site CD-A3, was a formal VES site; the other two were informal survey locations, a tributary adjacent to the foot trail to Silver Creek and a seep next to the gravel access road approximately 0.5 miles southwest of Camino Adit. At Site CD-A3, one FYLF tadpole and one adult⁷ were documented during VES 3 on 1 October 2019, one adult was documented incidentally during the geomorphic monitoring effort on 6 August 2019, and two adults were documented during the benthic macroinvertebrate monitoring effort on 11 September 2019. Two adults were observed on two separate occasions (18 July and 1 August 2019) in the tributary informally searched for FYLF while surveyors hiked to the main channel site, CD-A3. At the seep near the access road to Camino Adit, two adult FYLF were found on 18 July 2019. No egg masses were found during 2019 monitoring. FYLF observation details are summarized in Table 8-4 and Figure 8-4.

⁷ An individual was classified as adult if it possessed secondary sexual characteristics (such as enlarged nuptial pads in males) or was equal to or greater than 37 millimeters (mm; 2 inches) snout-to-vent length (Storer 1925, Zweifel 1955).

Table 8-4. Foothill Yellow-legged Frog Observation Locations and Data, 2019.							
	UTM Coo	rdinatosa		Foothill Yello		rog Observations	
Location Description	Northing	Easting	Date (2019)	Life stage/ Sex	SVL or TL mm (in)º	Habitat	
	4298636	710202	8/6 ^b	Adult/ -e	_e	Main channel side pool	
	4298537	710116	9/11 ^b	Adult/Male	45 (1.8)	Main channel side pool	
Site CD-A3 along Silver	4298546	710122	9/11 ^b	Adult/Female ^d	44 (1.7)	Main channel side pool	
Creek	4298632	710195	10/1	Tadpole (Gosner stage 41)	57 (2.2)	Backwater pool	
	4298527	710111	10/1	Adult/Female ^d	45 (1.8)	Isolated side pool	
Tributary to	4298734	710270	7/18	Adult/ -e	_ e	Tributary	
Silver Creek, downstream of access road and adjacent to foot trail to Silver Creek, near Site CD-A3	4298734	710270	8/1	Adult/ -•	_ e	Tributary	
Seep next to				Adult/Female	49 (1.9)	In seep	
access road to Camino Adit, near Site CD-A3	4298286	709810	7/18	Adult/Female	51 (2.0)	In seep	

Table 8-4. Foothill Yellow-legged Frog Observation Locations and Data, 2019.

^a Projection: NAD83 UTM Zone 10 North

^b Incidental sighting during Geomorphic and Benthic Macroinvertebrates monitoring efforts.

°SVL=snout-to-vent length (if adult); TL=total length (if tadpole); mm=millimeters; in=inches

^d Same individuals, confirmed with chin markings

^e No data. Frog observed but not captured.

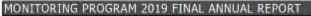


Figure 8-4. Foothill Yellow-legged Frog observation locations at or near site CD-A3, 2019.

One FYLF tadpole was captured at Site CD-A3 on 1 October 2019. The tadpole was in a connected side pool with no observable flow on the right riverbank (Table 8-4, Figure 8-5). This was the same location where three tadpoles were observed on 4 September 2018 (SMUD 2019). The dominant substrate was bedrock and the bottom of the pool was covered with algae. The pool was largely separated from the main channel by surrounding bedrock, though it was hydrologically connected to the main channel by a small connection at its downstream end. Total water depth at the tadpole location was 0.1 m (0.3 ft).

One adult female FYLF was captured twice⁸ at Site CD-A3 (Table 8-4, Figure 8-6). On 11 September 2019 this FYLF was found basking on a piece of wood under sedges in a pool adjacent to the main channel. During a formal survey on 1 October 2019, the FYLF was found approximately 20 m (64 ft) downstream in an isolated granite pool approximately 2 m (6.6 ft) from the main channel (Table 8-4, Figure 8-6). Total water depth of the pool was 0.2 m (0.7 ft).

One adult male FYLF was incidentally captured at Site CD-A3 on 11 September 2019. The FYLF was found submerged in a main channel side pool (Table 8-4, Figure 8-7). An additional adult FYLF was observed but not captured on 6 August 2019 in Silver Creek (Site CD-A3) (Table 8-4, Figure 8-8).

Other areas with previous incidental FYLF sightings that were informally and opportunistically searched for FYLF during site visits in 2019 included a foot trail adjacent to Silver Creek, a seep next to the access road approximately 0.5 miles southwest of Camino Adit, and Camino Adit (Figure 8-4). These locations were visited several times throughout the monitoring season as FYLFs were observed using these habitats during monitoring in 2016 (SMUD 2017). Two adult female FYLFs were captured during an informal survey at the seep on 28 July 2019 (Table 8-4, Figure 8-9). The seep was checked during subsequent surveys and no FYLF were found. Two adult FYLFs were observed but not captured in a small tributary to Silver Creek, located near the top of Site CD-A3 on 18 July and 1 August 2019 (Table 8-4, Figure 8-10). No FYLFs were found at the Camino Adit.

⁸ Chin photographs were used for identification of individual frogs. Chin patterns are hypothesized to be unique to each frog and persist throughout the life of the frog (Marlow et al. 2016).

Figure 8-5. Foothill Yellow-legged Frog tadpole (left) found in side-channel pool habitat (right) during the VES at site CD-A3 on 1 October 2019.

Habitat Conditions

Habitat conditions along the Silver Creek sites (CD-A3 and CD-A4) and the SFAR site (SCD-A1) were similar to conditions observed during 2017 and 2018 monitoring (SMUD 2018, 2019). Decreased cover along the channel and banks caused by high stream flows during the wet 2017 water year persisted in 2019. Suitable FYLF habitat was found at all sites (Figure 8-11 through Figure 8-14). The increased sun exposure resulting from this loss of cover to the channel led to continued presence of benthic algae at Site CD-A3 during 2019 (Figure 8-15). Additional habitat photos are provided in Appendix H1.

Figure 8-6. Adult female Foothill Yellow-legged and habitat found on 11 September 2019 (left column) and on 1 October 2019 (right column).

Figure 8-7. Adult male Foothill Yellow-legged Frog found incidentally at site CD-A3 on 11 September 2019.

Figure 8-8. Adult Foothill Yellow-legged Frog incidentally observed at site CD-A3 on 6 August 2019.

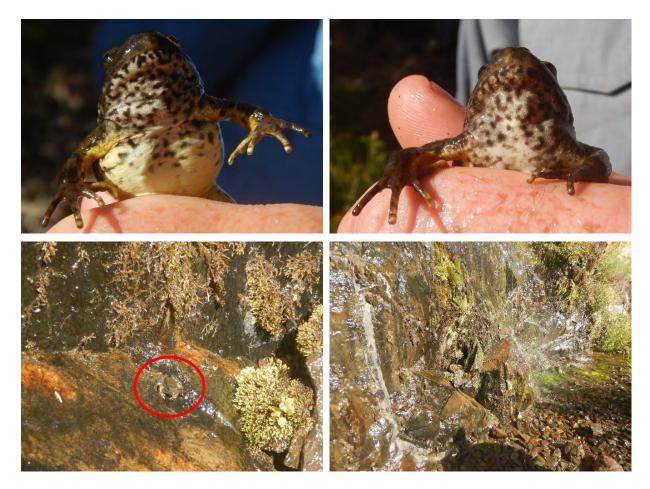


Figure 8-9. Two adult female Foothill Yellow-legged Frogs found at the seep on 18 July 2019.

Figure 8-10. Adult Foothill Yellow-legged Frogs observed at the tributary near the trail to CD-A3 on 18 July 2019 (left) and 1 August 2019 (right).

Figure 8-11. Representative photo of suitable Foothill Yellow-legged Frog habitat along Silver Creek, JD-A15, 30 September 2019.

Figure 8-12.Representative photo of suitable Foothill Yellowlegged Frog habitat along Silver Creek, CD-A3, 1 August 2019.

Figure 8-13.Representative photo of suitable Foothill Yellow-legged Frog habitat along CD-A4, 27 August 2019.

Figure 8-14. Representative photo of suitable Foothill Yellowlegged Frog habitat along on SCD-A1, 28 August 2019.

Figure 8-15.Benthic green algae in Silver Creek, Site CD-A3, 1August 2019.

8.3.1.2 Water Temperature Monitoring

Table 8-5 provides edgewater temperature data recorded at amphibian site water monitoring locations, summarized by month. The mean monthly edgewater temperatures for all three sites ranged from 7.7°C to 19.5°C during the primary FYLF breeding and rearing months of April through September. Maximum daily averages for this time period ranged from 11.4°C to 20.7°C. Mean monthly temperatures for Silver Creek were approximately 0.2°C to 2.5°C warmer at CD-A4 (near the confluence with SFAR) than at Site CD-A3 (near the Camino Adit Site).

Figure 8-16 through Figure 8-18 provide plots of mean daily edgewater temperatures for all three sites, with the dates of FYLF observations incorporated.

Although a robust statistical analysis of the temperature data, including data relationships between edgewater and thalweg temperatures, will be conducted after five years of data collection (License Year 6), the following preliminary observations from this year's data can be made:

 In relatively confined, steep-gradient channels lacking broad, shallow, exposed, low-velocity microhabitats, different edgewater areas tend to have similar temperatures and edgewater temperatures are similar to thalweg temperatures (Figure 8-16 [Site CD-A3] and Figure 8-17 [Site CD-A4]).

During wet years with high spring flows, mean daily edgewater temperatures drop below 12° C until early July in Silver Creek (Site CD-A3 [Figure 8-16] and Site CD-A4 [Figure 8-17]) and late May in the SFAR (Site SCD-A1 [Figure 8-18]).

Table 8-5	Edgewater Tem	nerature Data	Summarized by	Month 2019
I able o-J.	Luyewater Terri	perature Data	Summarized D	y WOHLH, 2019.

Temperature Monitoring Site	Month	Mean Monthly Temperature (°C)	Maximum Daily Average Temperature (°C)
	April	7.7	11.4
	Мау	8.8	11.7
Silver Creek Near Camino Adit	June	11.9	14.7
(CD-A3)	July	15.1	16.5
	August	17.0	18.2
	September	14.2	17.0
	April	8.1	12.1
Silver Creek at Confluence	Мау	9.1	11.9
with South Fork American	June	12.4	14.9
River	July	17.1	18.9
(CD-A4)	August	19.5	20.7
	September	16.1	19.4
	April	10.6	12.5
	May	11.2	13.5
South Fork American River	June	14.8	16.3
Upstream of White Rock Powerhouse (SCD-A1)	July	18.5	19.6
	August	18.1	19.0
	September	15.2	17.3

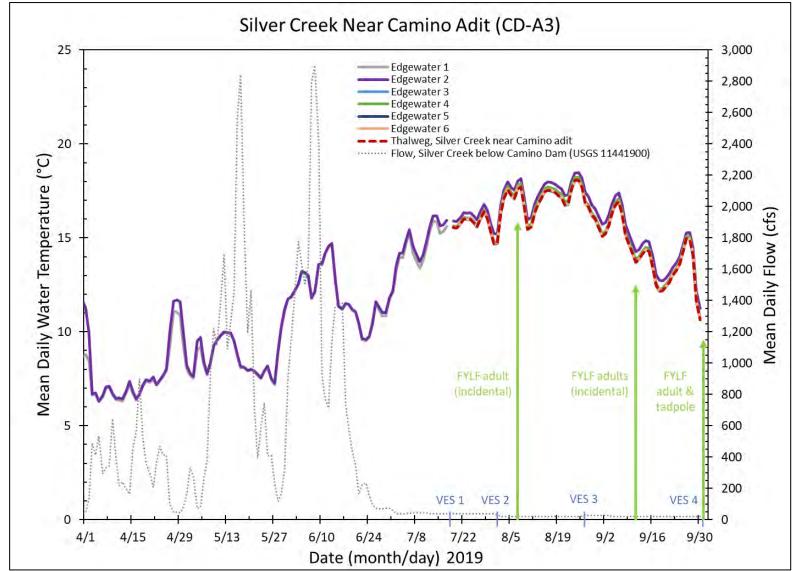


Figure 8-16. Edgewater and Thalweg temperature data for Silver Creek near Camino Adit (CD-A3) and flow data for Silver Creek below Camino Dam, with foothill yellow-legged frog (FYLF) observations.

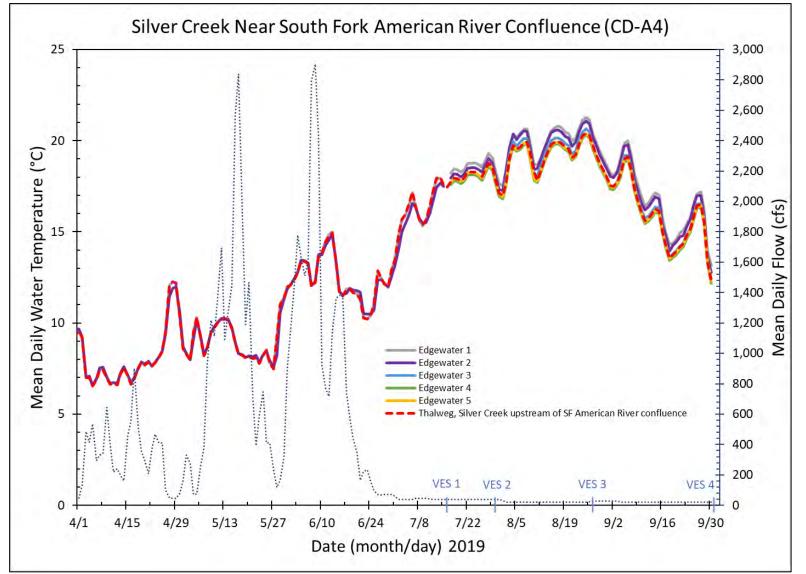


Figure 8-17. Edgewater temperature data for Silver Creek upstream of South Fork American River Confluence (CD-A4) and flow data for Silver Creek below Camino Dam.

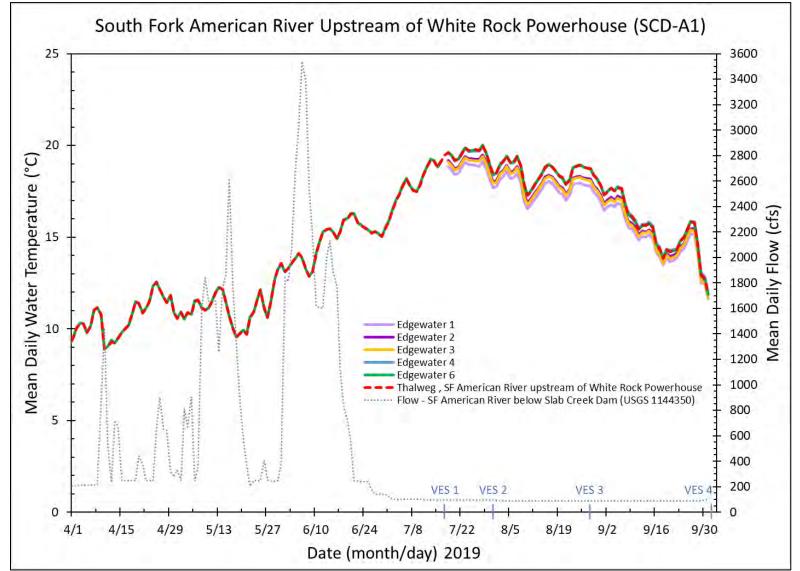


Figure 8-18. Edgewater and Thalweg Temperature Data for South Fork American River Upstream of White Rock Powerhouse (SCD-A1) and Flow Data for SF American River below Slab Creek Dam.

8.3.1.3 Adaptive Management Monitoring

Adaptive management monitoring following the prolonged June spill events at Camino and Slab Creek reservoirs coincided with VES 1 (see Section 8.2.2.3), the results of which are provided in Section 8.3.1.1.

8.3.2 Western Pond Turtle

Conditions for WPT surveys are provided in Table 8-3. Weather conditions were good to ideal during all WPT surveys, with warm temperatures, sunny/clear skies, and no wind to a light breeze.

A total of five WPT were observed on the SFAR (Site SCD-A1). Of these, three were hand-captured. WPT observation details are presented in Table 8-6, and locations mapped on Figure 8-19.

One adult⁹ female WPT was hand-captured on 31 July 2019 (Table 8-6, Figure 8-20). It was located underwater in a willow- and alder-shaded pool measuring 1 m (3.3 ft) deep on river right.

Two WPT were hand-captured on 2 October 2019. One adult male was found underwater in a pool with little riparian cover (Figure 8-21). The second adult male was found 1 km (0.6 mi) downstream from the first adult male, underwater among woody debris, with approximately 100% riparian cover overhead (Figure 8-22).

Two adult WPT were observed but not captured. One adult WPT was observed basking on a boulder in a backwater pool on 17 July 2019. One adult WPT was observed approximately 1.5 m (5 ft) underwater in a pool with boulder and cobble substrate on 28 August 2019.

⁹ A carapace length of 120 mm combined with the identification of secondary sexual characteristics were used to categorize an individual as an adult versus juvenile, since western pond turtles in this region generally reach maturity at this size (Holland 1994, Germano and Bury 2001, Bury et al. 2012).

Table 8-6.	Western Pond Turtle Observation Locations and Data at Site SCD-A1,
2019.	

	UTM Coordinates ^a			Life	Cara	pace	No. of	
Location Description	Northing	Easting	Date (2019)	stage/ Sex	Length mm (in)⁵	Width mm (in)⁵	Scute Rings	Habitat
SFAR – Slab Creek Dam Reach (SCD-A1)	692803	4292901	7/17	Adult/-°	_c	_c	_c	Basking on boulder in backwater pool
	4293754	692710	7/31	Adult/ Female	152 (6.0)	124 (4.9)	9	Under water in shaded pool
	4294766	692546	8/28	Adult/-°	_c	_c	_c	Under water in pool with boulder and cobble
	4294475	692858	10/2	Adult/ Male	127.5 (5.0)	97 (3.8)	1–2	Under water in unshaded pool
	4293754	692710	10/2	Adult/ Male	142.5 (5.6)	120 (4.7)	7	Under water in woody debris

^a Projection: NAD83 UTM Zone 10 North

^b mm=millimeters, in=inches

^c No data. Turtle observed but not captured.

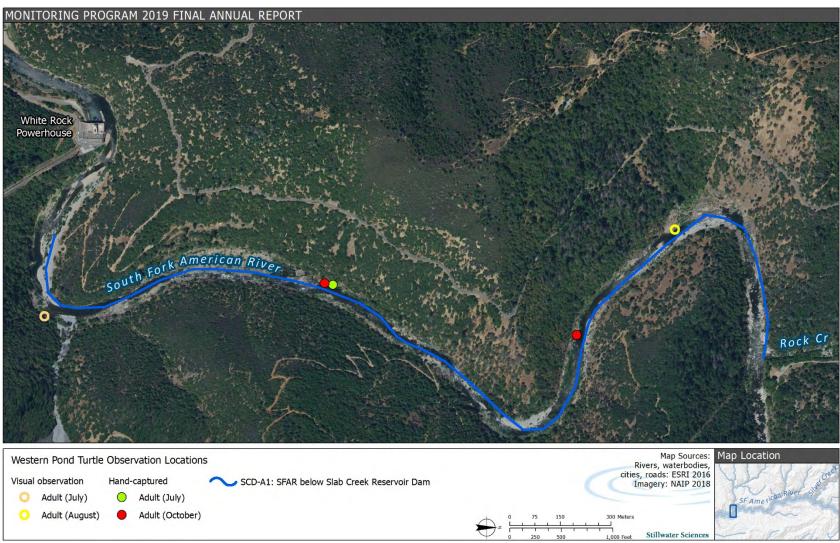


Figure 8-19. Western Pond Turtle observation locations at site SCD-A1, 2019.

Figure 8-20. Adult female Western Pond Turtle and habitat on the South Fork American River (SCD-A1) on 31 July 2019.

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

Figure 8-21. Adult male Western Pond Turtle and habitat on the South Fork American River (SCD-A1) on 2 October 2019.

2019 Annual Monitoring Report June 2020

Figure 8-22. Adult male Western Pond Turtle and habitat on the South Fork American River (SCD- A1) on 2 October 2019.

8.3.3 Other Amphibian and Aquatic Reptile Species

Seven non-special-status amphibian and reptile species were observed throughout the study area during VESs, summarized in Table 8-7 by species, life stage, and location(s) where documented. American bullfrogs (*Lithobates catesbeianus*) were not observed in the SFAR (Site SCD-A1) or any other VES sites in 2019.

Table 8-7.	Additional Her	petofauna Sr	pecies Observ	ved, by	Life Stage, 2019.

		Life	Stage		
Species Common Name (Scientific name)	Egg Mass	Larvae	Young- of-Year	Juv/ Adult	Location(s) Where Species Documented
		Am	phibians		
Sierra newt (<i>Taricha sierrae</i>)	х			Xa	JD-A15, CD-A3
Sierran treefrog (Pseudacris sierra)		х			SCD-A1, CD-A3 (Adit)
Western toad (<i>Anaxyrus boreas</i>)		х			SCD-A1
		R	eptiles		
Sierra garter snake (<i>Thamnophis couchii</i>)				х	CD-A3
Unidentified garter snake				х	CD-A3
Western rattle snake (Crotalus oreganus)				х	JD-A15
Alligator Lizard (<i>Elgaria coerulea</i>)				Xa	CD-A3

Juv = Juvenile

X = Observed

^a Observed incidentally on the access trail, outside of the VES area

8.3.4 Other Incidental Sightings

One western pearlshell freshwater mussel (*Margaritifera falcata*) (Figure 8-23) was incidentally observed at Site JD-A15 on 15 July 2019.

Figure 8-23. Western pearlshell mussel found at JD-A15, 15 July 2019.

8.4 DISCUSSION

The tadpole observation at Site CD-A3 provides evidence that FYLF were breeding in Silver Creek in 2019. The tadpole was observed at the same backwater/edgewater pool as three tadpoles and one YOY found in September 2018 (SMUD 2019), which indicates that conditions at that location are favorable for FYLF breeding. This pool includes large boulders with interstitial spaces for egg mass attachment, algae for tadpole cover and food, very low water velocities, appropriate water depths (0.1–0.6 m [0.3–2 ft]), and relatively warmer water temperatures than the mainstem and other edgewater locations. Edgewater temperatures collected in this pool (edgewater monitoring site CD-A3-2) were 0.3 to 0.6°C warmer than the thalweg, and 0.2 to 0.5°C warmer than the average edgewater temperature at Site CD-A3 between July and September 2019 (Figure 8-16).

The presence of a tadpole on 1 October 2019 suggests that the onset of breeding may be occurring in Silver Creek during mid-summer, estimated to be late July or mid-August. This is supported by riverine conditions and the distribution of adult frogs during 2019 surveys. For example, favorable conditions for FYLF breeding in Silver Creek started in approximately mid-July, such as mean daily water temperatures increasing to between 12°C and 15°C, and mean daily flows stabilizing to near 39 cfs (Figure 8-16). The presence of adult frogs at one or more locations outside of Silver Creek (i.e., the seep and tributary) on 18 July and 1 August 2019, and the lack of sightings during subsequent surveys, indicate that adult frogs may have migrated from tributaries and seeps down to Silver Creek for breeding between mid-July and mid-August (Table 8-4, Figure 8-4).

There appears to be a slight trend towards recently improved breeding success of the Silver Creek FYLF population. This is based on the presence of tadpoles, YOY,

and juveniles in Silver Creek in 2018 and the presence of tadpoles in Silver Creek in 2019, as compared with the lack of breeding evidence (including detections of juveniles) in Silver Creek during 2016 and 2017 surveys. However, while breeding has been documented for two consecutive years (2018 and 2019) in Silver Creek since 2003–2004 relicensing surveys, and suitable breeding habitat is present, the total number of individual FYLF tadpoles and YOY observed during monitoring has been very small (four and one, respectively). Future monitoring will continue to provide coarse data on population trends.

The presence of frogs at areas outside of Silver Creek (i.e., the tributary to Silver Creek and seep next to the Camino Adit access road) indicate that FYLFs are likely using these habitats for basking, foraging, and overwintering. One or more individual FYLF have been observed in the tributary during at least one survey in all monitoring years: 2016, 2017, 2018, and 2019. Incidental FYLF observations at the roadside seep were less frequent; two to three FYLF were found at the seep during June 2016 and July 2019. As expected, based on habitat conditions, there was no evidence of breeding (i.e., egg masses or tadpoles) at these locations.

The increase in number of WPTs observed during 2019 compared to monitoring years 2016, 2017, and 2018 (which yielded 0–1 WPT per year [SMUD 2017, 2018, 2019]) suggests there may be a trend towards an increased population of WPTs in the SFAR (Site SCD-A1). WPT observations were distributed throughout Site SCD-A1 during 2019, indicating that the population is utilizing suitable pool habitat throughout the reach (Figure 8-19). Of the WPT captured, the number of scute rings¹⁰ (2, 7, 9) suggest that the population of WPT varies in age class. Future monitoring will continue to provide coarse data on population trends.

8.5 LITERATURE CITED

Ashton, D.T., K. Beal, N.E. Karraker, D.A. Reese, K.E. Schlick, F. Slavens, K. Slavens. and R. Goggans. 2012. Western Pond Turtle: Biology, Sampling Techniques, Inventory and Monitoring, Conservation, and Management Chapter 7: Field Procedures. Editors R. B. Bury, H.H. Welsh, D.J. Germano, and D.T. Ashton. Northwest Fauna 7: 57–67.

Bury, R.B., H.H. Welsh, D. J. Germano, D.T. Ashton. 2012. Western Pond Turtle: Biology, Sampling Techniques, Inventory and Monitoring, Conservation, and Management. Northwest Fauna 7.

DWR (California Department of Water Resources). 2019. Water Conditions in California Report 4 May 1, 2019. Department of Water Resources, Sacramento, CA. May. Retrieved from:

https://cdec.water.ca.gov/reportapp/javareports?name=b120may19.pdf

¹⁰ Evidence suggests that scute rings can be used to determine approximate age of turtle, by the assumption that one ring is deposited per year up to a certain age (Ashton et al. 2012).

Germano, J.D. and B. Bury. 2001. Western pond turtles (Clemmys marmorata) in the Central Valley of California: Status and Population Structure. Transactions of the Western Section of the Wildlife Society. 37:2001.

Heyer, W.R., M.A. Donnelly, R.W. McDiarmid, L.A.C. Hayek, and M.S. Foster. 1994. Measuring and monitoring biological diversity: Standard methods for amphibians. Smithsonian Institution Press, Washington, D.C.

Holland, D. C. 1994. The western pond turtle: habitat and history. Final Report. U.S. Department of Energy, Bonneville Power Administration, Portland, Oregon.

Lind, A. 1997. Survey protocol for foothill yellow-legged frogs (*Rana boylii*) in streams. U.S. Forest Service, Pacific Southwest Research Station, Arcata, California. DG: S27L01A.

Marlow, K.R., K.D. Wiseman, C.A. Wheeler, J.E. Drennan, and R.E. Jackman. 2016. Identification of individual foothill yellow-legged frogs (*Rana boylii*) using chin pattern photographs: a non-invasive and effective method for small population studies. Herpetological Review 47(2): 193-198.

PG&E (Pacific Gas and Electric Company). 2002a. A standardized approach for habitat assessment and visual encounter surveys for foothill yellow-legged frog (Rana boylii). Unpublished. By Craig P. Seltenrich, Senior Aquatic Biologist and Alicia C. Pool, Aquatic Biologist, PG&E, San Ramon, California. May.

PG&E. 2002b. Survey protocols, standard operating procedures, and data sheets for amphibian surveys and habitat assessments. Unpublished. PG&E, San Ramon, California.

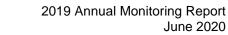
Peek, R.A., S.M. Yarnell, A.J. Lind. 2017. Visual Encounter Survey Protocol for *Rana boylii* in Lotic Environments. University of California, Davis, Center for Watershed Sciences.

https://watershed.ucdavis.edu/files/CWS%20FYLF%20VES%20Survey%20Protocol-Final.pdf

SMUD (Sacramento Municipal Utility District). 2016. Amphibian and Aquatic Reptile Monitoring Plan. Hydro License Implementation for the Upper American River Project (FERC Project No. 2101).

SMUD. 2016. Block of Water Plan. Hydro License Implementation for the Upper American River Project (FERC Project No. 2101)

SMUD. 2017. 2016 Amphibian and Aquatic Reptile Monitoring Report. Hydro License Implementation for the Upper American River Project (FERC Project No. 2101).



SMUD. 2018. 2017 Amphibian and Aquatic Reptile Monitoring Report. Hydro License Implementation for the Upper American River Project (FERC Project No. 2101).

SMUD. 2019. 2018 Amphibian and Aquatic Reptile Monitoring Report. Hydro License Implementation for the Upper American River Project (FERC Project No. 2101).

Storer, T.I. 1925. A synopsis of the amphibia of California. University of California Publications in Zoology 27:1–342.

Zweifel, R.G. 1955. Ecology, distribution, and systematics of frogs of the *Rana boylei* group. University of California Publications in Zoology 54:207–292.

9.0 SIERRA NEVADA YELLOW-LEGGED FROG

9.1 MONITORING PLAN OBJECTIVES

The objective of the Sierra Nevada Yellow-legged Frog Monitoring Plan (SMUD 2017) is to help determine future presence/distribution of Sierra Nevada vellow-legged frog¹¹ (Rana sierrae) (SNYLF) in UARP reservoirs and, if found, coarsely evaluate long-term population trends (i.e., evaluate populations trends as increasing, decreasing, or stable). An additional objective is to use habitat data to evaluate long-term changes in habitat suitability in project-affected areas.

9.2 METHODS

9.2.1 Monitoring Sites

In accordance with the monitoring plan, SNYLF monitoring was conducted at the following four sites, as detailed in Table 9-1 and illustrated in Figure 1-1:

- Rubicon Reservoir Inlet Area (Site RUB-A1), including the Rubicon River up to the FERC Boundary.
- Rubicon Reservoir Outlet Area (Site RUB-A2), including ponded waters in the vicinity and Rubicon River downstream of the dam for approximately 300 meters (984 feet).
- Rockbound Lake Inlet Area (Site RCK-A1), including off-channel ponds and (upper) Highland Creek for approximately 325 meters (1,066 feet) upstream of the confluence with Rockbound Lake.
- Lower Highland Creek¹² between Rockbound Lake and Buck Island Reservoir (Site) HC-A1), including any ponded waters adjacent to the creek.

Major aquatic features (i.e., streams, ponds, seeps, and reservoir inlets) at each site were identified and surveyed, as listed in Table 9-1 and illustrated in Figures 9-1 through 9-4. All ponded water outside of the major aquatic features was surveyed. Since no SNYLF had been previously detected within the Project-affected stream reaches and reservoirs (SMUD and PG&E 2005), the SNYLF monitoring sites include locations with potential habitat as described in the monitoring plan. All surveyed aquatic features were located within USFWS designated critical habitat for SNYLF (USFWS 2016).

¹¹ Formerly known as mountain yellow-legged frog (*Rana muscosa*), but now recognized as a separate species (Vredenburg et al. 2007). ¹² Highland Creek between Rockbound Lake and Buck Island Reservoir, Site HC-A1, is referred to as lower Highland

Creek to differentiate it from Highland Creek upstream of Rockbound Lake.

Table 9-1.Sierra Nevada Yellow-legged Frog Monitoring Sites and AquaticFeatures, 2019.

Site Code	Site	Elevation ^{a,b}	Aquatic	Aquatic Feature			
Sile Code	Description		Feature	UTM℃	Length ^{a,d}	Area ^{a,d}	
		6,529 ft	Rubicon River	4318230 N/ 740976 E	409 ft	-	
RUB-A1	Rubicon Reservoir Inlet Area		Rubicon Reservoir Inlet	4318307 N/ 740776 E	-	4.1 ac	
			Pond (perennial)	740873 N/ 4318423 E	-	0.7 ac	
RUB-A2	Rubicon Reservoir Outlet Area		Rubicon River	4319406 N/ 740459 E	1,900 ft ^e	-	
		6,523 ft	Rubicon Dam Seep	4319324 N/ 740652 E	618 ft	-	
			Pond (ephemeral)	4319450 N/ 740303 E	-	0.6 ac	
	Rockbound		Rockbound Lake Inlet	4319569 N/ 739651 E	-	5.1 ac	
RCK-A1	Lake Inlet Area	6,539 ft	Upper Highland Creek	4319346 N/ 739589 E	1,390 ft ^e	-	
HC-A1	Highland Creek	6,435 ft	Lower Highland Creek	4320346 N/ 738378 E	1,691 ft	-	

^a Site elevations, lengths, and areas are calculated in geographic information system (GIS) (projection: 10-m DEM from USGS).

^b Elevations are for the most downstream survey location at the site, reported in feet (ft).

 Projection: NAD83 UTM Zone 10 North, N = Northing, E = Easting. Coordinates listed are for the approximate center of the aquatic feature.

^d Site lengths are reported in feet (ft) for streams. Site areas are reported in acres (ac) for inlet areas and ponds.

^e Lengths are based on the linear extent of the stream reach surveyed, which are greater than the approximated distances in the monitoring plan.

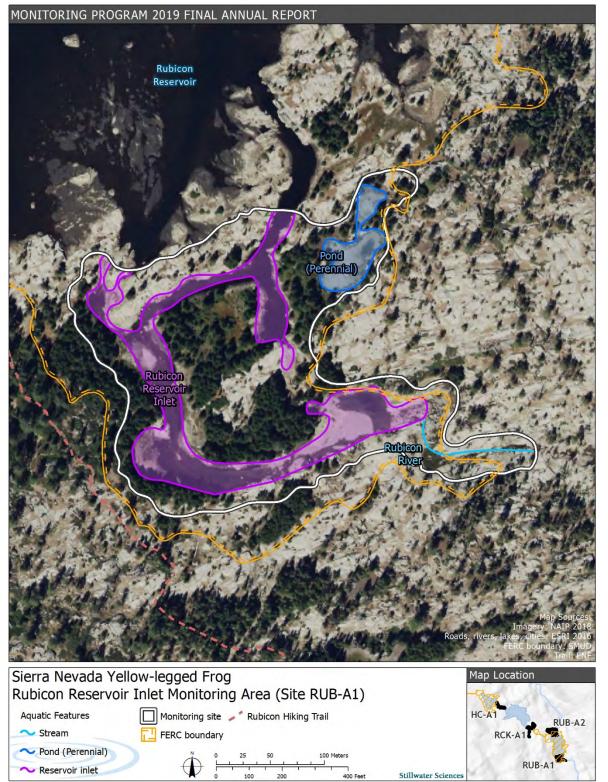


Figure 9-1. Aquatic features at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1), 2019.

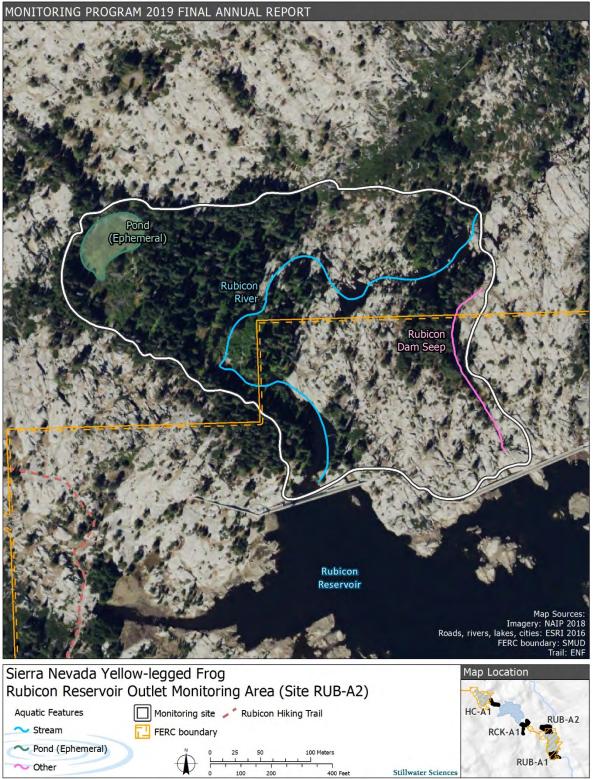


Figure 9-2. Aquatic features at the Rubicon Reservoir Outlet Monitoring Area (Site RUB-A2), 2019.

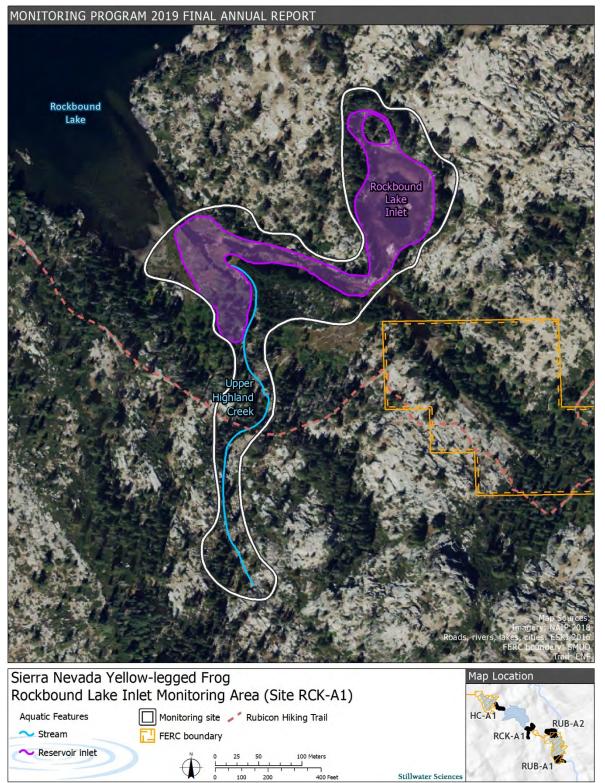


Figure 9-3. Aquatic features at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1), 2019.

Figure 9-4. Aquatic features at the lower Highland Creek Monitoring Area (Site HC-A1), 2019.

CDFW conducted one herpetofaunal survey around the perimeter of Rubicon Reservoir, Rockbound Lake, Buck Island Lake and adjacent ponds during 2019; no SNYLF were found (I. Chellman, CDFW, pers. comm., February 20, 2020).

9.2.2 Visual Encounter Surveys

Diurnal Visual Encounter Surveys (VESs) were performed in all safely accessible areas within each site, generally following protocols outlined in CDFW (2017). Surveys focused on adults, subadults, and tadpoles. In addition to SNYLF, all other amphibian and reptile species observed during the surveys were recorded, as well as any potential predators (e.g., fish). The specific survey methodology follows methods described in the monitoring plan (SMUD 2017).

Three focused VESs were conducted at least one month apart at each site in 2019 as follows: one survey after snowmelt and after frogs presumably emerged for breeding (July), one mid-season survey (August), and one late-season survey (September). Survey dates for each site are listed in Table 9-2.

VESs were conducted once crews were able to safely access study sites. An unusually high snowpack resulted in high run-off in late spring/early summer¹³ in the UARP and affected site accessibility. Some segments of creeks and reservoir inlets (i.e., Rubicon River above Rubicon Reservoir, upper Highland Creek above Rockbound Lake, Rockbound Lake Inlet near Rockbound Lake, and lower Highland Creek between Buck Island Reservoir and Rockbound Lake) were unsafe to cross or access due to high flows during the July survey; portions of these sites were not surveyed and/or survey methods were modified (e.g., the left bank of lower Highland Creek at Site HC-A1 was surveyed from the right bank using binoculars due to high flows preventing a safe stream crossing). During August and September surveys, all aquatic features were safely accessible.

	Site Description	Survey Date (2019)				
Site Code	Site Description	VES 1	VES 2	VES 3		
RUB-A1	Rubicon Reservoir Inlet Area	7/10	8/14	9/24		
RUB-A2	Rubicon Reservoir Outlet Area	7/9	8/13	9/25		
RCK-A1	Rockbound Lake Inlet Area	7/11	8/15	9/25		
HC-A1	Highland Creek	7/11	8/15	9/26		

 Table 9-2.
 Sierra Nevada Yellow-Legged Frog Monitoring Survey Dates, 2019.

9.2.3 Habitat Conditions

Habitat conditions were recorded in the field during VESs, including the presence of suitable habitat elements for SNYLF. Pertinent habitat characteristics recorded included

¹³ Data from California Department of Water Resources (DWR 2019) indicated northern Sierra snowpack was 130% of average on May 1, 2019.

habitat types (e.g., pools, creeks, seeps, side channel or backwater areas, cascades, etc.), aquatic cover types (e.g., logs, undercut banks, boulders, rootwads, or vegetation that can provide refuge for frogs), aquatic and terrestrial vegetation descriptions (percent cover and types of margin vegetation, emergent and submerged vegetation, terrestrial vegetation, and riparian canopy), aquatic substrate type (e.g., silt/sand, cobble, boulder, bedrock), and other aquatic feature characteristics (e.g., bank slope, flow regime [perennial or ephemeral], sun exposure, and potential SNYLF basking areas).

Photo points were established to document representative suitable SNYLF habitat at each site. Global Positioning System (GPS) coordinates were collected using an Oregon 600 GPS unit. Photographs were collected at the same location at least twice during 2019.

9.3 RESULTS

9.3.1 Sierra Nevada Yellow-legged Frog Observations

No SNYLFs were found at any of the survey sites in 2019. Table 9-3 provides survey start and end times, along with water and air temperatures recorded during VESs at each site.

9.3.2 Habitat Conditions

Suitable physical habitat for SNYLF was observed at each of the monitoring sites. Fish were documented in all perennial aquatic features except one pond at Site RUB-A1 and a seep at Site RUB-A2. Table 9-4 provides a summary of habitat characteristics and fish presence for perennial aquatic features located within each monitoring site. Representative photographs are included in Appendix I1.

Table 9-3.	Sierra Nevada Yellow-Legged Frog Survey Conditions.
------------	---

	Time							
	Site	Date	VES#		urs)	Aquatic Feature	Temperatu	re (Celsius)
Site Code	Description	(2019)	VL3#	Start	End	Aqualic i calure	Water	Air
						Rubicon River	8	
		7/10	1	1055	1500	Rubicon Reservoir Inlet	8–12	20–35
						Pond	27	
						Rubicon River	16–16.5	
RUB-	Rubicon	8/14	2	1100	1600	Rubicon Reservoir	18.5	24–28
A1	Reservoir	0/11	~	1100	1000	Inlet	10.0	21 20
	Inlet Area					Pond	24	
						Rubicon River	18	
						Rubicon		
		9/24	3	1210	1447	Reservoir	16–17	19–23
						Inlet		
						Pond	20	
						Rubicon River	10–10.5	
		7/9	1	1000	1435	Dam Seep	21–22.5	25–26.5
					Pond	22		
	RUB- A2 Rubicon Reservoir Outlet Area				1450	Rubicon River	16.5–17	
		8/13	2	1150		Dam Seep	19	24.5–28
72						Pond	20	
						Rubicon River	15–16	22–24
		9/25	3	1010	1145	Dam Seep	14	22-24
						Pond	not surve	yed (dry)
		7/11	1	1000	1405	Rockbound Lake Inlet	9.5–10	17–27.5
		7/11	1	1000	1405	Upper Highland Creek	9.5–12	17-27.5
RCK-	Rockbound	0/45		4045	4 455	Rockbound Lake Inlet	18–21	23–32
A1	Lake Inlet Area	8/15	2	1015	1455	Upper Highland Creek	16.5–17	23–32
		0/05	_	4045	4545	Rockbound Lake Inlet	17–17.5	04 00 5
	9/25	3	1315	1315 1545 -	Upper Highland Creek	13–15	21–26.5	
		7/11	1	1555	1640	Lower Highland Creek	11	21.5–28
HC- A1	Highland Creek	8/15	2	1530	1650	Lower Highland Creek	20–21	27–28
		9/26	3	1030	1135	Lower Highland Creek	15.5–16.5	22–23

Table 9-4.	Sierra Nevada Yellow-legged Frog Habitat Characteristics by Monitoring Site and Perennial Aquatic
Feature, 20	19.

Site Code	Aquatic Feature	Habitat Type	Aquatic Cover	Dominant Aquatic Substrate	Stream Bank Vegetative Cover	Emergent/ Submerged Vegetative Cover	Terrestrial Cover	Dominant Terrestrial Substrate	Riparian Canopy	Fish Present
RUB- A1	Rubicon River	stream (pool [50%], run [30%], plunge/pool [10%], cascade [10%]	15% (boulder, log)	bedrock (80%)	<5% (shrubs)	absent/absent	25% (log, boulder)	bedrock (90%)	<5% (conifer)	Yes
	Rubicon Reservoir Inlet	reservoir channels, backwater pools, ephemeral creeks	15% (rootwad, log, boulder, undercut bank)	sand (70%)	10% (grass)	<5% (grass, herbaceous)/ <5% (vegetation)	40% (vegetation, rootwad, log, boulder, burrows)	bedrock (50%) / Sand (50%)	25% (conifer, willow, alder)	Yes
	Pond	natural perennial pond	<5-20% (rootwad, log, boulder)	silt/mud (95%)	95% (grass, shrubs)	10% (grass)/ 5% (small macrophytes)	70% (vegetation, log, boulder)	bedrock (70%)	<10% (conifer)	No
RUB- A2	Rubicon River	stream (pool [50%], run [30%], riffle [20%])	50% (log, rootwad, vegetation, boulder, burrows)	boulder (35%) / bedrock (35%)	50% (forbs, grass, shrub, pines, oak, alder)	<5% (grass)/ <5% (algae)	75% (log, rootwad, vegetation, boulder, burrows)	boulder (30%) / Bedrock (30%) / Sand (30%)	50% (alder, conifer, oak, shrub)	Yes
	Rubicon Dam Seep	seep	30% (boulder, log)	boulder (50%)	20% (shrub, grass, pine)	<5% (grass)/ <5% (algae)	50 % (log, vegetation, boulder)	bedrock (60%)	25% (pine)	No

Site Code	Aquatic Feature	Habitat Type	Aquatic Cover	Dominant Aquatic Substrate	Stream Bank Vegetative Cover	Emergent/ Submerged Vegetative Cover	Terrestrial Cover	Dominant Terrestrial Substrate	Riparian Canopy	Fish Present
	Rockbound Lake Inlet	reservoir, stream, pool, meadow	60% (vegetation, undercut bank, log, boulder, rootwad)	silt/mud (60%)	95% (grass, sedge, alder, pines)	10% (herbaceous, grass, sedge, floating)/ <5% (algae)	90% (logs, boulder, vegetation, rootwad, burrows)	sand (80%)	40% (conifer)	Yes
RCK- A1	Lower Highland Creek	stream (riffle [25%], run [5%], pool [40%], plunge/pool [30%])	35–50% (log, boulder, undercut bank)	D/S: sand (45%) / silt & mud (45%); U/S: Boulder (75%)	D/S: 60% (alder, pine, grass, sedge, forbes); U/S: 10% (shrub, alder)	<5% (grass)/ <5% (algae)	D/S: 90% (vegetation, rootwad, log); U/S 80% (boulder, log, vegetation)	U/S: Sand (90%); D/S Boulder (55%)	50% (conifer)	Yes

Site Code	Aquatic Feature	Habitat Type	Aquatic Cover	Dominant Aquatic Substrate	Stream Bank Vegetative Cover	Emergent/ Submerged Vegetative Cover	Terrestrial Cover	Dominant Terrestrial Substrate	Riparian Canopy	Fish Present
HC-A1	Upper Highland Creek	stream (pool [50%], plunge/pool [20%], riffle [15%], cascade [15%])	50% (boulder, log, undercut bank, vegetation, rootwad)	boulder (50%)	5% (grass, shrub, pine)	<5% (herbaceous, grass)/ <5% (algae)	60% (boulder, log, vegetation, rootwad)	bedrock (45%), boulder (35%)	35% (conifer)	Yes

D/S=downstream; U/S=upstream; %=percent

9.3.2.1 Rubicon Reservoir Inlet Area (Site RUB-A1)

Three perennial aquatic features were identified and surveyed at Site RUB-A1: Rubicon River, Rubicon Reservoir Inlet, and one pond (Figure 9-1). Ephemeral creeks and ponded water were present at Site RUB-A1 during July, but mostly dry by the August survey.

Rubicon River

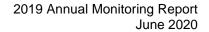

The Rubicon River is the most upstream aquatic feature at Site RUB-A1 (Figure 9-5). Its downstream start point is a cascade at the confluence with Rubicon Reservoir Inlet; it then extends approximately 409 feet upstream. Flows in the Rubicon River decreased between July (200–400 cfs) and September (3 cfs). The reach consists of a bedrock-lined channel of moderate gradient, and the estimated average wetted width is 15 feet. Habitat included pools, runs, high-gradient riffle, and cascades. Pools provided side-channel habitat with slow or still water, and boulders provided aquatic cover. Fish were present in the river. Low-gradient (<15°) granite and boulder stream banks with sparse vegetation had high sun exposure, providing potential basking areas. There was minimal riparian shading and the upland habitat was mixed conifer.

Figure 9-5. Representative photo of habitat at Site RUB-A1 along the Rubicon River, 24 September 2019.

Rubicon Reservoir Inlet

Rubicon Reservoir Inlet is a 4.1-acre wetted area that connects the Rubicon River and Rubicon Reservoir (Figure 9-6). Habitat included slow-moving deep channels (estimated water depth was 0–15 feet and average wetted width was 130 feet), backwater pools, and ephemeral creeks. Rubicon Reservoir Inlet water surface elevation was highest during the August survey. Aquatic cover was predominately boulders, but in some backwater and side-channel areas it was provided by logs,

rootwads, undercut banks, and underwater vegetation. Fish were observed in Rubicon Reservoir Inlet. Banks were gently to steeply sloped (with bank gradients ranging between 0° to 40°) and were characterized by bedrock and boulders with sparse vegetation or sandy banks with vegetation; these areas included sections of both high and low sun exposure with potential basking sites. Upland habitat was dominated by conifers.

Figure 9-6. Representative photos at Site RUB-A1 of two locations along Rubicon Reservoir Inlet, 14 August 2019 (top) 24 September 2019 (bottom).

Pond (perennial)

The 0.7-acre natural perennial pond located at Site RUB-A1 included two ponded areas connected by a narrow channel (Figure 9-7). The pond remained wet during all surveys and the maximum depth was estimated at 6 feet. Fish were not observed in the pond. During the July and August surveys emergent vegetation (i.e., grasses) provided aquatic cover; during the September survey these areas were no longer submerged but emergent vegetation provided cover at the pond margins. Aquatic cover was also provided by rootwads, logs, and boulders. Stream margins included both steeply sloped (>40°) bedrock/boulder banks and lower-gradient (<15°) sandy banks with vegetation, including areas of high and low sun exposure, providing potential basking sites. Upland habitat was dominated by conifers.

Figure 9-7. Representative photo of habitat at Site RUB-A1 of the pond (perennial), 10 July 2019.

9.3.2.2 Rubicon Outlet Area (Site RUB-A2)

Two perennial aquatic features were identified and surveyed at Site RUB-A2: Rubicon River and Rubicon Dam Seep; one ephemeral pond was surveyed during July (Figure 9-2) but dried before subsequent surveys. Additional ponded water and side channel pools were present throughout the Site RUB-A2 in July, but these areas were dry by the August survey.

Rubicon River

The Rubicon River at Site RUB-A2, is a 1,900-foot-long reach downstream of Rubicon Dam (Figure 9-8). Flows were regulated at Rubicon Dam and were similar during all surveys. Habitat included pools, riffle, and runs. The habitat changed at approximately 580 feet upstream. The downstream habitat was characterized by an open, wide,

granite and boulder-lined channel, with sparse-to-moderate margin vegetation, high sun exposure, and potential basking sites. The upstream habitat, closer to the dam, was characterized by deep pools, large woody debris jams, and areas of sand accumulation and dense vegetation along the stream margin. The wetted width was variable and ranged from 16 to 40 feet. Aquatic cover throughout the reach included logs, boulders, rootwads, underwater vegetation, and undercut banks. Fish were present in the river. There was moderate riparian shading and the upland habitat was mixed conifer.

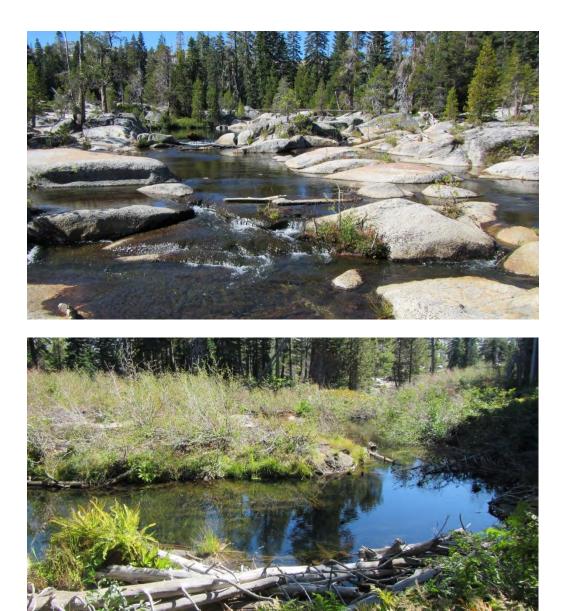


Figure 9-8. Representative photos at Site RUB-A2 of downstream (top) and upstream (bottom) habitat along the Rubicon River, 25 September 2019.

Rubicon Dam Seep

Rubicon Dam Seep at Site RUB-A2 is a 618-foot-long reach downstream of the east side of Rubicon Dam (Figure 9-9). The water appears to seep from Rubicon Reservoir, creating continuous ponded water with low to no apparent flow observed during all surveys. The habitat included granite-lined pools and the average wetted width was 6.5 feet. Aquatic cover included boulders, logs, and undercut banks. Fish were not observed. Banks were generally steep (>40°) with granite boulders.

Figure 9-9. Representative photo of habitat at Site RUB-A2 along Rubicon Dam Seep, 9 July 2019.

Pond (ephemeral)

One naturally occurring pond was surveyed during July and was mostly dry by August (Figure 9-10). During July, the pond was 0.6 acres and the maximum depth was estimated at 4 feet. Aquatic cover was 90% and was dominated by submerged and emergent grasses. The banks were low gradient (<15°) and sandy. Vegetation along the pond margins included shrubs and pine.

Figure 9-10. Ephemeral pond at Site RUB-A1 on 9 July 2019 (top) and 13 August 2019 (bottom).

9.3.2.3 Rockbound Lake Inlet Area (Site RCK-A1)

Two perennial aquatic features were identified and surveyed at Site RCK-A1: Rockbound Lake Inlet and upper Highland Creek (Figure 9-3). Additional ponded water and side channel pools were present throughout Site RUB-A2 in July, but these areas were dry by the August survey.

Rockbound Lake Inlet

Rockbound Lake Inlet water supply is from the diversion tunnel that connects Rubicon Reservoir to Rockbound Lake. The 5.1-acre survey area included 658 feet of lowgradient stream channel, one 2.9-acre backwater pool, and one 1.4-acre wetland at the Rockbound Lake margin (Figure 9-11 through Figure 9-13). The wetland was not surveyed during July as it was submerged due to high water levels in Rockbound Lake. Aquatic cover included logs, boulders, underwater vegetation, rootwad, and undercut banks. Fish were observed in Rockbound Lake Inlet. Banks were predominately low gradient (<15°) and covered with vegetation (i.e., grasses and sedges), sun exposure was moderate to high, and potential basking areas were present. Upland habitat was mixed conifer.

Figure 9-11. Representative photo at Site RCK-A1 of habitat along the stream margin located at Rockbound Lake Inlet, 15 August 2019.

Figure 9-12. Representative photo at Site RCK-A1of habitat along the side-channel pond area located at Rockbound Lake Inlet, 15 August 2019.

Figure 9-13. Representative photo at Site RCK-A1 of habitat along the wetland located at Rockbound Lake Inlet, 15 August 2019.

Upper Highland Creek

Upper Highland Creek is an 1,390-foot-long reach that starts at Rockbound Lake Inlet, is intersected by the Rubicon Hiking Trail further upstream, and ends at a steep cascade at the upstream end of the reach (Figure 9-14). Flows were highest during July surveys. Habitat included pools, riffle, runs, and cascades. A shift in habitat occurred at the Rubicon Hiking Trail stream crossing. The subreach below the trail consisted of low-

gradient channel with low-gradient (<15°) banks, deep pools, large woody debris jams, areas of sand accumulation and dense vegetation along the margin. The upstream subreach was a high-gradient confined channel, characterized by boulder and granite substrate, sparse vegetation, high sun exposure, and potential basking areas. Fish were observed in the reach downstream of the trail. Aquatic cover throughout the reach included logs, boulders, rootwads, underwater vegetation, and undercut banks. The upland habitat was mixed conifer.

Figure 9-14. Representative photos of habitat at Site RCK-A1 along upper Highland Creek upstream (top) and downstream (bottom) of the Rubicon Hiking Trail, 15 August 2019.

9.3.2.4 Highland Creek (Site HC-A1)

Lower Highland Creek was the only identified perennial aquatic site at Site HC-A1 (Figure 9-4). Ephemeral seeps and ponded water were present at Site HC-A1 during July, but these off-channel areas were mostly dry by the August survey.

The 1,691-foot-long reach of lower Highland Creek connects Rockbound Lake with Buck Island Reservoir (Figure 9-15). Flows in the creek decreased between July and September. Habitat included cascades, plunge pools, large pools, riffles, and runs. The cascades were predominately bedrock aquatic substrate, lacked aquatic cover, and had high sun exposure. The other habitat units (i.e., pools, riffles, and runs) were predominately boulder and cobble aquatic substrate, provided aquatic cover (i.e., logs, boulders, undercut banks, underwater vegetation, and rootwads), and had moderate sun exposure. Fish were observed in the stream. Potential basking habitat was present throughout the reach. Upland habitat was mixed conifer.

Figure 9-15. Representative photo at Site HC-A1 along lower Highland Creek, 15 August 2019.

9.3.3 Other Amphibian and Aquatic Reptile Species

Five non-special status amphibian and reptile species were observed throughout the monitoring sites during VESs; species, life stage, and location(s) where documented and summarized in Table 9-5. Figure 9-16 through Figure 9-18 show photographs of documented Sierran treefrogs and western toads.

Table 9-5.	Additional Her	petofauna S	pecies Ob	served, by	/ Life Stage, 2019	
						-

Species Common	Life Stage				Location(s) Where Species					
Name (Scientific name)	Egg Mass	Larvae	Young- of-Year	Juv/ Adult	Documented					
	Amphibians									
Sierran treefrog (<i>Pseudacris sierra</i>)	Xa	х	х	х	RUB-A1 (Rubicon Reservoir Inlet, Pond), RUB-A2 (Rubicon Dam Seep, Pond), RCK-A1 (Rockbound Lake Inlet, upper Highland Creek), HC-A1 (lower Highland Creek)					
Western toad (Anaxyrus boreas)				Х	RCK-A1 (Rockbound Lake Inlet), RUB- A2 (small ephemeral pool near dam)					
			Re	ptiles						
Sierra garter snake (<i>Thamnophis</i> <i>couchii</i>)				Х	RUB-A1 (Rubicon River, Pond), RUB-A2 (Rubicon Dam Seep)					
Valley garter snake (Thamnophis sirtalis fitchi)				Х	RUB-A1 (Pond)					
Mountain garter snake (<i>Thamnophis</i> elegans elegans)				х	RUB-A1 (Pond), RUB-A2 (Pond), HC-A1 (lower Highland Creek)					

Juv = juvenile

X = observed

^aSpent egg masses at RUB-A2 ephemeral pond on 7/9/2019

2019 Annual Monitoring Report June 2020

Figure 9-16. Sierran tree frog tadpoles found at Site RUB-A2 on 9 July 2019 and Site RUB-A1 on 14 August 2019.

Figure 9-17. Sierran treefrogs found at Site RUB-A1 on 14 August (top left), Site RCK-A1 on 15 August (top right), Site RUB-A1 on 24 September 2019 (bottom left), and Site HC-A1 on 26 September 2019 (bottom right).

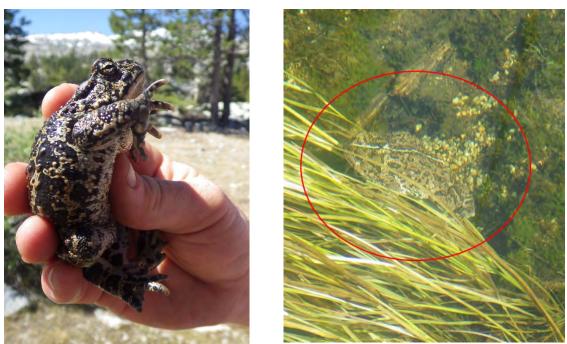


Figure 9-18. Western toads found at Site RUB-A2 on 9 July 2019 (left) and Site RCK-A1 on 15 August 2019 (right).

9.4 DISCUSSION

The lack of SNYLF detections during 2019 VESs are consistent with past survey results: no SNYLFs have been historically detected within the Project-affected stream reaches and reservoirs (SMUD and PG&E 2005: Stillwater Sciences 2017, 2018). During relicensing studies in 2004, VESs for SNYLF were conducted throughout the UARP, including the following locations: Rubicon Reservoir, Rubicon Springs, Rockbound Dam, three ponds near Rockbound Dam, Highland Creek, Little Rubicon River, Buck Island Reservoir, Loon Lake, four ponds near Loon Lake, unnamed tributaries to Loon Lake, Ellis Creek, Gerle Creek, South Fork Rubicon River, South Fork Silver Creek, Jones Fork Silver Creek, and Yellow Jacket Creek (SMUD and PG&E 2005); no SNYLF were found during these surveys at these locations. In 2017 and 2018, focused VESs for SNYLF were conducted prior to vegetation and invasive weed management (SMUD 2017) as well as other operations, maintenance, and construction activities at various UARP locations around Loon Lake, Gerle Creek Reservoir, Union Valley Reservoir, Ice House Reservoir, Rubicon Reservoir, Buck Island Reservoir, and the Rubicon Hiking Trail; no SNYLFs were found during these surveys (Stillwater Sciences 2017, 2018). Furthermore, CDFW conducted one survey at Rubicon Reservoir, Rockbound Lake, and Buck Island Reservoir and adjacent ponds during 2019; no SNYLF were found (I. Chellman, CDFW, personal communication, February 20, 2020).

Although SNYLFs have not been detected in the UARP, SNYLFs have been observed at other lakes located in Desolation Wilderness including Highland Lake, Lake Zitella,

McConnell Lake, and Leland Lakes (CDFW 2015a, CDFW 2015b, CDFW 2017, CDFW 2019, CDFW 2020). These lakes are located between 1.4 and 3.5 miles south of the Rubicon Reservoir Inlet Area. The number of SNYLF observed by CDFW and ENF biologists has increased during one or more surveys since 2014 at the two lakes closest to the UARP: (1) Highland Lake, including its outlet stream and associated ponds (upstream of, and hydrologically connected to Rockbound Lake via Highland Creek, 2.2 miles to the southwest of the Rubicon Reservoir Inlet Area), and (2) Lake Zitella (1.4 miles south of Rubicon Reservoir Inlet Area) (CDFW 2019). The removal of introduced predatory fish (i.e., rainbow trout [*Oncorhynchus mykiss*]) by CDFW between 2012–2015 (CDFW 2019) substantially improved the SNYLF population at Highland Lake and drainage to over one thousand adults, hundreds of subadults, and over one thousand tadpoles during 2018 VESs (CDFW 2019). The proximity of this robust and hydrologically connected SNYLF population suggests that SNYLF could immigrate to the UARP, though the presence of fish in the area of the UARP likely reduces the potential of SNYLF to become established in the UARP area.

Suitable physical habitat was documented at all monitoring sites, including perennial streams, wetlands, and ponds. Suitable habitat elements were also present, including basking areas for thermoregulation, slow-moving permanent water for breeding (e.g., side pools in stream systems and ponds), aquatic cover for refuge from predators (e.g., boulders, logs, aquatic vegetation, undercut bank, rootwads), and terrestrial cover for refuge (Table 9-4, Appendix I1). However, fish were documented within all perennial habitat units except the pond at Site RUB-A1 and Rubicon Dam Seep at Site RUB-A2. Fish observed included salmonids and were likely rainbow trout and brown trout (Salmo trutta), which were documented in 2019 below Rubicon Dam (see Section 2.0 Trout). Non-native trout are predators of SNYLF and are one of the factors that have led to the decline of SNYLF populations in the Sierra Nevada mountains (Knapp and Matthews 2000, Wilkins et al. 2019). Other factors adversely impacting SNYLF populations include the spread of chytrid fungus (Batrachochytrium dendrobatidis), pesticide use, and climate change (e.g., increased drought severity) (Davidson and Knapp 2007, Wilkens et al. 2019). Although suitable physical habitat is present in the UARP, it may be unlikely for SNYLF from relatively nearby populations (e.g., Highland Lakes, Lake Zitella) to expand into the UARP due to the considerable presence of predatory fish. Future monitoring will continue to provide information on potential presence of SNYLF in project-affected areas and on interannual and long-term changes in habitat suitability (e.g., habitat elements, prevalence of predatory fish, potential effects of climate change/increased drought).

9.5 LITERATURE CITED

CDFW (California Department of Fish and Wildlife). 2015a. Sierra Nevada yellow legged frog monitoring in the Phipps Creek Planning Watershed within Desolation Wilderness. Memorandum from Kevin Thomas, Senior Environmental Scientist (Supervisor), North Central Region to Sarah Mussulman, Environmental Scientist—High Mountain Lakes, North Central Region. October 22.

CDFW. 2015b. Native amphibian restoration and monitoring in Desolation Wilderness; Action: Highland Lake fish removal and *Rana sierrae* monitoring. Memorandum from Kevin Thomas, Senior Environmental Scientist (Supervisor), North Central Region to Sarah Mussulman, Environmental Scientist—High Mountain Lakes, North Central Region. October 26.

CDFW. 2017. Protocol for amphibian and reptile visual encounter surveys at monitoring sites. Version 3. Updated Summer 2017, ICC.

CDFW. 2019. Native amphibian restoration and monitoring in Desolation Wilderness: Highland Lake *Rana sierrae* monitoring; *Rana sierra* translocation from Highland Lake to 4-Q Lakes. Memorandum from Kevin Thomas, Senior Environmental Scientist (Supervisor), North Central Region to Sarah Mussulman, Environmental Scientist—High Mountain Lakes, North Central Region. February 8.

CDFW. 2020b. California Natural Diversity Database. California Natural Diversity Database. RareFind3. Electronic database. Natural Heritage Division, California Department of Fish and Game, Sacramento, California. https://www.wildlife.ca.gov/Data/CNDDB/Maps-and-Data [Accessed January 2020].

Davidson, C. and R.A. Knapp. 2007. Multiple stressors and amphibian declines: dual impacts of pesticides and fish on yellow-legged frogs. Ecological Applications 17(20: 587–597. March.

DWR (California Department of Water Resources). 2019. Water Conditions in California Report 4, May 1. Department of Water Resources, Sacramento, CA. May. Retrieved from: https://cdec.water.ca.gov/reportapp/javareports?name=b120may19.pdf

Knapp and Matthews. 2000. Non-native fish introductions and the decline of the mountain yellow-legged frog from within protected areas. Conservation Biology 14(2): 428–438. April.

SMUD and PG&E (Sacramento Municipal Utility District and Pacific Gas and Electric Company). 2005. SMUD Upper American River Project and PG&E Chili Bar Project– Amphibians and aquatic reptiles technical report. Prepared by Devine Tarbell and Associates, Inc. and Stillwater Sciences. April, version 3. FERC Project No. 2101.

SMUD. 2017. Vegetation and Invasive Weed Management Plan. Upper American River Project (FERC Project No. 2101) Hydro License Implementation. December.

Stillwater Sciences. 2017. Results of 2017 Supplemental Sierra Nevada Yellow-legged Frog Surveys at Select UARP Project Sites. August.

Stillwater Sciences. 2018. Results of 2018 Supplemental Sierra Nevada Yellow-legged Frog Surveys at Select UARP Project Sites. August.

SMUD (Sacramento Municipal Utility District). 2017. Sierra Nevada Yellow-legged Frog Monitoring Plan. Hydro License Implementation for the Upper American River Project (FERC Project No. 2101).

USFWS (United States Fish and Wildlife Service). 2016. Endangered and threatened wildlife and plants; designation of critical habitat for the Sierra Nevada yellow-legged frog, the Northern Distinct Population Segment of the mountain yellow-legged frog, and the Yosemite toad; final rule. Federal Register 81 59046–59119.

Vredenburg, V.T., R. Bingham, R.A. Knapp, J.A.T. Morgan, C. Moritz, and D. Wake. 2007. Concordant molecular and phenotypic data delineate new taxonomy and conservation priorities for the endangered Mountain Yellow-legged Frog. Journal of Zoology. Volume (271) 361–374.

Wilkins, L.G.E, K.R. Matthews, Z.L. Steel, S.C. Nussel, S.M. Carlson. 2019. Population dynamics of Rana sierra at Dusy Basin: influence of non-native predators, drought, and restoration potential. Ecosphere 10(11). 1–17. November.

10.0 BEAR MANAGEMENT MONITORING

10.1 MONITORING PLAN OBJECTIVES

The primary objectives and rationale for the bear management monitoring program, as described in the Plan are:

Monitor effectiveness of measures related to bear management using a method acceptable to FS, FWS, and CDFG.

This monitoring will help determine if bear management measures used to keep bear populations away from recreation sites within the UARP are effective. As described in Settlement Agreement Article 1-6.10;

If, over a 5-year period, monitoring indicates that the number of bear/human interaction incidents does not decline or decrease in severity, the licensee shall work with FS, FWS, and CDFG to identify and implement additional measures necessary to reduce such problems.

Additionally, the results of this monitoring may be useful to SMUD and the USFS when planning and prioritizing locations to install bear-proof food lockers.

10.2 STUDY AREA AND SAMPLING LOCATIONS

As was done since monitoring began in 2016, monitoring was carried out at developed, UARP-related recreation facilities within the Project area (Figure 10-1 and Table 10-1). These included both day-use and overnight facilities; hosted and unhosted.

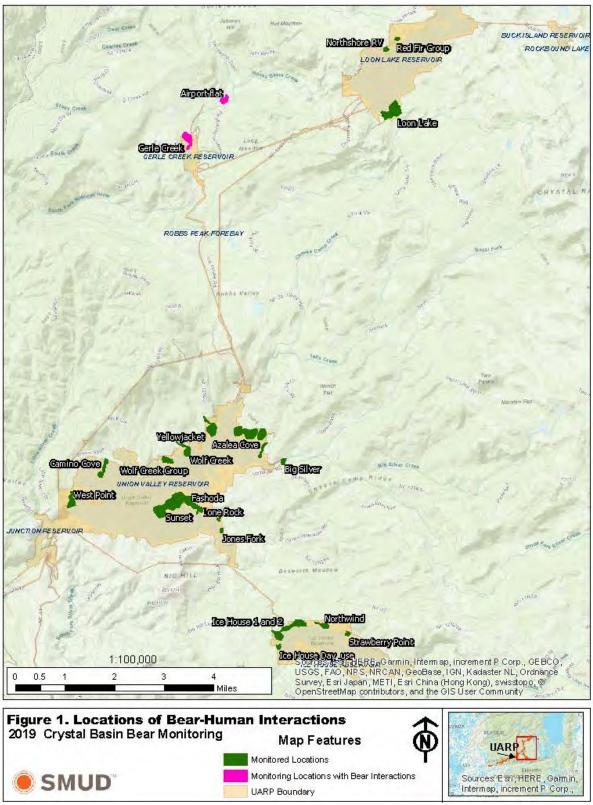


Figure 10-1. Bear-human interaction monitoring locations

Table 10-1.Sites associated with the UARP bear-human interaction 2019monitoring program.

	Existing Lockers/			
Facility	Trash	Hosted Site	Monitored	Comment
Northshore RV CG	Y	N	N	Site closed in 2019; Campground rebuilt, and lockers installed
Loon Lake Family CG; Boat Launch RV CG; Equestrian CG; Group CG; and Equestrian Group CG	Y	Y	Y	Host administering multiple LL facilities was responsible for collecting forms
Red Fir CG	Y	N	Y	Monitoring form box installed
Pleasant Boat In CG	Y	N	N	Monitoring Box not deployed here
Airport Flat CG	Y	N	Y	Monitoring form box installed
Gerle Creek CG	Y	Y	Y	Host supplied with forms
Sunset Family CG	Y	Y	Y	Host supplied with forms
Fashoda CG	Y	Y	Y	Host supplied with forms
West Point CG	Ν	N	Y	Monitoring form box installed
Yellowjacket CG	N	Y	Y	Host supplied with forms
Wench Family and Group CG	Y	Y	Y	Host supplied with forms
Wolf Creek Family and Group CG	Y	Y	N	Site closed for 2019 season
Azalea Cove CG	Y	N	Y	Monitoring form box installed
Big Silver Group CG	Y	N	Y	Monitoring form box installed
Camino Cove CG	Y	N	N	Site closed for 2019 season
Jones Fork CG	Y	N	Y	Monitoring form box installed
Lone Rock CG	Y	N	Y	Monitoring form box installed
Ice House Family CG	Ν	Y	Y	Host supplied with forms
Northwind CG	Y	N	Y	Monitoring form box installed

Facility	Existing Lockers/ Trash	Hosted Site	Monitored	Comment
Strawberry Point CG	Y	N	Y	Monitoring form box installed
		Day-use Areas		
Angel Creek	Y	N	Y	Monitoring form box installed
Gerle Creek	Ν	Y	Y	Host supplied with forms
Ice House	Ν	Y	Y	Host supplied with forms
Fashoda	Ν	Y	Y	Host supplied with forms
Jones Fork Bike Trailhead	Ν	N	Y	Monitoring form box installed at CG
Big Silver Bike Trailhead	N	N	Y	Monitoring form box installed at CG
Wench Creek Bike Trailhead	Y	Y	Y	Host supplied with forms
Loon Lake – Desolation Wilderness	Ν	N	Y	Monitoring form box installed at TH

10.3 METHODS

Prior to the start of the 2019 recreation season (Memorial Day weekend), SMUD and the USFS coordinated the redeployment of the boxes and forms at unhosted sites. Signs alerting recreationists of the bear monitoring program were installed by USFS staff at each location. On May 22, 2019 the USFS hosted a recreation season kickoff meeting with its new recreation concessionaire Royal Elks. At this meeting, SMUD staff discussed the bear monitoring program and asked for the help of concessionaire staff at hosted campgrounds to distribute forms and collect information from campers. In addition, CDFW participated with a bear awareness presentation and urged USFS and concessionaire staff to continue to educate recreationists on bear safety and enforce food storage rules.

USFS staff collected the forms mid-season and provided them to SMUD. Following the conclusion of the recreation season in early October 2019, SMUD contacted the USFS to ask for assistance in collecting any remaining completed forms from camp hosts and unhosted sites. No additional forms were received by SMUD.

10.4 RESULTS AND DISCUSSION

SMUD received 15 completed forms from the USFS for the 2019 recreation season (Appendix J1), the results of which are summarized in the table located in Appendix J2. The reports came from Gerle Creek (12), Airport Flat (2), and Millionaire Camp

(1). Only two reports were from dispersed camping areas; Millionaire Camp and one near the developed campground at Airport Flat

Since monitoring started in 2016 the number of reported incidents has fluctuated from a high of 43 in 2017 to 15 in 2019. Reported incidents have come from across the Crystal Basin but the Gerle Creek/Airport Flat area continues to be the hot spot for bear activity by far. The bears seem to be habituated to humans and are not easily deterred. Aside from the visitor reports, the campground hosts consistently report that the bears are knocking over dumpsters. As of 2019 most locations have bear resistant trash and food storage containers (Table 10-1).

The low number of reported incidents in 2019 may be a result of declining incidents, or missing forms due to staffing changes at the ENF along with a new campground concessionaire managing the sites. Getting completed forms is a continuing challenge. SMUD will work with the USFS during the 2020 season to refine the form collection protocol to ensure forms are collected on a regular basis.

In 2019, 9 of the 15 reports, or 60%, indicated that bears found food that was not properly stored in a bear-proof food locker, which is similar to past seasons. As indicated in previous reports, these numbers seem to indicate that more education and enforcement is needed so that visitors understand that *all food, trash or scented products* need to be stored in a bear-proof food locker. This message needs to be heavily reinforced by the USFS and its concessionaire hosts.

Based on observations and the monitoring results to-date, SMUD makes the following recommendations:

- 1. SMUD, CDFW and the USFS should continue to present information on the monitoring program to the concessionaire's campground hosts during an annual meeting and emphasize the importance of proper food storage.
- 2. SMUD and the USFS should improve the form collection protocol to be employed by USFS staff and camp concessionaire.
- 3. SMUD and USFS should meet briefly once toward the middle of the recreation season to discuss the need for more forms, cooperation of concessionaire staff, how often boxes are being checked, and whether signage is adequate, among other things.
- 4. Because there appears to be one or more problem bears in the Gerle Creek/Airport Flat area, CDFW may want to coordinate with the USFS on a strategy to address the problem. Campground hosts should have a nightly routine to check-in with each camper reminding them to store all food securely.

SMUD will continue to provide the results of the monitoring to the USFS and CDFW and any management decisions or actions will be at the discretion of those agencies with jurisdiction over the resource. SMUD may assist in any management decisions, as appropriate.

10.4.1 Upcoming Survey Plans

In accordance with the Plan, monitoring will occur annually during the recreation season (approximately Memorial Day through the end of September). For 2020, SMUD will ensure that each site to be monitored, including hosted sites, has adequate signage to educate the public about bears and to inform visitors of the monitoring program. SMUD will attend the annual kick-off meeting with the recreation concessionaire and the USFS to present the details of the monitoring program and enlist the support and assistance of the camp hosts and USFS recreation staff. For the monitoring to be effective it will be imperative to make sure the visiting public knows about the monitoring program and their need to fill out forms following any incidents. It is equally important that all sites have forms available throughout the year and that all forms are collected and returned to SMUD at the close of the season.

As stated in Article 1-6.10 of the Settlement Agreement (above), the parties are to determine if bear interactions are declining or decreasing in severity over the first 5 years of monitoring. The conclusion of monitoring in 2020 will mark the end of the first 5-year period so the 2020 report will attempt to determine whether the bear interactions are declining or not. Based on current data, its likely that no real overall conclusions will be evident with the exception that it appears that the Gerle Creek area is experiencing regular bear activity year after year despite having bear-proof food and trash receptacles.

10.5 LITERATURE CITED

FERC (Federal Energy Regulatory Commission). 2014. Federal Energy Regulatory Commission Order 148 FERC 62,070 Issuing New License for the Sacramento Municipal Utility District Upper American River Hydroelectric Project No. 2101. Issued July 23, 2014.

SMUD (Sacramento Municipal Utility District). 2015. Bear-Human Interaction Monitoring Plan. Hydro License Implementation for the Upper American River Project (FERC Project No. 2101).

11.0 LARGE WOODY DEBRIS

No Large Woody Debris (LWD) meeting the size requirement to pass was encountered in 2019 at Robbs Forebay, Junction, or Camino reservoirs. It is not known if any LWD meeting the size requirement to pass was present at Slab Creek Reservoir. Regardless, on February 14, prior to a spill event, the log booms were configured to the spill mode and all LWD was allowed to pass over the dam (Figure 11-1). The reservoir was left in this state until March 28, 2019 when the log booms were reconfigured to span the reservoir. There was no public access to the reservoir during this time.

Figure 11-1. Log boom reconfiguration at Slab Creek Dam allowing large woody debris to move downstream.

12.0 WATER TEMPERATURE

The Water Temperature Monitoring Plan was developed in consultation with the SWRCB, USFS, CDFW, and USFWS. FERC approved the monitoring plan on September 30, 2015.

12.1 MONITORING PLAN OBJECTIVES

The primary objectives and rationale for the water temperature monitoring program, as described in the Plan are as follows:

Annual water temperature monitoring at specified stream sites will provide information needed to determine whether cold freshwater resource objectives are being met and will provide an evaluation of breeding conditions for sensitive amphibian species. Stream temperature monitoring results will also be used to determine whether water temperature profiles within the reservoirs are needed to better understand cold water availability. An adaptive approach to water temperature monitoring will allow the removal of specific monitoring sites if results indicate water temperatures are adequate at those specific locations (Condition 8.1.).

This monitoring will help determine if water temperatures in UARP waters meet the Basin Plan beneficial use of Cold Freshwater Habitat (CVRWQCB 1998) and other identified habitats/species needs. If such a study is inconclusive, reservoir temperature profile monitoring may be required to assist in the decision-making process. Currently, the Plan requires water temperature monitoring in stream reaches throughout the duration of the license term or until *"the Licensee can demonstrate to the satisfaction of the Deputy Director that operation of the UARP reasonably protects the "cold freshwater" beneficial use at any site for which the Licensee seeks modification to the temperature monitoring requirement."*

These data are also utilized to direct the following requirements of the new license:

- Adaptive management decisions regarding initiation of FYLF breeding
- Cancellation of recreational boating releases due to FYLF breeding
- Temperature monitoring related to the 'block of water' releases on Silver Creek
- Response of aquatic resources to spill events and pulse flows after thresholds have been reached.
- Requirement of the Basin Plan that "At no time or place shall the temperature of COLD or WARM intrastate waters be increased more than 5° F above the natural receiving water temperature.

12.2 METHODS

12.2.1 Study Area and Sampling Locations

Continuous water temperature monitoring of stream reaches occurred in 2019 at 19 sites throughout the UARP area utilizing fixed stations or dataloggers. In general, these sites measured water temperatures in diverted stream reaches downstream of UARP reservoirs. Table 12-1 describes the locations and characteristics of each site. Final site development at a local scale was determined using proximity to release point, presence of isothermal water column, logistics, and channel morphology. Figures 1-1 through 1-3 depict the monitoring site locations relative to the UARP and primary streams and rivers.

	Site UTM (NAD 83)				Data	Threshold	Complete
Name	Site Description		Northing	Sensor Type	Transfer	Trigger	Data
	Rubicon River						
RR5	immediately below	740501	4319200	CS450L	Telemetry	None	Yes
	Rubicon Reservoir						
	Dam						
	Little Rubicon River						
LRR3	immediately below	737558	4320907	CS450L	Telemetry	None	Yes
	Buck Island						
	Reservoir Dam			_			
	Rubicon River			Onset			
RR1	below confluence of	736593	4323887	datalogger	Manual	None	Yes
	Little Rubicon River						
	at the Project						
	boundary Gerle Creek						
GC7	immediately below	732455	4320776	CS450L	Telemetry	None	Yes
007	Loon Lake	102400	4520110	004002	relefficity	None	103
	Reservoir Dam						
	Gerle Creek						
GC8	immediately below	725745	4316219	CS107 or	Telemetry	None	Yes
	Gerle Creek			CS450L	-		
	Reservoir Dam						
	South Fork Rubicon						
SFRR5	River immediately	726202	4314316	CS450L	Fiber Optic	None	Yes
	below Robbs Peak				Network		
	Reservoir Dam						
SFRR6	SF Rubicon River below confluence of	725256	4314907	CS450L	Tolomotry	None	Yes
SFKKO	Gerle Creek at the	120200	4314907	C5450L	Telemetry	none	res
	Project boundary						
	SF Rubicon River						
SFRR7	immediately	719438	4316236	Onset	Manual	None	No
•••••	upstream of the			datalogger			
	confluence with the						
	Rubicon River						
	South Fork Silver						
SFSC7	Creek immediately	728745	4299871	CS450L	Telemetry	None	Yes

Table 12-1. UARP Water Temperature Monitoring Site Locations

Site		UTM (I	NAD 83)	Sensor	Data	Threshold	Complete
Name	Site Description	Easting	Northing	Туре	Transfer	Trigger	Data
	below Ice House						
	Reservoir Dam ¹						
SFSC8	South Fork Silver Creek immediately upstream of Junction Reservoir	721498	4303358	CS450L	Telemetry	7DMAVG	Yes
SC5	Silver Creek immediately below Junction Reservoir Dam	720466	4303467	CS 450L	Fiber Optic Network	None	Yes
SC6	Silver Creek immediately above Camino Reservoir Dam	714119	4301407	CS450L	Telemetry	DAVG	Yes
SC7	Silver Creek immediately below Camino Reservoir Dam ¹	713631	4300155	CS450L	Fiber Optic Network	None	Yes
SC8	Silver Creek immediately upstream of South Fork American River	709310	4296208	CS450L	Telemetry	DAVG	Yes
BC4	Brush Creek immediately below Brush Creek Reservoir Dam	706407	4298536	CS451	Fiber Optic Network	None	Yes
SFAR13	South Fork American River immediately below Slab Creek Reservoir Dam	699644	4294054	CS450L	Fiber Optic Network	None	Yes
SFAR7	South Fork American River at Mosquito Rd Bridge	695572	4294304	Onset Datalogger	Manual	None	No
SFAR15	South Fork American River approximately ½ mile upstream of White Rock Powerhouse	692576	4292875	CS450L	Telemetry	7DMAVG	Yes
SFAR16	South Fork American River to record White Rock Powerhouse discharge temps	692212	4293046	CS450L	Fiber Optic Network	None	Yes

12.2.2 Temperature Data at Fixed-Stations

Sixteen of the nineteen water temperature sites were located at fixed stations. Monitoring compliance at these sites were accomplished using gaging stations located at weirs, stilling wells, or powerhouse tailraces. Each fixed station site utilized a Campbell Scientific datalogger and a redundant pair of temperature sensors. Sensor cables were contained inside conduit, and the sensors were placed as close as possible to the stream thalweg where water is well mixed. A solar shield helped prevent exposure to direct sunlight. Depending on the site, power was supplied either by photovoltaic panels and DC batteries or through an existing power supply. Data transfer occurred through radio telemetry or fiber optic network. At the fixed stations, temperature readings were collected at 15-minute intervals and telemetered to SMUD databases, where the data was summarized to hourly means and calculated to daily statistics.

12.2.3 <u>Temperature Data at Datalogger Stations</u>

Simple, non-permanent, calibrated temperature dataloggers (ONSET HOBO Water Temperature Pro V2) were deployed prior to March 15, 2018 at the remaining three sites ('Manual' sites in Table 12-1). The sensors were inserted into perforated metal framed housings that allowed for adequate water movement throughout.

Each housing was secured to large boulders or bedrock using hardened 3/8" chain and placed to assure that the sensor remained submerged and was not exposed to direct sunlight. Two dataloggers were installed at each site to protect against data loss in the event of equipment failure or drift. Dataloggers were deployed in habitat strata where the water was well-mixed, typically at the head of a pool just below a riffle input. Table 12-2 describes the equipment specifications for all sensors selected for water temperature monitoring. Hourly data from HOBO loggers were manually downloaded using Onset Computer Corporation software. All water temperature data is stored in a Microsoft SQL database designed for this purpose.

Sampling Equipment	Accuracy	Range	Calibration					
Campbell Scientific 107L	<±0.2°C from 0°to 50°	-35° to +50°C	Annual					
Campbell Scientific 450L	±0.2°C from 0°to 50° C	0° to 60°C	Biennial					
Onset Computer Corp. HOBO®	±0.2°C from 0° to 50°C	-40° to 50°C	Annual					
Campbell Scientific CR 1000 Datalogger	±3 min. per year	Not Applicable	Annual					

Table 12-2. Specifications for monitoring equipment

12.3 QA/QC

Raw data is reviewed on a routine basis. Temperature trends inspected include physical range limits, practical range limits, and rates of temperature change. Data obtained from the fixed stations were checked for validity using procedures that run every 24 hours following data download. A report is generated and sent to pertinent SMUD staff via email for any suspected erroneous data. The same procedures are run manually following download from the data loggers. Erroneous temperature values were adjusted manually; however, the original raw data was maintained in the database.

This review, along with graphical analysis and routine equipment inspection, ensured that sensors were functioning and recording properly throughout the monitoring period. For fixed stations, this allowed for a timely response if the need arose. Any equipment malfunction that required a field visit was addressed during normal business hours, under safe conditions. Repairs were made in as timely a manner as possible.

12.4 DECISION-MAKING THRESHOLDS

SMUD will use real-time water temperature information to make efforts to protect endangered species and Cold Freshwater Habitat. Eventually the 12°C 7DMAVG temperature trigger thresholds below may be adjusted on a site-specific basis if data from the FYLF monitoring supports such a change. In particular, SMUD will:

- Use water temperature thresholds to protect FYLF breeding activities by canceling recreational boating flows in the following reaches when the 7DMAVG exceeds 12°C:
- South Fork Silver Creek below Ice House Dam (If FYLF are found in this reach)
- SFAR below Slab Creek Reservoir
- Monitor for effects to aquatic resources following spills that occur at Camino and Slab Creek reservoirs when the 7DMAVG exceeds 12°C.
- Monitor other temperature thresholds to protect the Cold Freshwater Habitat requirements on Silver Creek, as described in the 401(SWRCB 2013). This involves informing the release of an additional "block of water" during wet water year types when the daily average temperature (DAVG) exceeds 20°C.
- Compare water temperature trends over time with other annual climatic conditions collected by SMUD. This will assist in determining whether the UARP is protecting the Basin Plan beneficial use of Cold Freshwater Habitat (CVRWQCB 1998).

12.5 ADAPTIVE MANAGEMENT

The water temperature sensors located at Mosquito Bridge were lost for the 2019 monitoring season (Table 12-1). The water temperature sensors located at South Fork Rubicon River (SFRR7) were not able to be recovered due to high flows. Three thresholds that are connected to various UARP adaptive management conditions were crossed during the monitoring period (Table 12-3). The exact dates are listed below.

Various thresholds triggered adaptive management actions. At Silver Creek Upstream of SFAR Confluence (SC8) the average daily water temperature crossed the 20°C threshold on August 24th. The next business day on August 26th SMUD increased the minimum streamflow from Camino Dam from 18 cfs to a target daily average flow of 28 cfs, and followed the process outlined in the Block of Water Plan. These releases resulted in the intended effect - the average daily water temperature at SC8 was reduced from approximately 20.5° C, to approximately 17.5° C, over the seven-day release period of ~28 cfs (see below). On September 3rd, the release was reduced back to the required minimum of 18 cfs. SMUD released approximately 150 acre-feet of additional water under the Block of Water release.

For water temperature monitoring at SFAR at Slab Creek Dam (SFAR13) and Silver Creek at Camino Gaging Station (SC7), the 7DMAVG exceeded the 12°C threshold in early June while spilling was occurring. Once spills subsided and conditions were safe, annual visual encounter surveys were performed. These surveys occurred below both Camino Dam and Slab Creek Dam.

Site Name	Site Description	Date Crossed Threshold	Duration of crossed Threshold
SFSC8	South Fork Silver Creek immediately upstream of Junction Reservoir	June 22, 2019	77 days
SC8	Silver Creek immediately upstream of South Fork American River	August 24, 2019	3 days
SFAR15	South Fork American River approximately ½ mile upstream of White Rock	May 31, 2019	133 days

Table 12-3. Crossed Thresholds

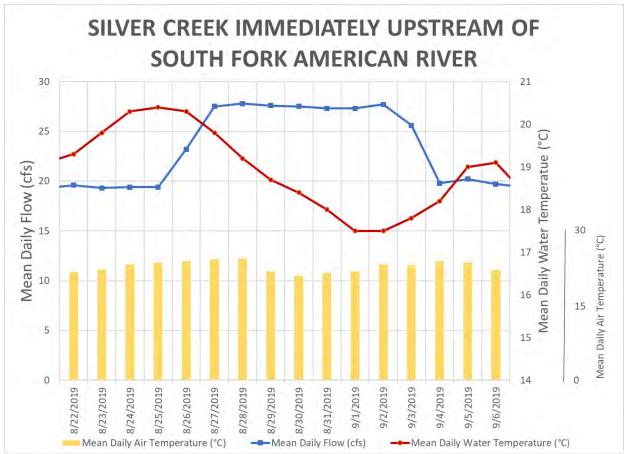


Figure 12-1. Silver Creek Upstream of South Fork American River Confluence (SC8) block of water

12.6 RESULTS

Data was analyzed at varying frequencies depending on the format of data retrieval (real-time opposed to manually retrieved/downloaded). All data was summarized to include values for daily mean, minimum and maximum temperatures. Further analysis included calculating the highest seven-day moving average temperature (7DMAVG). In a typical year, sites associated with trigger thresholds (Table 12-1), daily minimum, maximum, average and seven day moving average values were determined to notify SMUD staff if these thresholds were being exceeded. These processes are automated in the SMUD License Implementation database, which include a notification process when threshold triggers have been reached.

Water temperature data is presented graphically in Appendix K1. It is impractical to place hourly and daily data for all sites into this report, although this data will be made available upon request.

12.7 LITERATURE CITED

CVRWQCB (Central Valley Regional Water Quality Control Board). 1998. Water Quality Control Plan (Basin Plan) for the Central Valley Region. Sacramento River and San Joaquin River Basins (Basin Plan). Published by the California Regional Water Quality Control Board, Central Valley Region and the State Water Resources Control Board, Sacramento, CA.

FERC (Federal Energy Regulatory Commission). 2014. New License for the continued operation of the Upper American River Project, No. 2101. Federal Energy Regulatory Commission, Washington, D.C.

SMUD (Sacramento Municipal Utility District) et al. 2007. Relicensing Settlement Agreement for the Upper American River Project and Chili Bar Hydroelectric Project. Sacramento Municipal Utility District, Sacramento, CA.

SMUD et al. 2015. Temperature Monitoring Plan (Plan) for the Upper American River Project. Sacramento Municipal Utility District, Sacramento, CA.

SWRCB (State Water Resources Control Board). 2013. Water Quality Certification for the Upper American River Project. FERC Project No. 2101. State Water Resources Control Board. Sacramento, CA

This Page Intentionally Left Blank

APPENDIX A1

Pre- and Post-License Minimum Streamflow Requirements for the Upper American River Project (FERC P-2101)

This Page Intentionally Left Blank

			••••••											
TYPE 1 - Years when less than 1	FERC													
forecasted for Folsom Reservoir	29 Ref.	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	Comments
Rubicon River Below Rubicon Dam	(a)	6	6	6	6	6	6	6	6	6	6	6	6	See Note 1
Little Rubicon River Below Buck Island Dam	(b)	1	1	1	1	1	1	1	1	1	1	1	1	See Note 2
Gerle Creek below Loon Lake Dam	(c)	8	8	8	8	8	8	8	8	8	8	8	8	
South Fork Rubicon River below Robbs Peak Dam	(d) (g)	1	1	1	1	1	1	1	1	1	1	1	1	See Notes 3,8
Gerle Creek below Gerle Creek Dam	(d) (g)	4	4	4	4	4	4	4	4	4	4	4	4	See Notes 3,8
South Fork Silver Creek below Ice House Dam	(e) (g)	5	5	5	5	5	5	5	5	5	5	5	5	See Note 4
Silver Creek below Junction Dam	(f) (g)	5	5	5	5	5	5	5	5	5	5	5	5	See Note 3
Silver Creek below Camino Dam	(g)	5	5	5	5	5	5	5	5	5	5	5	5	See Note 3
Brush Creek below Brush Creek Dam	(I)	2	4	4	4	4	4	4	4	2	2	2	2	See Notes 5, 6
South Fork American River below Slab Creek Dam	(h)	36	36/10	10	10	10	10	10	10	36	36	36	36	See Notes 6, 7
TYPE 2 - Years when 1.0-1.499	FERC													
million acre-ft annual inflow is	Article													
forecasted for Folsom Reservoir	29 Ref.	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	Comments
Rubicon River Below Rubicon Dam	(a)	6	6	6	6	6	6	6	6	6	6	6	6	See Note 1
Little Rubicon River Below Buck Island Dam	(b)	1	1	1	1	1	1	1	1	1	1	1	1	See Note 2
Gerle Creek below Loon Lake Dam	(c)	8	8	8	8	8	8	8	8	8	8	8	8	
South Fork Rubicon River below Robbs Peak Dam	(d) (g)	1	1	1	1	1	1	1	1	1	1	1	1	See Notes 3,8
	TYPE 1 - Years when less than 1 million acre-ft annual inflow is forecasted for Folsom Reservoir Rubicon River Below Rubicon Dam Little Rubicon River Below Buck Island Dam Gerle Creek below Loon Lake Dam South Fork Rubicon River below Robbs Peak Dam Gerle Creek below Gerle Creek Dam South Fork Silver Creek below Ice House Dam Silver Creek below Junction Dam Silver Creek below Brush Creek Dam South Fork American River below Slab Creek Dam TYPE 2 - Years when 1.0-1.499 million acre-ft annual inflow is forecasted for Folsom Reservoir Rubicon River Below Rubicon Dam Little Rubicon River Below Buck Island Dam Gerle Creek below Loon Lake Dam	TYPE 1 - Years when less than 1 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.Rubicon River Below Rubicon Dam(a)Little Rubicon River Below Buck Island Dam(b)Gerle Creek below Loon Lake Dam(c)South Fork Rubicon River below Robbs Peak Dam(d) (g)Gerle Creek below Gerle Creek Dam(d) (g)South Fork Silver Creek below Ice House Dam(e) (g)Silver Creek below Junction Dam(f) (g)Silver Creek below Brush Creek Dam(l)South Fork American River below Slab Creek Dam(h)TYPE 2 - Years when 1.0-1.499 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.Rubicon River Below Rubicon Dam(a)Little Rubicon River Below Buck Island Dam(b)Gerle Creek below Rubicon Dam(a)Little Rubicon River Below Buck Island Dam(b)Gerle Creek below Loon Lake Dam(c)South Fork Rubicon River below(c)	TYPE 1 - Years when less than 1 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.Rubicon River Below Rubicon Dam(a)6Little Rubicon River Below Buck Island Dam(b)1Gerle Creek below Loon Lake Dam(c)8South Fork Rubicon River below Robbs Peak Dam(d) (g)1Gerle Creek below Gerle Creek Dam(d) (g)1Gerle Creek below Gerle Creek Dam(d) (g)4South Fork Silver Creek below Ice House Dam(e) (g)5Silver Creek below Junction Dam(f) (g)5Silver Creek below Brush Creek Dam(l)2South Fork American River below Slab Creek Dam(h)36TYPE 2 - Years when 1.0-1.499 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.Rubicon River Below Rubicon Dam(a)6Little Rubicon River Below Buck Island Dam(b)1Gerle Creek below Loon Lake Dam(c)8South Fork Rubicon River Below Buck Island Dam(b)1	TYPE 1 - Years when less than 1 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.NOVRubicon River Below Rubicon Dam(a)66Little Rubicon River Below Buck Island Dam(b)11Gerle Creek below Loon Lake Dam(c)88South Fork Rubicon River below Robbs Peak Dam(d) (g)11Gerle Creek below Gerle Creek Dam(d) (g)44South Fork Silver Creek below Ice House Dam(e) (g)55Silver Creek below Junction Dam(f) (g)55Brush Creek below Brush Creek Dam(l)24South Fork American River below Slab Creek Dam(h)3636/10TYPE 2 - Years when 1.0-1.499 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.OCTRubicon River Below Rubicon Dam(a)66Little Rubicon River Below Buck Island Dam(b)11Gerle Creek below Conn Lake Dam(a)66South Fork American River below Buck Island Dam(b)11Gerle Creek below Rubicon Dam(a)66South Fork Rubicon River Below Buck Island Dam(b)11	TYPE 1 - Years when less than 1 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.NOVDECRubicon River Below Rubicon Dam(a)666Little Rubicon River Below Buck Island Dam(b)111Gerle Creek below Loon Lake Dam(c)888South Fork Rubicon River below Robbs Peak Dam(d) (g)111Gerle Creek below Gerle Creek Dam(d) (g)444South Fork Silver Creek below Ice House Dam(e) (g)555Silver Creek below Junction Dam(f) (g)555Brush Creek below Brush Creek Dam(l)244South Fork American River below Slab Creek Dam(h)3636/1010TYPE 2 - Years when 1.0-1.499 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.NOVDECRubicon River Below Rubicon Dam(a)666Little Rubicon River Below Buck Island Dam(b)111Gerle Creek below Loon Lake Dam(c)888South Fork Rubicon River Below Buck Island Dam(b)111	TYPE 1 - Years when less than 1 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.NOVDECJANRubicon River Below Rubicon Dam(a)6666Little Rubicon River Below Buck Island Dam(b)1111Gerle Creek below Loon Lake Dam(c)888South Fork Rubicon River below Robbs Peak Dam(d) (g)1111Gerle Creek below Gerle Creek Dam(d) (g)444South Fork Silver Creek below Ice House Dam(e) (g)5555Silver Creek below Junction Dam(f) (g)5555Silver Creek below Brush Creek Dam(l)2444South Fork American River below Slab Creek Dam(h)3636/101010TYPE 2 - Years when 1.0-1.499 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.NOVDECJANRubicon River Below Rubicon Dam(a)6666Little Rubicon River Below Buck Island Dam(b)1111Gerle Creek below Loon Lake Dam(c)8888	TYPE 1 - Years when less than 1 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.NOV DECJANFEBRubicon River Below Rubicon Dam(a)666666Little Rubicon River Below Buck Island Dam(b)111111Gerle Creek below Loon Lake Dam(c)88888South Fork Rubicon River below Robbs Peak Dam(d) (g)111111Gerle Creek below Gerle Creek Dam House Dam(d) (g)44444South Fork Silver Creek below Ice House Dam(e) (g)55555Silver Creek below Junction Dam Creek below Camino Dam(f) (g)55555Brush Creek below Brush Creek Dam Creek Dam(l)24444South Fork American River below Slab Creek Dam(h)3636/10101010TYPE 2 - Years when 1.0-1.499 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.FERC Article 29 Ref.A44A666666Little Rubicon River Below Rubicon Dam Dam(a)66666Gerle Creek below Loon Lake Dam(c)88888South Fork Rubicon River Below Buck Island Dam(b)1111	TYPE 1 - Years when less than 1 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.NOVDECJANFEBMARRubicon River Below Rubicon Dam(a)6666666Little Rubicon River Below Buck Island Dam(b)11111111Gerle Creek below Loon Lake Dam(c)888888South Fork Rubicon River below Robbs Peak Dam(d) (g)1111111Gerle Creek below Gerle Creek Dam House Dam(d) (g)444444South Fork Silver Creek below Ice House Dam(e) (g)555555Silver Creek below Junction Dam Creek below Camino Dam(f) (g)555555Brush Creek below Brush Creek Dam Creek Dam(l)244444South Fork American River below Slab Creek Dam(h)3636/1010101010TYPE 2 - Years when 1.0-1.499 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.CCTNOVDECJANFEBMARRubicon River Below Rubicon Dam(a)6666666Little Rubicon River Below Rubicon Dam(a)6666666Gerle Creek below Lo	TYPE 1 - Years when less than 1 million acre-ft annual inflow is forecasted for Folsom ReservoirFERC Article 29 Ref.NOVDECJANFEBMARAPRRubicon River Below Rubicon Dam(a)66666666Little Rubicon River Below Buck Island Dam(b)111111111Gerle Creek below Loon Lake Dam(c)8888888South Fork Rubicon River below Robbs Peak Dam(d) (g)11111111Gerle Creek below Gerle Creek Dam House Dam(d) (g)4444444444South Fork Silver Creek below Ice House Dam(g)55<	TYPE 1 - Years when less than 1 million acre-ft annual inflow is forecasted for Folsom Reservoir FERC Article 29 Ref. NOV DEC JAN FEB MAR APR MAY Rubicon River Below Rubicon Dam (a) 6 5 5 5	TYPE 1 - Years when less than 1 million acre-ft annual inflow is forecasted for Folsom Reservoir FERC 29 Ref. NOV DEC JAN FEB MAR APR MAY JUN Rubicon River Below Rubicon Dam (a) 6 5 5	TYPE 1 - Years when less than 1 million acre-ft annual inflow is forecasted for Folsom Reservoir FERC Article 29 Ref. NOV DEC JAN FEB MAR APR MAY JUN JUL Rubicon River Below Rubicon Dam (a) 6 <	million acce-ft annual inflow is forecasted for Folsom Reservoir Article 29 Ref. OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG Rubicon River Below Rubicon Dam (a) 6	TYPE 1 - Years when less than 1 million acreft annual inflow is forecasted for Folsom Reservoir FERC 29 Ref. (a) NOV OCT DEC JAN FEB MAR APR MAY JUN JUL AUG SEP Rubicon River Below Rubicon Dam Little Rubicon River Below Buck Island Dam (a) 6

Table A1-1. Summary of minimum streamflow requirements prior to the 2014 UARP FERC license.

11430000	Gerle Creek below Gerle Creek Dam	(d) (g)	4	4	4	4	4	4	4	4	4	4	4	4	See Notes 3,8
11441500	South Fork Silver Creek below Ice House Dam	(e) (g)	5	5	5	5	5	5	5	5	5	5	5	5	See Note 4
11441800	Silver Creek below Junction Dam	(f) (g)	10	6	6	6	6	6	6	10	10	10	10	10	See Note 3
11441900	Silver Creek below Camino Dam	(g)	10	6	6	6	6	6	6	10	10	10	10	10	See Note 3
11442700	Brush Creek below Brush Creek Dam	(i)	2	4	4	4	4	4	4	4	2	2	2	2	See Notes 5, 6
11443500	South Fork American River below Slab Creek Dam	(h)	36	36/10	10	10	10	10	10	10	36	36	36	36	See Notes 6,7

Notes:

1. 6 cfs or the natural flow, whichever is less, plus storage provided by stream flow maintenance dams of the CDFG in Lakes Clyde, Schmidell, Lois, and Middle Velma.

2. 1 cfs at all times in addition to the storage releases from stream flow maintenance dams of the CDFG in Rockbound and Highland Lakes as determined by that dept.

3. Requirements are based on the 4/1 CDWR Bulletin 120 forecasted "Water Year Unimpaired Runoff" for the Folsom Reservoir (which is deemed to be the same as American River at Fair Oaks).

4. Requirements are based on the CDWR Bulletin 120 forecasted "Water Year Unimpaired Runoff" to Folsom Reservoir, beginning with the 4/1 bulletin and applying in turn the 5/1 bulletin as it is issued.

The 5/1 bulletin shall apply until 4/1 bulletin of the succeeding year is issued.

5. Requirements are as specified or natural flow, whichever is less.

6. Based on the CDWR Bulletin 120 forecasted "Water Year Unimpaired Runoff" to Folsom Reservoir, beginning with the 3/1 bulletin and applying in turn the 4/1 & 5/1 bulletins as they are issued.

The 5/1 bulletin shall apply until 3/1 bulletin of the succeeding year is issued.

7. From November 1 - November 15, releases are 10 cfs. From November 16- November 30, releases are 4 cfs.

8. Combined releases should be either 10 cfs or 5 cfs (distributed as noted in this chart), measured on the South Fork Rubicon River below the mouth of Gerle Creek.

USGS Gaging Station	Above Normal years when 2.6 to 3.5 MAF water year unimpaired inflow was forecast for Folsom Lake	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Notes
11427690	Rubicon Dam	6*	6*	15	20	35	15	6*	6*	6*	6*	6*	6*	
11428400	Buck Island Dam	1*	1*	3	5	8	3	1*	1*	1*	1*	1*	1*	
11429500	Loon Lake Dam	23	27	37	49	49	27	27	17	17	20	20	22	
	Gerle Creek Dam	6	6	9	9	15	15	15	12	10	10	6	6	(4)
	Robbs Peak Dam	7	8	9	10	13	13	13	11	6	3	3	4	(4)
11441500	Ice House Dam	18	18	24	41	68	46	30	15	15	15	8	11	
11441800	Junction Dam	20	20	25	42	68	59	35	18	18	15	20	20	
11441900	Camino Dam	20	20	25	42	68	59	35	18	18	15	20	20	
11442700	Brush Creek Dam	9*	9*	9*	9*	9*	9*	5*	4*	3*	4*	9*	9*	
11443500	Slab Creek Dam	80	80	110- 130- 150- 180	188- 197- 213- 222	229- 236- 247- 263	228- 193- 158- 123	90	70	70	80	80	80	(2)
USGS Gaging Station	Wet years when more than 3.5 MAF water year unimpaired inflow was forecast for Folsom Lake	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Notes
11427690	Rubicon Dam	6*	6*	15	20	35	15	6*	6*	6*	6*	6*	6*	
11428400	Buck Island Dam	1*	1*	3	5	8	3	1*	1*	1*	1*	1*	1*	
11429500	Loon Lake Dam	28	32	44	58	58	32	32	20	20	23	23	26	
	Gerle Creek Dam	6	6	9	9	15	15	15	12	10	10	6	6	(4)
	Robbs Peak Dam	7	8	9	10	13	13	13	11	6	3	3	4	(4)
11441500	Ice House Dam	18	18	24	41	68	46	30	15	15	15	8	11	
11441800	Junction Dam	20	20	25	42	68	59	35	18	18	15	20	20	
11441900	Camino Dam	20	20	25	42	68	59	35	18	18	15	20	20	
11442700	Brush Creek Dam	10*	10*	10*	10*	10*	9*	5*	4*	3*	4*	9*	10*	

Table A1-2. Summary of minimum streamflow requirements included in the current 2014 UARP FERC license.

11443500	Slab Creek Dam	90	90	110- 130- 150- 180		229- 236- 247- 263	228- 193- 158- 123	90	70	70	90	90	90	(2)	
----------	----------------	----	----	-----------------------------	--	-----------------------------	-----------------------------	----	----	----	----	----	----	-----	--

* Or natural inflow if less, but in all cases not less than 1 cfs

Notes

- 1. The water year total volume of unimpaired inflow to Folsom Lake is used to determine the water year. The California DWR makes forecasts of this volume, in units of thousands of acre-feet (TAF). One million acre feet (MAF) equal 1,000 TAF. DWR publishes Bulletin 120 or posts the forecast on its web site several days after February 1, March 1, April 1, and May 1 each year. The value forecasted in May applies until mid October. DWR also computes the actual water year unimpaired inflow and post this value on its web site in mid October. The value posted in October applies until the subsequent February 1 forecast is published.
- 2. Flows listed for Slab Creek Dam apply during the first five years of the license.
- 3. MAF denotes million acre-feet. Bulletin 120 gives forecasts in TAF, thousand acre-feet. 1,000 TAF = 1 MAF
- 4. New USGS gages to be installed in 2008 or 2009

2019 Annual Monitoring Report June 2020

APPENDIX B1

2019 Fish Survey Data

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

This Page Intentionally Left Blank

Table B1-1. 2019 SMUD UARP Fish Survey Data.

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Rainbow trout	177	57.2	1	Scale sample #1
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Rainbow trout	102	10.6	1	Scale sample #2
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Rainbow trout	94	10.3	1	Scale sample #3
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Rainbow trout	115	13.9	1	Scale sample #4
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Rainbow trout	144	35.9	1	Scale sample #5
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Rainbow trout	53	1.4	1	Scale sample #6
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Rainbow trout	55	1.4	1	Scale sample #7
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Rainbow trout	48	1.4	1	Scale sample #8
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Rainbow trout	113	15.3	1	Scale sample #9
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Rainbow trout	161	47.6	1	Scale sample #10
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Rainbow trout	132	34.1	1	Scale sample #11
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Rainbow trout	111	10.9	1	Scale sample #12
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Rainbow trout	60	1.3	1	Scale sample #13
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Rainbow trout	108	13.7	1	Scale sample #14
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	1	Brown trout	67	3.4	1	Scale sample #15
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	2	Brown trout	72	4.0	1	Scale sample #16
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	2	Rainbow trout	84	9.0	1	Scale sample #17

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
Rubicon	Rubicon Dam	RRD-F1	Lower	E-fish	3	Rainbow trout	106	15.7	1	Scale sample #18
Rubicon	Rubicon Dam	RRD-F2	Upper	E-fish	1	Rainbow trout	135	25.1	1	Scale sample #1
Rubicon	Rubicon Dam	RRD-F2	Upper	E-fish	2	Rainbow trout	145	27.6	1	Scale sample #2
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	Golden shiner	66	2.2	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	Golden shiner	60	1.5	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	Golden shiner	57	1.6	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	Golden shiner	75	4.0	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	Golden shiner	57	1.7	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	Golden shiner	70	3.4	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	Golden shiner	53	1.3	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	California roach	90	7.7	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	California roach	71	3.0	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	Golden shiner	49	0.9	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	California roach	91	8.2	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	Golden shiner	63	2.4	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	California roach	92	6.8	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	California roach	99	9.3	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	California roach	82	5.4	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	Golden shiner	49	1.0	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	1	Sacramento sucker	280	144.5	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	2	Golden shiner	57	1.2	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	2	Golden shiner	71	3.1	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	2	Golden shiner	69	2.6	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	2	Golden shiner	51	1.2	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	2	California roach	31	0.1	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	2	California roach	76	4.2	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	2	Golden shiner	50	1.0	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	2	California roach	81	5.6	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	2	California roach	83	5.9	1	
Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	3	Golden shiner	78	4.8	1	
Little Rubicon	Buck Island Dam	BID-F1	Upper	E-fish	1	California roach	67	2.7	1	
Little Rubicon	Buck Island Dam	BID-F1	Upper	E-fish	1	California roach	89	6.8	1	
Little Rubicon	Buck Island Dam	BID-F1	Upper	E-fish	1	California roach	57	1.8	1	
Little Rubicon	Buck Island Dam	BID-F1	Upper	E-fish	1	California roach	80	4.4	1	
Little Rubicon	Buck Island Dam	BID-F1	Upper	E-fish	2	California roach	70	3.0	1	
Little Rubicon	Buck Island Dam	BID-F1	Upper	E-fish	2	California roach	52	1.2	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
Gerle Creek	Loon Lake Dam	LLD-F3	Lower	E-fish	1	Rainbow trout	120	14.6	1	
Gerle Creek	Loon Lake Dam	LLD-F3	Lower	E-fish	1	Brown trout	59	5.0	1	
Gerle Creek	Loon Lake Dam	LLD-F3	Lower	E-fish	1	Rainbow trout	48	1.3	1	
Gerle Creek	Loon Lake Dam	LLD-F3	Lower	E-fish	1	Brown trout	120	15.5	1	
Gerle Creek	Loon Lake Dam	LLD-F3	Lower	E-fish	1	Brown trout	160	39.7	1	
Gerle Creek	Loon Lake Dam	LLD-F3	Lower	E-fish	2	Rainbow trout	181	53.0	1	
Gerle Creek	Loon Lake Dam	LLD-F3	Lower	E-fish	2	Brown trout	147	31.5	1	
Gerle Creek	Loon Lake Dam	LLD-F3	Upper	E-fish	1	Brown trout	60	2.2	1	
Gerle Creek	Loon Lake Dam	LLD-F3	Upper	E-fish	1	Brown trout	61	2.0	1	
Gerle Creek	Loon Lake Dam	LLD-F3	Upper	E-fish	3	Brown trout	119	17.8	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	1	Rainbow trout	73	4.3	1	Scale Sample #1
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	1	Rainbow trout	150	29.0	1	Scale Sample #2
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	1	Rainbow trout	149	29.9	1	Scale Sample #3
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	1	Rainbow trout	127	14.8	1	Scale Sample #4
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	1	Rainbow trout	84	5.6	1	Scale Sample #5
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	1	Rainbow trout	79	4.5	1	Scale Sample #6
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	1	Rainbow trout	62	2.4	1	Scale Sample #7
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	1	Rainbow trout	65	1.8	1	Scale Sample #8

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	2	Rainbow trout	157	31.4	1	Scale Sample #9
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	2	Rainbow trout	139	23.5	1	Scale Sample #10
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	2	Rainbow trout	133	18.6	1	Scale Sample #11
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	2	Rainbow trout	125	50.8	1	Scale Sample #12
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	2	Rainbow trout	67	2.3	1	Scale Sample #13
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	3	Rainbow trout	122	16.4	1	Scale Sample #14
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	3	Rainbow trout	91	6.8	1	Scale Sample #15
Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	3	Rainbow trout	85	5.9	1	Scale Sample #16
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	1	Rainbow trout	65	2.7	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	1	Rainbow trout	160	34.1	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	1	Brown trout	210	93.7	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	1	Rainbow trout	137	24.2	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	1	Rainbow trout	169	39.7	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	1	Rainbow trout	130	18.3	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	1	Rainbow trout	79	4.7	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	1	Brown trout	164	36.3	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	1	Brown trout	352	450.0	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	2	Rainbow trout	85	4.9	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	2	Rainbow trout	133	19.3	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	2	Rainbow trout	62	2.3	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	2	Rainbow trout	133	18.3	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	2	Rainbow trout	174	3.2	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	2	Rainbow trout	116	12.1	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	2	Brown trout	92	7.1	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	2	Rainbow trout	167	43.4	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	2	Rainbow trout	155	33.7	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	3	Brown trout	82	4.8	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	3	Brown trout	240	137.9	1	
Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	3	Rainbow trout	181	54.8	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	147	28.4	1	Scale Sample #1
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	119	11.3	1	Scale Sample #2
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	141	24.4	1	Scale Sample #3
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	103	8.8	1	Scale Sample #4
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	116	12.8	1	Scale Sample #5
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	59	1.7	1	Scale Sample #6
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	110	11.0	1	Scale Sample #7

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	59	1.2	1	Scale Sample #8
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	67	2.4	1	Scale Sample #9
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	56	1.4	1	Scale Sample #10
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	55	1.5	1	Scale Sample #11
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	51	1.1	1	Scale Sample #12
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	59	1.5	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	118	14.9	1	Scale Sample #13
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	137	20.3	1	Scale Sample #14
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	61	1.8	1	Scale Sample #15
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	109	10.7	1	Scale Sample #16
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	105	10.3	1	Scale Sample #17
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	53	1.2	1	Scale Sample #18
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	67	2.4	1	Scale Sample #19
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	98	7.7	1	Scale Sample #20
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	60	2.0	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	63	2.1	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	1	Rainbow trout	62	3.0	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	107	11.5	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	66	2.4	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	50	1.1	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	117	12.9	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	66	2.0	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	46	0.8	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	60	1.8	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	51	1.2	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	65	2.1	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	151	27.2	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	114	12.2	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	183	45.4	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	105	10.6	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	52	1.3	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	2	Rainbow trout	62	2.0	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	3	Rainbow trout	68	2.5	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	3	Rainbow trout	56	2.0	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	3	Rainbow trout	155	29.5	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	3	Rainbow trout	193	63.7	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	3	Rainbow trout	66	2.3	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	3	Rainbow trout	62	2.0	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	3	Rainbow trout	56	1.5	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	3	Rainbow trout	54	1.8	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	3	Rainbow trout	115	12.6	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	3	Rainbow trout	60	1.8	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	4	Rainbow trout	115	11.5	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	4	Rainbow trout	57	1.7	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	4	Rainbow trout	55	1.6	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	4	Rainbow trout	120	12.7	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	4	Rainbow trout	143	25.4	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	1	Rainbow trout	117	14.4	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	1	Rainbow trout	118	12.9	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	1	Rainbow trout	71	2.8	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	1	Rainbow trout	60	1.8	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	1	Rainbow trout	61	2.1	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	2	Rainbow trout	97	7.9	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	2	Rainbow trout	65	2.1	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	2	Rainbow trout	55	1.3	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	2	Rainbow trout	101	8.8	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	2	Brown trout	82	5.5	1	Scale Sample #1
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	3	Rainbow trout	63	1.7	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	3	Rainbow trout	51	1.0	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	3	Rainbow trout	113	12.1	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	4	Rainbow trout	46	0.7	1	
Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	4	Rainbow trout	62	2.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	91	6.6	1	Scale Sample #1
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	61	1.7	1	Scale Sample #2
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	57	1.5	1	Scale Sample #3
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	58	1.5	1	Scale Sample #4
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	61	1.8	1	Scale Sample #5
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	51	1.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	50	101.0	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	114	14.0	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	109	10.5	1	Scale Sample #6
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	59	1.8	1	Scale Sample #7

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	55	1.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	54	1.4	1	Scale Sample #8
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	44	0.7	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	58	1.7	1	Scale Sample #9
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	114	12.9	1	Scale Sample #10
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	118	15.6	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	62	2.1	1	Scale Sample #11
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	122	15.6	1	Scale Sample #12
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	118	13.7	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	66	2.1	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Brown trout	79	5.0	1	Scale Sample #13
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	48	1.0	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	113	12.4	1	Scale Sample #14
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	52	1.2	1	Scale Sample #15
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	48	0.9	1	Scale Sample #16
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	51	1.1	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	116	13.8	1	Scale Sample #17
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	58	1.8	1	Scale Sample #18

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	120	14.7	1	Scale Sample #19
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	170	48.8	1	Scale Sample #20
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	58	2.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Brown trout	325	398.0	1	Scale Sample #21
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	66	2.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	68	2.4	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	53	0.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	75	3.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	67	2.7	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	67	2.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	108	10.4	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	52	1.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	128	17.8	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	113	13.1	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	62	2.0	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	67	2.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	1	Rainbow trout	54	1.4	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	54	1.3	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	53	1.3	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	107	11.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	64	2.4	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	47	0.9	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	50	1.3	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	61	1.9	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	104	10.8	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	175	48.8	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	59	1.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	63	2.3	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	55	1.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	43	0.6	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	66	2.3	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	45	0.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	60	2.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	125	17.6	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	145	31.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	179	52.1	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Rainbow trout	120	16.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	2	Brown trout	222	124.9	1	Scale Sample #22
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	3	Rainbow trout	118	13.6	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	3	Rainbow trout	99	8.6	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	3	Rainbow trout	57	1.6	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	3	Rainbow trout	117	14.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	3	Rainbow trout	101	9.0	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	3	Rainbow trout	55	1.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	3	Rainbow trout	58	1.6	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	3	Rainbow trout	105	10.8	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	3	Rainbow trout	54	1.3	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	39	0.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	62	1.6	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	55	1.7	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	58	1.4	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	175	61.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	54	1.4	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	56	1.5	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	105	9.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	187	55.6	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	57	1.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	120	16.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	111	10.4	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	178	52.0	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	60	2.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	113	11.1	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	102	8.3	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	45	0.7	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	54	1.7	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	120	15.8	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	117	15.1	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	55	1.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	58	1.8	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	49	1.1	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	61	2.0	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	147	27.8	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	115	13.8	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	92	7.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	49	1.1	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	135	23.3	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	118	14.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	107	9.8	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Rainbow trout	118	16.1	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Brown trout	80	4.8	1	Scale Sample #23
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	1	Brown trout	160	42.6	1	Scale Sample #24
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	2	Rainbow trout	57	1.9	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	2	Rainbow trout	55	1.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	2	Rainbow trout	64	2.7	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	2	Rainbow trout	130	19.9	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	2	Rainbow trout	57	1.6	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	2	Rainbow trout	60	1.6	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	2	Rainbow trout	55	1.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	2	Rainbow trout	108	10.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	2	Rainbow trout	139	22.2	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	2	Rainbow trout	113	11.7	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	2	Rainbow trout	115	14.3	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	2	Rainbow trout	112	13.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	2	Brown trout	90	6.8	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	2	Rainbow trout	190	61.0	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	3	Rainbow trout	59	1.7	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	3	Rainbow trout	111	11.5	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	3	Rainbow trout	115	13.4	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	3	Rainbow trout	139	24.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	3	Rainbow trout	71	3.4	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	3	Brown trout	90	6.2	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	3	Rainbow trout	108	11.0	1	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	3	Rainbow trout	199	78.7	1	
S.F. Silver Creek	lce House Dam	IHD-F1	Lower	E-fish	1	Rainbow trout	80	5.3	1	Scale Sample #1
S.F. Silver Creek	lce House Dam	IHD-F1	Lower	E-fish	1	Rainbow trout	136	24.2	1	Scale Sample #2
S.F. Silver Creek	lce House Dam	IHD-F1	Lower	E-fish	1	Brown trout	185	63.9	1	Scale Sample #3
S.F. Silver Creek	lce House Dam	IHD-F1	Lower	E-fish	1	Rainbow trout	121	22.0	1	Scale Sample #4

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F. Silver Creek	lce House Dam	IHD-F1	Lower	E-fish	1	Rainbow trout	74	4.0	1	Scale Sample #5
S.F. Silver Creek	lce House Dam	IHD-F1	Lower	E-fish	2	Rainbow trout	115	15.7	1	Scale Sample #6
S.F. Silver Creek	lce House Dam	IHD-F1	Lower	E-fish	2	Brown trout	151	33.9	1	Scale Sample #7
S.F. Silver Creek	lce House Dam	IHD-F1	Lower	E-fish	3	Rainbow trout	160	40.4	1	Scale Sample #8
S.F. Silver Creek	lce House Dam	IHD-F1	Lower	E-fish	3	Rainbow trout	89	6.7	1	Scale Sample #9
S.F. Silver Creek	lce House Dam	IHD-F1	Lower	E-fish	3	Rainbow trout	81	4.6	1	Scale Sample #10
S.F. Silver Creek	lce House Dam	IHD-F1	Lower	E-fish	4	Rainbow trout	187	67.3	1	Scale Sample #11
S.F. Silver Creek	lce House Dam	IHD-F1	Lower	E-fish	4	Rainbow trout	154	36.1	1	Scale Sample #12
S.F. Silver Creek	lce House Dam	IHD-F1	Upper	E-fish	1	Rainbow trout	134	23.2	1	
S.F. Silver Creek	lce House Dam	IHD-F1	Upper	E-fish	2	Rainbow trout	79	4.6	1	
S.F. Silver Creek	Ice House Dam	IHD-F1	Upper	E-fish	3	Rainbow trout	203	76.1	1	
S.F. Silver Creek	Ice House Dam	IHD-F1	Upper	E-fish	3	Rainbow trout	191	71.1	1	
S.F. Silver Creek	Ice House Dam	IHD-F1	Upper	E-fish	3	Rainbow trout	145	29.5	1	
S.F. Silver Creek	lce House Dam	IHD-F1	Upper	E-fish	4	Rainbow trout	72	3.9	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F. Silver Creek	lce House Dam	IHD-F1	Upper	E-fish	4	Rainbow trout	128	19.6	1	
S.F. Silver Creek	lce House Dam	IHD-F1	Upper	E-fish	4	Brown trout	127	19.1	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	1	Brown trout	64	2.1	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	1	Brown trout	64	2.2	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	1	Rainbow trout	212	82.5	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	1	Brown trout	131	25.0	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	1	Brown trout	338	355.0	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	1	Rainbow trout	130	18.5	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	1	Rainbow trout	100	7.9	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	1	Brown trout	131	21.3	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	1	Rainbow trout	102	11.2	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	1	Brown trout	59	2.1	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	1	Brown trout	140	26.1	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	3	Brown trout	130	18.8	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	3	Rainbow trout	51	1.2	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	4	Sacramento sucker	240	160.0	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Upper	E-fish	1	Rainbow trout	169	48.8	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Upper	E-fish	1	Brown trout	68	3.8	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Upper	E-fish	1	Brown trout	67	4.2	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Upper	E-fish	1	Rainbow trout	168	36.5	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Upper	E-fish	2	Brown trout	336	320.0	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Upper	E-fish	2	Rainbow trout	109	11.8	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Upper	E-fish	2	Rainbow trout	129	18.9	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Upper	E-fish	2	Brown trout	79	4.6	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Upper	E-fish	2	Brown trout	79	4.5	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Upper	E-fish	2	Brown trout	66	2.4	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Upper	E-fish	2	Sacramento sucker	28	0.1	1	
S.F. Silver Creek	lce House Dam	IHD-F2	Upper	E-fish	3	Brown trout	137	28.2	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F. Silver Creek	Ice House Dam	IHD-F2	Upper	E-fish	3	Sacramento sucker	204	100.0	1	
S.F. Silver Creek	Ice House Dam	IHD-F2	Upper	E-fish	3	Rainbow trout	118	14.2	1	
S.F. Silver Creek	Ice House Dam	IHD-F2	Upper	E-fish	3	Brown trout	75	4.1	1	
S.F. Silver Creek	Ice House Dam	IHD-F2	Upper	E-fish	3	Brown trout	58	2.2	1	
S.F. Silver Creek	Ice House Dam	IHD-F2	Upper	E-fish	4	Rainbow trout	108	11.1	1	
Silver Creek	Camino Dam	CD-F1	1 Pool	Snorkel	-	Rainbow trout	150-175	-	35	
Silver Creek	Camino Dam	CD-F1	1 Pool	Snorkel	-	Rainbow trout	175-200	-	10	
Silver Creek	Camino Dam	CD-F1	1 Pool	Snorkel	-	Rainbow trout	125-150	-	5	
Silver Creek	Camino Dam	CD-F1	1 Pool	Snorkel	-	Rainbow trout	125-150	-	12	
Silver Creek	Camino Dam	CD-F1	1 Pool	Snorkel	-	Rainbow trout	200-225	-	1	
Silver Creek	Camino Dam	CD-F1	1 Pool	Snorkel	-	Rainbow trout	125-150	-	1	
Silver Creek	Camino Dam	CD-F1	1 Pool	Snorkel	-	Rainbow trout	25-50	-	1	
Silver Creek	Camino Dam	CD-F1	1 Pool	Snorkel	-	RAINBOW TROUT	50-75	-	1	
Silver Creek	Camino Dam	CD-F1	2 Riffle	Snorkel	-	Rainbow trout	100-125	-	3	
Silver Creek	Camino Dam	CD-F1	2 Riffle	Snorkel	-	Rainbow trout	125-150	-	8	
Silver Creek	Camino Dam	CD-F1	2 Riffle	Snorkel	-	Rainbow trout	150-175	-	12	
Silver Creek	Camino Dam	CD-F1	2 Riffle	Snorkel	-	Rainbow trout	175-200	-	2	

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
Silver Creek	Camino Dam	CD-F1	2 Riffle	Snorkel	-	Rainbow trout	75-100	-	1	
Silver Creek	Camino Dam	CD-F1	2 Riffle	Snorkel	-	Rainbow trout	50-75	-	2	
Silver Creek	Camino Dam	CD-F1	2 Riffle	Snorkel	-	Rainbow trout	100-125	-	2	
Silver Creek	Camino Dam	CD-F1	2 Riffle	Snorkel	-	Rainbow trout	175-200	-	1	
Silver Creek	Camino Dam	CD-F1	3 Pool	Snorkel	-	Rainbow trout	75-100	-	3	
Silver Creek	Camino Dam	CD-F1	3 Pool	Snorkel	-	Rainbow trout	100-125	-	3	
Silver Creek	Camino Dam	CD-F1	3 Pool	Snorkel	-	Rainbow trout	125-150	-	5	
Silver Creek	Camino Dam	CD-F1	3 Pool	Snorkel	-	Rainbow trout	150-175	-	1	
Silver Creek	Camino Dam	CD-F1	3 Pool	Snorkel	-	Rainbow trout	175-200	-	3	
Silver Creek	Camino Dam	CD-F1	3 Pool	Snorkel	-	Rainbow trout	225-250	-	1	
Silver Creek	Camino Dam	CD-F1	4 Riffle	Snorkel	-	Rainbow trout	75-100	-	1	
Silver Creek	Camino Dam	CD-F1	4 Riffle	Snorkel	-	Rainbow trout	100-125	-	1	
Silver Creek	Camino Dam	CD-F1	5 Pool	Snorkel	-	Rainbow trout	25-50	-	1	
Silver Creek	Camino Dam	CD-F1	5 Pool	Snorkel	-	Rainbow trout	50-75	-	1	
Silver Creek	Camino Dam	CD-F1	5 Pool	Snorkel	-	Rainbow trout	75-100	-	1	
Silver Creek	Camino Dam	CD-F1	5 Pool	Snorkel	-	Rainbow trout	125-150	-	5	
Silver Creek	Camino Dam	CD-F1	5 Pool	Snorkel	-	Rainbow trout	150-175	-	7	
Silver Creek	Camino Dam	CD-F1	5 Pool	Snorkel	-	Rainbow trout	175-200	-	3	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
Silver Creek	Camino Dam	CD-F1	5 Pool	Snorkel	-	Rainbow trout	200-225	-	1	
Silver Creek	Camino Dam	CD-F1	7 Pool	Snorkel	-	Rainbow trout	25-50	-	2	
Silver Creek	Camino Dam	CD-F1	7 Pool	Snorkel	-	Rainbow trout	50-75	-	3	
Silver Creek	Camino Dam	CD-F1	7 Pool	Snorkel	-	Rainbow trout	75-100	-	3	
Silver Creek	Camino Dam	CD-F1	7 Pool	Snorkel	-	Rainbow trout	100-125	-	8	
Silver Creek	Camino Dam	CD-F1	7 Pool	Snorkel	-	Rainbow trout	125-150	-	4	
Silver Creek	Camino Dam	CD-F1	7 Pool	Snorkel	-	Rainbow trout	250-275	-	3	
S.F. American	Slab Creek Dam	SCD-F3	1 POW	Snorkel	-	Unidentified sunfish	50-75	-	1	
S.F. American	Slab Creek Dam	SCD-F3	1 POW	Snorkel	-	Rainbow trout	50-75	-	1	
S.F. American	Slab Creek Dam	SCD-F3	1 POW	Snorkel	-	Rainbow trout	100-125	-	1	
S.F. American	Slab Creek Dam	SCD-F3	1 POW	Snorkel	-	Rainbow trout	125-150	-	1	
S.F. American	Slab Creek Dam	SCD-F3	1 POW	Snorkel	-	Rainbow trout	25-50	-	2	
S.F. American	Slab Creek Dam	SCD-F3	1 POW	Snorkel	-	Rainbow trout	100-125	-	1	
S.F. American	Slab Creek Dam	SCD-F3	1 POW	Snorkel	-	Rainbow trout	125-150	-	1	
S.F. American	Slab Creek Dam	SCD-F3	1 POW	Snorkel	-	Rainbow trout	50-75	-	1	
S.F. American	Slab Creek Dam	SCD-F3	1 POW	Snorkel	-	Rainbow trout	75-100	-	1	
S.F. American	Slab Creek Dam	SCD-F3	1 POW	Snorkel	-	Rainbow trout	100-125	-	2	
S.F. American	Slab Creek Dam	SCD-F3	1 POW	Snorkel	-	Rainbow trout	150-175	-	2	

Stream	Reach	Site	Sogmont	Method	Pass	Species	Length (mm)	Weight	Count	Notes
Stream S.F.		Site	Segment	wethod	Pass		(mm)	(g)	Count	Notes
	Slab Creek	SCD-F3	1 POW	Snorkel	-	Rainbow	200-225	-	1	
American S.F.	Dam					trout				
-	Slab Creek Dam	SCD-F3	1 POW	Snorkel	-	Rainbow	300-325	-	1	
American S.F.	Slab Creek					trout T				
S.F. American	Dam	SCD-F3	1 POW	Snorkel	-	Brown trout	300-325	-	1	
S.F.	Slab Creek					Rainbow				
		SCD-F3	1 POW	Snorkel	-		225-250	-	1	
American	Dam					trout				
S.F.	Slab Creek Dam	SCD-F3	1 POW	Snorkel	-	Rainbow	75-100	-	2	
American						trout				
S.F.	Slab Creek	SCD-F3	1 POW	Snorkel	-	Rainbow	150-175	-	1	
American	Dam					trout				
S.F.	Slab Creek	SCD-F3	2 Pool	Snorkel	-	Brown trout	125-150	-	2	
American	Dam					.			-	
S.F.	Slab Creek	SCD-F3	2 Pool	Snorkel	-	Rainbow	250-275	-	2	
American	Dam					trout	-			
S.F.	Slab Creek	SCD-F3	2 Pool	Snorkel	-	Rainbow	100-125	-	1	
American	Dam					trout			-	
S.F.	Slab Creek	SCD-F3	2 Pool	Snorkel	-	Rainbow	125-150	-	1	
American	Dam					trout	-			
S.F.	Slab Creek	SCD-F3	2 Pool	Snorkel	-	Rainbow	175-200	-	3	
American	Dam					trout			_	
S.F.	Slab Creek	SCD-F3	2 Pool	Snorkel	-	Rainbow	200-225	-	2	
American	Dam					trout				
S.F.	Slab Creek	SCD-F3	2 Pool	Snorkel	-	Rainbow	275-300	-	2	
American	Dam					trout				
S.F.	Slab Creek	SCD-F3	2 Pool	Snorkel	-	Rainbow	225-250	-	2	
American	Dam					trout				
S.F.	Slab Creek	SCD-F3	2 Pool	Snorkel	-	Rainbow	25-50	-	1	
American	Dam			0		trout				
S.F.	Slab Creek	SCD-F3	2 Pool	Snorkel	-	Rainbow	150-175	-	1	
American	Dam					trout				
S.F.	Slab Creek	SCD-F3	2 Pool	Snorkel	-	Rainbow	125-150	-	2	
American	Dam	565.0	21001			trout	.20 .00			
S.F.	Slab Creek	SCD-F3	3 Riffle	Snorkel	-	Rainbow	75-100	-	1	
American	Dam	00010	011110	Shorkor		trout	10,00		•	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F. American	Slab Creek Dam	SCD-F3	4 Run	Snorkel	-	Brown trout	150-175	-	1	
S.F. American	Slab Creek Dam	SCD-F3	4 Run	Snorkel	-	Rainbow trout	50-75	-	1	
S.F. American	Slab Creek Dam	SCD-F3	4 Run	Snorkel	-	Rainbow trout	50-75	-	1	
S.F. American	Slab Creek Dam	SCD-F3	4 Run	Snorkel	-	Rainbow trout	100-125	-	1	
S.F. American	Slab Creek Dam	SCD-F3	4 Run	Snorkel	-	Rainbow trout	125-150	-	1	
S.F. American	Slab Creek Dam	SCD-F3	4 Run	Snorkel	-	Rainbow trout	100-125	-	1	
S.F. American	Slab Creek Dam	SCD-F3	4 Run	Snorkel	-	Rainbow trout	125-150	-	2	
S.F. American	Slab Creek Dam	SCD-F3	-	E-fish	1	Rainbow trout	77	3.5	1	
S.F. American	Slab Creek Dam	SCD-F3	-	E-fish	1	Rainbow trout	85	5.0	1	
S.F. American	Slab Creek Dam	SCD-F3	-	E-fish	1	Rainbow trout	75	3.5	1	
S.F. American	Slab Creek Dam	SCD-F3	-	E-fish	1	Rainbow trout	70	2.7	1	
S.F. American	Slab Creek Dam	SCD-F2	2 Run	Snorkel	-	Rainbow trout	100-125	-	1	
S.F. American	Slab Creek Dam	SCD-F2	2 Run	Snorkel	-	Rainbow trout	100-125	-	1	
S.F. American	Slab Creek Dam	SCD-F2	3 Run	Snorkel	-	Rainbow trout	100-125	-	1	
S.F. American	Slab Creek Dam	SCD-F2	3 Run	Snorkel	-	Rainbow trout	100-125	-	1	
S.F. American	Slab Creek Dam	SCD-F2	3 Run	Snorkel	-	Rainbow trout	100-125	-	1	
S.F. American	Slab Creek Dam	SCD-F2	4 Riffle	Snorkel	-	Rainbow trout	100-125	-	1	
S.F. American	Slab Creek Dam	SCD-F2	4 Riffle	Snorkel	-	Rainbow trout	100-125	-	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F.		Site	Segment	wethod	Pass		(mm)	(g)	Count	Notes
	Slab Creek	SCD-F2	4 Riffle	Snorkel	-	Rainbow	100-125	-	1	
American S.F.	Dam					trout				
-	Slab Creek Dam	SCD-F2	5 Pool	Snorkel	-	Rainbow	100-125	-	1	
American S.F.	Slab Creek					trout Rainbow				
S.F. American	Dam	SCD-F2	5 Pool	Snorkel	-	trout	100-125	-	1	
S.F.	Slab Creek					Rainbow				
		SCD-F2	4 Riffle	Snorkel	-		125-150	-	1	
American	Dam					trout				
S.F.	Slab Creek Dam	SCD-F2	5 Pool	Snorkel	-	Rainbow	125-150	-	1	
American S.F.						trout Rainbow				
	Slab Creek	SCD-F2	2 Run	Snorkel	-		150-175	-	1	
American	Dam					trout				
S.F.	Slab Creek	SCD-F2	2 Run	Snorkel	-	Rainbow	150-175	-	1	
American	Dam					trout				
S.F.	Slab Creek	SCD-F2	3 Run	Snorkel	-	Rainbow	150-175	-	1	
American	Dam		-			trout				
S.F.	Slab Creek	SCD-F2	3 Run	Snorkel	-	Rainbow	150-175	-	1	
American	Dam					trout				
S.F.	Slab Creek	SCD-F2	3 Run	Snorkel	-	Rainbow	150-175	-	1	
American	Dam		-			trout				
S.F.	Slab Creek	SCD-F2	5 Pool	Snorkel	-	Rainbow	150-175	-	1	
American	Dam					trout				
S.F.	Slab Creek	SCD-F2	2 Run	Snorkel	-	Rainbow	175-200	-	1	
American	Dam					trout				
S.F.	Slab Creek	SCD-F2	3 Run	Snorkel	-	Rainbow	175-200	-	1	
American	Dam					trout				
S.F.	Slab Creek	SCD-F2	5 Pool	Snorkel	-	Rainbow	175-200	-	1	
American	Dam					trout				
S.F.	Slab Creek	SCD-F2	2 Run	Snorkel	-	Rainbow	200-225	-	1	
American	Dam			0		trout			· · · · · · · · · · · · · · · · · · ·	
S.F.	Slab Creek	SCD-F2	5 Pool	Snorkel	-	Rainbow	200-225	-	1	
American	Dam		0.00			trout				
S.F.	Slab Creek	SCD-F2	2 Run	Snorkel	-	Rainbow	250-275	-	1	
American	Dam	56512	21001			trout				
S.F.	Slab Creek	SCD-F2	2 Run	Snorkel	-	Rainbow	250-275	-	1	
American	Dam	30212	21001	Shoritor		trout	200 2.0		•	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F.	Slab Creek				1 033	Rainbow	· · ·	(9)	Count	Notes
American	Dam	SCD-F2	2 Run	Snorkel	-	trout	250-275	-	1	
S.F.	Slab Creek					Rainbow				
American	Dam	SCD-F2	2 Run	Snorkel	-	trout	25-50	-	1	
S.F.	Slab Creek		_			Rainbow				
American	Dam	SCD-F2	3 Run	Snorkel	-	trout	50-75	-	1	
S.F.	Slab Creek	000 50				Rainbow	50 75			
American	Dam	SCD-F2	3 Run	Snorkel	-	trout	50-75	-	1	
S.F.	Slab Creek	SCD-F2	0.0	Orandual		Rainbow	50.75		4	
American	Dam	SCD-F2	3 Run	Snorkel	-	trout	50-75	-	1	
S.F.	Slab Creek	SCD-F2	4 Riffle	Snorkel	_	Rainbow	50-75	-	4	
American	Dam	3CD-F2	4 Kille	Shorker	-	trout	50-75	-	1	
S.F.	Slab Creek	SCD-F2	5 Pool	Snorkel	_	Rainbow	50-75	-	1	
American	Dam	30D-12	5 F 001	SHORE	-	trout	50-75	-	I	
S.F.	Slab Creek	SCD-F2	2 Run	Snorkel	_	Rainbow	75-100	_	1	
American	Dam	00D-12	2 11011	Shorker	_	trout	75-100	_	•	
S.F.	Slab Creek	SCD-F2	2 Run	Snorkel	-	Rainbow	75-100	_	1	
American	Dam	00012	2 11011	Ononicol		trout	70 100		'	
S.F.	Slab Creek	SCD-F2	3 Run	Snorkel	-	Rainbow	75-100	-	1	
American	Dam		0.110.11			trout				
S.F.	Slab Creek	SCD-F2	3 Run	Snorkel	-	Rainbow	75-100	-	1	
American	Dam					trout				
S.F.	Slab Creek	SCD-F2	3 Run	Snorkel	-	Rainbow	75-100	-	1	
American	Dam					trout				
S.F.	Slab Creek	SCD-F2	4 Riffle	Snorkel	-	Rainbow	75-100	-	1	
American S.F.	Dam Slab Creek					trout				
S.F. American	Dam	SCD-F2	3 Run	Snorkel	-	Sculpin	25-50	-	1	
S.F.	Slab Creek					spp. Sculpin				
American	Dam	SCD-F2	3 Run	Snorkel	-	spp.	25-50	-	2	
S.F.	Slab Creek					Sculpin				
American	Dam	SCD-F2	3 Run	Snorkel	-	spp.	25-50	-	1	
S.F.	Slab Creek					Sculpin				
American	Dam	SCD-F2	4 Riffle	Snorkel	-	spp.	25-50	-	1	
S.F.	Slab Creek	000 50				Sculpin				
American	Dam	SCD-F2	1 Pool	Snorkel	-	spp.	50-75	-	1	

Stream	Reach	Site	Segment	Method	Pass	Species	Length (mm)	Weight (g)	Count	Notes
S.F. American	Slab Creek Dam	SCD-F2	3 Run	Snorkel	-	Sacramento sucker	275-300	-	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sacramento pikeminnow	60	1.5	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sacramento sucker	44	0.7	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sacramento sucker	39	0.6	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sacramento pikeminnow	34	0.2	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sacramento sucker	81	6.0	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sculpin spp.	85	7.1	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sculpin spp.	70	3.7	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sculpin spp.	39	0.7	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sculpin spp.	70	3.8	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sculpin spp.	87	7.9	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sculpin spp.	82	5.8	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sculpin spp.	35	0.4	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sculpin spp.	66	3.4	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sculpin spp.	71	4.4	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sculpin spp.	64	3.0	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sculpin spp.	62	2.5	1	
S.F. American	Slab Creek Dam	SCD-F2	-	E-fish	1	Sculpin spp.	36	0.7	1	

							Length	Weight		
Stream	Reach	Site	Segment	Method	Pass	Species	(mm)	(g)	Count	Notes
S.F.	Slab Creek	SCD-F2		E-fish	1	Sculpin	72	4.3	1	
American	Dam	3CD-F2	-	E-11511	I	spp.	12	4.3	I	
S.F.	Slab Creek	SCD-F2		E fich	4	Sculpin	44	0.7	4	
American	Dam	3CD-F2	-	E-fish	1	spp.	41	0.7	I	
S.F.	Slab Creek			E fich	4	Sculpin	4.4	0.0	4	
American	Dam	SCD-F2	-	E-fish		spp.	44	0.8	I	

g = grams

mm = millimeters

spp. = species

This Page Intentionally Left Blank

APPENDIX B2

Fish Population Data

This Page Intentionally Left Blank

											Catchable	Estima	ted Density Method	, Zippin			Estimated	l Biomass	
Stream and Reach	Site	Section	Year	Site Length (ft)	Avg. Width (ft)	Avg. Area (ft ²)	Species	Total Number Captured	Removal Pattern	Number of Fish / Mile	Trout / Mile (>152 mm)	No. of Fish / Acre	Confiden	ercent ce Interval ish/acre)	Total Biomass (g)	g/acre	lbs/acre	Confiden	ercent ce Interval /acre)
		Combined		287	34	9,758	Trout (brown & rainbow)	20	16-3-1	372	37	89	85	94	339.8	1,519.5	3.4	3.2	3.5
		Upper	2019	161	39	6,241	Trout (brown & rainbow)	2	1-1-0	72	0	15	5	25	52.7	399.2	0.9	0.3	1.5
		Lower		126	30	3,762	Trout (brown & rainbow)	18	15-2-1	758	84	210	200	220	287.1	3,347.5	7.4	7.0	7.7
		Combined		314	28	8,792	Trout (brown & rainbow)	61	37-16-8	1,098	69	329	284	374	983.3	5,307.0	11.7	10.1	13.2
on Dam		Upper	2005	175	29	5,075	Trout (brown & rainbow)	36	22-10-4	1,183	91	337	284	389	644.7	6,029.0	13.3	11.2	15.4
Rubico)-F1	Lower		149	26	3,874	Trout (brown & rainbow)	25	15-6-4	1,003	35	317	237	398	338.6	4,291.1	9.5	7.1	11.9
Rubicon River, Rubicon	RRD-F1	Combined		302	28	8,469	Trout (brown & rainbow)	65	50-12-3	1,155	337	339	327	351	1,670.6	8,709.0	19.2	18.5	19.9
Rubico		Upper	2003	158	31	4,862	Trout (brown & rainbow)	41	33-7-1	1,385	469	370	359	381	1,225.9	11,054.0	24.4	23.7	25.1
		Lower		144	25	3,646	Trout (brown & rainbow)	24	17-5-2	911	183	297	267	327	444.7	5,497.5	12.1	10.9	13.4
		Combined		299	28	8,372	Trout (brown & rainbow)	100	75-20-5	1,798	265	522	505	539	1,819.9	9,480.0	20.9	20.3	21.6
		Upper	2002	149	28	4,109	Trout (brown & rainbow)	56	42-11-3	2,022	496	605	578	631	1,458.2	15,730.6	34.7	33.2	36.2
		Lower		150	29	4,403	Trout (brown & rainbow)	44	33-9-2	1,576	35	443	422	464	361.7	3,637.8	8.0	7.6	8.4

Table B2-1.	Fish Population Data, 2002–2019, for Site RRD-F1, Rubicon River, Rubicon Dam Reach.	

ft = feet

g = grams lbs = pounds

mm = millimeters

								<u>,</u>					ted Densi Methoo	ity, Zippin			Estimated B	liomass	
Stream and Reach	Site	Section	Year	Site Length (ft)	Avg. Width (ft)	Avg. Area (ft²)	Species	Total Number Captured	Removal Pattern	Number of Fish / Mile	Catchable Trout / Mile (>152 mm)	No. of Fish / Acre	95 P Conf Interva	rercent Fidence al (No. of /acre)	Total Biomass (g)	g/acre	lbs/acre	95 P Confider	ercent ice Interval /acre)
							Trout (brown & rainbow)	1	0-0-1	21	0	6	а	а	19.6	122.5	0.3	а	а
		Combined	2019	250	28	6,908	California roach	56	17-5-34	-	-	-	-	-	-	-	-	-	-
							Speckled dace	38	10-3-25	-	-	-	-	-	-	-	-	-	-
		Combined	_	289	18	5,202	Trout (brown & rainbow)	47	34-9-4	886	73	411	383	438	477.3	4,173.1	9.2	8.6	9.8
							Trout (brown & rainbow)	33	23-6-4	1,104	127	385	342	428	422.4	4,930.6	10.9	9.7	12.1
		Upper		166	24	3,984	Brook trout	1	1-0-0	-	-	-	-	-	-	-	-	-	-
							California roach	61	45-11-5	-	-	-	-	-	-	-	-	-	-
n Dam			2005				Speckled dace	56	27-14-15	-	-	-	-	-	-	-	-	-	-
Rubicon River, Rubicon	-F2						Trout (brown & rainbow)	14	11-3-0	606	0	418	397	438	54.9	1,637.5	3.6	3.4	3.8
liver,	RRD-F2	Lower		123	12	1,548	Brook trout	1	1-0-0	-	-	-	-	-	-	-	-	-	-
con F							California roach	2	2-0-0	-	-	-	-	-	-	-	-	-	-
Rubi							Speckled dace	48	34-12-2	-	-	-	-	-	-	-	-	-	-
		Combined		293	20	5,716	Trout (brown & rainbow)	102	73-22-4	1,896	18	802	767	837	339.7	2,676.2	5.9	5.6	6.1
							Trout (brown & rainbow)	37	21-12-4	1,334	32	456	370	543	149.5	1,841.6	4.1	3.3	4.8
		Upper		164	24	3,944	California roach	199	96-67-36	-	-	-	-	-	-	-	-	-	-
			2003				Speckled dace	163	89-47-27	-	-	-	-	-	-	-	-	-	-
							Trout (brown & rainbow)	48	35-10-3	2,013	0	1,115	1,052	1,178	125.7	2,916.6	6.4	6.1	6.8
		Lower		129	15	1,922	California roach	36	101-20-9	-	-	-	-	-	-	-	-	-	-
							Speckled dace	45	1-0-0	-	-	-	-	-	-	-	-	-	-

Table B2-2.	Fish Population Data, 2	2002-2019, for Site RRD-F2,	Rubicon River, Rubicon Dam Reach.
-------------	-------------------------	-----------------------------	-----------------------------------

												Estima	ted Den Metho	sity, Zippin od			Estimated B	iomass	
Stream and Reach	Site	Section	Year	Site Length (ft)	Avg. Width (ft)	Avg. Area (ft²)	Species	Total Number Captured	Removal Pattern	Number of Fish / Mile	Catchable Trout / Mile (>152 mm)	No. of Fish / Acre	Cor Inter	Percent nfidence val (No. of h/acre)	Total Biomass (g)	g/acre	lbs/acre	Confiden	ercent ce Interval /acre)
		Combined		300	19	5,799	Trout (brown & rainbow)	15	15-0-0	264	35	112	а	а	347.9	2,540.1	5.6	а	а
							Brown trout	8	8-0-0	246	61	92	а	а	326.9	3,773.9	8.3	а	а
Dam							California roach	291	188-56- 47	-	-	-	-	-	-	-	-	-	-
Rubicon		Upper		172	22	3,772	Speckled dace	350	209-99- 42	-	-	-	-	-	-	-	-	-	-
River, Ru	RRD-F2		2002				Sacram- ento sucker	16	11-0-5	-	-	-	-	-	-	-	-	-	-
Rubicon Ri	-						Trout (brown & rainbow)	7	7-0-0	289	0	142	а	а	21.0	426.4	0.9	а	а
gub							Hitch	53	36-13-4	-	-	-	-	-	-	-	-	-	-
		Lower		128	17	2,143	Sacram- ento sucker	1	1-0-0	-	-	-	-	-	-	-	-	-	-
							Speckled dace	130	101-20-9	-	-	-	-	-	-	-	-	-	-

ft = feet

g = grams lbs = pounds mm = millimeters

^a Confidence interval could not be calculated due to low capture number on one or more passes.

											Catchable	Estimated	lethod				Estimated I	Biomass	
Stream and Reach	Site	Section	Year	Site Length (ft)	Avg. Width (ft)	Avg. Area (ft ²)	Species	Total Number Captured	Removal Pattern	Number of Fish / Mile	Trout / Mile (>152 mm)	No. of Fish / Acre	95 Pe Confid Interva of fish	dence al (No.	Total Biomass (g)	g/acre	lbs/acre	95 Percent Interval (Confidence Ibs/acre)
		Combined		349	27	9,465	Trout (rainbow and brown)	0	0-0-0	0	0	0	0	0	0	0	0	0	0
		Upper		123	43	5,234	California roach	6	4-2-0	-	-	-	-	-	-	-	-	-	-
			2019				California roach	10	6-4-0	-	-	-	-	-	-	-	-	-	-
		Lower		226	12	2,640	Golden shiner	16	10-5-1	-	-	-	-	-	-	-	-	-	-
							Sacramento sucker	1	1-0-0	-	-	-	-	-	-	-	-	-	-
E		Combined		352	26	9,046	Rainbow trout	1	с	С	15 ^b	6 ^b	с	с	59.4	331.1 ^b	0.7 ^b	с	с
and Dam							Trout (rainbow and brown)	0	0-0-0-0	0	0	0	0	0	0	0	0	0	0
ck Isl	5	Upper		123	38	4,705	California roach	5	2-2-0-1	-	-	-			-	-	-	-	-
n, Bu	BID-F1		2003				Golden shiner	71	39-11- 13-8	-	-	-			-	-	-	-	-
Little Rubicon, Buck Island							Rainbow trout	1	1-0-0	23	23	14	а	а	59.4	857.3	1.9	а	а
tle Ru		Lower		229	13	3,023	California roach	4	2-2-0	-	-	-			-	-	-	-	-
Li							Golden shiner	42	30-7-5	-	-	-			-	-	-	-	-
		Combined		383	27	10,341	Rainbow trout	4	с	С	С	19 ^b	с	с	108.3	499.0 ^b	1.1 ^b	С	с
		Upper		152	41	6,232	Trout (rainbow and brown)	0	0-0-0-0	0	0	0	0	0	0	0	0	0	0
			2002				Golden shiner	5	1-1-1-2	-	-	-	-	-	-	-	-	-	-
		Lower		004	10	2 0 9 7	Rainbow trout	4	3-1-0	92	23	57	50	64	108.3	1542.2	3.4	3.0	3.8
t = feet		Lower		231	13	3,087	Golden shiner	7	4-2-1	-	-	-			-	-	-	-	-

Table B2-3. Fish Population Data, 2002–2019, for Site BID-F1, Little Rubicon River, Buck Island Dam Reach.

ft = feet

g = grams

lbs = pounds

mm = millimeters

^a Confidence interval could not be calculated due to low capture number on one or more passes.

^b Calculated using weighted average.

^c Not calculated due to an unequal number of passes.

											Catchable	Estimated	l Density Method	, Zippin			Estimated B	iomass	
Stream and Reach	Site	Section	Year	Site Length (ft)	Avg. Width (ft)	Avg. Area (ft²)	Species	Total Number Captured	Removal Pattern	Number of Fish / Mile	Trout / Mile (>152 mm)	No. of Fish / Acre	Interv	dence	Total Biomass (g)	g/acre	lbs/acre	Confiden	ercent ce Interval /acre)
oon Lake	~	Combined		296	25	7,504	Trout (brown & rainbow)	10	7-2-1	186	45	61	50	71	182.6	1,088.6	2.4	2.0	2.9
Creek, Lo Dam	LLD-F3	Upper	2019	111	25	2,830	Brown trout	3	2-0-1	180	0	58	0	133	22.0	426.4	0.9	0.0	2.2
Gerle (Lower		185	25	4,667	Trout (brown & rainbow)	7	5-2-0	203	60	66	59	74	160.6	1,519.5	3.4	3.0	3.7

Table B2-4. Fish Population Data, 2019, for Site LLD-F3, Gerle Creek, Loon Lake Dam Reach.

ft = feet

g = grams

lbs = pounds

mm = millimeters

	Table B2-5.	Fish Population Data, 2002–2019, for Site LLD-F2, Gerle Creek, Loon Lake Dam Reach.
--	-------------	---

											Catchable	Estimated N	lethod				Estimated I	Biomass	
Stream and Reach	Site	Section	Year	Site Length (ft)	Avg. Width (ft)	Avg. Area (ft²)	Species	Total Number Captured	Removal Pattern	Number of Fish / Mile	Trout / Mile (>152 mm)	No. of Fish / Acre	95 Pe Confid Interva of fish	dence al (No.	Total Biomass (g)	g/acre	lbs/acre	95 Percent C Interval (Ib	
		Combined		311	37	11,464	Trout (brown & rainbow)	37	17-14-6	837	246	187	104	271	1,233.4	6,545.3	14.4	8.0	20.9
		Upper	2019	212	43	9,042	Trout (brown & rainbow)	21	9-9-3	711	255	138	51	225	1,045.5	6,844.7	15.1	5.5	24.6
		Lower		99	31	3,078	Trout (rainbow)	16	8-5-3	1,109	67	295	112	478	248.0	4,563.1	10.1	3.8	16.3
		Combined		297	35	10,235	Trout (brown & rainbow)	70	48-17-5	1,295	514	309	290	329	5,075.0	22,416.5	49.4	46.3	52.5
e Dam		Upper	2004	197	40	7,913	Trout (brown & rainbow)	45	30-11-4	1,268	429	260	236	288	2,397.3	13,869.7	30.6	27.7	33.4
Lak		Lower		100	29	2,873	Trout (brown)	25	18-6-1	1,356	637	388	359	416	2,677.7	41,500.0	91.4	84.8	98.1
Creek, Loon Lake	LLD-F2	Combined		285	32	11,329	Trout (brown & rainbow)	23	11-7-1	608	366	156	46	266	1,713.0	11,611.9	25.6	7.6	43.6
Gerle Cr		Upper	2003	188	40	7,473	Trout (brown & rainbow)	15	7-5-3	593	334	123	20	226	1,070.9	8,786.1	19.4	3.1	35.6
		Lower		97	25	2,383	Trout (brown & rainbow)	8	4-2-2	636	444	214	0	487	642.1	17,141.3	37.8	0.0	86.1
		Combined		293	34	10,062	Trout (brown & rainbow)	55	42-10-3	1,007	468	242	232	252	2,712.5	11,929.5	26.3	25.2	27.4
		Upper	2002	191	42	7,917	Trout (brown & rainbow)	34	25-7-2	961	900	191	179	204	1,457.4	8,196.4	18.1	16.9	19.2
		Lower		102	27	2,770	Trout (brown & rainbow)	21	17-3-1	1,095	620	330	317	349	1,255.1	19,903.6	43.9	41.8	46.0

											Catchable	Estimated N	lethod				Estimated Bi	omass	
Stream and Reach	Site	Section	Year	Site Length (ft)	Avg. Width (ft)	Avg. Area (ft²)	Species	Total Number Captured	Removal Pattern	Number of Fish / Mile	Trout / Mile (>152 mm)	No. of Fish / Acre	Conf Interv	ercent idence /al (No. h/acre)	Total Biomass (g)	g/acre	lbs/acre	95 Pe Confidenc (Ibs/a	e Interval
		Combined		241	34	8,217	Trout (brown & rainbow)	69	29-20- 13-7	1,815	78	439	348	530	568.3	3,628.7	8.0	6.3	9.6
		Upper	2019	102	32	3,242	Trout (brown & rainbow)	15	5-5-3-2	1,096	0	284	46	522	77.3	1,460.6	3.2	0.5	5.9
Dam		Lower		139	36	5,058	Trout (brown & rainbow)	54	24-15- 10-5	2,528	128	574	417	730	491.0	5,211.8	11.5	8.4	14.6
Creek D		Combined		322	37	12,036	Trout (brown & rainbow)	27	15-8-4	515	366	114	81	146	637.7	2,676.2	5.9	4.2	7.6
Gerle	GCD-F1	Upper	2003	190	36	6,872	Trout (brown & rainbow)	11	6-4-1	342	98	78	50	106	216.2	1,533.1	3.4	2.2	4.6
e Creek,	0	Lower		132	39	5,093	Trout (brown & rainbow)	16	9-4-3	769	d	164	92	237	421.5	4,327.3	9.5	5.3	13.8
Gerle		Combined		244	35	8,534	Trout (brown & rainbow)	87	62-21-4	1,928	281	455	436	474	1421.1	7,438.9	16.4	15.7	17.1
		Upper	2002	108	34	3,628	Trout (brown & rainbow)	26	18-7-1	1,312	295	321	294	347	664.2	8,187.3	18.1	16.6	19.6
		Lower		137	36	4,941	Trout (brown & rainbow)	61	44-14-3	2,412	270	551	524	577	756.9	6,826.6	15.1	14.3	15.8

Table B2-6. Fish Population Data, 2002–2019, for Site GCD-F1, Gerle Creek, Gerle Creek Dam Reach.

ft = feet

g = grams lbs = pounds

mm = millimeters

^d Could not be calculated due to poor depletion pattern of juvenile/adults.

												Estimated	d Density, Method	Zippin	-		Estimated B	iomass	
Stream and Reach	Site	Section	Year	Site Length (ft)	Avg. Width (ft)	Avg. Area (ft²)	Species	Total Number Captured	Removal Pattern	Number of Fish / Mile	Catchable Trout / Mile (>152 mm)	No. of Fish / Acre	Confi	ercent dence I (No. of acre)	Total Biomass (g)	g/acre	lbs/acre	95 Per Confidenc (Ibs/a	e Interval
		Combined		321	42	13,340	Trout (brown & rainbow)	131	79-35-17	2,382	203	473	429	518	1,923.4	6,940.0	15.3	13.9	16.7
		Upper	2019	161	41	6,513	Trout (brown & rainbow)	56	34-14-8	2,047	228	417	354	479	756.4	5,624.5	12.4	10.5	14.3
		Lower		161	43	6,826	Trout (brown & rainbow)	75	45-21-9	2,717	196	527	464	591	1,167.0	8,196.4	18.1	15.9	20.2
- -		Combined		341	35	11,935	Trout (brown & rainbow)	88	с	с	403	348 ^b	с	С	2,605.5	10,296.6	22.7	С	с
eak Dan		Upper	2005	173	40	6,903	Trout (brown & rainbow)	51	30-8-12-1	1,638	519	339	309	369	1,580.4	10,496.3	23.1	21.1	25.2
obbs Po	RPD-F1	Lower		168	30	5,074	Trout (brown & rainbow)	37	21-11-5	1,325	283	362	283	440	1,025.1	10,011.0	22.1	17.3	26.8
Rubicon, Robbs Peak Dam	RPC	Combined		340	38	13,037	Trout (brown & rainbow)	115	С	с	187	557 ^b	с	С	1,725.2	7,438.9 ^b	16.4 ^b	С	С
S. F. Ruk		Upper	2003	169	45	7,526	Trout (brown & rainbow)	45	29-13-3	1,478	281	274	248	300	1,096.1	6,663.3	14.7	13.3	16.1
<i>м</i>		Lower		171	32	5,504	Trout (brown & rainbow)	70	18-26-18- 8	3,697	93	945	357	1533	629.1	8,482.2	18.7	7.1	30.3
		Combined		338	41	13,802	Trout (brown & rainbow)	220	162-42-16	3,523	546	712	693	731	4,287.7	13,879.9	30.6	29.8	31.4
		Upper	2002	173	47	8,158	Trout (brown & rainbow)	120	88-25-7	3,743	640	655	633	678	2,604.9	14,215.6	31.3	30.3	32.4
		Lower		165	35	5,693	Trout (brown & rainbow)	100	74-17-9	3,292	480	787	753	821	1,682.8	13,231.3	29.2	27.9	30.4

Table B2-7. Fish Population Data, 2002–2019, for Site RPD-F1, S.F. Rubicon River, Robbs Peak Dam Reacl
--

ft = feet

.

g = grams lbs = pounds mm = millimeters

^b Calculated using weighted average
 ^c Not calculated due to an unequal number of passes.

								Total			Catchable	Estima	ated Dens Metho	sity, Zippin od			Estimated	Biomass	
Stream and Reach	Site	Section	Year	Site Length (ft)	Avg. Width (ft)	Avg. Area (ft²)	Species	Number Capture d	Removal Pattern	Number of Fish / Mile	Trout / Mile (>152 mm)	No. of Fish / Acre	95 Confide	Percent ence Interval of fish/acre)	Total Biomass (g)	g/acre	Ibs/acre	95 Percent	Confidence (Ibs/acre)
		Combined		267	26	6,796	Trout (brown & rainbow)	20	6-3-6-5	1,426	611	468	0	2,074	571.2	13,335.6	29.4	0.0	130.5
		Upper	2019	133	21	2,772	Trout (brown & rainbow)	8	1-1-3-3	79,817	19,954	31,482	0	19,495,432	247.1	971,504.0	2,141.8	0.0	1,326,355.0
		Lower		134	29	3,937	Trout (brown & rainbow)	12	5-2-3-2	711	283	200	0	420	324.1	5,388.7	11.9	0.0	25.0
		Combined		276	30	8,133	Trout (brown & rainbow)	79	с	с	229 ^b	481 ^b	с	с	3,309.0	21,228.1 ^b	46.8 ^b	с	с
e Dam		Upper	2004	142	31	4,440	Trout (brown & rainbow)	38	27-10-1	1,443	264	381	359	403	719.7	7,212.1	15.9	15.0	16.8
e House	IHD-F1	Lower		134	28	3,742	Trout (brown & rainbow)	41	15-14-8- 4	2,037	320	600	402	797	2,589.3	37,829.6	83.4	55.9	110.9
Silver, Ice House	ПН	Combined		271	28	7,507	Trout (brown & rainbow)	51	32-15-4	1,056	246	315	282	347	2,865.7	17,644.7	38.9	34.9	42.9
S.F. S		Upper	2003	137	25	3,462	Trout (brown & rainbow)	21	11-9-1	894	206	292	225	359	524.6	7,302.8	16.1	12.4	19.8
		Lower		134	30	4,037	Trout (brown & rainbow)	30	21-6-3	1,233	287	338	303	372	2,341.1	26,308.4	58.0	52.1	64.0
		Combined		263	27	7,012	Trout (brown & rainbow)	65	47-13-5	1344	361	416	393	439	3,382.4	21,636.4	47.7	45.1	50.3
		Upper	2002	135	23	3,060	Trout (brown & rainbow)	33	19-10-4	1,446	352	526	418	634	2,341.2	37,285.3	82.2	65.4	99.0
	•	Lower		128	31	3,923	Trout (brown & rainbow)	32	28-3-1	1,324	371	356	349	363	1,041.2	11,566.6	25.5	25.0	26.0

Table B2-8. Fish Population Data, 2002–2019, for Site IHD-F1, S.F. Silver Creek, Ice House Dam Reach.

ft = feet

g = grams

lbs = pounds

^b Calculated using weighted average.
 ^c Not calculated due to an unequal number of passes.

Stream and				Site	Avg. Width	Avg. Area		Total Number	Removal	Number of Fish	Catchable Trout / Mile (>152	Estimat No. of Fish /	Method 95 Pe Conf	ty, Zippin ercent idence I (No. of	Total Biomass		Estimated B	iomass 95 Pe Confidenc	
Reach	Site	Section	Year	Length (ft)	(ft)	(ft ²)	Species	Captured	Pattern	/ Mile	(>152 mm)	Acre		acre)	(g)	g/acre	lbs/acre	(lbs/a	
		Combined		365	27	10,021	Trout (brown & rainbow)	28	15-6-6-1	435	73	131	111	150	1,089.2	5,071.2	11.2	9.5	12.9
		Upper		226	29	6,583	Trout (brown & rainbow)	15	4-6-4-1	501	126	142	21	262	515.3	4,867.0	10.7	1.6	19.9
			2019				Sacramento sucker	2	0-1-1-0	-	-	-	-	-	-	-	-	-	-
		Lower		139	26	3,580	Trout (brown & rainbow)	13	11-0-2-0	497	76	159	153	164	573.9	7,003.5	15.4	14.9	16.0
							Sacramento sucker	1	0-0-0-1	-	-	-	-	-	-	-	-	-	-
E		Combined		361	28	10,258	Trout (brown & rainbow)	20	16-4-0	294	29	85	82	89	577.4	2,449.4	5.4	5.2	5.6
use Dam		Upper		212	30	6,398	Trout (brown & rainbow)	9	8-1-0	225	0	61	60	63	106.7	726.4	1.6	1.6	1.6
e Ho	IHD-F2		2004				Sacramento sucker	17	12-3-2	-	-	-	-	-	-	-	-	-	-
Silver, Ice House	H	Lower		149	27	3,975	Trout (brown & rainbow)	11	8-3-0	394	71	122	112	132	470.7	5,230.0	11.5	10.6	12.5
S.F. 9							Sacramento sucker	38	23-10-5	-	-	-	-	-	-	-	-	-	-
		Combined		352	29	10,046	Trout (brown & rainbow)	21	15-2-4	339	93	98	80	116	1,063.2	4,944.2	10.9	8.9	12.9
		Upper		211	28	5,997	Trout (brown & rainbow)	14	12-0-2	356	100	103	95	112	859.0	6,332.1	14.0	12.9	15.1
			2003				Sacramento sucker	48	25-15-8	-	-	-	-	-	-	-	-	-	-
		Lower		141	29	4,043	Trout (brown & rainbow)	7	3-2-2	548	75	158	0	639	204.2	4,594.9	10.1	0.0	41.1
							Sacramento sucker	6	5-1-0	-	-	-	-	-	-	-	-	-	-
		Combined	2002	365	30	10,950	Trout (brown & rainbow)	26	с	С	58	118 ^b	с	C	1,169.1	5,034.9	11.1 ^b	с	с

											Catchable Trout /	Estima No.	Method	ty, Zippin I ercent			Estimated Bi	omass	
Stream and Reach	Site	Section	Year	Site Length (ft)	Avg. Width (ft)	Avg. Area (ft²)	Species	Total Number Captured	Removal Pattern	Number of Fish / Mile	Mile (>152 mm)	of Fish / Acre	Conf Interva	idence Il (No. of /acre)	Total Biomass (g)	g/acre	lbs/acre	95 Per Confidenc (Ibs/a	e Interval
House		Upper		214	32	6,923	Trout (brown & rainbow) Sacramento	17	12-3-2	439	74	112	96	128	990.6	6,522.7	14.4	12.3	16.5
, Ice am	D-F2		2002				sucker	78	65-9-4	-	-	-	-	-	-	-	-	-	-
. Silver, Da	ЧН	Lower		151	28	4,228	Trout (brown & rainbow)	9	4-2-1-2	436	35	128	0	257	178.5	2,544.7	5.6	0.0	11.2
В Ш							Sacramento sucker	18	5-9-3-1	-	-	-	-	-	-	-	-	-	-

ft = feet

g = grams lbs = pounds mm = millimeters ^b Calculated using weighted average. ^c Not calculated due to an unequal number of passes.

Table B2-10. Fish Population Data, 2019, for Site JD-F3, Silver Creek, Ju

												Minim	um Densi				Estimated B	iomass
Stream and Reach	Site	Section	Year	Site Length (ft)	Avg. Width (ft)	Avg. Area (ft²)	Species	Total Number Observed	Removal Pattern	Number of Fish / Mile	Catchable Trout / Mile (>152 mm)	No. of Fish / Acre	Confi Interva	ercent dence I (No. of acre)	Total Biomass (g)	g/acre	lbs/acre	95 Percent Confidence Interval (Ibs/acre)
Silver Creek, Junction Dam	JD-F3		2019 ^e	921	40	38,728	No fish	0		0	0	0						

ft = feet g = grams lbs = pounds mm = millimeters ^e Snorkel survey.

Stream Reach	Site	Section	Year	Site Length		Avg. Area (ft ²)	Species	Total Number	Removal Pattern	Number of Fish / Mile	Catchable Trout / Mile (>152	No. of Fish /	IM Density 95 Pe Confic Interval fish/a	rcent dence (No. of	Total Biomass	glaara	Estimate		Confidence (Ibs/acre)
Reach	Site	Section	rear	(ft)	(ft)	(11-)	Species	Observed	Pattern	/ wille	mm)	Acre	nsn/a	acrej	(g)	g/acre	IDS/acre	Interval	ibs/acrej
imino			2019 ^e	905	32	29,931	Trout (rainbow)	157		917	467	228							
treek, Ca Dam	CD-F1						Trout (brown & rainbow)	29		153	105	26							
0 V	U		2002 ^e	999	49	48,765	Rainbow trout	26		137	79	24							
Silve							Brown trout	3		16	0	3							

Table B2-11. Fish Population Data, 2002–2019, for Site CD-F1, Silver Creek, Camino Dam Reach	able B2-11. Fis	sh Population Data, 2	2002–2019. for Site CD-F1	1. Silver Creek. Camino	Dam Reach.
--	-----------------	-----------------------	---------------------------	-------------------------	------------

ft = feet g = grams lbs = pounds mm = millimeters ^e Snorkel survey.

2019 Annual Monitoring Report June 2020

Table B2-12. Fish Population Data, 2002–2019, for Site SCD-F3, S.F. American River, Slab Creek Dam Reach.

Stream and Reach	Site	Section	Year	Site Length (ft)	Avg. Width (ft)	Avg. Area (ft²)	Species	Total Number Observed	Removal Pattern	Number of Fish / Mile	Catchable Trout / Mile (>152 mm)	Minim No. of Fish / Acre	Confi Interv of f	sity ercent dence al (No. ish / ish /	Total Biomass (g)	g/acre	Estimate	ed Biomass 95 Percent (Interval (I	
Dam	Site	3601011	Teal			(11)	Trout (brown & rainbow)	48		235	98	48	ac						
Slab Creek	-F3						Rainbow trout	44		215	88	44							
American, S	SCD		2019 ^e	1,083	40	43,212	Brown trout	4		20	10	4							
S.F. Ame							Unidentif- ied Sunfish	1		5									

ft = feet

g = grams lbs = pounds mm = millimeters ^e Snorkel survey.

2019 Annual Monitoring Report June 2020

Table B2-13. Fish Population Data, 2002–2019, for Site SCD-F2, S.F. American River, Slab Creek Dam Reach.

Stream and Reach	Site	Section	Year	Site Length (ft)	Avg. Width (ft)	Avg. Area (ft ²)	Species	Total Number Captured/ Observed	Removal Pattern	Number of Fish / Mile	Catchable Trout / Mile (>152 mm)		Confi Interva	r, Zippin ercent dence I (No. of /acre)	Total Biomass (g)	g/acre	Estimate		Confidence (Ibs/acre)
				689			Trout (rainbow)	38		291	107	48							
			2019 ^e		52	34,473	Sculpin sp.	6		46		8							
							Sacramento sucker	1		8		1							
		Combined		252	40	10,080	Trout (brown & rainbow)	12	7-1-4	369	195	76	0	154	321.4	4422.5	4.5	0.0	9.1
							Trout (brown & rainbow)	12	7-1-4	694	366	165	0	338	321.4	4422.5	9.8	0.0	19.9
							California roach	2	0-2-0										
Jam		Upper		134	35	4,690	Sacramento sucker	24	13-8-3										
							Speckled dace	45	34-8-3										
Ū			2003				Hardhead Sacramento	2	0-1-1										
Slal	SCD-F2		2003				pikeminnow	6	5-1-0										
American, Slab Creek Dam	sc						Trout (brown & rainbow)	0	0-0-0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0
							California roach	19	6-7-6										
Т.		Lower		118	46	5,411	Sacramento sucker	8	5-2-1										
							Speckled dace	16	12-1-3										
							Hardhead	12	0-11-1										
							Sacramento pikeminnow	26	23-2-1										
		Combined		236	44	10,384	Trout (brown & rainbow)	10	7-3-0	228	67	43	38	47	521.4	2,222.6	4.9	4.4	5.4
			2002				Trout (brown & rainbow)	9	6-3-0	432	141	93	80	105	503.9	5,171.0	11.4	9.9	12.9
		Upper		113	39	4,341	California roach	10	9-0-1										
							Sacramento sucker	22	15-5-2										

Stream and Reach	Site	Section	Year	Site Length (ft)	Avg. Width (ft)	Avg. Area (ft ²)	Species	Total Number Captured/ Observed	Removal Pattern	Number of Fish / Mile	Catchable Trout / Mile (>152 mm)		d Density, Method 95 Pe Confid Interval fish/a	rcent dence (No. of	Total Biomass (g)	g/acre	Estimate		Confidence (lbs/acre)
							Speckled dace	53	28-13-12										
am		Upper		113	39	4,341	Hardhead	3	1-2-0										
reek D							Sacramento pikeminnow	4	3-1-0										
U U							Trout (rainbow)	1	1-0-0	43	0	8	с	С	17.5	136.1	0.3	с	с
n, Slab	SCD- F2		2002				California roach	21	16-3-2										
American,		Lower		123	46	5,668	Sacramento sucker	16	11-4-1										
		Lower		123	40	5,000	Speckled dace	18	9-2-7										
S. T.							Hardhead	68	51-11-6										
ft foot							Sacramento pikeminnow	41	23-13-5										

ft = feet g = grams lbs = pounds mm = millimeters

^c Couldn't not be calculated due to unequal number of passes. ^e Conducted by snorkel survey.

2019 Annual Monitoring Report June 2020

This Page Intentionally Left Blank

APPENDIX B3

Trout Condition Table

This Page Intentionally Left Blank

Table B3-1. Fulton's Condition Factors (K-values), 2002–2019.

		•							
				R	ainbow Tro	out		Brown Tro	ut
Stream	Reach	Site	Year	Sample size	Average K	Standard Error	Sample size	Average K	Standard Error
Rubicon	Rubicon Reservoir Dam	RRD-F1	2002	82	1.00	0.02	18	0.98	0.03
Rubicon	Rubicon Reservoir Dam	RRD-F1	2003	50	1.08	0.02	15	1.03	0.02
Rubicon	Rubicon Reservoir Dam	RRD-F1	2005	49	1.16	0.02	12	1.10	0.05
Rubicon	Rubicon Reservoir Dam	RRD-F1	2019	18	1.08	0.06	2	1.10	0.03
Rubicon	Rubicon Reservoir Dam	RRD-F2	2002	1	1.00	0.00	14	0.97	0.03
Rubicon	Rubicon Reservoir Dam	RRD-F2	2003	16	1.19	0.05	69	1.07	0.02
Rubicon	Rubicon Reservoir Dam	RRD-F2	2005	1	0.96		44	0.97	0.02
Rubicon	Rubicon Reservoir Dam	RRD-F2	2019	1	0.89		0		
Little Rubicon	Buck Island Dam	BID-F1	2002	4	1.02	0.03	0		
Little Rubicon	Buck Island Dam	BID-F1	2003	1	1.17		0		
Little Rubicon	Buck Island Dam	BID-F1	2019	0			0		
Gerle Creek	Loon Lake Dam	LLD-F2	2002	5	0.91	0.13	50	1.05	0.01
Gerle Creek	Loon Lake Dam	LLD-F2	2003	1	0.85		22	0.97	0.02
Gerle Creek	Loon Lake Dam	LLD-F2	2004	2	1.14	0.03	68	1.09	0.03
Gerle Creek	Loon Lake Dam	LLD-F2	2019	31	0.96	0.06	6	0.94	0.03
Gerle Creek	Loon Lake Dam	LLD-F3	2019	3	0.97	0.10	7	1.18	0.21
Gerle Creek	Gerle Creek Dam	GCD-F1	2002	50	0.82	0.05	37	0.97	0.04
Gerle Creek	Gerle Creek Dam	GCD-F1	2003	16	0.99	0.03	11	1.25	0.22
Gerle Creek	Gerle Creek Dam	GCD-F1	2019	68	0.84	0.01	1	1.0	
S.F. Rubicon	Robbs Peak Dam	RPD-F1	2002	153	0.98	0.05	67	1.0	0.01
S.F. Rubicon	Robbs Peak Dam	RPD-F1	2003	65	0.97	0.01	50	1.05	0.03
S.F. Rubicon	Robbs Peak Dam	RPD-F1	2005	60	0.98	0.02	26	0.98	0.01
S.F. Rubicon	Robbs Peak Dam	RPD-F1	2019	124	0.87	0.01	7	1.01	0.04

				R	ainbow Tro	out	Brown Trout			
Stream	Reach	Site	Year	Sample size	Average K	Standard Error	Sample size	Average K	Standard Error	
S.F. Silver	Ice House Dam	IHD-F1	2002	40	0.90	0.03	25	0.86	0.05	
S.F. Silver	Ice House Dam	IHD-F1	2003	38	0.97	0.01	13	0.95	0.04	
S.F. Silver	Ice House Dam	IHD-F1	2004	60	1.07	0.03	19	1.02	0.04	
S.F. Silver	Ice House Dam	IHD-F1	2019	17	1.00	0.02	3	0.98	0.02	
S.F. Silver	Ice House Dam	IHD-F2	2002	12	1.01	0.03	14	1.06	0.02	
S.F. Silver	Ice House Dam	IHD-F2	2003	11	0.91	0.03	10	1.00	0.03	
S.F. Silver	Ice House Dam	IHD-F2	2004	10	0.98	0.04	10	1.03	0.05	
S.F. Silver	Ice House Dam	IHD-F2	2019	11	0.89	0.03	17	0.99	0.04	

APPENDIX B4

2019 Scale Analysis Data

This Page Intentionally Left Blank

					1st Scale	2nd Scale	3rd Scale
	Sample	Length	Weight		Annuli	Annuli	Annuli
Species	ID	(TL mm)	(g)	Age	Count	Count	Count
			LLC)-F2			
Rainbow	14	122	16.4	1+	1+ (scale	1+ (scale	1+ (scale
trout	14	122	10.4	1+	1)	7)	8)
Rainbow	12	125	50.8	1+	1+ (scale	1+ (scale	1+ (scale
trout	12	125	50.8	17	4)	5)	9)
Rainbow	4	127	14.8	1+	1+ (scale	1+ (scale	1+ (scale
trout	4	127	14.0	17	1)	3)	7)
Rainbow	11	133	18.6	1+	1+ (scale	1+ (scale	1+ (scale
trout	11	155	10.0	1+	2)	3)	5)
Rainbow	10	139	23.5	1+	1+ (scale	1+ (scale	1+ (scale
trout	10	159	23.5	17	4)	5)	6)
Rainbow	3	149	29.9	1+	1+ (scale	1+ (scale	1+ (scale
trout	5	149	29.9	17	4)	5)	6)
Rainbow	2	150	29.0	1+	1+ (scale	1+ (scale	1+ (scale
trout	2	150	29.0	1+	4)	1)	5)
Rainbow	9	157	31.4	1+	1+ (scale	1+ (scale	1+ (scale
trout	9	157	51.4	17	1)	3)	4)
Brown	4	92	7.1	0.	0+ (scale	0+ (scale	0+ (scale
trout	4	92	7.1	0+	1)	6)	12)
Brown	F	0.0	4.0	0.	0+ (scale	0+ (scale	0+ (scale
trout	5	82	4.8	0+	4)	3)	9)
Brown	1	210	93.7	2.	2+ (scale	2+ (scale	2+ (scale
trout	1	210	93.7	2+	5)	6)	2)
Brown	6	240	137.9	3+	3+ (scale	3+ (scale	
trout	0	240	137.9	5+	3)	4)	(scale 9)
Brown	2	164	36.3	1+	1+ (scale	1+ (scale	1+ (scale
trout	2	104	30.3	1+	1)	3)	7)
Brown	3	352	450.0	3+	3+ (scale	3+ (scale	3+ (scale
trout	5	352	450.0	57	1)	3)	5)
			LLC	D-F3			
Rainbow	6	130	18.5	1+	1 (scale 1)	1 (scale 5)	1 (scale 8)
trout	0	130	10.5	17	r (scale r)	T (Scale 5)	i (scale o)
Rainbow	6	181	53.0	1+	1+ (scale	1+ (scale	1+ (scale
trout	0	101	55.0	1+	5)	4)	9)
Rainbow	3	212	82.5	2+	2+ (scale	2+ (scale	2+ (scale
trout	5	212	02.5	27	1)	5)	4)
Brown	3	119	17.8	1+	1+ (scale	1+ (scale	1+ (scale
trout	5	119	17.0	17	1)	3)	4)
Brown	4	120	15 5	1+	1+ (scale	1+ (scale	1+ (scale
trout	4	120	15.5	1+	1)	2)	3)
Brown	12	130	18.8	1+	1+ (scale	1+ (scale	1+ (scale
trout	12	130	10.0	1+	1)	3)	9)
Brown	8	121	21.2	4.	1+ (scale	1+ (scale	1+ (scale
trout	o	131	21.3	1+	1)	2)	4)
Brown	Δ	101	25.0	4.	1+ (scale	1+ (scale	1+ (scale
trout	4	131	23.0	1+	1)	2)	9)

Table B4-1. Scale Analysis Data, 2019.

	Sample	Length	Weight	•	1st Scale Annuli	2nd Scale Annuli	3rd Scale Annuli					
Species	ID	(TL mm)	(g)	Age	Count	Count	Count					
Brown trout	11	140	26.1	1+	1+ (scale 4)	1+ (scale 3)	1+ (scale 7)					
Brown					1+ (scale	1+ (scale	1+ (scale					
trout	7	147	31.5	1+	1)	2)	4)					
Brown		400			1+ (scale	1+ (scale	1+ (scale					
trout	5	160	39.7	1+	1)	7)	8)					
Brown	Б	220	255.0	2.	3+ (scale	3+ (scale	3+ (scale					
trout	5	338	355.0	3+	4)	1)	7)					
RRD F-1												
Rainbow	11	132	34.1	1+	1+ (scale	1+ (scale	1+ (scale					
trout		102	04.1		1)	2)	9)					
Rainbow	1	135	25.1	1+	1+ (scale	1+ (scale	1+ (scale					
trout	-				2)	3)	4)					
Rainbow	5	144	35.9	2+	2+ (scale	2+ (scale	2+ (scale					
trout Rainbow						3)	7)					
trout	2	145	27.6	2+	2+ (scale	2+ (scale 4)	2+ (scale 8)					
Rainbow					2+ (scale	2+ (scale	2+ (scale					
trout	10	161	47.6	2+	4)	7)	8)					
Rainbow				-	2+ (scale	2+ (scale	2+ (scale					
trout	1	177	57.2	2+	5)	7)	8)					
Brown	40	70	1.0	0.	,		,					
trout	16	72	4.0	0+	0 (scale 1)	0 (scale 5)	0 (scale 6)					
	•	•	RRE) F-2								
Rainbow	1	130	19.6	1+	1+ (scale	1+ (scale	1+ (scale					
trout	•	100			5)	6)	9)					
<u> </u>	1	1	GCI	D-F1								
Rainbow	14	137	20.3	1+	1+ (scale	1+ (scale	1+ (scale					
trout		_			1)	3)	4)					
Rainbow	3	141	24.4	1+	1+ (scale	1+ (scale	1+ (scale					
trout Rainbow					2) 1+ (scale	4) 1+ (scale	8) 1+ (scale					
trout	1	147	28.4	1+	1)	4)	5)					
Brown					0+ (scale	0+ (scale	0+ (scale					
trout	1	82	5.4	0+	1)	3)	4)					
	1	1	RPD) F-1	,	- /	//					
Rainbow	20	470	40.0	<u>.</u>	2+ (scale	2+ (scale						
trout	20	170	48.8	2+	1)	2)						
Brown	13	79	5.0	0+	0+ (scale	0+ (scale	0+ (scale					
trout	15	79	5.0	0+	1)	2)	3)					
Brown	23	80	4.8	0+	0+ (scale	0+ (scale	0+ (scale					
trout	20	00	4.0	01	1)	2)	3)					
Brown	26	90	6.2	0+	0+ (scale	0+ (scale	0+ (scale					
trout				•.	1)	3)	4)					
Brown	25	90	6.8	0+	0+ (scale	0+ (scale	0+ (scale					
trout					1)	4)	7)					
Brown	24	160	42.6	1+	1+ (scale	1+ (scale	1+ (scale					
trout					1)	2)	4)					

Species	Sample ID	Length (TL mm)	Weight (g)	Age	1st Scale Annuli Count	2nd Scale Annuli Count	3rd Scale Annuli Count
Brown trout	22	222	124.9	2+	2+ (scale 1)	2+ (scale 3)	2+ (scale 4)
Brown trout	21	325	398.0	4+	4+ (scale 3)	4+ (scale 5)	4+ (scale 6)
			IHD	F-1			
Rainbow trout	1	134	23.2	1+	1+ (scale 1)	1+ (scale 2)	1+ (scale 3)
Rainbow trout	2	136	24.2	1+	1+ (scale 1)	1+ (scale 2)	1+ (scale 4)
Rainbow trout	5	145	29.5	1+	1+ (scale 1)	1+ (scale 3)	1+ (scale 4)
Rainbow trout	12	154	36.1	1+	1+ (scale 1)	1+ (scale 6)	1+ (scale 6)
Rainbow trout	11	187	67.3	2+	1+ (scale 1)	2+ (scale 2)	2+ (scale 5)
Rainbow trout	4	191	71.1	2+	2+ (scale 2)	2+ (scale 3)	2+ (scale 4)
Rainbow trout	3	203	76.1	2+	2+ (scale 1)	2+ (scale 3)	2+ (scale 6)
Brown trout	8	127	19.1	1+	1+ (scale 1)	1+ (scale 3)	1+ (scale 4)
Brown trout	7	151	33.9	2+	2+ (scale 3)	2+ (scale 6)	2+ (scale 9)
Brown trout	3	185	63.9	2+	2+ (scale 1)	2+ (scale 3)	2+ (scale 7)
			IHD) F-2			
Rainbow trout	4	168	36.5	2+	2+ (scale 2)	2+ (scale 3)	2+ (scale 5)
Rainbow trout	1	169	48.8	2+	2+ (scale 1)	2+ (scale 2)	2+ (scale 3)
Brown trout	13	75	4.1	0+			
Brown trout	9	79	4.6	0+			
Brown trout	8	79	4.6	0+			
Brown trout	11	139	28.2	1+	1+ (scale 2)	1+ (scale 3)	1+ (scale 4)
Brown trout	5	336	320.0	3+	3+ (scale 3)	3+ (scale 4)	3+ (scale 5)

g = grams mm = millimeters TL = total length

		Rainbow Trout Age-Class Size Ranges (FL)													
		0+			1+		2+			3+			4+		
Site	n	min	max	n	min	max	n	min	max	n	min	max	n	min	max
LLD F-2				8	122	157		-							
LLD F-3				2	130	181	1	212	212						
RRD F-1				6	132	177									
RRD F-2				1	130	130									
GCD F-1				3	137	147									
RPD F-1				1	170	170									
IHD F-1				4	134	154	3	187	203						
IHD F-2				2	168	169									
		Brown Trout Age-Class Size Ranges (FL)													
		0+		1+		2+		3+		4+					
Site	n	min	max	n	min	max	n	min	max	n	min	max	n	min	max
LLD F-2	2	82	92	1	164	164	1	210	210	2	240	352			
LLD F-3				3	119	130	2	147	160	1	338	338			
RRD F-1	1	72	72												
RRD F-2															
GCD F-1	1	82	82												
RPD F-1	8	79	90	1	160	160	1	222	222				1	325	325
IHD F-1							2	151	185						
IHD F-2	3	75	79	1	139	139				1	336	336			

Table B4-2. Summary Scale Analysis Data, 2019.

TL = total length

-- = no data

2019 Annual Monitoring Report June 2020

APPENDIX B5

Site Photos

This Page Intentionally Left Blank

Figure B5-1. Site RRD-F1, Rubicon River, Rubicon Dam Reach. From top: upper net looking upstream, middle net looking river-right, bottom net looking downstream.

Figure B5-2. Site RRD-F2, Rubicon River, Rubicon Dam Reach. From top: upper net looking upstream, lower net looking downstream.

Figure B5-3. Site BID-F1, Little Rubicon River, Buck Island Dam Reach. From top: natural barrier at upstream end of upper segment, middle net looking downstream, lower net looking upstream.

Figure B5-4. Site LLD-F3, Gerle Creek, Loon Lake Dam Reach. From top: upper net looking upstream, middle net looking downstream, lower net looking upstream.

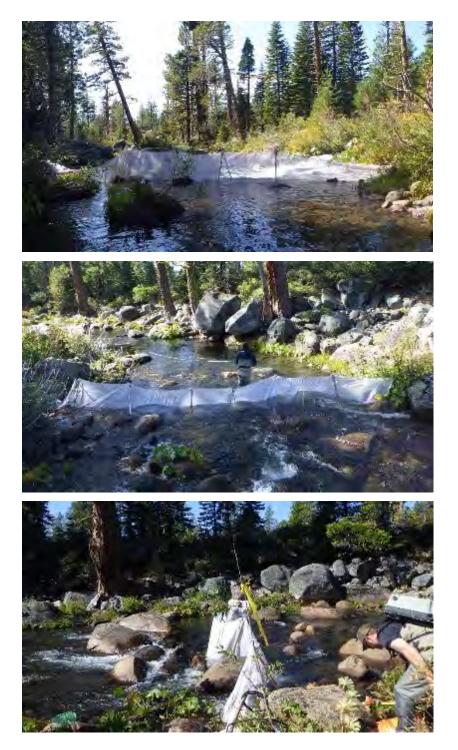


Figure B5-5. Site LLD-F2, Gerle Creek, Loon Lake Dam Reach. From top: upper net looking downstream, middle net looking downstream, lower net looking river-right.

Figure B5-6. Site GCD-F1, Gerle Creek, Gerle Creek Dam Reach. From top: upper net looking upstream, middle net looking upstream, lower net looking upstream.

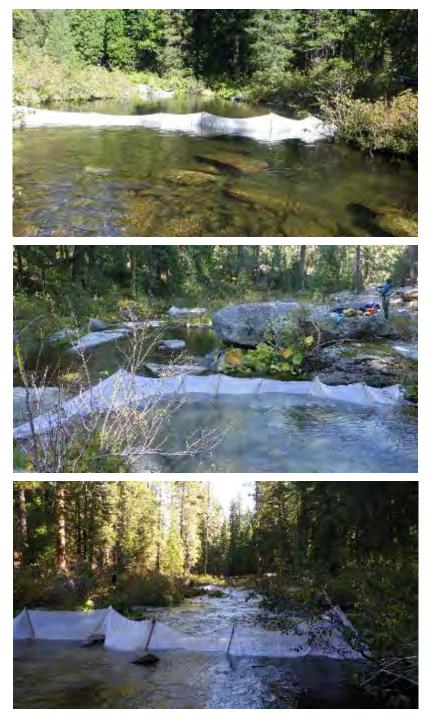


Figure B5-7. Site RPD-F1, S.F. Rubicon River, Robbs Peak Dam Reach. From top: upper net looking upstream, middle net looking downstream, lower net looking upstream.

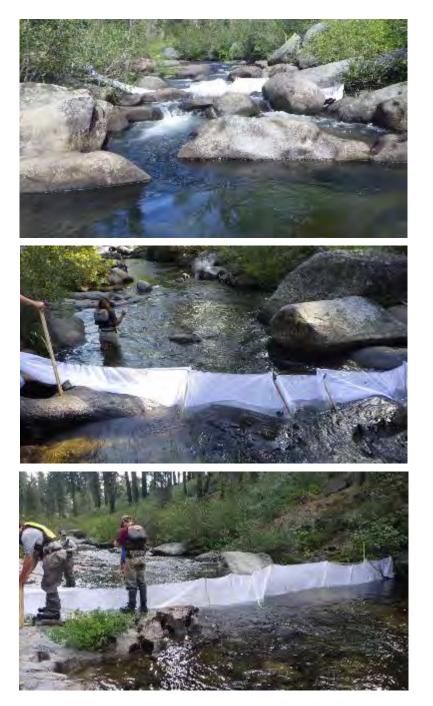


Figure B5-8. Site IHD-F1, S.F. Silver Creek, Ice House Dam Reach. From top: upper net looking upstream, middle net looking downstream, lower net looking upstream.

Figure B5-9. Site IHD-F2, S.F. Silver Creek, Ice House Dam Reach. From top: upper net looking downstream, middle net looking upstream, lower net looking upstream.

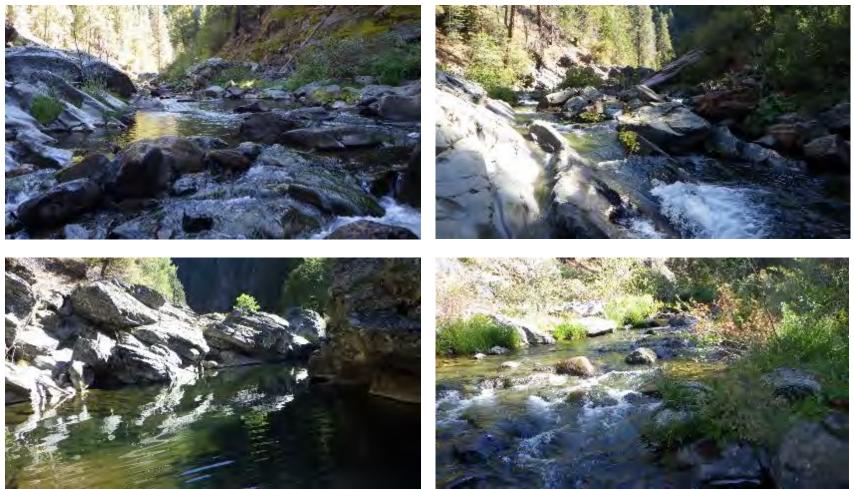


Figure B5-10. Site JD-F3, Silver Creek, Junction Dam Reach. Clockwise from top: Unit #1 - run, Unit #2 - high gradient riffle, Unit #3 - pool, Unit #4 - riffle.

Figure B5-11. Site CD-F1, Silver Creek, Camino Dam Reach. Clockwise from top: Unit #1 - pool, Unit #2 - riffle, Unit #3 - pool, Unit #4 - riffle.

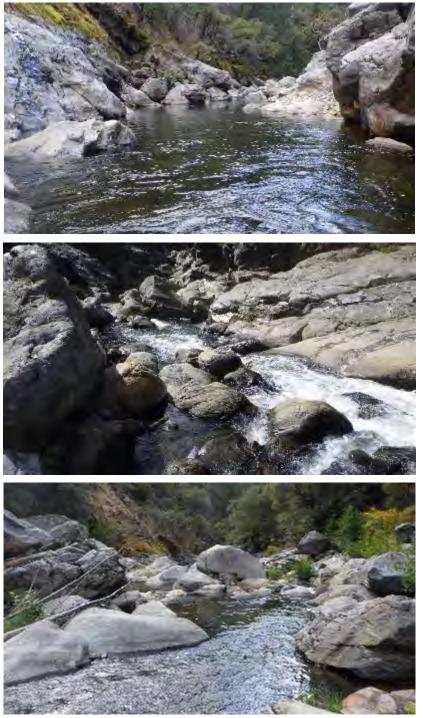


Figure B5-12. Site CD-F1, Silver Creek, Camino Dam Reach. From top: Unit #5 - pool, Unit #6 - riffle, Unit #7 - pool.

Figure B5-13. Site SCD-F3, S.F. American River, Slab Creek Dam Reach. Clockwise from top: Unit #1 - pocket water, Unit #2 - pool, Unit #3 - riffle, Unit #4 - pool.

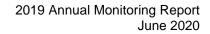


Figure B5-14. Site SCD-F2, S.F. American River, Slab Creek Dam Reach. From top: Unit #1: pool, Unit #2 - run, Unit #3 - run.

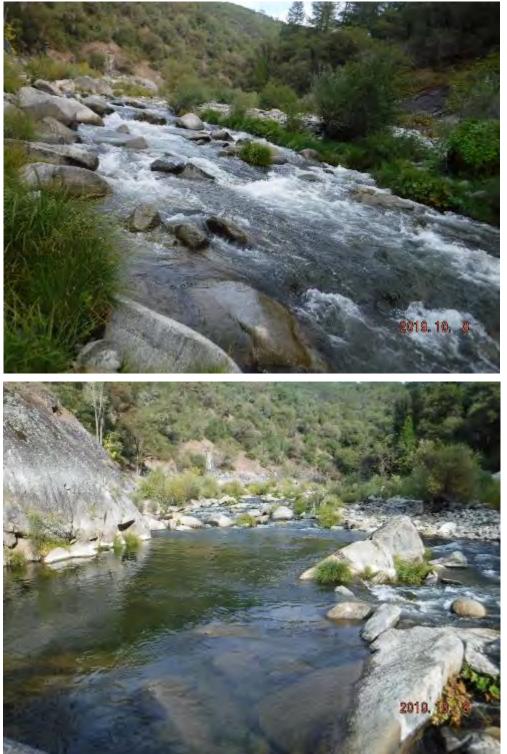


Figure B5-15. Site SCD-F2, S.F. American River, Slab Creek Dam Reach. From top: Unit #4 - riffle, Unit #5 - pool.

This Page Intentionally Left Blank

APPENDIX B6

Site Conditions

This Page Intentionally Left Blank

Table B6-1. Survey Site Conditions at UARP Trout Survey Locations, 2002–2019.

			,												
				Habitat		Site length	Avg. Width	Max Depth	Water Temp.	Electric Cond.	Approx.		Percent Ha	bitat Type	
Date	Stream	Reach	Site Name	Section	Method	(ft)	(ft)	(ft)	(°C)	(ms)	Flow (cfs)	Pool	Riffle	Run	Glide
						2019									
09/11/19	Rubicon	Rubicon River Dam	RRD-F1	Lower	E-fish	126.3	29.8	2.5	15.3	13.0	7	15	30	50	5
09/11/19	Rubicon	Rubicon River Dam	RRD-F1	Upper	E-fish	160.5	38.9	5.5	15.3	13.0	7	15	5	80	0
09/12/19	Rubicon .0	Rubicon River Dam	RRD-F2	Combined	E-fish	250.0	27.6	3.5	15.4	15.6	1	55	15	30	0
09/10/19	Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	226.0	11.7	2.5	18.7	9.4	1	30	25	45	0
09/10/19	Little Rubicon	Buck Island Dam	BID-F1	Upper	E-fish	123.0	42.6	4.5	18.7	9.4	1	95	0	5	0
09/03/19	Gerle Creek	Loon Lake Dam	LLD-F3	Lower	E-fish	184.7	25.3	2.5	15.4	8.4	22	0	25	65	10
09/03/19	Gerle Creek	Loon Lake Dam	LLD-F3	Upper	E-fish	111.2	22.4	3.5	15.4	8.4	22	0	15	85	0
10/01/19	Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	99.1	31.1	4.0	8.9	10.1	25	0	0	90	10
10/01/19	Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	212.0	42.7	1.5	8.9	10.1	25	10	15	75	0
10/02/19	Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	139.1	36.4	2.0	9.1	11.5	11	25	10	65	0
10/02/19	Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	101.8	31.9	6.0	9.1	11.5	11	40	0	60	0
10/03/19	S.F. Rubicon	Robb's Peak Dam	RPD-F1	Lower	E-fish	160.6	42.5	4.0	6.9	3.4	14	5	50	40	5
10/03/19	S.F. Rubicon	Robb's Peak Dam	RPD-F1	Upper	E-fish	160.7	40.5	3.0	6.9	3.4	14	25	50	5	20
09/05/19	S.F. Silver Creek	Ice House Dam	IHD-F1	Lower	E-fish	134.0	29.4	3.5	11.0	13.7	16	15	40	40	5
09/05/19	S.F. Silver Creek	Ice House Dam	IHD-F1	Upper	E-fish	132.5	20.9	8.0	11.0	13.7	16	20	15	65	10
09/04/19	S.F. Silver Creek	Ice House Dam	IHD-F2	Lower	E-fish	138.7	25.8	3.5	16.9	14.7	16	5	15	85	0
09/04/19	S.F. Silver Creek	Ice House Dam	IHD-F2	Upper	E-fish	226.0	29.1	3.5	16.9	14.7	16	10	25	65	0
10/4/19	Silver Creek	Junction Dam	JD-F3	1	Snorkel	177.0	29.8	4.0	6.9	13.9	17	0	10	90	0
10/4/19	Silver Creek	Junction Dam	JD-F3	2	Snorkel	171.0	32.9	3.5	6.9	13.9	17	0	100	0	0
10/4/19	Silver Creek	Junction Dam	JD-F3	3	Snorkel	262.5	43.6	15	6.9	13.9	17	100	0	0	0
10/4/19	Silver Creek	Junction Dam	JD-F3	4	Snorkel	310.0	52.8	4.0	6.9	13.9	17	0	100	0	0
9/30/19	Silver Creek	Camino Dam	CD-F1	1	Snorkel	221.0	50.9	10.0	9.8	14.5	20	100	0	0	0
9/30/19	Silver Creek	Camino Dam	CD-F1	2	Snorkel	170.0	23.3	6.0	9.8	14.5	20	50	50	0	0
9/30/19	Silver Creek	Camino Dam	CD-F1	3	Snorkel	63.0	29.5	5.0	9.8	14.5	20	100	0	0	0
9/30/19	Silver Creek	Camino Dam	CD-F1	4	Snorkel	92.0	37.4	6.0	9.8	14.5	20	50	50	0	0
9/30/19	Silver Creek	Camino Dam	CD-F1	5	Snorkel	110.5	28.9	6.0	9.8	14.5	20	100	0	0	0
9/30/19	Silver Creek	Camino Dam	CD-F1	6	Snorkel	148.0	19.2	3.0	9.8	14.5	20	0	100	0	0
9/30/19	Silver Creek	Camino Dam	CD-F1	7	Snorkel	100.0	34.0	3.0	9.8	14.5	20	85	15	0	0
10/8/19	S.F. American	Slab Creek	SCD-F3	1	Snorkel	269.0	47.0	2.5	11.1	20.2	90	0	50	50	0
10/8/19	S.F. American	Slab Creek	SCD-F3	2	Snorkel	367.5	34.4	20+	11.1	20.2	90	100	0	0	0
10/8/19	S.F. American	Slab Creek	SCD-F3	3	Snorkel	173.9	34.4	2.5	11.1	20.2	90	0	100	0	0
10/8/19	S.F. American	Slab Creek	SCD-F3	4	Snorkel	272.3	43.7	4.0	11.1	20.2	90	0	0	100	0
10/8/19	S.F. American	Slab Creek	SCD-F2	1	Snorkel	91.9	58.5	4.0	13.1	24.0	100	100	0	0	0
10/8/19	S.F. American	Slab Creek	SCD-F2	2	Snorkel	137.8	51.4	3.0	13.1	24.0	100	0	0	100	0
10/8/19	S.F. American	Slab Creek	SCD-F2	3	Snorkel	226.4	48.1	3.5	13.1	24.0	100	0	15	85	0
10/8/19	S.F. American	Slab Creek	SCD-F2	4	Snorkel	144.4	37.2	3.0	13.1	24.0	100	0	100	0	0
10/8/19	S.F. American	Slab Creek	SCD-F2	5	Snorkel	88.6	65.0	10.0	13.1	24.0	100	100	0	0	0
10/0/19	J.F. American	Sian Cleek	30D-FZ	5	SHUIKEI	00.0	05.0	10.0	13.1	24.0	100	100	0	U	U

							Avg.	Max	Water	Electric			Denserville		
				Habitat		Site length	Width	Depth	Temp.	Cond.	Approx.		Percent Ha		
Date	Stream	Reach	Site Name	Section	Method	(ft)	(ft)	(ft)	(°C)	(ms)	Flow (cfs)	Pool	Riffle	Run	Glide
		1			I	2005		1		1			1		1
10/11/05	Rubicon	Rubicon River Dam	RRD-F1	Lower	E-fish	149.0	26.1	2.5	9.9	21.4	2	-	15	85	-
10/11/05	Rubicon	Rubicon River Dam	RRD-F1	Upper	E-fish	175.0	28.9	5.0	9.9	21.4	2	30	-	10	60
10/13/05	Rubicon	Rubicon River Dam	RRD-F2	Lower	E-fish	122.8	11.9	1.0	10.8	22.3	1	-	30	70	-
10/13/05	Rubicon	Rubicon River Dam	RRD-F2	Upper	E-fish	166.0	23.8	3.0	10.8	22.3	1	30	-	10	60
10/10/05	S.F Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	168.0	30.2	2.5	9.6	10.6	9	5	55	40	-
10/10/05	S.F Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	173.0	39.9	4.0	9.6	10.6	9	45	45	10	-
		1				2004								•	
10/5/04	Gerle Creek	Loon Lake Dam	LLD-F1	Lower	E-Fish	212.0	23.8	4.0	13.0	4.7	9	5	30	40	25
10/5/04	Gerle Creek	Loon Lake Dam	LLD-F1	Upper	E-Fish	115.0	28.3	4.0	14.0	4.7	9	100	0	0	0
10/6/04	Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-Fish	99.5	28.9	4.0	10.8	4.7	10	0	0	0	100
10/6/04	Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-Fish	197.0	40.2	3.0	12.9	9.0	10	5	30	65	0
10/9/04	Silver Creek	Ice House Dam	IHD-F1	Lower	E-Fish	133.5	28.0	4.0	7.7	8.7	8	10	10	80	0
10/9/04	Silver Creek	Ice House Dam	IHD-F1	Upper	E-Fish	142.0	31.3	5.0	9.0	8.9	8	20	5	75	0
10/10/04	Silver Creek	Ice House Dam	IHD-F2	Lower	E-Fish	149.3	26.6	2.5	10.1	9.8	11	10	5	85	0
10/10/04	Silver Creek	Ice House Dam	IHD-F2	Upper	E-Fish	211.5	30.2	2.5	12.5	10.2	11	0	50	50	0
	•		·		•	2003									
10/22/03	Rubicon	Rubicon River Dam	RRD-F1	Lower	E-Fish	144.0	25.3	1.5	9.5	11.2	1	0	15	85	0
10/22/03	Rubicon	Rubicon River Dam	RRD-F1	Upper	E-Fish	157.5	30.9	5.5	11.7	13.2	1	100	0	0	0
10/23/03	Rubicon	Rubicon River Dam	RRD-F2	Lower	E-Fish	129.0	14.9	1.0	7.6	16.6	1	0	30	70	0
10/23/03	Rubicon	Rubicon River Dam	RRD-F2	Upper	E-Fish	163.5	24.1	2.0	10.8	18.1	1	30	0	10	60
10/21/03	Little Rubicon	Buck Island Dam	BID-F1	Lower	E-Fish	229.0	13.2	2.0	9.8	6.5	1	0	30	70	0
10/21/03	Little Rubicon	Buck Island Dam	BID-F1	Upper	E-Fish	123.0	38.3	5.0	14.6	7.4	1	100	0	0	0
09/25/03	Gerle Creek	Loon Lake Dam	LLD-F1	Lower	E-Fish	212.6	23.9	4.0	15.6	7.4	8	5	30	40	25
09/25/03	Gerle Creek	Loon Lake Dam	LLD-F1	Upper	E-Fish	112.5	28.2	4.0	16.7	7.6	8	100	0	0	0
09/26/03	Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-Fish	97.0	24.6	4.0	12.9	8.7	8	0	0	100	0
09/26/03	Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-Fish	188.0	39.8	3.0	15.3	9.1	8	0	60	40	0
09/24/03	Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-Fish	132.0	38.6	3.8	15.3	5.7	10	20	40	40	0
09/24/03	Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-Fish	190.0	36.2	5.0	17.5	9.0	10	-	-	-	-
09/23/03	S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-Fish	170.5	32.3	2.5	14.6	10.1	10	5	55	40	0
09/23/03	S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-Fish	169.0	44.5	4.5	14.0	-	10	70	10	20	0
09/27/03	S.F. Silver Creek	Ice House Dam	IHR-F1	Lower	E-Fish	134.0	30.1	4.0	6.3	8.2	13	10	10	80	0
09/27/03	S.F. Silver Creek	Ice House Dam	IHR-F1	Upper	E-Fish	137.0	25.3	5.0	10.8	9.2	13	20	0	80	0
10/09/03	S.F. Silver Creek	Ice House Dam	IHR-F2	Lower	E-Fish	141.0	28.7	2.5	10.6	9.8	11	10	5	85	0
10/09/03	S.F. Silver Creek	Ice House Dam	IHR-F2	Upper	E-Fish	211.0	28.4	2.5	12.9	10.5	14	0	50	50	0
10/10/03	S.F. American	Slab Creek Dam	SCD-F2	Lower	E-Fish	117.5	46.1	-	12.7	20.6	35	60	0	40	0
10/10/03	S.F. American	Slab Creek Dam	SCD-F2	Upper	E-Fish	133.5	34.6	-	14.9	21.7	35	0	90	10	0

				Habitat		Site length	Avg. Width	Max Depth	Water Temp.	Electric Cond.	Approx.		Percent Ha	bitat Type	
Date	Stream	Reach	Site Name	Section	Method	(ft)	(ft)	(ft)	(°C)	(ms)	Flow (cfs)	Pool	Riffle	Run	Glide
						2002		· -							
10/16/02	Rubicon	Rubicon River Dam	RRD-F1	Lower	E-Fish	150.0	29.4	1.5	9.0	20.0	5	0	15	85	0
10/16/02	Rubicon	Rubicon River Dam	RRD-F1	Upper	E-Fish	149.0	27.6	5.5	10.0	10.0	5	95	0	5	0
10/17/02	Rubicon	Rubicon River Dam	RRD-F2	Lower	E-Fish	128.0	16.7	1.5	10.0	20.0	3	0	50	50	0
10/17/02	Rubicon	Rubicon River Dam	RRD-F2	Upper	E-Fish	172.0	21.9	2.0	10.0	20.0	3	30	0	10	60
10/15/02	Little Rubicon	Buck Island Dam	BID-F1	Lower	E-Fish	231.5	13.3	2.0	10.0	10.0	5	0	30	70	0
10/15/02	Little Rubicon	Buck Island Dam	BID-F1	Upper	E-Fish	152.0	41.0	5.0	10.0	10.0	5	100	0	0	0
10/10/02	Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-Fish	102.2	27.1	4.0	12.0	9.2	15	20	0	80	0
10/10/02	Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-Fish	191.0	41.5	3.5	12.0	9.2	15	10	20	70	0
10/08/02	Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-Fish	136.8	36.2	3.0	13.0	10.2	15	20	30	50	0
10/08/02	Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-Fish	107.5	33.8	5.0	13.0	10.2	15	100	0	0	0
10/14/02	S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-Fish	165.0	34.5	2.5	10.0	10.0	10	0	50	50	0
10/14/02	S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-Fish	173.2	47.1	4.5	10.0	10.0	10	70	10	20	0
10/07/02	S.F. Silver Creek	Ice House Dam	IHD-F1	Lower	E-Fish	128.0	30.6	3.5	6.0	9.4	15	50	0	50	0
10/07/02	S.F. Silver Creek	Ice House Dam	IHD-F1	Upper	E-Fish	135.0	22.7	5.5	10.0	10.1	15	0	0	100	0
10/11/02	S.F. Silver Creek	Ice House Dam	IHD-F2	Lower	E-Fish	151.0	28.0	2.5	6.0	10.2	25	0	50	50	0
10/11/02	S.F. Silver Creek	Ice House Dam	IHD-F2	Upper	E-Fish	214.0	32.4	2.5	9.0	10.4	25	0	100	0	0
10/22/02	Silver Creek	Camino Dam	CD -F1	1	Snorkel	283.0	62.5	20.0	9.0	-	-	100	-	-	-
10/22/02	Silver Creek	Camino Dam	CD -F1	2	Snorkel	130.0	49.5	2.0	9.0	-	-	-	100	-	- 1
10/22/02	Silver Creek	Camino Dam	CD -F1	3	Snorkel	74.0	49.2	7.0	9.0	-	-	100	-	-	-
10/22/02	Silver Creek	Camino Dam	CD -F1	4	Snorkel	78.0	45.5	3.0	9.0	-	-	-	100	-	-
10/22/02	Silver Creek	Camino Dam	CD -F1	5	Snorkel	124.0	25.2	5.0	10.0	-	-	100	-	-	-
10/22/02	Silver Creek	Camino Dam	CD -F1	6	Snorkel	168.0	38.8	3.0	10.0	-	-	-	100	-	-
10/22/02	Silver Creek	Camino Dam	CD -F1	7	Snorkel	142.0	55.0	8.0	10.0	-	-	100	-	-	-
10/30/02	S.F. American	Slab Creek Dam	SCD-F2	Lower	E-Fish	123.0	46.0	5.0	10.0	30.0	25	70	0	30	0
10/29/02	S.F. American	Slab Creek Dam	SCD-F2	Upper	E-Fish	112.8	38.5	3.0	10.0	30.0	25	0	100	0	0
C = degree	a Calaina	1	•							•					

^oC = degrees Celsius cfs = cubic feet per second

= feet

ft

ms = microsiemens

-- = no data

								Pe	ercent Cover					P	ercent	Substrate			
			Site	Habitat		Under-	In- stream	Over-			Large								-
Date	Stream	Reach	Name	Section	Method	cut Bank	Veg	hanging Veg	LWD 019	Bubble	Boulder	No Cover	Bed	Bldr	Cob	Grvl	Snd	Silt	Vis (ft)
09/11/19	Rubicon	Rubicon River Dam	RRD-F1	Lower	E-fish	5	5	10	0	0	20	60	35	40	10	10	5	0	5.5
09/11/19	Rubicon	Rubicon River Dam	RRD-F1	Upper	E-fish	5	10	5	0	0	25	55	40	40	10	8	3	0	5.5
09/12/19	Rubicon	Rubicon River Dam	RRD-F2	Combined	E-fish	5	5	15	5	0	0	70	0	0	5	50	30	15	3.5
09/10/19	Little Rubicon	Buck Island Dam	BID-F1	Lower	E-fish	0	0	0	0	0	40	60	25	60	10	5	0	0	4.5
09/10/19	Little Rubicon	Buck Island Dam	BID-F1	Upper	E-fish	5	0	10	0	0	15	75	5	50	20	5	20	0	4.5
09/03/19	Gerle Creek	Loon Lake Dam	LLD-F3	Lower	E-fish	0	10	20	0	0	0	70	0	20	60	20	0	0	3.5
09/03/19	Gerle Creek	Loon Lake Dam	LLD-F3	Upper	E-fish	5	0	15	0	0	0	80	0	15	55	30	0	0	3.5
10/01/19	Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-fish	5	5	0	0	0	10	80	0	80	20	0	0	0	4.0
10/01/19	Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-fish	0	15	0	0	5	5	75	0	70	25	5	0	0	4.0
10/02/19	Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-fish	0	55	10	0	5	10	20	0	60	35	5	0	0	6.0
10/02/19	Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-fish	10	5	20	0	0	10	55	70	10	20	0	0	0	6.0
10/03/19	S.F. Rubicon	Robb's Peak Dam	RPD-F1	Lower	E-fish	5	5	10	0	10	10	60	90	10	0	0	0	0	4.0
10/03/19	S.F. Rubicon	Robb's Peak Dam	RPD-F1	Upper	E-fish	0	0	15	0	5	20	60	70	15	5	5	5	0	4.0
09/05/19	S.F. Silver Creek	lce House Dam	IHD-F1	Lower	E-fish	5	5	20	0	0	30	40	60	15	10	10	5	0	8.0
09/05/19	S.F. Silver Creek	lce House Dam	IHD-F1	Upper	E-fish	0	0	15	0	0	30	55	50	20	5	5	15	0	8.0
09/04/19	S.F. Silver Creek	lce House Dam	IHD-F2	Lower	E-fish	5	0	10	0	0	10	75	50	25	20	5	0	0	3.5
09/04/19	S.F. Silver Creek	Ice House Dam	IHD-F2	Upper	E-fish	5	5	5	0	0	10	75	40	30	20	5	5	0	3.5
10/4/19	Silver Creek	Junction Dam	JD-F3	1	Snorkel	0	0	0	0	0	30	70	35	40	20	5	0	0	37.2
10/4/19	Silver Creek	Junction Dam	JD-F3	2	Snorkel	0	0	0	0	20	30	50	20	50	20	10	0	0	37.2

Table B6-2. Substrate, Cover, and Visibility Conditions at UARP Trout Survey Locations, 2002–2019.

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

								Pe	rcent Cover					F	Percent	Substrate			
Date	Stream	Reach	Site Name	Habitat Section	Method	Under- cut Bank	In- stream Veg	Over- hanging Veg	LWD	Bubble	Large Boulder	No Cover	Bed	Bldr	Cob	Grvl	Snd	Silt	Vis (ft)
10/4/19	Silver Creek	Junction Dam	JD-F3	3	Snorkel	0	0	0	0	0	35	65	25	25	25	25	0	0	37.2
10/4/19	Silver Creek	Junction Dam	JD-F3	4	Snorkel	0	0	0	0	0	20	80	0	60	30	10	0	0	37.2
9/30/19	Silver Creek	Camino Dam	CD-F1	1	Snorkel	0	1	0	0	0	10	89	5	45	40	10	0	0	16.0
9/30/19	Silver Creek	Camino Dam	CD-F1	2	Snorkel	0	0	0	0	20	15	65	10	40	25	25	0	0	16.0
9/30/19	Silver Creek	Camino Dam	CD-F1	3	Snorkel	5	0	15	0	5	15	60	65	35	0	0	0	0	16.0
9/30/19	Silver Creek	Camino Dam	CD-F1	4	Snorkel	0	5	0	0	15	25	55	50	30	20	0	0	0	16.0
9/30/19	Silver Creek	Camino Dam	CD-F1	5	Snorkel	0	0	5	0	5	15	75	40	35	25	0	0	0	16.0
9/30/19	Silver Creek	Camino Dam	CD-F1	6	Snorkel	0	0	0	0	60	20	20	40	40	20	0	0	0	16.0
9/30/19	Silver Creek	Camino Dam	CD-F1	7	Snorkel	0	0	0	0	15	20	65	35	40	25	0	0	0	16.0
10/8/19	S.F. American	Slab Creek	SCD-F3	1	Snorkel	0	0	10	0	15	10	65	0	60	25	25	0	0	12.1
10/8/19	S.F. American	Slab Creek	SCD-F3	2	Snorkel	0	0	10	0	0	0	90	40	40	20	0	0	0	12.1
10/8/19	S.F. American	Slab Creek	SCD-F3	3	Snorkel	0	0	0	0	70	10	20	0	70	30	0	0	0	12.1
10/8/19	S.F. American	Slab Creek	SCD-F3	4	Snorkel	0	0	0	0	0	20	80	0	70	30	0	0	0	12.1
10/8/19	S.F. American	Slab Creek	SCD-F2	1	Snorkel	0	0	5	0	0	10	85	0	30	30	20	20	0	13.5
10/8/19	S.F. American	Slab Creek	SCD-F2	2	Snorkel	0	5	0	0	0	20	75	20	55	20	5	0	0	13.5
10/8/19	S.F. American	Slab Creek	SCD-F2	3	Snorkel	5	0	10	0	10	10	65	20	35	30	10	5	0	13.5
10/8/19	S.F. American	Slab Creek	SCD-F2	4	Snorkel	0	0	10	0	45	10	35	0	80	20	0	0	0	13.5
10/8/19	S.F. American	Slab Creek	SCD-F2	5	Snorkel	0	0	0	0	0	30	70	20	40	40	0	0	0	13.5

							In-	Pe	rcent Cover					F	ercent s	Substrate			-
Date	Stream	Reach	Site Name	Habitat Section	Method	Under- cut Bank	stream Veg	Over- hanging Veg	LWD	Bubble	Large Boulder	No Cover	Bed	Bldr	Cob	Grvl	Snd	Silt	Vis (ft)
		1					-		005	-	1								
10/11/05	Rubicon	Rubicon River Dam	RRD-F1	Lower	E-fish	10	0	10	0	0	40	40	40	30	15	5	5	0	Max
10/11/05	Rubicon	Rubicon River Dam	RRD-F1	Upper	E-fish	0	0	0	0	0	70	30	20	50	15	10	5	0	Max
10/13/05	Rubicon	Rubicon River Dam	RRD-F2	Lower	E-fish	10	0	5	0	0	0	85	0	0	0	80	20	0	Max
10/13/05	Rubicon	Rubicon River Dam	RRD-F2	Upper	E-fish	10	0	15	0	0	0	75	1	0	5	74	20	0	Max
10/10/05	S.F Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-fish	0	5	0	0	0	5	90	95	5	0	0	0	0	Max
10/10/05	S.F Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-fish	10	5	5	0	0	50	30	40	25	10	5	10	10	Max
		1						2	004										
10/5/04	Gerle Creek	Loon Lake Dam	LLD-F1	Lower	E-Fish	0	0	20	0	0	5	65	40	40	15	5	0	0	max
10/5/04	Gerle Creek	Loon Lake Dam	LLD-F1	Upper	E-Fish	10	0	20	0	0	5	65	15	15	55	10	0	5	max
10/6/04	Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-Fish	0	0	0	0	0	40	50	5	75	50	0	0	0	max
10/6/04	Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-Fish	0	5	0	0	0	40	55	0	45	45	10	2	2	max
10/9/04	Silver Creek	Ice House Dam	IHD-F1	Lower	E-Fish	0	0	5	0	0	20	75	60	30	0	0	5	5	max
10/9/04	Silver Creek	Ice House Dam	IHD-F1	Upper	E-Fish	0	0	10	0	0	30	60	70	15	5	10	0	0	max
10/10/04	Silver Creek	Ice House Dam	IHD-F2	Lower	E-Fish	0	2	7	0	0	5	86	60	10	20	75	25	0	max
10/10/04	Silver Creek	Ice House Dam	IHD-F2	Upper	E-Fish	0	1	3	0	0	5	91	30	25	40	2	2	0	max
		1						2	003	1 									
10/22/03	Rubicon	Rubicon River Dam	RRD-F1	Lower	E-Fish	0	0	3	0	0	20	77	40	30	20	5	5	0	2
10/22/03	Rubicon	Rubicon River Dam	RRD-F1	Upper	E-Fish	0	0	0	0	0	30	70	50	35	5	5	5	0	4
10/23/03	Rubicon	Rubicon River Dam	RRD-F2	Lower	E-Fish	5	0	5	0	0	0	90	0	0	0	90	10	0	1
10/23/03	Rubicon	Rubicon River Dam	RRD-F2	Upper	E-Fish	5	0	20	0	0	0	75	1	0	1	78	15	5	4

								Pe	rcent Cover					F	Percent	Substrate			
Date	Stream	Reach	Site Name	Habitat Section	Method	Under- cut Bank	In- stream Veg	Over- hanging Veg	LWD	Bubble	Large Boulder	No Cover	Bed	Bldr	Cob	Grvl	Snd	Silt	Vis (ft)
10/21/03	Little Rubicon	Buck Island Dam	BID-F1	Lower	E-Fish	0	1	1	0	0	27	71	47	46	0	2	5	0	2
10/21/03	Little Rubicon	Buck Island Dam	BID-F1	Upper	E-Fish	0	2	3	0	0	30	65	56	30	0	2	5	0	5
09/25/03	Gerle Creek	Loon Lake Dam	LLD-F1	Lower	E-Fish	0	0	20	0	0	15	65	40	40	15	5	0	0	4
09/25/03	Gerle Creek	Loon Lake Dam	LLD-F1	Upper	E-Fish	10	0	20	0	0	5	65	15	15	55	10	0	5	4
09/26/03	Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-Fish	0	0	10	0	0	40	50	5	75	20	0	0	0	4
09/26/03	Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-Fish	0	5	0	0	0	40	55	0	40	50	10	0	0	3
09/24/03	Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-Fish	0	0	40	0	0	20	30	50	20	15	10	0	5	4
09/24/03	Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-Fish	0	0	5	0	0	15	80	90	8	1	1	0	0	5
09/23/03	S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-Fish	0	5	5	0	0	0	90	90	10	0	0	0	0	3
09/23/03	S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-Fish	0	3	3	0	0	15	79	90	5	3	0	2	0	5
09/27/03	S.F. Silver Creek	Ice House Dam	IHR-F1	Lower	E-Fish	0	0	5	0	0	20	75	60	30	0	0	5	5	4
09/27/03	S.F. Silver Creek	Ice House Dam	IHR-F1	Upper	E-Fish	0	0	10	0	0	50	40	70	15	5	10	0	0	5
10/09/03	S.F. Silver Creek	Ice House Dam	IHR-F2	Lower	E-Fish	0	2	7	0	0	5	86	60	10	20	7.5	2.5	0	3
10/09/03	S.F. Silver Creek	Ice House Dam	IHR-F2	Upper	E-Fish	0	1	3	0	0	5	91	30	25	40	2	2	1	3
10/10/03	S.F. American	Slab Creek Dam	SCD-F2	Lower	E-Fish	0	3	5	0	0	30	62	5	45	50	0	0	0	max
10/10/03	S.F. American	Slab Creek Dam	SCD-F2	Upper	E-Fish	0	3	0	0	0	20	77	10	65	20	5	0	0	max

							In-	Pe	rcent Cover	,				F	ercent s	Substrate			-
Date	Stream	Reach	Site Name	Habitat Section	Method	Under- cut Bank	stream Veg	Over- hanging Veg	LWD	Bubble	Large Boulder	No Cover	Bed	Bldr	Cob	Grvl	Snd	Silt	Vis (ft)
Duto	otrouin	Rouon	Hamo	Coolion	mounou	out Bunk	109		002	Bubble	Boulder		Dou	Biai	005	0.11	ond	Oilt	
10/16/02	Rubicon	Rubicon River Dam	RRD-F1	Lower	E-Fish	0	0	0	0	0	90	10	70	20	0	5	5	0	max
10/16/02	Rubicon	Rubicon River Dam	RRD-F1	Upper	E-Fish	0	0	0	0	0	60	40	50	40	5	5	0	0	max
10/17/02	Rubicon	Rubicon River Dam	RRD-F2	Lower	E-Fish	20	5	20	0	0	0	55	0	0	10	60	30	0	max
10/17/02	Rubicon	Rubicon River Dam	RRD-F2	Upper	E-Fish	10	5	20	0	0	65	0	0	0	5	40	40	15	max
10/15/02	Little Rubicon	Buck Island Dam	BID-F1	Lower	E-Fish	0	1	1	0	0	27	71	47	46	0	2	5	0	max
10/15/02	Little Rubicon	Buck Island Dam	BID-F1	Upper	E-Fish	0	2	3	0	0	85	10	56	30	0	2	10	2	max
10/10/02	Gerle Creek	Loon Lake Dam	LLD-F2	Lower	E-Fish	0	10	15	0	0	65	10	60	30	5	3	3	0	max
10/10/02	Gerle Creek	Loon Lake Dam	LLD-F2	Upper	E-Fish	2	0	10	0	0	83	5	20	60	10	8	2	0	max
10/08/02	Gerle Creek	Gerle Creek Dam	GCD-F1	Lower	E-Fish	2	0	0	0	0	93	5	0	80	15	4	1	0	max
10/08/02	Gerle Creek	Gerle Creek Dam	GCD-F1	Upper	E-Fish	0	0	2.5	0	0	94	2.5	0	80	15	4	1	0	max
10/14/02	S.F. Rubicon	Robbs Peak Dam	RPD-F1	Lower	E-Fish	3	1	7	0	0	84	5	55	15	5	10	5	10	max
10/14/02	S.F. Rubicon	Robbs Peak Dam	RPD-F1	Upper	E-Fish	0	0	2.5	0	0	95	2.5	95	5	0	0	0	0	max
10/07/02	S.F. Silver Creek	Ice House Dam	IHD-F1	Lower	E-Fish	0	2	3	0	0	90	5	99	0	0	1	1	0	max
10/07/02	S.F. Silver Creek	Ice House Dam	IHD-F1	Upper	E-Fish	1	1	3	0	0	90	5	95	2	1	1	1	0	max
10/11/02	S.F. Silver Creek	Ice House Dam	IHD-F2	Lower	E-Fish	0	2	2	0	0	94	2	85	10	0	0	5	0	max
10/11/02	S.F. Silver Creek	Ice House Dam	IHD-F2	Upper	E-Fish	0	0	2	0	0	88	10	40	40	0	15	5	0	max
10/22/02	Silver Creek	Camino Dam	CD -F1	1	Snorkel	5	1	1	0	0	88	5	60	10	10	10	5	5	max
10/22/02	Silver Creek	Camino Dam	CD -F1	2	Snorkel	0	1	2	0	0	97	0	60	20	11	2	2	5	max
10/22/02	Silver Creek	Camino Dam	CD -F1	3	Snorkel	5	0	0	0	0	10	85	60	25	5	5	5	0	11

								Ре	rcent Cover						Percent S	Substrate			
Date	Stream	Reach	Site Name	Habitat Section	Method	Under- cut Bank	In- stream Veg	Over- hanging Veg	LWD	Bubble	Large Boulder	No Cover	Bed	Bldr	Cob	Grvl	Snd	Silt	Vis (ft)
10/22/02	Silver Creek	Camino Dam	CD -F1	4	Snorkel	0	0	0	0	15	75	10	0	75	10	10	5	0	12
10/22/02	Silver Creek	Camino Dam	CD -F1	5	Snorkel	5	0	0	0	5	15	75	30	60	5	3	3	0	12
10/22/02	Silver Creek	Camino Dam	CD -F1	6	Snorkel	5	0	0	0	10	50	35	50	35	10	5	0	0	12
10/22/02	Silver Creek	Camino Dam	CD -F1	7	Snorkel	0	0	0	0	0	40	60	15	70	5	5	5	0	12
10/30/02	S.F. American	Slab Creek Dam	SCD-F2	Lower	E-Fish	0	0	0	0	20	60	20	35	55	5	5	0	0	12
10/29/02	S.F. American	Slab Creek Dam	SCD-F2	Upper	E-Fish	0	0	0	0	0	10	90	45	45	5	0	0	5	12

Bed = Bedrock

Bed= BedrockBldr= BoulderCob= CobbleGrvl= GravelLWD= Large woody debrisSnd= SandVis= VisibilityVeg= Vegetation

This Page Intentionally Left Blank

APPENDIX C1

Benthic Macroinvertebrate Site Photos

This Page Intentionally Left Blank

Facing upstream from Transect A

Facing downstream from Transect F

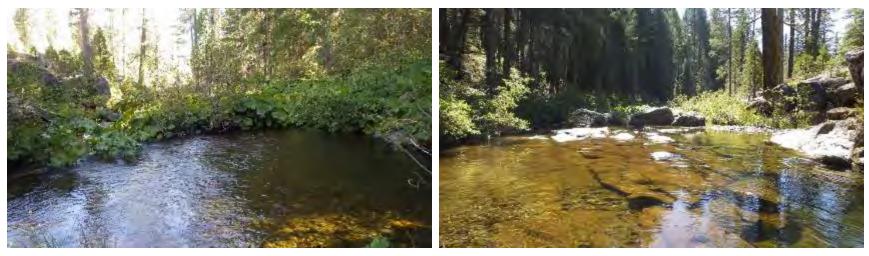
Facing upstream from Transect F

Facing downstream from Transect K

Figure C1-1. Photographs of the Rubicon River at Sample Site RRD-I2.

Facing upstream from Transect A

Facing downstream from Transect F



Facing upstream from Transect F

Facing downstream from Transect K

Figure C1-2. Photographs of Gerle Creek at Sample Site LLD-I3.

Facing upstream from Transect A

Facing downstream from Transect F

Facing upstream from Transect F

Facing downstream from Transect K

Figure C1-3. Photographs of Gerle Creek at Sample Site GCD-I2.

Facing upstream from Transect A

Facing downstream from Transect F

Facing upstream from Transect F

Facing downstream from Transect K

Figure C1-4. Photographs of the South Fork Rubicon River at Sample Site RPD-I2.

Facing upstream from Transect A

Facing downstream from Transect F

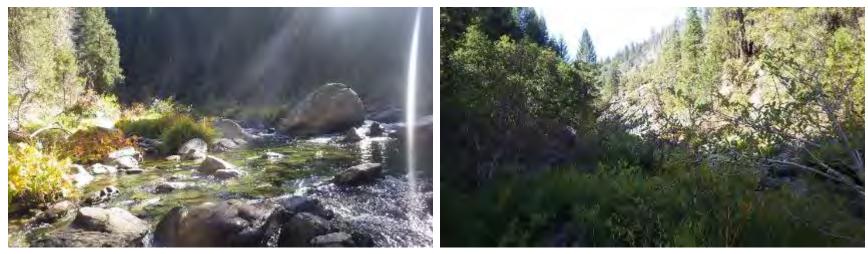
Facing upstream from Transect F

Facing downstream from Transect K

Figure C1-5. Photographs of South Fork Silver Creek at Sample Site IHD-I2.

Facing upstream from Transect A

Facing downstream from Transect F



Facing upstream from Transect F

Facing downstream from Transect K

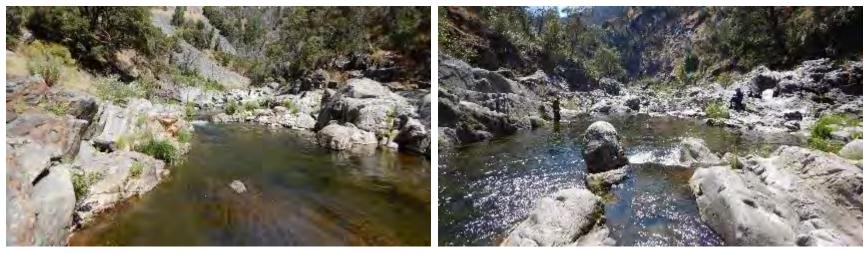
Figure C1-6. Photographs of Silver Creek at Sample Site JD-I1.

Facing upstream from Transect A

Facing downstream from Transect F

Facing upstream from Transect F

Facing downstream from Transect K

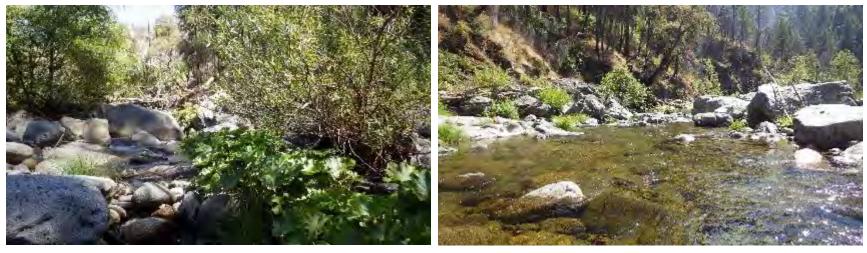

Figure C1-7. Photographs of Silver Creek at Sample Site JD-I4.

Facing upstream from Transect A

Facing downstream from Transect F

Facing upstream from Transect F

Facing downstream from Transect K


Figure C1-8. Photographs of the Rubicon River at Site CD-I2.

Facing upstream from Transect A

Facing downstream from Transect F

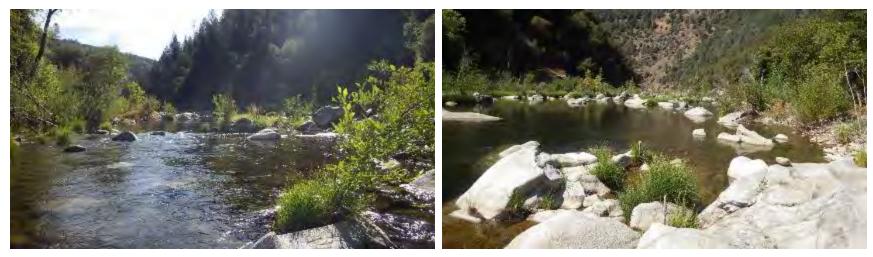
Facing upstream from Transect F

Facing downstream from Transect K

Figure C1-9. Photographs of Silver Creek at Sample Site CD-I3.

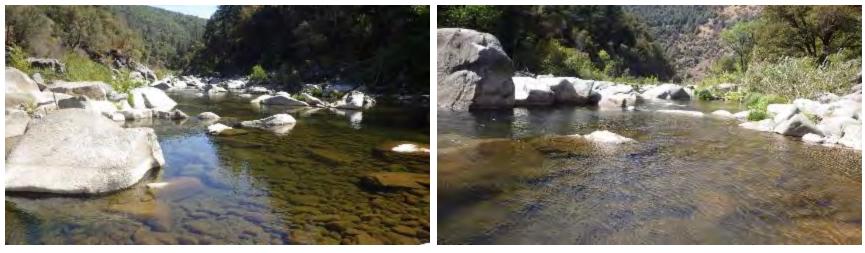
Facing upstream from Transect A

Facing downstream from Transect F



Facing upstream from Transect F

Facing downstream from Transect K


Figure C1-10. Photographs of the South Fork American River at Sample Site SCD-I1.

Facing upstream from Transect A

Facing downstream from Transect F

Facing upstream from Transect F

Facing downstream from Transect K

Figure C1-11. Photographs of the South Fork American River at Sample Site SCD-I3.

This Page Intentionally Left Blank

APPENDIX C2

Interlaboratory Quality Control Report

APPENDIX C3

BENTHIC MACROINVERTEBRATE TAXONOMIC LIST

Phylum	Class	Order	Family	Genus species	TV ¹	FFG ²	RRD-I2	LLD-I3	GCD-I2	RPD-I2	IHD-I2	JD-I1	JD-I4	CD-I2	CD-I3	SCD-I1	SCD-I3	SCD-I3 (rep)
Arthropoda	Insecta	Coleoptera	Dytiscidae	Sanfilippodytes	5	р	1											
Arthropoda	Insecta	Coleoptera	Dytiscidae	Stictotarsus	5	р												2
Arthropoda	Insecta	Coleoptera	Elmidae	Ampumixis dispar	4	cg		1										
Arthropoda	Insecta	Coleoptera	Elmidae	Cleptelmis addenda	4	cg	1			2	1							
Arthropoda	Insecta	Coleoptera	Elmidae	Heterlimnius	4	cg					6							
Arthropoda	Insecta	Coleoptera	Elmidae	Microcylloepus	4	cg										1		
Arthropoda	Insecta	Coleoptera	Elmidae	Narpus	4	cg									1			
Arthropoda	Insecta	Coleoptera	Elmidae	Optioservus	4	SC	1	1	2	2			2	1			1	
Arthropoda	Insecta	Coleoptera	Elmidae	Ordobrevia nubifera	4	SC		3		1				6	11		3	
Arthropoda	Insecta	Coleoptera	Elmidae	Zaitzevia	4	SC		8						4	33		1	5
Arthropoda	Insecta	Coleoptera	Psephenidae	Eubrianax edwardsii	4	sc	27	2		1			1					
Arthropoda	Insecta	Diptera	Ceratopogonidae	Atrichopogon	6	cg											1	
Arthropoda	Insecta	Diptera	Ceratopogonidae	Bezzia/ Palpomyia	6	р										1		
Arthropoda	Insecta	Diptera	Chironomidae	Chironomidae	6	cg										4		
Arthropoda	Insecta	Diptera	Chironomidae	Chironomini	6	cg		9	8	1	2	2		11	37		297	73
Arthropoda	Insecta	Diptera	Chironomidae	Diamesinae	2	cg		1	1	1		47	3		8		2	4
Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae	5	cg	26	26	40	39	57	188	106	23	33	27	53	57
Arthropoda	Insecta	Diptera	Chironomidae	Pseudochironomus	5	cg								16	9	1	2	8
Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	7	p		1	23	6	3	2	2	21	11	16	30	26
Arthropoda	Insecta	Diptera	Chironomidae	Tanytarsini	6	cg	62	189	106	124	36	128	55	221	84	154	67	167
Arthropoda	Insecta	Diptera	Dixidae	Dixa	2	cg		1	2	1								
Arthropoda	Insecta	Diptera	Dixidae	Meringodixa chalonensis	2	cg			1									
Arthropoda	Insecta	Diptera	Empididae	Clinocera	6	р					1						3	2
Arthropoda	Insecta	Diptera	Empididae	Empididae	6	р							3				2	2
Arthropoda	Insecta	Diptera	Empididae	Hemerodromia	6	р										1		3
Arthropoda	Insecta	Diptera	Empididae	Neoplasta	6	р		1		1	2			6	2	15		4
Arthropoda	Insecta	Diptera	Empididae	Wiedemannia	6	р		1		1			3	2				
Arthropoda	Insecta	Diptera	Muscidae	Muscidae	6	р								2				
Arthropoda	Insecta	Diptera	Psychodidae	Maruina lanceolata	2	SC								1				
Arthropoda	Insecta	Diptera	Simuliidae	Simulium	6	cf	13	25	127	212	42	62	123	7	33	109	1	1
Arthropoda	Insecta	Diptera	Stratiomyidae	Caloparyphus/ Euparyphus	8	cg									1			
Arthropoda	Insecta	Diptera	Tipulidae	Antocha monticola	3	cg	1						1	8			1	
Arthropoda	Insecta	Diptera	Tipulidae	Cryptolabis	3	sh	1	1										
Arthropoda	Insecta	Diptera	Tipulidae	Dicranota	3	р				2	2							
Arthropoda	Insecta	Diptera	Tipulidae	Hexatoma	2	р	12	1	1									
Arthropoda	Insecta	Ephemeroptera	Ameletidae	Ameletus	0	cg	7	1	1	2	1	1	2	5	1	1		1
Arthropoda	Insecta	Ephemeroptera	Baetidae	Acentrella	4	cg								2	2			
Arthropoda	Insecta	Ephemeroptera	Baetidae	Baetis	5	cg	39	72	95	55	148	69	58	51	86	61	4	2

Table C3-1. List of Benthic Macroinvertebrate Taxa Identified by Site for Benthic Macroinvertebrate Samples Collected from the Upper American River Project in 2019.

Phylum	Class	Order	Family	Genus species	TV ¹	FFG ²	RRD-I2	LLD-I3	GCD-I2	RPD-I2	IHD-I2	JD-I1	JD-I4	CD-I2	CD-I3	SCD-I1	SCD-I3	SCD-I3 (rep)
Arthropoda	Insecta	Ephemeroptera	Baetidae	Centroptilum	2	cg	2		1					4	5		3	3
Arthropoda	Insecta	Ephemeroptera	Baetidae	Cloeodes excogitatus	4	cg									1			
Arthropoda	Insecta	Ephemeroptera	Baetidae	Diphetor hageni	5	cg	1		1					2	8			
Arthropoda	Insecta	Ephemeroptera	Ephemerellidae	Caudatella	1	cg					31		1		1			
Arthropoda	Insecta	Ephemeroptera	Ephemerellidae	Drunella	0	cg		10			6				1			
Arthropoda	Insecta	Ephemeroptera	Ephemerellidae	Ephemerella	1	cg	26	4		3			8	3	6		2	2
Arthropoda	Insecta	Ephemeroptera	Ephemerellidae	Ephemerellidae	1	cg			2			2			1			
Arthropoda	Insecta	Ephemeroptera	Ephemerellidae	Serratella	2	cg					34							
Arthropoda	Insecta	Ephemeroptera	Heptageniidae	Cinygma	2	SC			3		15	11	1		2		2	
Arthropoda	Insecta	Ephemeroptera	Heptageniidae	Cinygmula	4	SC	18	1		2			22					
Arthropoda	Insecta	Ephemeroptera	Heptageniidae	Ecdyonurus criddlei	4	SC	4	4		1						4		
Arthropoda	Insecta	Ephemeroptera	Heptageniidae	Epeorus	0	SC	1	26	3	1	5		5	2	8	1	1	
Arthropoda	Insecta	Ephemeroptera	Heptageniidae	Heptageniidae	4	SC		4	7						7			
Arthropoda	Insecta	Ephemeroptera	Heptageniidae	Ironodes	4	SC	25	13	6	7	22	13	24	1	10	7		
Arthropoda	Insecta	Ephemeroptera	Heptageniidae	Rhithrogena	0	SC		4		1	12		1	8	23	22	3	9
Arthropoda	Insecta	Ephemeroptera	Leptohyphidae	Tricorythodes	4	cg									1		1	3
Arthropoda	Insecta	Ephemeroptera	Leptophlebiidae	Paraleptophlebia	4	cg	8	4	43	7	3	6	29	11	17	1	11	31
Arthropoda	Insecta	Megaloptera	Corydalidae	Orohermes crepusculus	0	р	2				3		2					
Arthropoda	Insecta	Megaloptera	Sialidae	Sialis	4	р			4				2					1
Arthropoda	Insecta	Odonata	Coenagrionidae	Argia	7	р												1
Arthropoda	Insecta	Odonata	Gomphidae	Gomphidae	4	р	1											
Arthropoda	Insecta	Plecoptera		Plecoptera	2					3								
Arthropoda	Insecta	Plecoptera	Capniidae	Capniidae	1	sh		2					2					
Arthropoda	Insecta	Plecoptera	Chloroperlidae	Chloroperlidae	1	р					4			1				
Arthropoda	Insecta	Plecoptera	Chloroperlidae	Sweltsa	1	р	13	12	17	2	23	1	11	4	1		8	4
Arthropoda	Insecta	Plecoptera	Leuctridae	Despaxia augusta	0	sh						7						
Arthropoda	Insecta	Plecoptera	Leuctridae	Leuctridae	0	sh			2									
Arthropoda	Insecta	Plecoptera	Nemouridae	Malenka	2	sh	8	5	14	11	37	25	2	2	6			
Arthropoda	Insecta	Plecoptera	Nemouridae	Nemoura spinoloba	1	sh				1								
Arthropoda	Insecta	Plecoptera	Nemouridae	Zapada	2	sh	23	43	32	20	51	8	9		3	1		
Arthropoda	Insecta	Plecoptera	Peltoperlidae	Yoraperla	1	sh		5	4	5	1							
Arthropoda	Insecta	Plecoptera	Perlidae	Calineuria californica	1	р	22	13	9	4		1	15	9	13			2
Arthropoda	Insecta	Plecoptera	Perlidae	Doroneuria baumanni	1	р				1			2		1			
Arthropoda	Insecta	Plecoptera	Perlidae	Hesperoperla	2	р			1			1			2		1	
Arthropoda	Insecta	Plecoptera	Perlodidae	Cultus	2	р							3	4	6	1		
Arthropoda	Insecta	Plecoptera	Perlodidae	Frisonia picticepes	2	р			1		3							
Arthropoda	Insecta	Plecoptera	Perlodidae	Isoperla	2	р			1				2		1		2	
Arthropoda	Insecta	Plecoptera	Perlodidae	Kogotus/Rickera	2	р			1		6	1						
Arthropoda	Insecta	Plecoptera	Perlodidae	Skwala	2	p	3	1	1				1			7	4	
Arthropoda	Insecta	Trichoptera	Apataniidae	Apatania	1	sc	3		1	1								

Phylum	Class	Order	Family	Genus species	TV ¹	FFG ²	RRD-I2	LLD-I3	GCD-I2	RPD-I2	IHD-I2	JD-I1	JD-I4	CD-I2	CD-I3	SCD-I1	SCD-I3	SCD-I3 (rep)
Arthropoda	Insecta	Trichoptera	Apataniidae	Pedomoecus sierra	0	SC					1							
Arthropoda	Insecta	Trichoptera	Brachycentridae	Amiocentrus aspilus	3	cg		3		1								
Arthropoda	Insecta	Trichoptera	Brachycentridae	Micrasema	1	mh	6	50	4	6			3	3	1			
Arthropoda	Insecta	Trichoptera	Calamoceratidae	Heteroplectron californicum	1	sh			1				1					
Arthropoda	Insecta	Trichoptera	Glossosomatidae	Agapetus	0	sc	2			1								
Arthropoda	Insecta	Trichoptera	Glossosomatidae	Glossosoma	1	sc	56	28										
Arthropoda	Insecta	Trichoptera	Helicopsychidae	Helicopsyche borealis	3	SC	5											
Arthropoda	Insecta	Trichoptera	Hydropsychidae	Arctopsyche	1	р	5	11		8		3	15					
Arthropoda	Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	5	cf								1	21	1	11	15
Arthropoda	Insecta	Trichoptera	Hydropsychidae	Hydropsyche	4	cf	117	13	6	4			36	1	55	92	13	6
Arthropoda	Insecta	Trichoptera	Hydropsychidae	Hydropsychidae	4				1									
Arthropoda	Insecta	Trichoptera	Hydroptilidae	Hydroptila	6	ph			2	31		1	4	131	34	20	8	10
Arthropoda	Insecta	Trichoptera	Hydroptilidae	Neotrichia	4	SC									3			
Arthropoda	Insecta	Trichoptera	Hydroptilidae	Nothotrichia shasta	4	ph	3	7	1	13		5	3		2		1	
Arthropoda	Insecta	Trichoptera	Hydroptilidae	Ochrotrichia	4	ph	1	8	1	1								
Arthropoda	Insecta	Trichoptera	Lepidostomatidae	Lepidostoma	1	sh	26	6		13		3	33	3	1	5	1	7
Arthropoda	Insecta	Trichoptera	Leptoceridae	Mystacides	4	om												1
Arthropoda	Insecta	Trichoptera	Limnephilidae	Dicosmoecus	1	SC	2							2				
Arthropoda	Insecta	Trichoptera	Philopotamidae	Wormaldia	3	cf	2	3	11	2			1		20	32		
Arthropoda	Insecta	Trichoptera	Phryganeidae	Yphria californica	1	р					1							
Arthropoda	Insecta	Trichoptera	Polycentropodidae	Polycentropus	6	р	5		5	1			1		1			
Arthropoda	Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	0	р	3	10	20	12	18		12	1	8	2	2	2
Arthropoda	Insecta	Trichoptera	Sericostomatidae	Gumaga	3	sh	5	2										
Arthropoda	Insecta	Trichoptera	Uenoidae	Oligophlebodes	0	sc		1										
Arthropoda	Arachnoidea	Acari		Acari	5	р	1											
Arthropoda	Arachnoidea	Acari	Hygrobatidae	Hygrobates	8	р	1			1				8	2			
Arthropoda	Arachnoidea	Acari	Lebertiidae	Lebertia	8	р	2	3	2	1	8	1	2	8			7	24
Arthropoda	Arachnoidea	Acari	Mideopsidae	Mideopsis	5	р			1					2				
Arthropoda	Arachnoidea	Acari	Sperchontidae	Sperchon	8	р			1	1	2			3				5
Arthropoda	Arachnoidea	Acari	Sperchontidae	Sperchonopsis	8	р											1	
Arthropoda	Arachnoidea	Acari	Torrenticolidae	Torrenticola	5	p		3	1	4				7	1			
Arthropoda	Malacostraca	Amphipoda	Crangonyctidae	Crangonyx	4	cg										21	2	7
Arthropoda	Ostracoda			Ostracoda	8	cg						1	1	1				
Annelida	Oligochaeta			Oligochaeta	5	cg	9	2	1	4	32	19	2		3	7	51	133
Coelenterata	Hydrozoa	Hydroida	Hydridae	Hydra	5	p					1							
Mollusca	Bivalvia	Veneroida	Sphaeriidae	Pisidium	8	cf	1		4		7			1				
Mollusca	Gastropoda	Sorbeoconcha	Pleuroceridae	Juga	7	SC	1							1				
Nemertea	Enopa		Tertastemmatidae	Prostoma	8	р	1										6	2
Platyhelminthes	Turbellaria			Turbellaria	4	p	1	2	2	1	10	3		1	2		-	
		10 wore assigned to a	ach taxon and roflact tha tr	axon's sensitivity to perturbat	ione in v	unter and k	L Applitat guali			I concitivity d		_	I AFIT (httr) http://cofit.org	_	hp)	1	1

¹Tolerance Value: values ranging from 0-10 were assigned to each taxon and reflect the taxon's sensitivity to perturbations in water and habitat quality; as values increase, sensitivity decreases. Source: SAFIT (http://safit.org/TVFFG.php). ²Functional Feeding Group: collector-gatherer (cg); collector-filterer (cf); predator (p); scraper (sc); shredder (sh); macrophyte-herbivore (mh); piercer-herbivore (ph);omnivore (om).

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

2019 Annual Monitoring Report June 2020

APPENDIX C4

BENTHIC MACROINVERTEBRATE METRIC VALUES

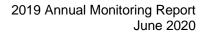
Table C4-1. Biological Metric Values for BMI Samples Collected for the Upper American River Project.

Table C4-1. Biological Metric Va Metrics	RRD-I2	LLD-I3	GCD-I2	RPD-I2	IHD-I2	JD-I1	JD-I4	CD-I2	CD-I3	SCD-I1	SCD-I3	SCD-I3 (rep)
		•	1		Richness			1				
Taxonomic Richness ¹	47	49	45	48	36	27	44	42	50	28	37	35
EPT Taxa	30	29	27	29	19	17	29	21	34	16	18	15
Ephemeroptera Taxa	10	10	10	9	10	6	10	10	16	7	8	7
Plecoptera Taxa	5	7	7	7	6	7	9	4	8	3	4	2
Trichoptera Taxa	15	12	10	13	3	4	10	7	10	6	6	6
Coleoptera Taxa	4	5	1	4	2	0	2	3	3	1	3	2
Predator Taxa	13	12	13	15	15	8	15	14	13	7	11	14
ET Taxa	25	22	20	22	13	10	20	17	26	13	14	13
Shredder Taxa ¹	5.0	6.8	4.6	4.9	2.9	4.0	4.8	2.0	2.8	1.8	0.9	1.0
	·	•	·		Compositio	n	·	·				·
EPT Index (%)	73	57	47	35	66	26	50	41	57	42	13	16
EPT Taxa (%) ¹	0.7	0.7	0.7	0.7	0.6	0.7	0.7	0.6	0.8	0.7	0.6	0.5
Sensitive EPT Index (%)	36	37	20	16	39	10	21	8.4	18	12	4.8	4.8
Shannon Weaver Diversity Index	3.0	2.8	2.7	2.4	2.8	2.2	2.8	2.4	3.1	2.4	2.0	2.4
Dominant Taxon (%)	19	29	20	34	23	31	20	36	14	25	49	27
Non-insect Taxa (%)	11	8	16	10	17	15	7	17	8	7	14	14
Clinger Taxa (%) ¹	0.6	0.7	0.6	0.7	0.6	0.5	0.7	0.6	0.7	0.6	0.7	0.4
Coleoptera Taxa (%)1	0.1	0.1	0.0	0.1	0.1	0.0	0.0	0.1	0.1	0.0	0.1	0.1
		1	1	I	Tolerance		1	1	I			
Tolerance Value	3.3	3.8	4.6	5.0	3.7	4.7	4.3	5.4	4.4	4.9	5.5	5.3
Intolerant Organisms (%)	37	36	19	16	40	18	22	8.5	16	6.5	5.1	5.4
Intolerant Taxa (%)	40	43	44	42	50	48	50	36	42	29	32	26
Intolerant Individuals (%) ¹	37	36	19	15	39	11	21	8.5	15	6.4	4.9	4.9
Tolerant Organisms (%)	0.7	0.5	1.1	0.5	2.7	0.3	0.5	3.3	0.5	0.0	2.3	5.0
Tolerant Taxa (%)	6.4	2.0	6.7	6.3	8.3	7.4	4.5	9.5	4.0	0.0	8.1	8.6
	·	•	•	Fui	nctional Feeding	g Groups	·	•				
Collector-Gatherers (%)	30	50	49	38	56	76	43	59	49	45	82	79
Collector-Filterers (%)	22	6.3	24	35	7.7	10	26	1.6	20	38	4.1	3.5
Collector individuals (%)	52	56	73	73	64	86	69	60	69	83	86	82
Scrapers (%)	24	15	3.5	2.9	8.6	3.9	9.1	4.3	15	5.5	1.8	2.2
Predators (%)	12	9.1	14	7.7	14	2.1	12	13	8.1	7.0	11	13
Shredders (%)	10	10	8.5	8.0	14	7.0	7.6	0.8	1.6	1.0	0.2	1.1
Other (%)	1.7	10	1.3	8.2	0.0	1.0	1.6	22	5.9	3.3	1.5	1.8
non-gastropod sc (%)	24	15	3.5	2.9	8.6	3.9	9.1	4.1	15	5.5	1.8	2.2
		I	1	I	Indices			1	Γ	T	1	ſ
California Stream Condition Index ²	1.16	1.26	1.00	1.07	0.85	0.71	1.06	0.88	0.99	0.71	0.82	0.74

1 - Metrics used for California Stream Condition Index (CSCI, Rehn et al. 2015). Metric values reported in the table may differ from metric values calculated through the CSCI computational iterations due to different subsample sizes.

2 - CSCI scores typically range from 0.1 to 1.4; scoring criteria described by Rehn et al. (2015)

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101


Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

2019 Annual Monitoring Report June 2020

APPENDIX D1

Flow Data

Water Year	October	November	December	January	February	March	April	Мау	June	July	August	September	Annual Mean
2003	1.2	4.4	6.8	6.6	6.3	6.8	6.4	7.3	7.5	6.9	5.0	1.6	5.6
2004	1.2	1.2	5.3	6.5	6.4	6.8	7.0	7.0	6.5	6.7	4.7	1.1	5.0
2005	2.7	6.8	6.8	6.7	6.6	6.7	6.9	21.0	7.7	6.9	6.7	1.1	7.2
2006	1.1	6.4	82.1	6.9	12.5	6.8	7.2	17.3	9.8	7.5	7.0	3.3	14.1
2007	1.7	13.2	7.1	7.1	7.3	6.9	6.9	7.2	7.0	5.5	0.7	0.5	5.9
2008	2.4	5.0	5.7	6.5	6.6	6.7	7.0	6.8	6.7	5.9	1.3	0.5	5.1
2009	1.9	6.8	6.0	6.6	6.7	6.8	9.4	27.7	6.7	6.8	3.3	0.6	7.3
2010	6.6	6.4	7.1	7.3	6.4	6.6	6.8	6.8	60.9	6.8	5.6	1.7	10.7
2011	78.2	6.7	6.9	6.7	6.6	6.7	7.1	7.6	56.1	7.9	6.7	6.1	17.0
2012	6.2	6.4	5.3	9.3	6.6	6.8	16.8	7.7	7.2	6.7	2.5	1.3	6.9
2013	1.7	6.5	26.5	6.4	6.3	6.6	7.1	7.3	12.2	6.3	3.3	0.9	7.6
2014	0.7	0.8	1.7	1.6	6.3	6.3	6.6	6.5	6.4	4.5	2.0	1.0	3.7
2015	1.4	6.7	8.0	7.8	21.5	10.6	10.8	11.7	7.2	2.9	1.4	1.3	7.5
2016	1.4	6.2	6.4	21.9	6.6	15.9	21.5	35.8	15.8	6.6	3.9	1.2	11.2
2017	105.7	7.9	76.1	81.9	143.9	15.9	23.2	56.9	27.0	12.2	7.3	7.0	48.0
2018	8.7	91.1	11.0	11.3	12.0	20.1	87.6	38.2	22.9	11.0	2.5	1.6	26.4
2019	2.5	3.5	9.9	10.0	11.0	21.0	27.3	39.7	3.0	6.9	7.0	6.7	21.4

Table D1-1. Monthly Average Flows for the Rubicon River below Rubicon Dam (USGS 11427960).

Water Year	October	November	December	January	February	March	April	Мау	June	July	August	September	Annual Mean
2003	9.8	10.3	10.0	10.2	10.2	10.6	11.3	12.1	10.8	12.6	10.0	9.5	10.6
2004	11.0	9.8	9.9	9.9	10.1	11.0	11.8	10.6	10.1	9.9	9.4	9.5	10.3
2005	12.3	9.4	9.4	9.5	9.3	10.1	10.6	12.3	9.5	9.2	9.0	9.5	10.0
2006	9.4	9.3	12.5	10.9	10.6	10.2	10.9	12.6	9.8	9.2	9.2	9.5	10.3
2007	8.6	8.9	9.2	9.2	9.5	9.5	9.5	8.5	8.4	8.3	8.1	8.6	8.8
2008	8.8	8.9	8.9	9.1	8.8	9.2	10.1	9.6	8.9	8.8	8.5	8.6	9.0
2009	8.7	9.0	8.7	8.8	9.1	9.1	9.4	10.2	9.2	9.0	8.7	8.7	9.0
2010	8.9	8.9	8.9	9.0	9.2	9.5	10.0	10.0	9.4	9.3	9.0	8.8	9.2
2011	9.3	9.1	9.1	9.1	9.2	9.1	9.2	10.0	10.8	9.2	9.0	8.8	9.3
2012	9.1	9.0	8.9	9.1	9.2	9.8	10.6	9.6	9.4	9.0	9.3	9.9	9.4
2013	9.9	10.4	10.1	9.1	9.9	10.5	10.2	10.0	9.4	8.9	9.2	9.8	9.8
2014	14.1	8.7	8.5	8.5	9.7	9.8	9.0	8.9	8.9	8.9	9.1	8.9	9.4
2015	12.8	13.1	13.4	16.2	19.3	25.1	27.7	26.0	11.2	5.6	5.6	5.6	15.1
2016	7.4	7.5	8.7	12.6	19.6	31.2	53.1	57.3	91.7	28.0	18.2	18.0	29.3
2017	21.0	17.5	19.4	20.2	33.6	59.5	62.5	67.5	50.9	36.4	22.9	22.6	36.1
2018	25.0	25.4	29.1	31.1	29.9	29.6	42.3	44.2	25.0	24.6	15.5	19.6	28.4
2019	19.7	18.5	20.2	21.3	25.2	47.1	64.4	111.5	38.4	35.6	23.0	22.3	37.4

Table D1-2. Monthly Average Flows for Gerle Creek below Loon Lake Dam (USGS 11429500).

Water Year	October	November	December	January	February	March	April	Мау	June	July	August	September	Annual Mean
2003	14.4	9.5	5.7	6.1	6.1	4.8	5.4	10.6	10.9	18.4	19.1	20.3	11.0
2004	16.2	10.0	6.6	5.2	5.4	5.8	8.6	14.0	10.1	19.5	18.7	19.1	11.3
2005	12.2	8.5	5.0	4.9	4.4	4.8	5.9	11.4	91.3	18.5	16.8	17.1	16.7
2006	169.9	16.4	6.8	5.3	4.1	4.7	8.2	10.3	9.9	18.2	17.7	17.7	24.4
2007	130.6	9.1	5.5	3.8	4.2	3.9	6.0	6.0	5.5	5.8	5.8	5.7	16.2
2008	163.6	5.9	6.0	6.1	6.0	6.0	5.8	5.9	5.8	5.7	5.9	6.4	19.3
2009	6.3	5.8	5.8	6.0	6.0	6.4	4.8	9.6	9.0	16.2	17.1	16.2	9.1
2010	13.4	13.6	114.7	4.5	4.0	3.9	4.4	9.0	9.5	16.0	16.0	16.0	18.9
2011	151.3	59.4	5.8	4.0	4.2	5.0	5.8	10.3	10.4	16.7	16.0	16.4	25.6
2012	15.2	8.8	4.6	3.8	3.7	4.8	6.0	8.1	9.9	16.7	17.2	11.3	9.2
2013	12.5	11.6	5.9	4.2	4.3	4.3	4.7	10.1	10.5	16.3	16.4	16.7	9.8
2014	13.3	8.7	4.4	3.7	4.2	3.7	5.8	5.7	5.7	5.6	5.7	5.5	6.0
2015	9.9	8.1	8.0	12.1	12.8	16.4	21.8	34.0	26.1	22.1	14.1	10.0	16.3
2016	5.5	5.4	5.8	7.2	15.3	25.9	43.2	152.3	64.7	31.3	17.6	16.0	32.6
2017	16.2	10.9	12.5	31.1	135.1	27.0	51.6	238.1	165.5	34.8	16.6	16.2	62.6
2018	16.3	9.5	12.4	20.0	20.4	22.4	46.1	145.1	68.0	34.5	16.9	18.3	35.9
2019	18.9	9.5	12.5	19.8	20.3	29.5	47.2	223.4	202.7	33.3	18.2	16.5	54.3

Table D1-3. Monthly Average Flows for South Fork Silver Creek below Ice House Dam (USGS 11441500).

Water Year	October	November	December	January	February	March	April	May	June	July	August	September	Annual Mean
2003	24.6	18.3	26.4	29.2	16.3	16.1	30.2	30.7	22.5	23.4	23.7	23.5	23.8
2004	26.1	18.8	17.5	18.3	24.3	16.7	10.9	17.7	16.8	15.1	15.0	24.9	18.5
2005	18.2	12.8	11.5	19.2	32.0	38.7	25.0	410.2	749.2	24.0	25.1	25.8	115.5
2006	24.0	12.2	556.1	474.4	171.8	192.3	1431	1021	198.1	28.5	26.1	27.2	345
2007	28.4	15.3	18.5	13.9	15.3	18.7	12.1	11.4	11.0	11.0	11.1	11.0	14.8
2008	11.0	7.3	7.0	8.2	12.3	17.5	10.0	11.6	11.6	11.6	11.0	11.0	10.8
2009	11.0	7.7	7.4	10.6	17.2	26.5	12.2	22.5	16.7	17.2	17.0	16.8	15.2
2010	16.9	10.1	11.3	17.6	23.7	21.5	22.3	20.1	243.2	19.0	19.0	19.0	36.7
2011	44.9	10.0	271.7	19.3	10.4	313.3	834.0	528.7	314.5	327.7	21.1	24.8	228
2012	24.4	11.2	11.0	57.4	11.3	25.5	20.4	11.4	11.0	11.0	11.0	11.0	18.1
2013	11.0	8.7	24.1	12.4	10.0	11.7	10.3	18.1	18.1	18.0	18.1	18.3	14.9
2014	18.1	10.2	9.3	9.4	16.8	14.7	12.9	11.0	11.0	11.1	11.7	11.2	12.3
2015	11.2	8.2	11.3	13.0	19.5	17.3	21.9	32.2	27.4	23.5	15.7	11.8	17.7
2016	6.2	6.6	32.9	71.6	26.1	243.0	44.7	182.2	59.3	34.9	18.5	10.2	61.8
2017	10.3	22.1	85.3	2005	3018	1148	1422	1739	1021	109.5	21.2	19.4	876
2018	16.7	22.7	22.0	22.3	22.3	73.4	106.5	72.7	54.9	33.7	17.2	16.8	40.2
2019	16.8	22.2	22.3	27.3	57.5	48.6	319.1	860	942.3	40.2	21.7	20.7	200

Table D1-4. Monthly Average Flows for Silver Creek below Camino Dam (USGS 11441900).

Water Year	October	November	December	January	February	March	April	Мау	June	July	August	September	Annual Mean
2003	38.4	37.2	37.5	37.3	37.3	37.5	38.0	128.0	300.7	39.2	37.0	37.0	66.9
2004	55.0	109.6	38.0	38.0	37.9	38.0	38.0	37.9	37.8	38.0	38.0	38.1	45.3
2005	38.0	38.0	38.0	38.0	38.0	38.0	37.9	1798	1155	38.2	38.6	39.2	279.4
2006	38.5	38.0	712.0	535.1	180.6	180.6	1826	2112	384.1	38.0	37.9	38.0	503.4
2007	38.0	38.0	38.0	38.0	38.0	38.0	19.8	12.4	38.0	38.0	38.0	38.0	34.3
2008	37.9	25.3	11.7	11.7	11.8	33.5	19.0	13.9	38.0	37.9	38.0	38.0	26.5
2009	38.0	26.6	11.9	12.0	12.0	81.8	38.6	51.0	39.3	38.4	38.4	38.8	35.8
2010	38.7	38.8	38.5	38.0	38.0	38.0	38.0	38.2	561.2	37.9	38.0	38.0	81.2
2011	44.5	38.0	198.5	38.0	38.0	179.1	720.4	627.1	1129	387.8	38.2	39.0	290.7
2012	38.8	38.5	38.2	38.0	38.0	17.6	11.0	32.5	38.7	38.8	38.8	39.0	34.0
2013	39.2	39.0	90.9	38.7	39.3	38.7	41.2	38.5	38.1	38.6	38.8	38.7	43.4
2014	38.7	38.1	38.5	38.4	70.7	20.1	12.0	13.3	38.1	38.4	38.4	39.0	35.1
2015	54.7	60.8	60.9	60.9	92.1	100.0	103.5	106.1	90.8	79.2	64.7	64.9	78.1
2016	65.0	65.4	75.2	139.4	79.1	239.4	257.8	257.6	177.7	98.1	77.8	77.5	133.3
2017	97.0	78.4	156.8	1776	6146	2078	3071	3991	797.4	132.3	81.1	700.5	1574
2018	767.3	1023	1128	493.5	97.2	318.8	599.8	294.8	189.2	96.2	76.8	76.1	430.4
2019	13.1	12.7	12.2	15.7	391.3	599.3	410.2	875.8	1362. 7	100.0	88.3	88.9	329.7

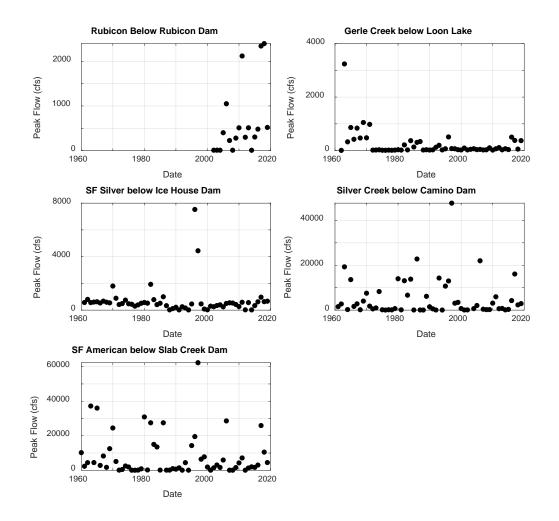


Figure D1-1. Peak flow hydrographs for four of the gages in the geomorphology study from 1960-2019.

Table D1-6. Annual Peak Flow Data for Gages Used in the Geomorphology Study¹.

Water Year ²	Rubicon River below Rubicon Dam + Spill over Rubicon Dam (cfs)	Gerle Creek below Loon Lake Dam (cfs)	SF Silver below Ice House Dam (cfs)	Silver Creek below Camino Dam (cfs)	SF American below Slab Creek Dam (cfs)
1923	-	-	-	-	7350
1924	-	-	-	-	1970
1925	-	-	785	-	18000
1926	-	-	450	-	4510
1927	-	-	800	-	9350
1928	-	-	1950	-	31500
1929	-	-	775	-	8300
1930	-	-	409	-	4100
1931	-	-	217	-	1620
1932	-	-	648	-	6200
1933	-	-	692	-	5930
1934	-	-	558	-	4010
1935	-	-	760	-	10700
1936	-	-	828	-	11700
1937	-	-	782	-	7140
1938	-	-	2640	-	34400
1939	-	-	339	-	2650
1940	-	-	942	-	18400
1941	-	-	750	-	6990
1942	-	-	959	-	13300
1943	-	-	1110	-	23100
1944	-	-	526	-	4450
1945	-	-	750	-	19100
1946	-	-	636	-	7110
1947	-	-	602	-	4500
1948	-	-	689	-	6580
1949	-	-	792	-	6460
1950	-	-	764	-	6080
1951	-	-	3900	-	46000
1952	-	-	865	-	9420
1953	-	-	1090	-	10600
1954	-	-	746	-	9340
1955	-	-	635	-	4950
1956	-	-	3940	-	49800
1957	-	-	1070	-	10400
1958	-	-	823	-	8350

Water Year ²	Rubicon River below Rubicon Dam + Spill over Rubicon Dam (cfs)	Gerle Creek below Loon Lake Dam (cfs)	SF Silver below Ice House Dam (cfs)	Silver Creek below Camino Dam (cfs)	SF American below Slab Creek Dam (cfs)
1959	-	-	587	-	2850
1960	-	-	-	-	10200
1961	-	-	568	1540	2320
1962	-	7.7	802	2740	4410
1963	-	3240	560	19300	37200
1964	-	327	602	259	4450
1965	-	863	627	13600	36000
1966	-	422	536	1650	2820
1967	-	839	672	2800	8260
1968	-	470	592	170	1700
1969	-	1050	545	4020	12500
1970	-	477	1800	7540	24500
1971	-	980	890	1770	5100
1972	-	17	418	550	67
1973	-	20	494	978	479
1974	-	29	749	8280	2480
1975	-	13	476	162	1900
1976	-	11	439	30	43
1977	-	17	296	159	30
1978	-	12	394	115	84
1979	-	17	513	677	848
1980	-	32	570	14000	30900
1981	-	18	519	127	184
1982	-	212	1930	13100	27500
1983	-	25	783	6660	15000
1984	-	370	411	13800	13500
1985	-	132	514	53	97
1986	-	306	1000	22800	27500
1987	-	337	334	67	72
1988	-	21	21	28	78
1989	-	31	114	6150	935
1990	-	19	214	1500	639
1991	-	28	19	586	1400
1992	-	123	252	62	50
1993	-	197	159	14300	4400
1994	-	25	16	28	48
1995	-	67	460	10700	14300
1996	-	510	7530	13000	19500

Water Year ²	Rubicon River below Rubicon Dam + Spill over Rubicon Dam (cfs)	Gerle Creek below Loon Lake Dam (cfs)	SF Silver below Ice House Dam (cfs)	Silver Creek below Camino Dam (cfs)	SF American below Slab Creek Dam (cfs)
1997	-	74	4440	47700	62300
1998	-	67	466	3080	6420
1999	-	33	82	3460	7780
2000	-	23	25	688	1870
2001	-	94	296	70	41
2002	8.3	26	256	102	1410
2003	8.7	48	343	-	3070
2004	7.9	68	396	656	1630
2005	400	34	249	2050	5920
2006	1049	45	501	22000	28600
2007	226	24	548	405	39
2008	7.6	29	527	215	39
2009	279	103	425	238	1550
2010	510	18	266	3110	4260
2011	2119	67	588	5950	7140
2012	298	111	24	632	46
2013	511	29	564	752	1300
2014	7.0	69	18	126	1980
2015	304	37	335	325	1680
2016	480	502	622	4240	3020
2017	2342	380	967	16100	25900
2018	2397	54	633	2330	10500
2019	518 et per second: SE	371.8	668	2902	44670

cfs=cubic feet per second; SF = South Fork

¹ All 2019 Peaks were calculated from Daily Average Data. The Peak Flows for the Rubicon River Were Calculated by Adding the USGS Gage Data to Spill Data Provided By SMUD. The Remainder of the Peak Flow Data Was Downloaded from the USGS.

² Water year extends from October 1 to September 30

APPENDIX D2

Cross Section Location Data and Overview Maps

Table D2-1. Cross section endpin locations in State Plane Coordinate System Zone 2 (NAD-1983).

Site	Cross- Section	Endpin	Endpin recovered (Y/N)	Northing (ft)	Easting (ft)	Elevation (ft)
RRD-G1	XS-1	LBP	Y	2132950.05	7065088.94	6129.93
RRD-G1	XS-1	RBP	Y	2132934.08	7065197.68	6131.09
RRD-G1	XS-2	LBP	Y	2133088.83	7065082.38	6130.10
RRD-G1	XS-2	RBP	Y	2133106.58	7065174.30	6130.02
RRD-G1	XS-3	LBP	Y	2133187.37	7065057.61	6131.62
RRD-G1	XS-3	RBP	Y	2133211.04	7065164.53	6130.91
LLD-G1	XS-1	LBP	N	2133736.58	7038608.57	6134.79
LLD-G1	XS-1	RBP	N	2133820.54	7038548.72	6137.71
LLD-G1	XS-2	LBP	N	2133739.90	7038431.15	6134.89
LLD-G1	XS-2	RBP	N	2133810.33	7038462.31	6140.13
LLD-G1	XS-3	LBP	N	2133732.61	7038470.20	6135.54
LLD-G1	XS-3	RBP	N	2133810.33	7038462.31	6140.13
LLD-G2	XS-1	LBP	Y	2134662.51	7030639.47	5889.82
LLD-G2	XS-1	RBP	Y	2134758.24	7030632.82	5885.14
LLD-G2	XS-2	LBP	Y	2134650.97	7030549.89	5884.69
LLD-G2	XS-2	RBP	Y	2134707.09	7030550.94	5883.10
LLD-G2	XS-3	LBP	Y	2134604.95	7030188.25	5878.90
LLD-G2	XS-3	RBP	Y	2134716.69	7030168.77	5878.48
IHD-G1	XS-1	LBP	Y	2063161.27	7022900.42	5182.72
IHD-G1	XS-1	RBP	Y	2063269.85	7022717.99	5183.28
IHD-G1	XS-2	LBP	N	2062986.22	7022772.40	5181.43
IHD-G1	XS-2	RBP	N	2063018.72	7022649.92	5180.25
IHD-G1	XS-3	LBP	N	2062737.35	7022596.30	5180.57
IHD-G1	XS-3	RBP	Y	2062862.59	7022521.02	5182.56
IHD-G2	XS-1	LBP	Y	2071287.58	7005528.87	4584.54
IHD-G2	XS-1	RBP	Y	2071364.06	7005705.08	4582.21
IHD-G2	XS-2	LBP	Y	2071404.92	7005431.30	4586.62
IHD-G2	XS-2	RBP	Y	2071513.49	7005643.36	4582.81
IHD-G2	XS-3	LBP	Y	2071916.83	7005519.81	4578.25
IHD-G2	XS-3	RBP	Y	2071917.17	7005519.88	4577.90
CD-G1	XS-1	LBP	N	2060396.62	6966493.92	2333.52
CD-G1	XS-1	RBP	Ν	2060459.76	6966434.50	2332.46
CD-G1	XS-2	LBP	Y	2060107.58	6966316.48	2331.76
CD-G1	XS-2	RBP	Y	2060169.66	6966212.90	2334.55
CD-G1	XS-3	LBP	Y	2060019.91	6966279.68	2330.72
CD-G1	XS-3	RBP	Y	2060056.42	6966171.85	2327.54
SCD-G1	XS-1	LBP	N	2049355.99	6911287.10	1117.21

Site	Cross- Section	Endpin	Endpin recovered (Y/N)	Northing (ft)	Easting (ft)	Elevation (ft)
SCD-G1	XS-1	RBP	Ν	2049520.44	6911259.28	1118.66
SCD-G1	XS-2	LBP	Y	2049303.76	6911154.41	1116.27
SCD-G1	XS-2	RBP	Y	2049450.74	6911016.50	1121.81
SCD-G1	XS-3	LBP	Y	2049252.74	6910875.16	1112.90
SCD-G1	XS-3	RBP	Y	2049349.81	6911118.97	1108.91

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

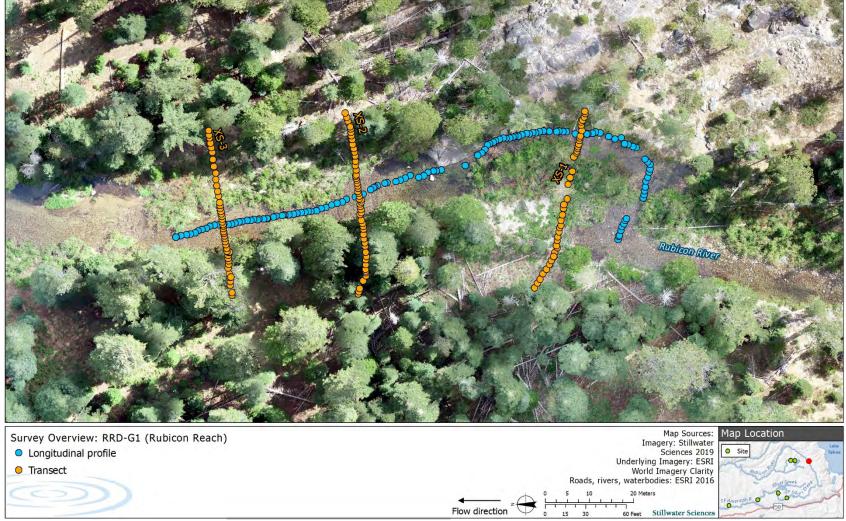


Figure D2-1. Site RRD-G1 overview map with survey points

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

Figure D2-2. Site LLD-G1 overview map with survey points

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

Figure D2-3. SiteLLD-G2 overview map with survey points

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

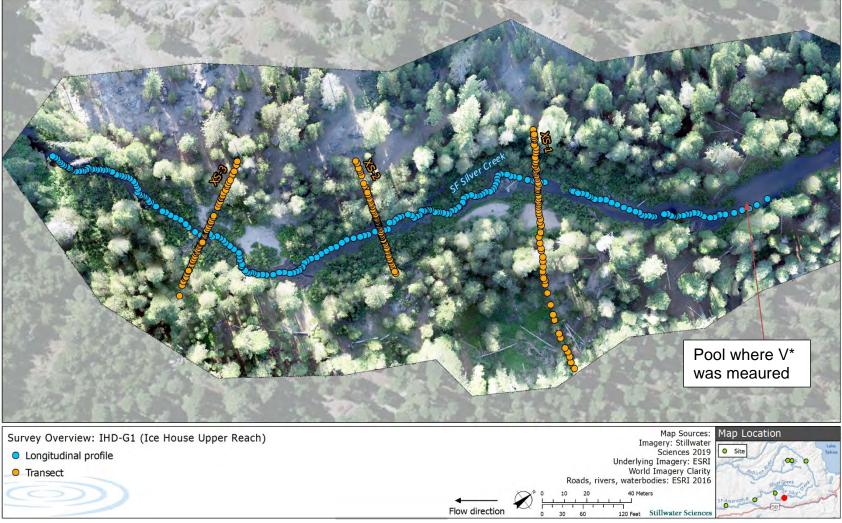


Figure D2-4. Site IHD-G1 overview map with survey points

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

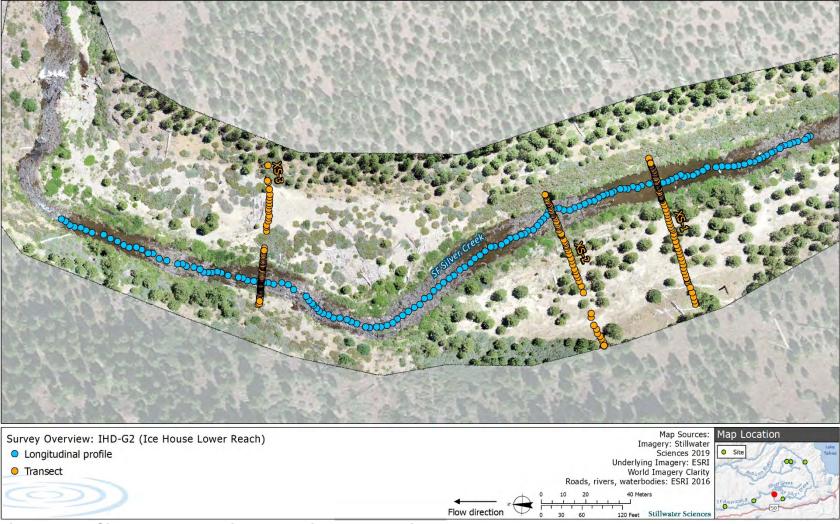


Figure D2-5. Site IHD-G2 overview map with survey points

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

Figure D2-6. Site CD-G1 overview map with survey points

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

Figure D2-7. Site SCD-G1 overview map with survey points

APPENDIX D3

Photos

This Page Intentionally Left Blank

Rubicon River Below Rubicon Dam

Figure D3-1. Upper cross-section (XS-1), looking downstream from channel center.

Figure D3-2. Middle cross-section (XS-2), looking upstream from channel center.

Figure D3-3. Middle cross-section (XS-2), looking downstream from channel center.

Figure D3-4. Lower cross-section (XS-3), looking upstream from river-right bank.

Gerle Creek Below Loon Lake Dam Upper Reach

Figure D3-5. Middle cross-section (XS-2), looking downstream from channel center.

Figure D3-6. Lower cross-section (XS-3), looking upstream from channel center.

Gerle Creek Below Loon Lake Dam Middle Reach

Figure D3-7. Upstream extent of longitudinal profile, looking downstream from channel center.

Figure D3-8. Upper cross-section (XS-1), looking downstream from river-right bank.

Figure D3-9. Middle cross-section (XS-2), looking upstream from channel center.

Figure D3-10. Middle cross-section (XS-2), looking downstream from channel center.

Figure D3-11. Lower cross-section (XS-3), looking upstream from channel center.

South Fork Silver Creek Below Ice House Reservoir Upper Reach

Figure D3-12. Upper cross-section (XS-1), looking downstream from channel center.

Figure D3-13. Middle cross-section (XS-2), looking upstream from channel center.

Figure D3-14. Middle cross-section (XS-2), looking downstream from channel center.

Figure D3-15. Lower cross-section (XS-3), looking upstream from channel center.

South Fork Silver Creek Below Ice House Reservoir Lower Reach

Figure D3-16. Middle cross-section (XS-2), looking downstream from channel center.

Figure D3-17. Middle cross-section (XS-2), looking upstream from channel center.

Figure D3-18. Middle cross-section (XS-2), looking downstream from channel center.

Figure D3-19. Lower cross-section (XS-3), looking upstream from channel center.

Silver Creek Below Camino Dam

Figure D3-20. Upper cross section (XS-1), looking downstream.

Figure D3-21. Middle cross-section (XS-2), looking upstream from river-left bank.

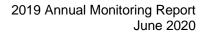
Figure D3-22. Middle cross-section (XS-2), looking downstream from river-left bank.

Figure D3-23. Lower cross-section (XS-3), looking upstream from river-left bank.

South Fork American River Below Slab Creek Dam

Figure D3-24. Middle cross-section (XS-2), looking downstream from river-right bank.

Figure D3-25. Middle cross-section (XS-2), looking upstream from river-right bank.



This Page Intentionally Left Blank

APPENDIX D4

Longitudinal Profiles

This Page Intentionally Left Blank

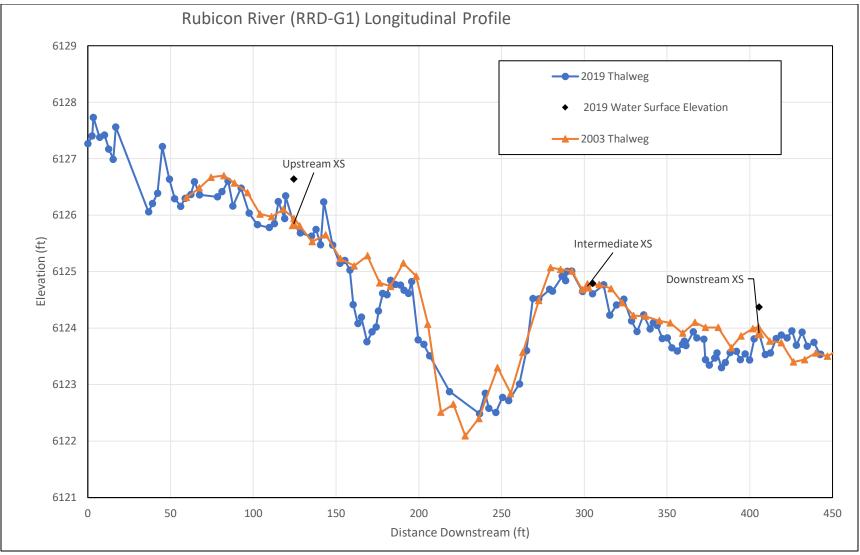


Figure D4-1. Longitudinal profiles for Site RRD-G1 (Rubicon River) from the 2003 and 2019 surveys.

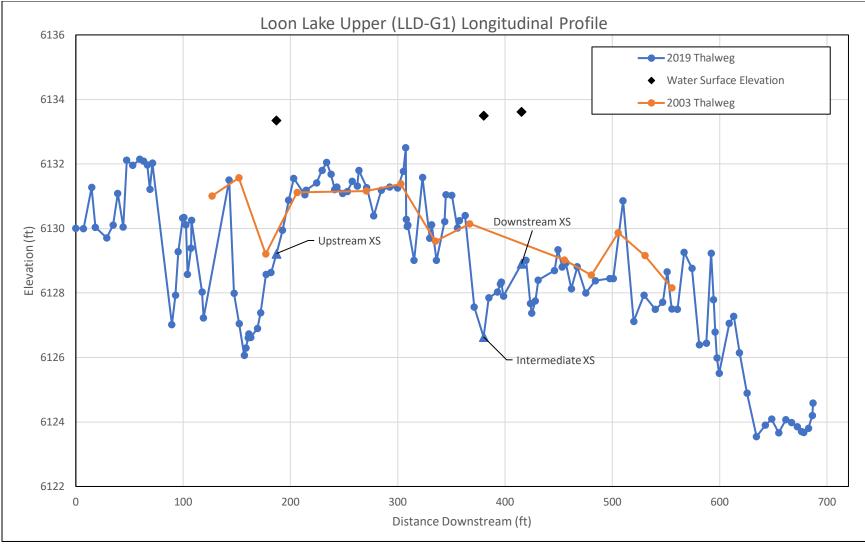


Figure D4-2. Longitudinal profiles for Site LLD-G1 (Loon Lake Upper) from the 2003 and 2019 surveys.

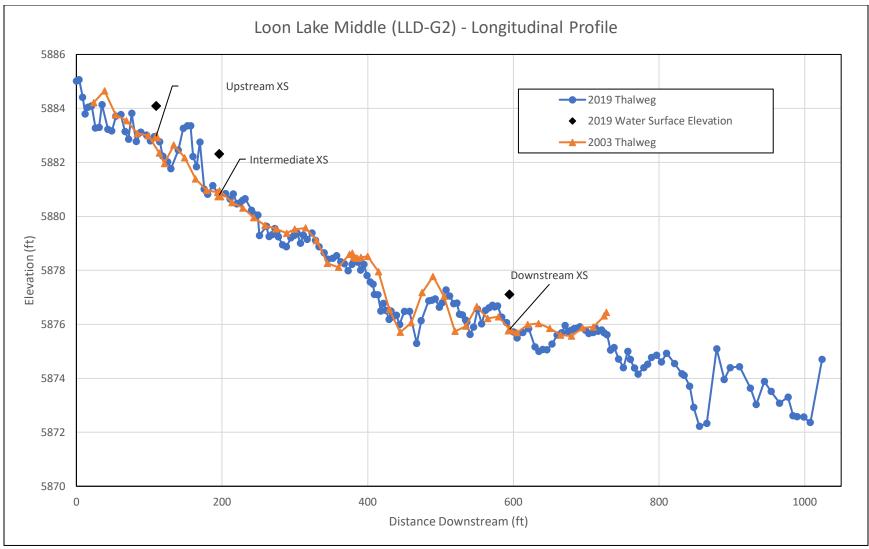


Figure D4-3. Longitudinal profiles for Site LLD-G2 (Loon Lake Middle) from the 2003 and 2019 surveys.

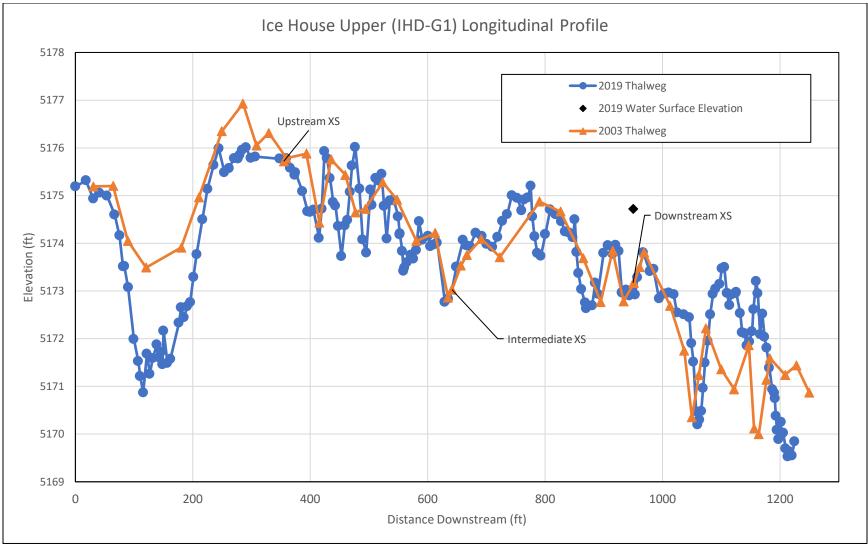


Figure D4-4. Longitudinal profiles for Site IHD-G1 (Ice House Upper) for the 2003 and 2019 surveys.

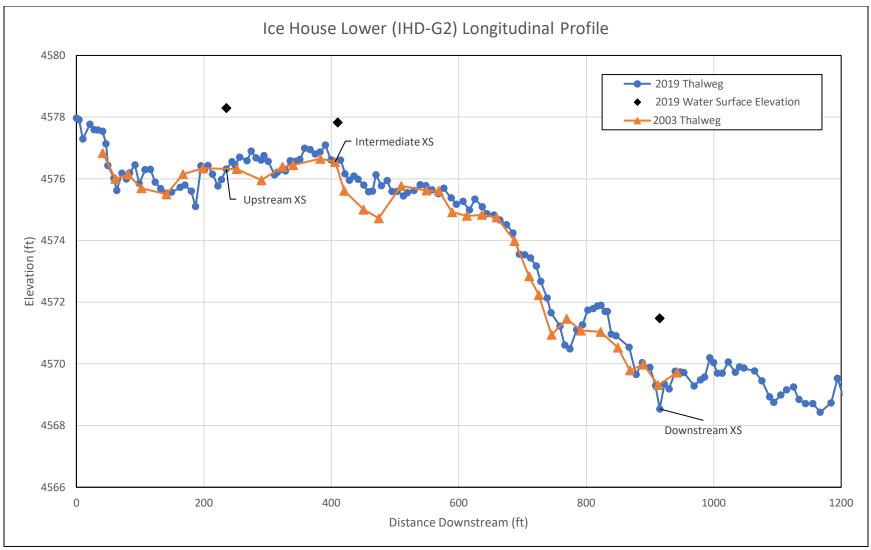
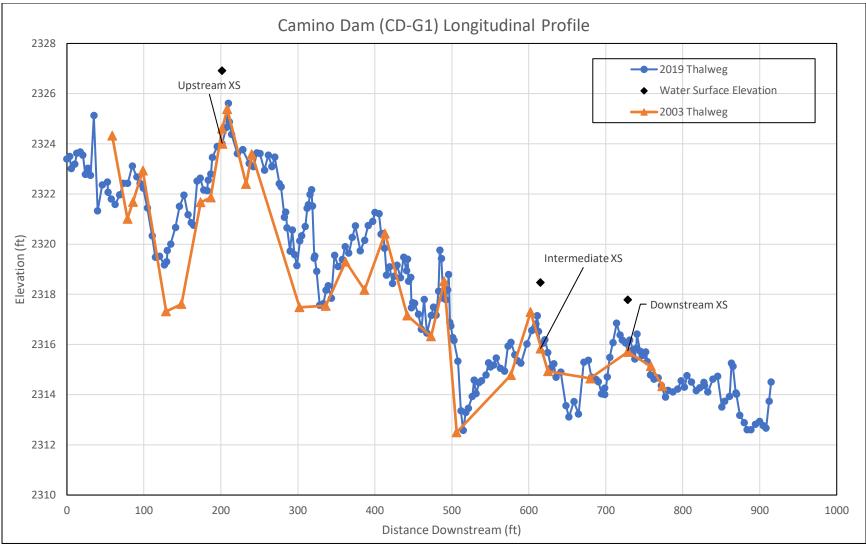
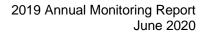


Figure D4-5. Longitudinal profiles for Site IHD-G2 (Ice House Lower) for the 2003 and 2019 surveys.



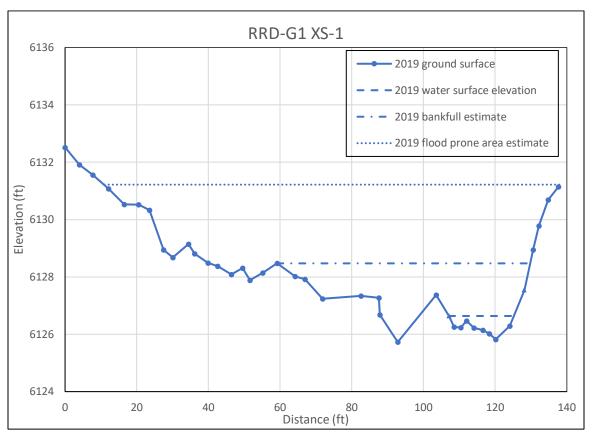

Figure D4-6. Longitudinal profile for Site CD-G1 (Camino Dam) for the 2003 and 2019 surveys.

2019 Annual Monitoring Report June 2020

APPENDIX D5

Cross-sections

This Page Intentionally Left Blank



Study Site	Cross Section (XS)	2003 Channel Geometry						2019 Channel Geometry					
		W _{bf} (ft)	W _{fp} (ft)	D _{bf} (ft)	D _{fp} (ft)	W _{bf} / D _{bf}	E	W _{bf} (ft)	W _{fp} (ft)	D _{bf} (ft)	D _{fp} (ft)	W _{bf} / D _{bf}	Е
RRD-G1	Upper	73	122	1.9	5.6	38.4	1.7	69	127	1.1	4.6	63.1	1.8
	Middle	60	78	1.4	4.3	42.9	1.3	47	90	1.6	4.3	29.5	1.9
	Lower	75	83	1.1	2.8	68.2	1.1	41	83	1.4	3.5	29.2	2.0
LLD-G1	Upper	22	300	2.6	6.9	8.5	14.0	25	460	3.4	13.7	7.4	18.3
	Middle	34	224	3.8	9.8	8.9	6.6	34	260	4.7	14.0	7.2	7.6
	Lower	23	125	2.7	7.4	8.5	5.4	28	240	3.7	10.5	7.5	8.6
LLD-G2	Upper	54	294	2.1	5.2	25.7	5.4	46	430	1.0	4.4	47.9	9.4
	Middle	38	350	1.5	5.3	25.3	9.3	30	570	1.2	4.3	24.2	19.3
	Lower	51	400	2.1	4.2	24.3	7.8	38	960	1.1	4.4	35.2	25.4
IHD-G1	Upper	53	133	2.7	5.4	19.6	2.5	45	136	1.6	5.0	27.8	3.0
	Middle	59	320	1.8	7.7	33.1	5.0	26	102	3.4	5.5	7.5	4.0
	Lower	49	177	2.8	10.0	17.6	3.5	26	49	1.6	5.2	16.4	1.9
IHD-G2	Upper	124	251	2.8	13.0	44.3	2.0	53	121	2.3	6.8	23.2	2.3
	Middle	62	206	2.6	6.7	23.8	3.3	56	126	1.7	5.1	32.9	2.2
	Lower	57	180	2.6	10.0	21.9	3.1	47	72	1.8	7.0	26.4	1.5
CD-G1	Upper	73	90	2.7	10.0	27.0	1.2	57	90	3.1	9.9	18.3	1.6
	Middle	89	120	3.8	16.0	23.4	1.3	74	113	3.0	12.8	24.6	1.5
	Lower	77	120	3.2	12.0	24.1	1.6	61	108	2.7	11.0	22.8	1.8
SCD-G1	Upper	111	159	4.4	8.9	25.2	1.4	122	-	-	-	-	-
	Middle	71	162	5.6	11.0	12.7	2.3	163	-	-	-	-	-
	Lower	62	106	4.8	9.7	12.9	1.7	122	-	-	-	-	-

Table D5-1. Comparison of 2003 and 2019 channel geometry data.

W_{bf}=bankfull width, W_{fp}=floodprone width, D_{bf}=bankfull width, D_{fp}=flood-prone width, W_{bf}/D_{bf}=width-depth ratio, E=entrenchment ratio, ft=feet. The 2003 parameters were recalculated using the original survey data.

Rubicon River Below Rubicon Dam (Site RRD-G1)

Figure D5-1. Cross-section Site RRD-G1 XS-1 survey in 2019.

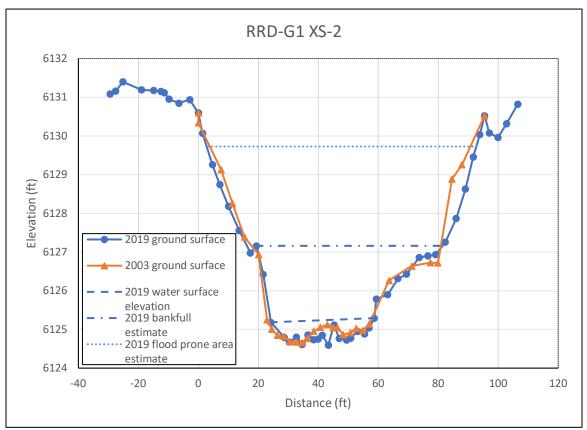
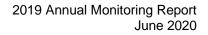



Figure D5-2. Cross-section Site RRD-G1 XS-2 from the 2003 and 2019 surveys.

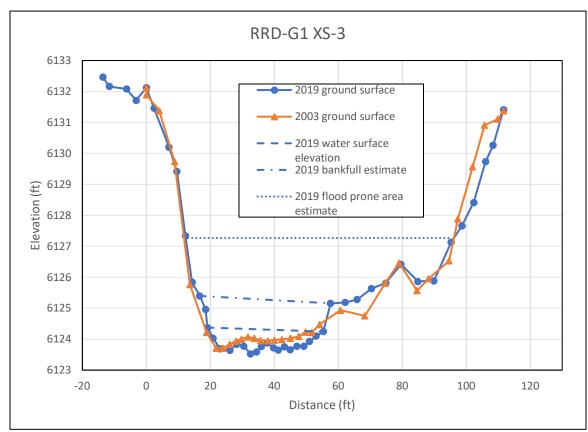
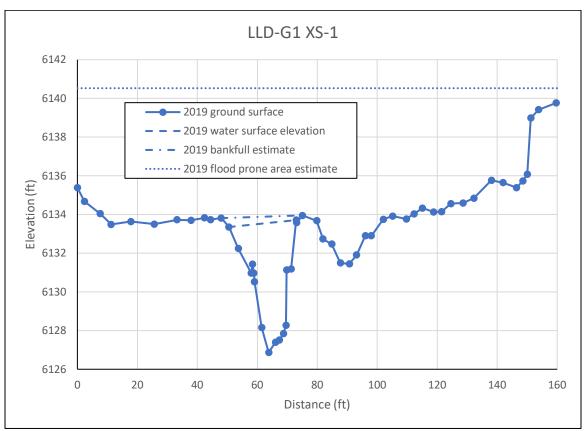



Figure D5-3. Cross-section Site RRD-G1 XS-2 from the 2003 and 2019 surveys.

Gerle Creek Below Loon Lake Upper (Site LLD-G1)

Figure D5-4. Cross-section Site LLD-G1 XS-1 from the 2019 surveys.

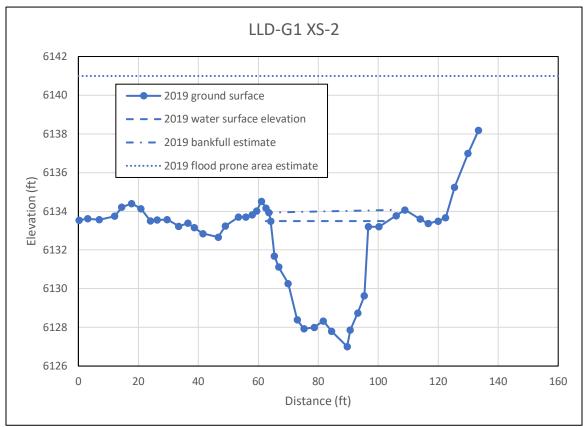


Figure D5-5. Cross-section Site LLD-G1 XS-2 from the 2019 surveys.

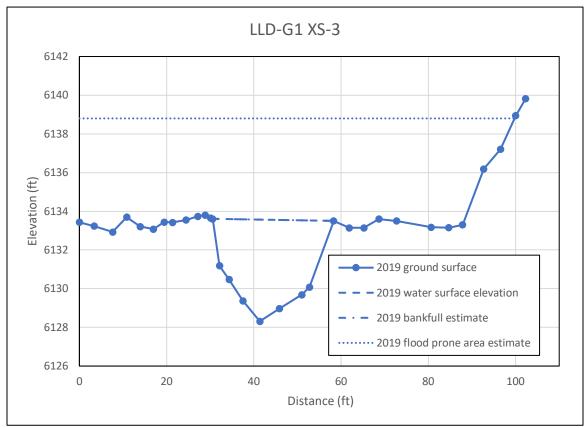
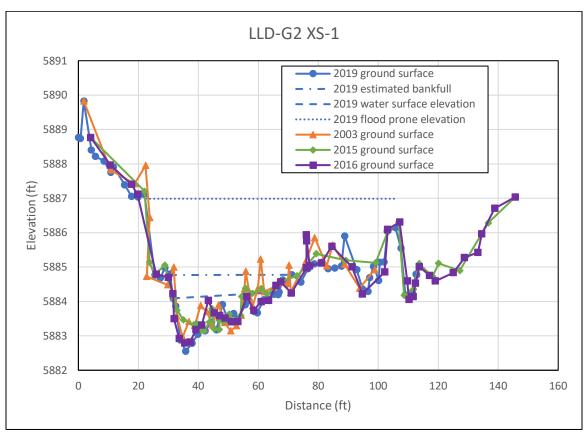



Figure D5-6. Cross-section Site LLD-G1 XS-3 from the 2019 surveys.

Gerle Creek Below Loon Lake Middle (Site LLD-G2)

Figure D5-7. Cross-section Site LLD-G2 XS-1 from the 2019 surveys.

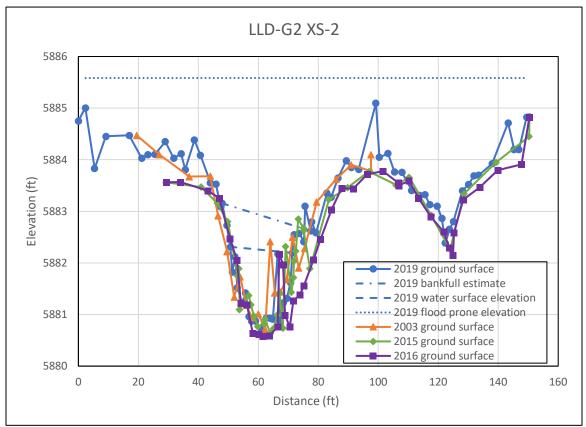


Figure D5-8. Cross-section Site LLD-G2 XS-2 from the 2019 surveys.

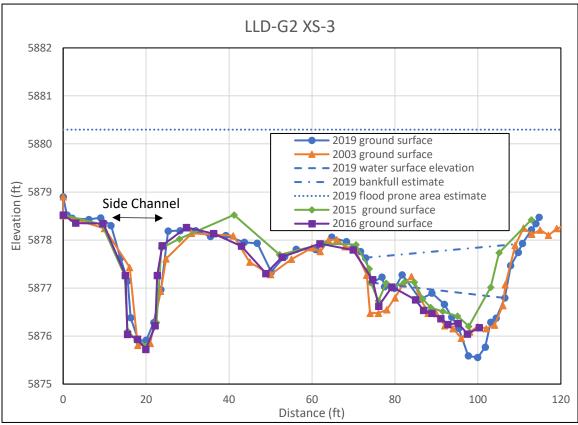
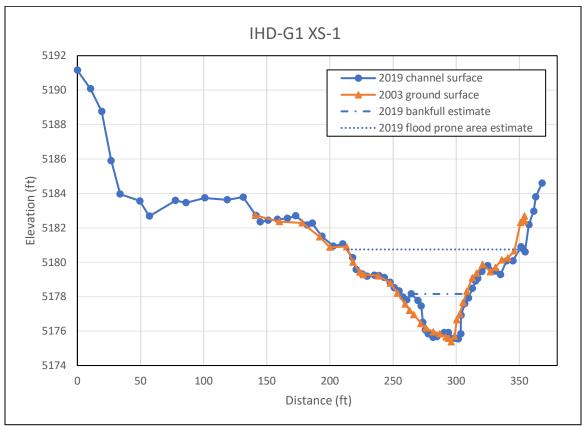



Figure D5-9. Cross-section Site LLD-G2 XS-3 from the 2003 and 2019 surveys.

South Fork Silver Creek Below Ice House Upper (Site IHD-G1)

Figure D5-10. Cross-section Site IHD-G1 XS-1 from the 2003 and 2019 surveys.

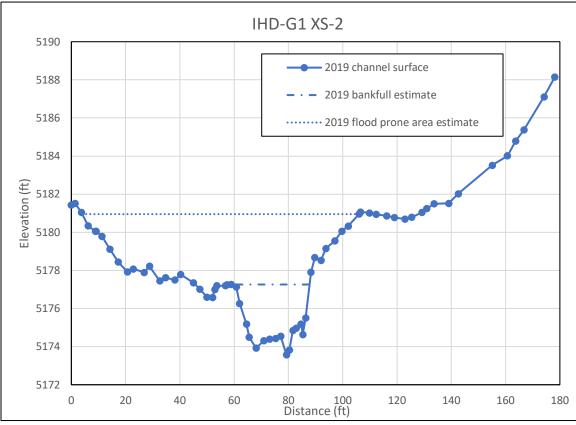


Figure D5-11. Cross-section Site IHD-G1 XS-2 from the 2019 surveys.

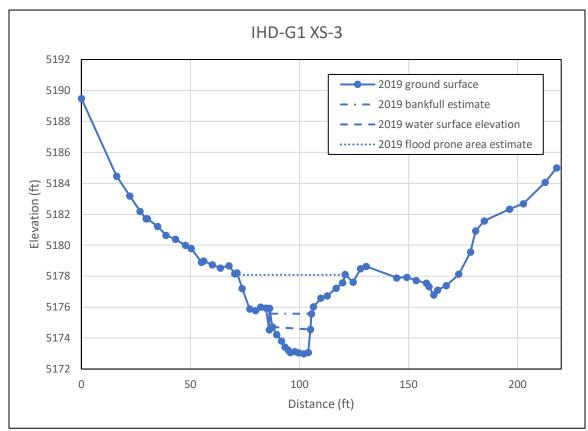
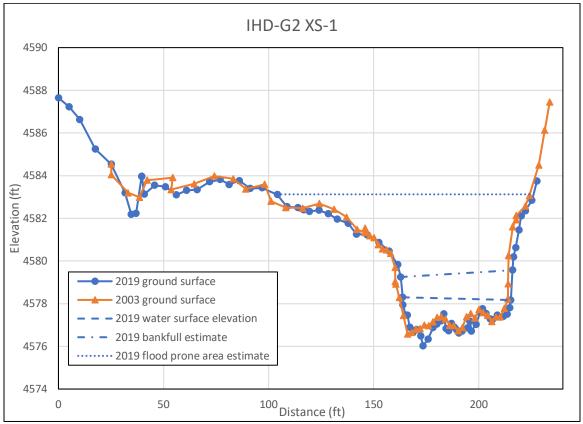



Figure D5-12. Cross-section Site IHD-G1 XS-3 from the 2019 surveys.

South Fork Silver Creek Below Ice House Lower (Site IHD-G2)

Figure D5-13. Cross-section Site IHD-G2 XS-1 from the 2003 and 2019 surveys.

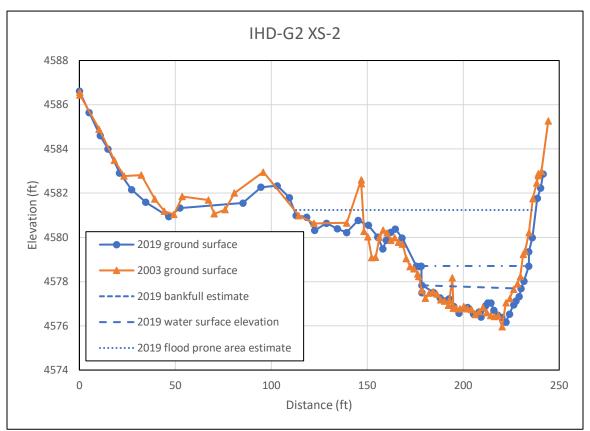
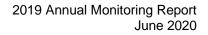



Figure D5-14. Cross-section Site IHD-G2 XS-2 from the 2003 and 2019 surveys.

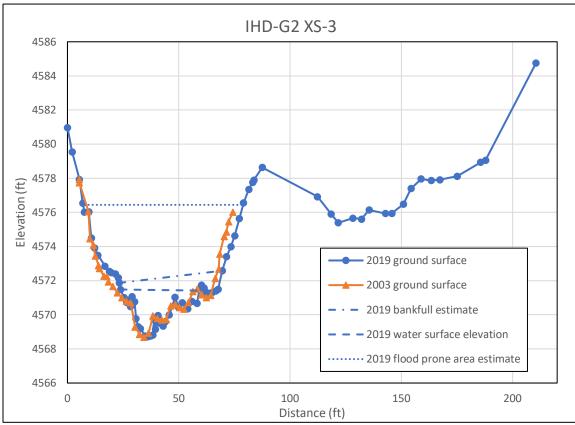


Figure D5-15. Cross-section Site IHD-G2 XS-3 from the 2003 and 2019 surveys.

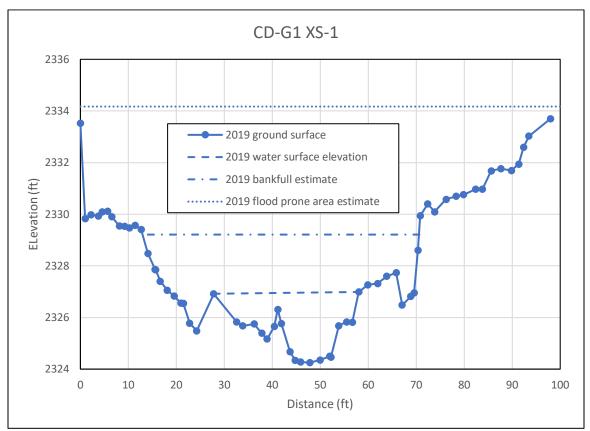


Figure D5-16. Cross-section Site CD-G1 XS-1 from the 2019 surveys.

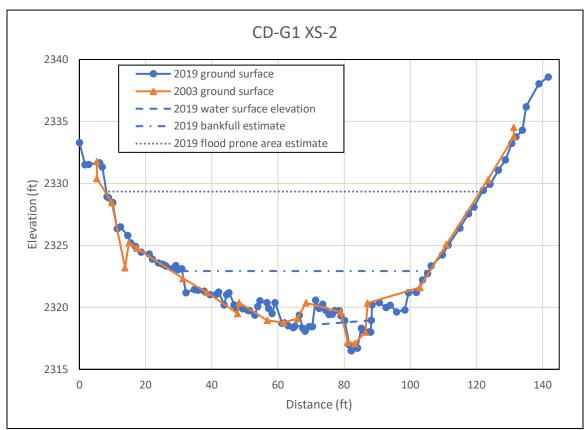


Figure D5-17. Cross-section Site CD-G1 XS-2 from the 2003 and 2019 surveys.

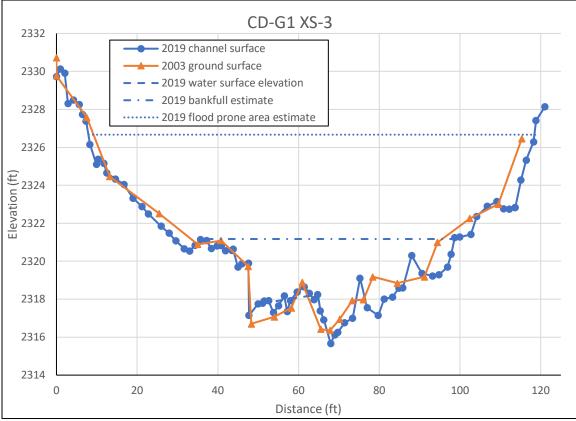
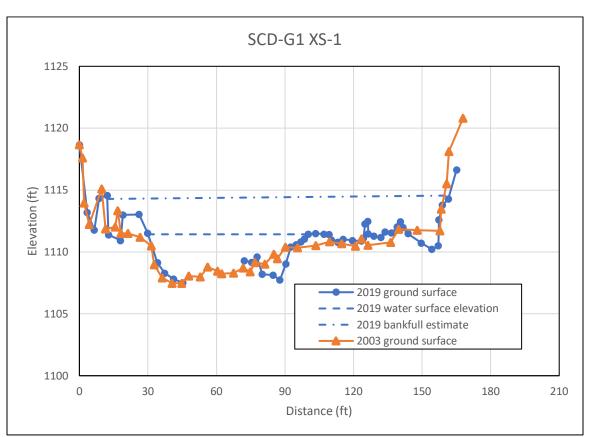



Figure D5-18. Cross-section Site CD-G1 XS-3 from the 2003 and 2019 surveys.

South Fork American River Below Slab Creek (Site SCD-G1)

Figure D5-19. Cross-section Site SCD-G1 XS-1 from the 2019 survey. The gap in the ground surface reflects the part of the channel that could not be surveyed. Flood prone area estimate could not be calculated due to the inability to survey the thalweg.

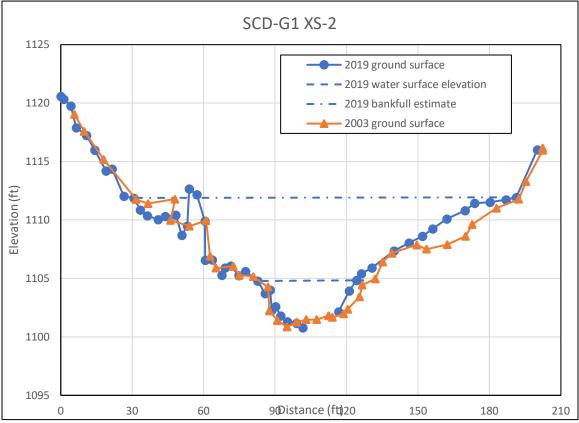
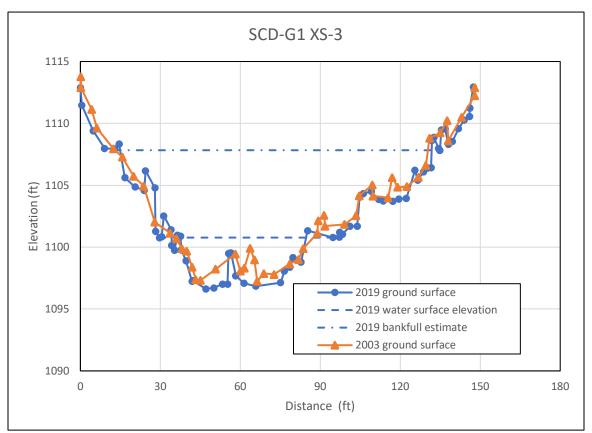
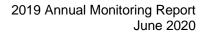


Figure D5-20. Cross-section Site SCD-G1 XS-2 from the 2019 surveys. The gap in the ground surface reflects the part of the channel that could not be surveyed. Flood prone area estimate could not be calculated due to the inability to survey the thalweg.




Figure D5-21. Cross-section Site SCD-G1 XS-3 from the 2003 and 2019 surveys. Flood prone area estimate could not be calculated due to the inability to survey the thalweg.

2019 Annual Monitoring Report June 2020

APPENDIX D6

Pebble Counts

This Page Intentionally Left Blank

	xs		2003 I	Bed Char	acteristics	2019 Bed Characteristics				
Study Site		D ₈₄ (mm)	D₅₀ (mm)	D ₁₆ (mm)	Dominant Sediment Facies	D ₈₄ (mm)	D₅₀ (mm)	D ₁₆ (mm)	Dominant Sediment Facies	
RRD-G1	Upper	60	30	11		134	39	8		
	Middle	93	34	6	Cobble	121	50	4	Cobble	
	Lower	67	31	5		136	44	2		
	Upper		3.5			-	-	-		
LLD-G1	Middle		0.3		Sand	-	-	-	Sand	
	Lower		3			-	-	-		
LLD-G2	Upper	148	40	17		190	95	39		
	Middle	172	74	14	Cobble	184	90	42	Cobble	
	Lower	170	90	40		140	85	32		
IHD-G1	Upper	29	16	2		59	35	14		
	Middle	19	9	1	Gravel	18	11	5	Gravel	
	Lower	25	10	1		34	16	3		
IHD-G2	Upper	500	45	2		148	85	35		
	Middle	350	95	20	Bedrock/ Boulder	220	108	55	Bedrock	
	Lower	400	60	2		-	-	-		
CD-G1	Upper	156	71	45		157	64	30		
	Middle	143	82	46	Bedrock	135	80	41	Bedrock	
	Lower	189	74	38		280	103	42		
	Upper	450	240	130		-	-	-		
SCD-G1	Middle	370	179	100	Boulder	-	-	-	Boulder	
	Lower	395	190	90		-	-	-		

Table D6-1. Bed Particle Size Characteristics in 2003 and 2019.

mm = millimeters

D16=particle size at which 16% of the bed is finer, D50=particle size at which 50% of the bed is finer, D50=particle size at which 84% of the bed is finer

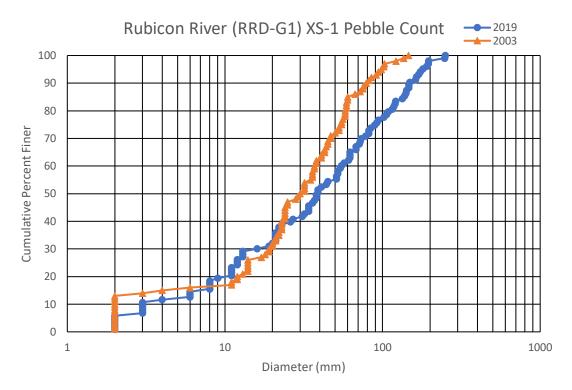


Figure D6-1. Particle size distribution at Site RRD-G1 XS-1.

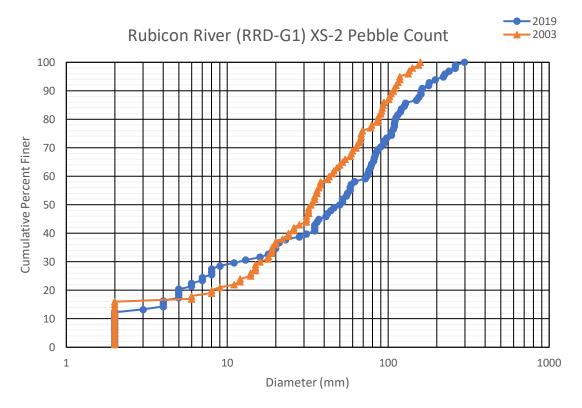


Figure D6-2. Particle size distribution at Site RRD-G1 XS-2.

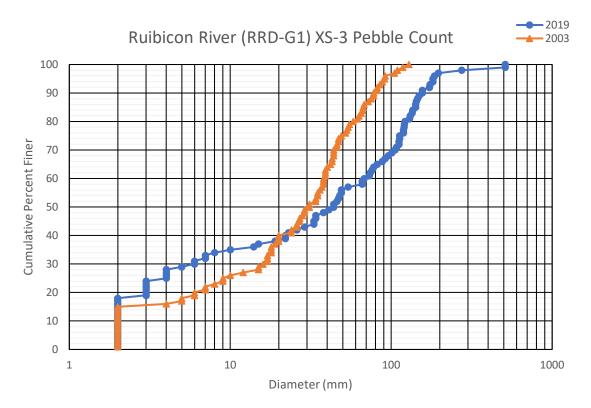


Figure D6-3. Particle size distribution at Site RRD-G1 XS-3.

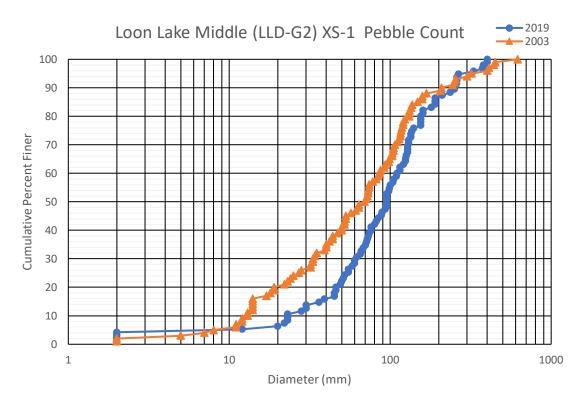


Figure D6-4. Particle size distribution at Site LLD-G2 XS-1.

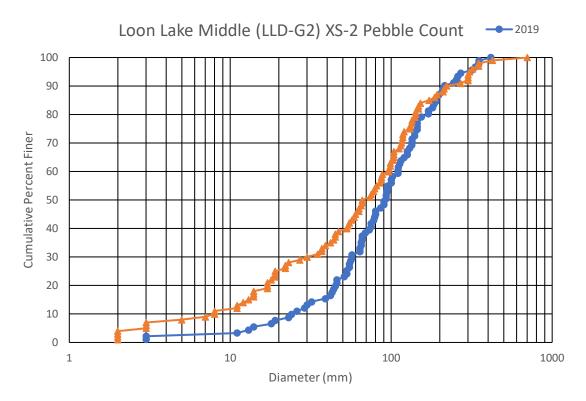


Figure D6-5. Particle size distribution at Site LLD-G2 XS-2.

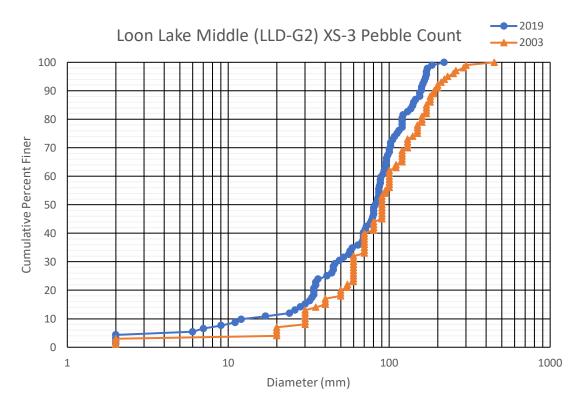


Figure D6-6. Particle size distribution at Site LLD-G2 XS-3.

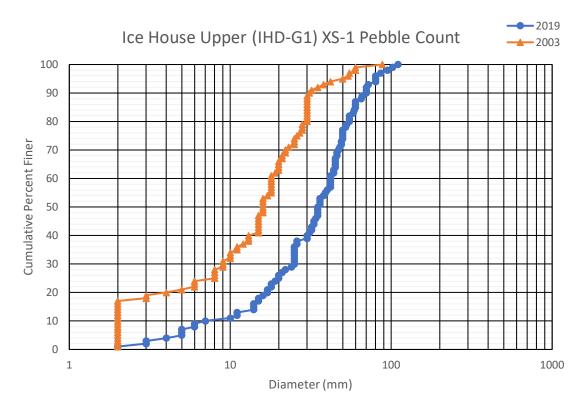


Figure D6-7. Particle size distribution at Site IHD-G1 XS-1.

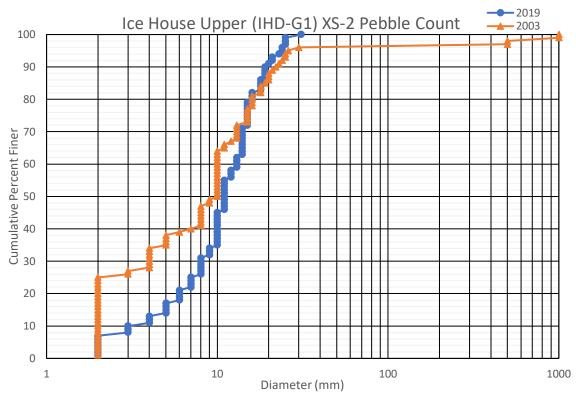
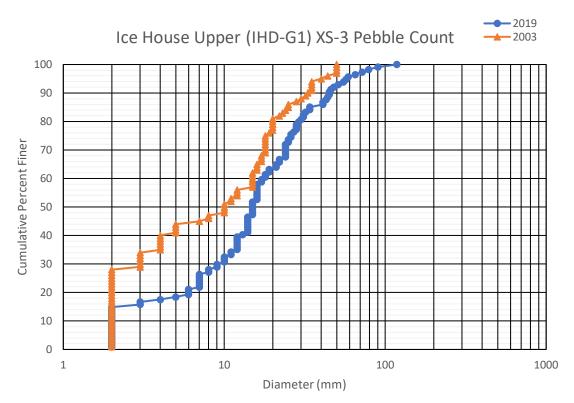



Figure D6-8. Particle size distribution at Site IHD-G1 XS-2.

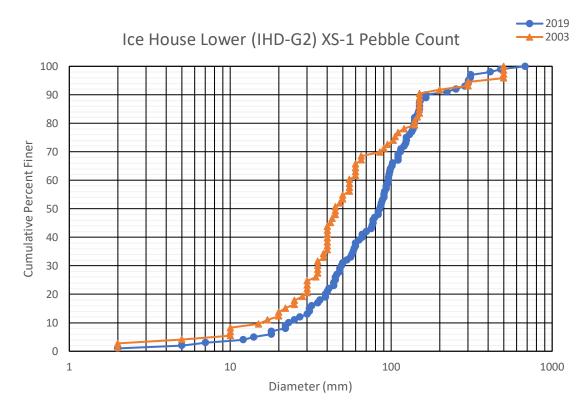


Figure D6-10. Particle size distribution at Site IHD-G2 XS-1.

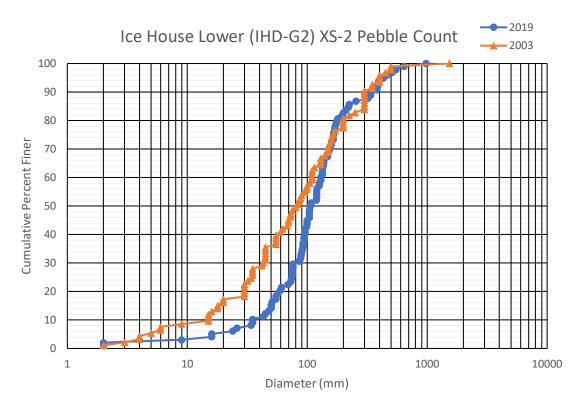


Figure D6-11. Particle size distribution at Site IHD-G2 XS-2.

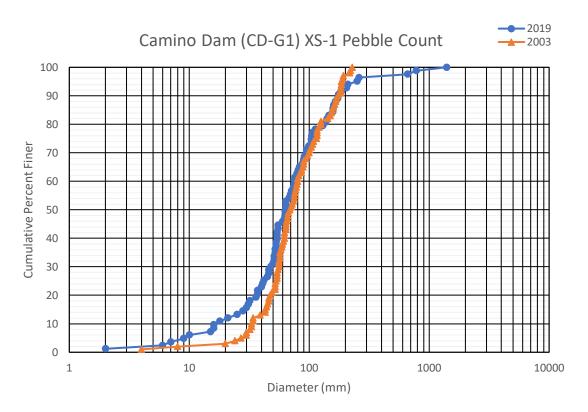
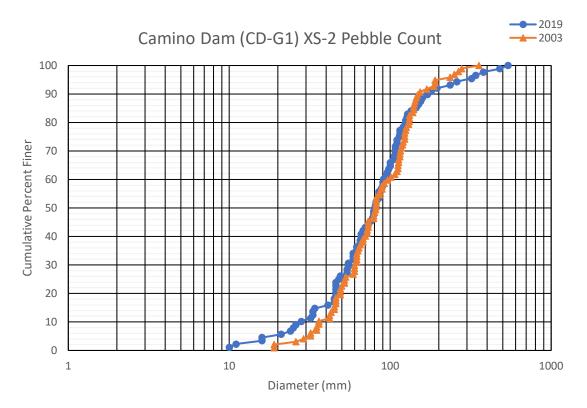
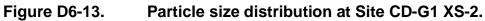
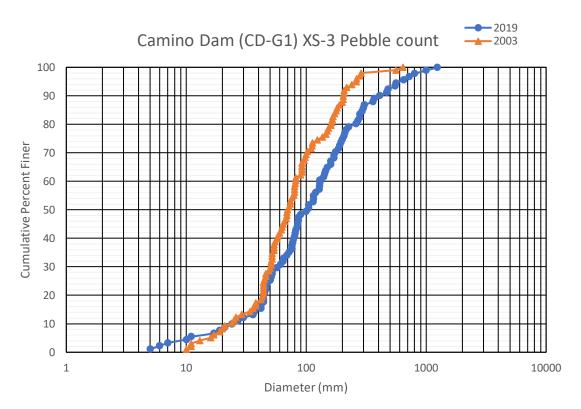
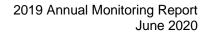





Figure D6-12. Particle size distribution at Site CD-G1 XS-1.



2019 Annual Monitoring Report June 2020

APPENDIX D7

Facies Maps

This Page Intentionally Left Blank

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

Facies Mapping at RRD-G1 (Rubicon Reach)
Facies (labels indicate grain size classes)

Figure D7-1. Rubicon River Below Rubicon Dam (Site RRD-G1).

Figure D7-2. Gerle Creek Below Loon Lake Middle (Site LLD-G2).

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

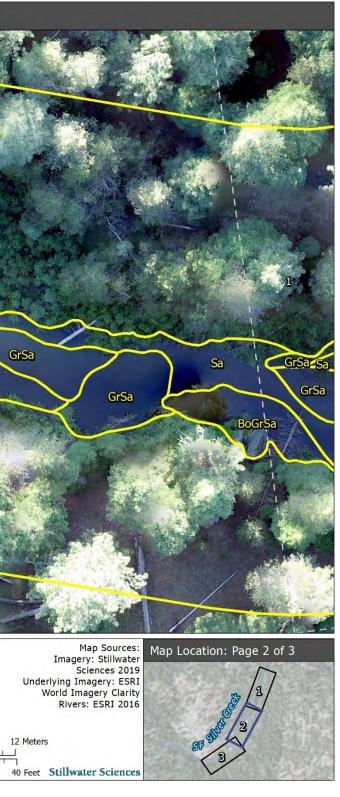
2019 Annual Monitoring Report June 2020

Figure D7-3. Gerle Creek Below Loon Lake Middle (Site LLD-G2).

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

2019 Annual Monitoring Report June 2020

Figure D7-4. South Fork Silver Creek Below Ice House Upper (Site IHD-G1).


MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

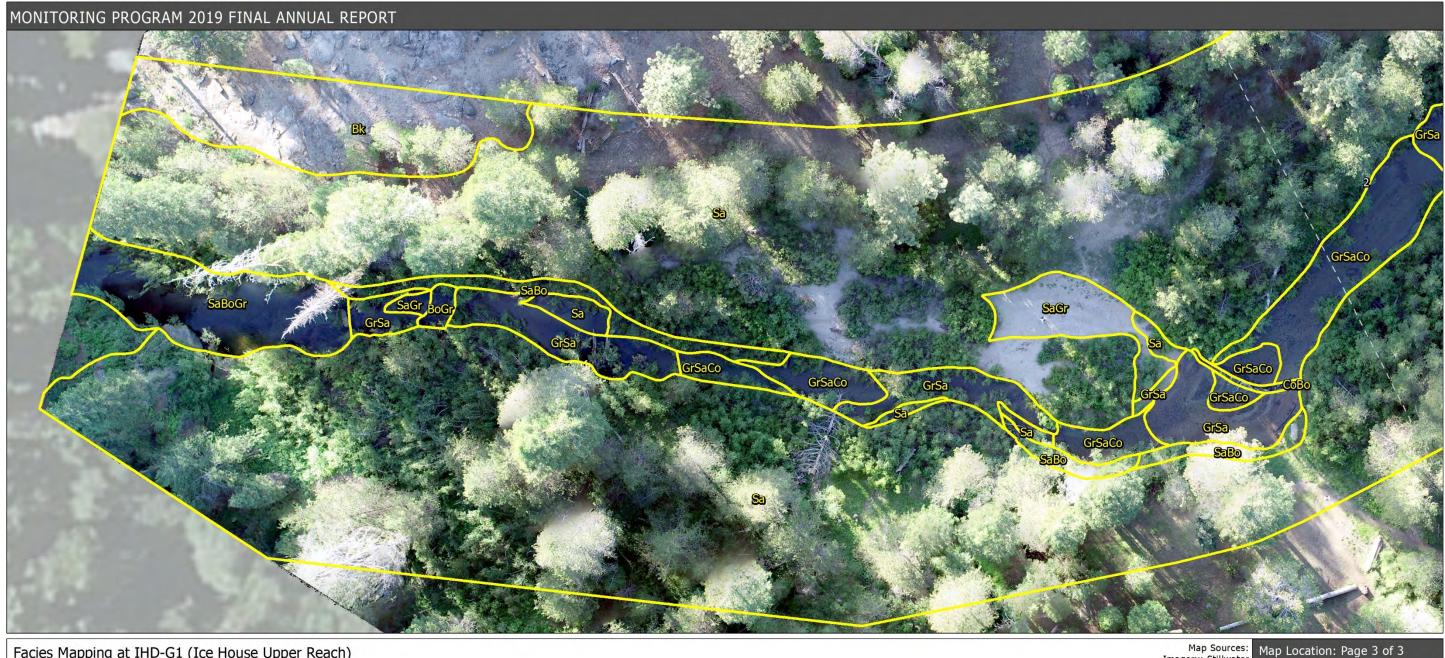
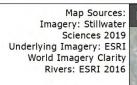
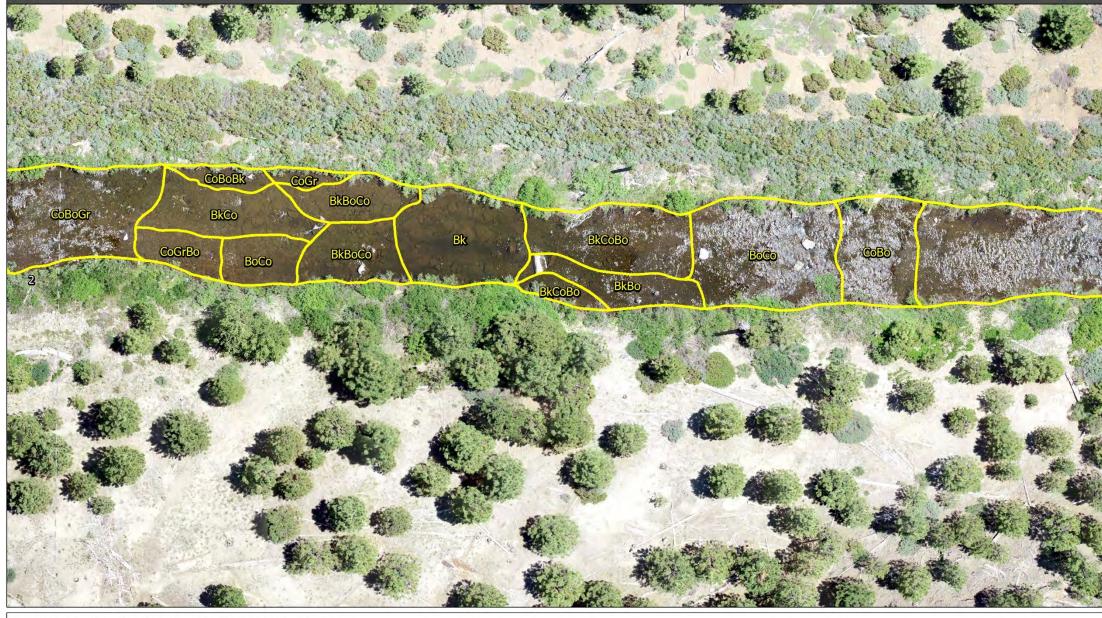

Facies Mapping at IHD-G1 (Ice House Upper Reach)
Facies (labels indicate grain size classes)
Adjacent Tile

Figure D7-5. South Fork Silver Creek Below Ice House Upper (Site IHD-G1).



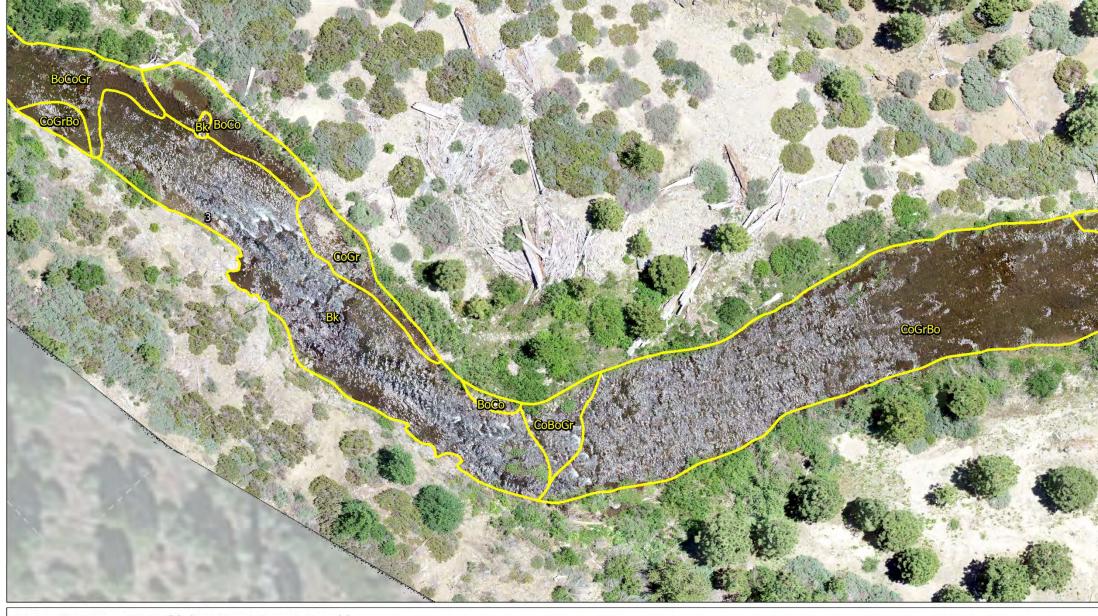
Facies Mapping at IHD-G1 (Ice House Upper Reach) Facies (labels indicate grain size classes) Adjacent Tile


Figure D7-6. South Fork Silver Creek Below Ice House Upper (Site IHD-G1).

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

Facies Mapping at IHD-G2 (Ice House Lower Reach)
Facies (labels indicate grain size classes)
Adjacent Tile

Figure D7-7. South Fork Silver Creek Below Ice House Lower (Site IHD-G2).


Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

40 Feet Stillwater Sciences

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

Facies Mapping at IHD-G2 (Ice House Lower Reach)
Facies (labels indicate grain size classes)
Adjacent Tile

Figure D7-8. South Fork Silver Creek Below Ice House Lower (Site IHD-G2).

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

40 Feet Stillwater Sciences

Figure D7-9. South Fork Silver Creek Below Ice House Lower (Site IHD-G2).

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

2019 Annual Monitoring Report June 2020

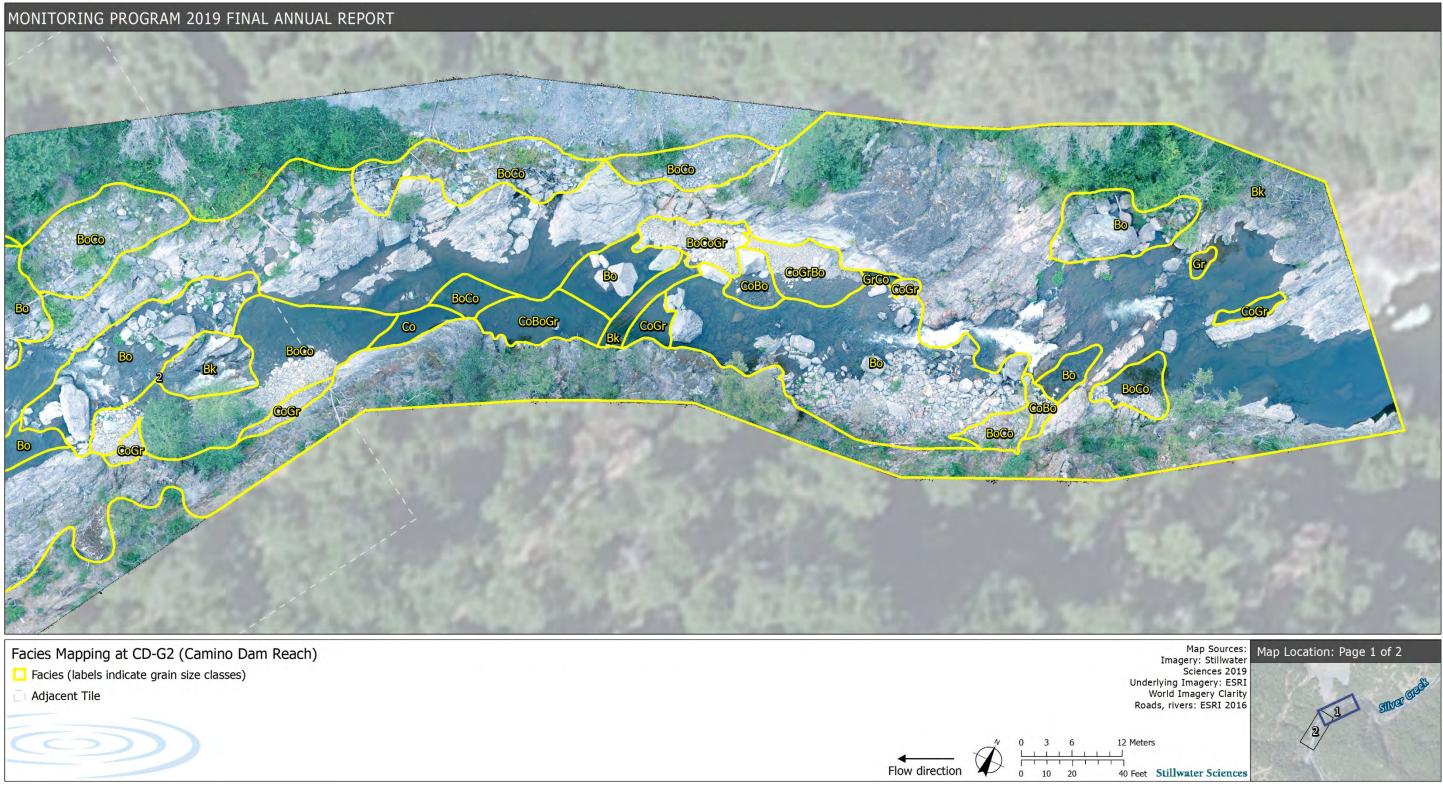


Figure D7-10. Silver Creek Below Camino Dam (Site CD-G1).

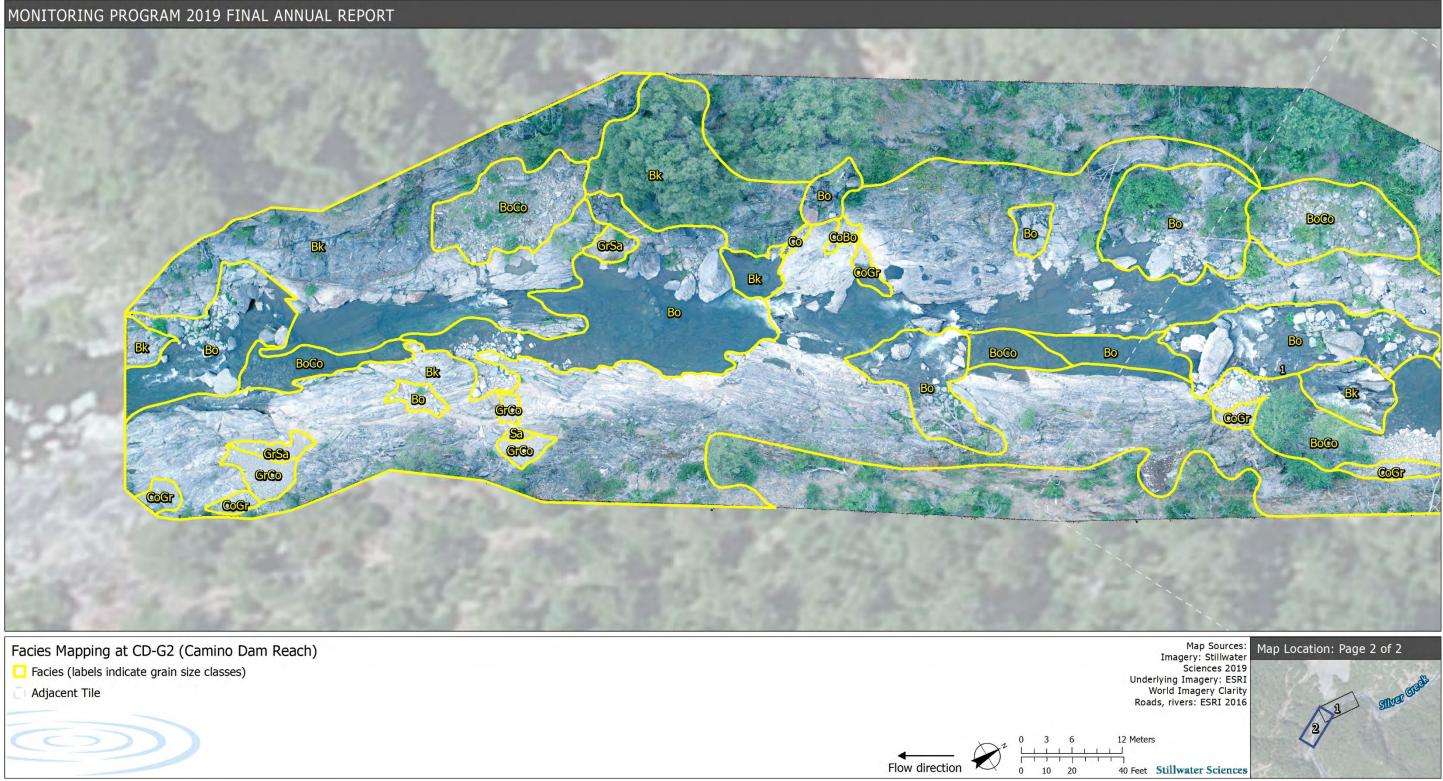


Figure D7-11. Silver Creek Below Camino Dam (Site CD-G1).

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

2019 Annual Monitoring Report June 2020

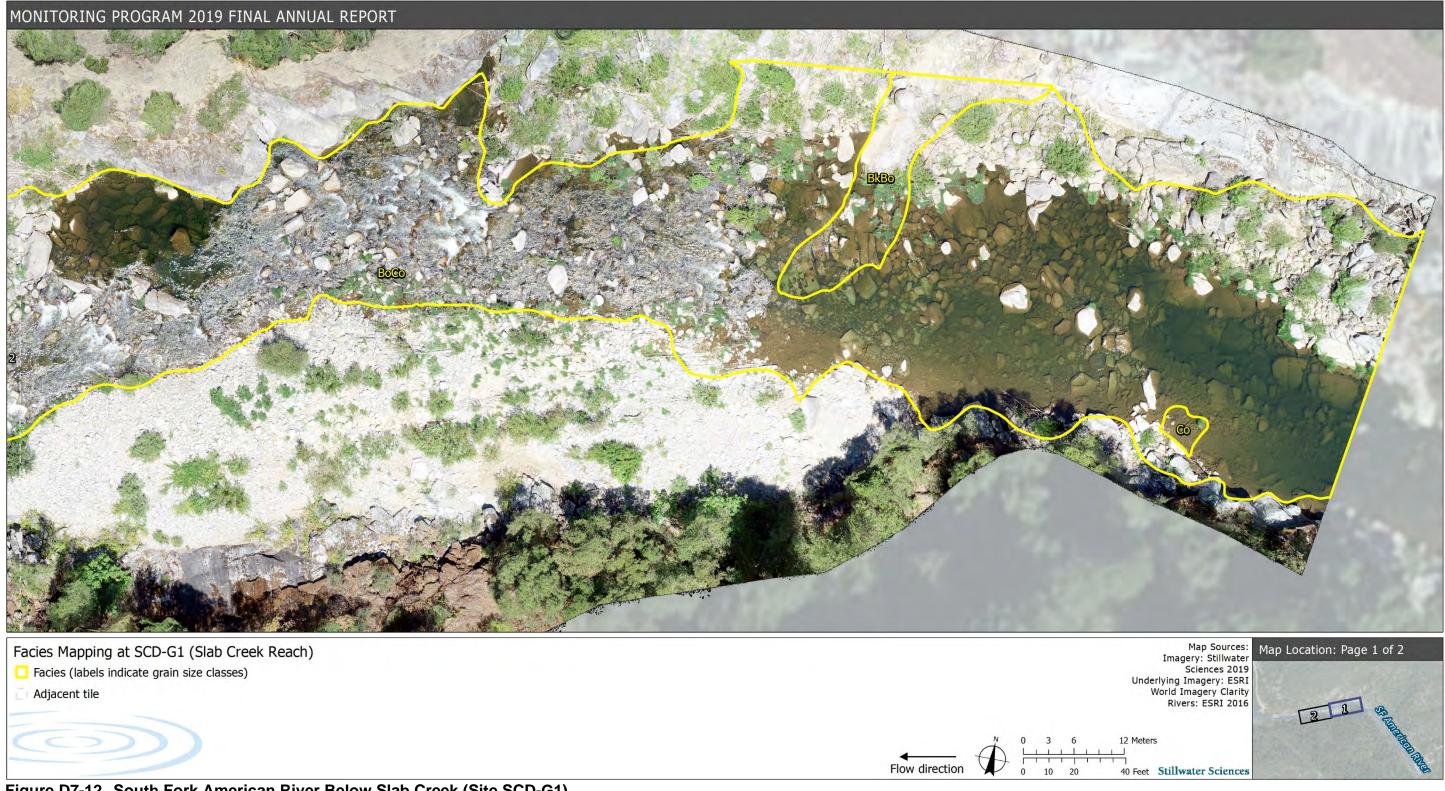
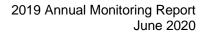


Figure D7-12. South Fork American River Below Slab Creek (Site SCD-G1).

Figure D7-13. South Fork American River Below Slab Creek (Site SCD-G1).

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

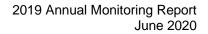
2019 Annual Monitoring Report June 2020


This Page Intentionally Left Blank

2019 Annual Monitoring Report June 2020

APPENDIX D8

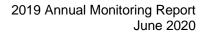
Inventory of Large Woody Debris


This Page Intentionally Left Blank

Site	Minimum Measured Size (ft)	Reach Length (ft)	Individual Logs	Logs in Jams (Number of Jams)	Logs with Rootwads	Total Number of Logs
RRD-G1	12	450	0	0	0	0
LLD-G1	6	700	564	0	0	564
LLD-G2	12	1000	70	38 (4)	0	108
IHD-G1	10	1200	39	14 (2)	5	58
IHD-G2	14	1200	2	0	0	2
CD-G1	20	900	4	0	0	4
SC-G1	23	750	0	0	0	0

Table D8-1. Results from Large Woody Debris Inventories.

ft = feet



This Page Intentionally Left Blank

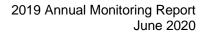
APPENDIX D9

V* Fine Sediment Storage Data

This Page Intentionally Left Blank

Table D12-1.V* Survey Data for the Pool at the Upper End of Site IHD-G1 (South Fork Silver Creek Below Ice House Reservoir, Upper Reach).

	IK SIIVEI	Cleek E	selow ice Ho	use keser	von, opper		
Profile	Distance (ft)	Water depth (ft)	Water+fines depth (ft)	Residual pool+fines (ft)	Thickness of fines (ft)	Fine profile area (ft ²)	Residual pool area (ft²)
Centerline	0	2.9	3.2	2.8	0.3	0.5	4.2
Centerline	3	3.6	3.8	3.4	0.2	1.6	26.4
Centerline	15.5	4.2	4.3	3.9	0.1	0.9	34.3
Centerline	20.6	4.6	5.4	5	0.8	3.8	23.8
Centerline	25	6	6.3	5.9	0.3	1.26	24.8
Centerline	29	6	6.4	6	0.4	1.4	21
Centerline	32	6.6	6.9	6.5	0.3	0.8	16.3
Centerline	34	6.8	6.8	6.4	0	0	12.8
Centerline	36	6.8	7.3	6.9	0.5	3	41.4
Centerline	46	6.8	7.6	7.2	0.8	7.2	64.8
Centerline	54	6.5	7.5	7.1	1	9.5	67.5
Centerline	65	5.3	6.9	6.5	1.6	14.4	58.5
Centerline	72	4.5	7.3	6.9	2.8	15.4	38.0
Centerline	76	3.8	7	6.6	3.2	12.8	26.4
Centerline	80	3.6	7.3	6.9	3.7	29.6	55.2
Centerline	92	1.7	4.9	4.5	3.2	56	78.8
Centerline	115	0.4	0.4	0	0	0	0
River Right	5	2.7	2.7	2.3	0	0	5.75
River Right	15	3.1	3.1	2.7	0	0	24.3
River Right	23	5.4	5.9	5.5	0.5	4.5	49.5
River Right	33	6.9	6.9	6.5	0	0	130
River Right	43	>8ft	_	_	—	_	_
River Right	53	>8ft	_	_	_	_	_
River Right	63	6.3	7.9	7.5	1.6	34.4	161.3
River Right	76	4.4	6.7	6.3	2.3	26.5	72.5
River Right	86	2.5	5.9	5.5	3.4	34	55
River Right	96	1.8	5.3	4.9	3.5	36.8	51.5
River Right	107	0.3	1.2	0.8	0.9	5.0	4.4
River Left	3	1.8	3.1	2.7	1.3	4.55	9.45
River Left	13	2.7	5.4	5	2.7	27	50
River Left	23	4.4	5.3	4.9	0.9	9	49
River Left	33	4.7	6.5	6.1	1.8	18	61
River Left	43	4.4	7.6	7.2	3.2	32	72


Profile	Distance (ft)	Water depth (ft)	Water+fines depth (ft)	Residual pool+fines (ft)	Thickness of fines (ft)	Fine profile area (ft ²)	Residual pool area (ft²)
River Left	53	4.5	6.5	6.1	2	20	61
River Left	63	3.7	5.1	4.7	1.4	14	47
River Left	73	2.5	5.3	4.9	2.8	28	49
River Left	83	1.9	4	3.6	2.1	21	36
River Left	93	1.5	3.6	3.2	2.1	21	32
River Left	103	0.6	3.2	2.8	2.6	13	14

ft = feet; ft^2 = square feet

APPENDIX D10

Rosgen Level III Analyses

This Page Intentionally Left Blank

Rubicon River Below Rubicon Dam (Site RRD-G1)

Survey Date: 9/10/2019 Survey Crew: Karley Rodriguez, Joey Verdian, Chris Lyle, Christian Braudrick

Depositional Features ("x" indicates assigned category)

	B-1	Point bars
	B-2	Point bars with few mid channel bars
х	B-3	Many mid channel bars
	B-4	Side bars
	B-5	Diagonal bars
	B-6	Main branching with many mid channel bars and islands
	B-7	Mixed side bar and mid channel bars exceeding 2-3X width
	B-8	Delta bars

Description: some vegetated mid channel bars

Meander Pattern ("x" indicates assigned category)

Х	M-1	Regular meander
	M-2	Tortuous meander
	M-3	Irregular meander
	M-4	Truncated meander
	M-5	Unconfined meander scrolls
	M-6	Confined meander scrolls
	M-7	Distorted meander loops
	M-8	Irregular with oxbows

Description: The channel is straight.

	STRE	AM CHANNE	L DEBRIS/BLOCKAGES ("x" indicates assigned category)
	Description/Exten t		Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime
Х	D-1	None	Minor amounts of small, floatable material
	D-2	Infrequent	Debris consists of small, easily moved, floatable material, i.e. leaves, needles, small limbs, twigs, etc
	D-3	Moderate	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.
	D-4	Numerous	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.
	D-5	Extensive	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.
	D-6	Dominatin g	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross- section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull.
	D-7	Beaver Dams - Few	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.
	D-8	Beaver Dams - Frequent	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced, and channel dimensions or conditions are influenced.
	D-9	Beaver Dams - Abandone d	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.
	D-10	Human Influences	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have influence on the existing flow regime, such that significant channel adjustments occur.

Notes: No debris blockages

Gerle Creek Below Loon Lake Dam Upper Reach (Site LLD-G1)

Survey Date: 7/18/2019 Survey Crew: Joey Verdian, Ryley Tauzer, Ian Pryor

Depositional Features ("x" indicates assigned category)

B-1	Point bars
B-2	Point bars with few mid channel bars
B-3	Many mid channel bars
B-4	Side bars
B-5	Diagonal bars
B-6	Main branching with many mid channel bars and islands
B-7	Mixed side bar and mid channel bars exceeding 2-3X width
B-8	Delta bars

Description: Bars were not observed at the site (low width-depth ratio), morphology dominated by wood.

Meander Pattern ("x" indicates assigned category)

	M-1	Regular meander
	M-2	Tortuous meander
Х	M-3	Irregular meander
	M-4	Truncated meander
	M-5	Unconfined meander scrolls
	M-6	Confined meander scrolls
	M-7	Distorted meander loops
	M-8	Irregular with oxbows

Description: Meander structure is largely a product of spatial distribution of LWD in conjunction with highly erodible banks where bedrock is absent.

	STRE	AM CHANNE	L DEBRIS/BLOCKAGES ("x" indicates assigned category)
	Description/Exten t		Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime
	D-1	None	Minor amounts of small, floatable material
	D-2	Infrequent	Debris consists of small, easily moved, floatable material, i.e. leaves, needles, small limbs, twigs, etc
	D-3	Moderate	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.
х	D-4	Numerous	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.
	D-5	Extensive	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.
	D-6	Dominatin g	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross- section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull.
	D-7	Beaver Dams - Few	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.
	D-8	Beaver Dams - Frequent	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced, and channel dimensions or conditions are influenced.
	D-9	Beaver Dams - Abandone d	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.
	D-10	Human Influences	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have influence on the existing flow regime, such that significant channel adjustments occur.

Notes: This study reach is located in a previously dense grove that has transitioned to a meadow. 95% of trees around the active channel are dead, downed, and decaying. LWD dams raising water surface elevation and creating deep scour pools. LWD dominates channel morphology.

Gerle Creek Below Loon Lake Dam Middle Reach (Site LLD-G2)

Survey Date: 8/7/2019 Survey Crew: Ryley Tauzer, Joey Verdian, Chris Lyle

Depositional Features ("x" indicates assigned category)

	B-1	Point bars
	B-2	Point bars with few mid channel bars
	B-3	Many mid channel bars
х	B-4	Side bars
	B-5	Diagonal bars
	B-6	Main branching with many mid channel bars and islands
	B-7	Mixed side bar and mid channel bars exceeding 2-3X width
	B-8	Delta bars

Description: Sparse alternate bars with dense vegetation. One mid channel bar stabilized by a stump.

Meander Pattern ("x" indicates assigned category)

Х	M-1	Regular meander
	M-2	Tortuous meander
	M-3	Irregular meander
	M-4	Truncated meander
	M-5	Unconfined meander scrolls
	M-6	Confined meander scrolls
	M-7	Distorted meander loops
	M-8	Irregular with oxbows

Description: Relatively straight channel with some small-amplitude bends.

	STRE	AM CHANNE	EL DEBRIS/BLOCKAGES ("x" indicates assigned category)
	Description/Exten t		Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime
	D-1	None	Minor amounts of small, floatable material
	D-2	Infrequent	Debris consists of small, easily moved, floatable material, i.e. leaves, needles, small limbs, twigs, etc
х	D-3	Moderate	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.
	D-4	Numerous	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.
	D-5	Extensive	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.
	D-6	Dominatin g	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross- section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull.
	D-7	Beaver Dams - Few	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.
	D-8	Beaver Dams - Frequent	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced, and channel dimensions or conditions are influenced.
	D-9	Beaver Dams - Abandone d	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.
	D-10	Human Influences	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have influence on the existing flow regime, such that significant channel adjustments occur.

Notes: none

South Fork Silver Creek Below Ice House Reservoir Upper Reach (Site IHD-G1)

Survey Date: 8/9/2019 Survey Crew: Ryley Tauzer, Joey Verdian, Chris Lyle

Depositional Features ("x" indicates assigned category)

	B-1	Point bars
х	B-2	Point bars with few mid channel bars
	B-3	Many mid channel bars
	B-4	Side bars
	B-5	Diagonal bars
	B-6	Main branching with many mid channel bars and islands
	B-7	Mixed side bar and mid channel bars exceeding 2-3X width
	B-8	Delta bars

Description: Three side bars, four mid channel bars, floodplain deposits with evidence of recent inundation, i.e., racked vegetation in tree branches.

Х	M-1	Regular meander
	M-2	Tortuous meander
	M-3	Irregular meander
	M-4	Truncated meander
	M-5	Unconfined meander scrolls
	M-6	Confined meander scrolls
	M-7	Distorted meander loops
	M-8	Irregular with oxbows

Meander Pattern ("x" indicates assigned category)

Description: Low sinuosity, meander structure appears stable due to buried boulders on channel banks

	STREAM CHANNE		L DEBRIS/BLOCKAGES ("x" indicates assigned category)
	Description/Exten t		Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime
	D-1	None	Minor amounts of small, floatable material
	D-2	Infrequent	Debris consists of small, easily moved, floatable material, i.e. leaves, needles, small limbs, twigs, etc
	D-3	Moderate	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.
x	D-4	Numerous	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.
	D-5	Extensive	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.
	D-6	Dominatin g	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross- section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull.
	D-7	Beaver Dams - Few	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.
	D-8	Beaver Dams - Frequent	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced, and channel dimensions or conditions are influenced.
	D-9	Beaver Dams - Abandone d	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.
	D-10	Human Influences	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have influence on the existing flow regime, such that significant channel adjustments occur.

Notes: none

South Fork Silver Creek Below Ice House Reservoir Lower Reach (Site IHD-G2)

Survey Date: 8/9/2019 Survey Crew: Ryley Tauzer, Joey Verdian, Chris Lyle

Depositional Features ("x" indicates assigned category)

	B-1	Point bars
х	B-2	Point bars with few mid channel bars
	B-3	Many mid channel bars
	B-4	Side bars
	B-5	Diagonal bars
	B-6	Main branching with many mid channel bars and islands
	B-7	Mixed side bar and mid channel bars exceeding 2-3X width
	B-8	Delta bars

Description: Point bars comprised of gravels and cobbles and mid channel bars are well vegetated

Meander Pattern ("x" indicates assigned category)

Х	M-1	Regular meander
	M-2	Tortuous meander
	M-3	Irregular meander
Х	M-4	Truncated meander
	M-5	Unconfined meander scrolls
	M-6	Confined meander scrolls
	M-7	Distorted meander loops
	M-8	Irregular with oxbows

Description: Downstream part of reach exhibits truncated meander due to large bedrock outcrop that comprises ~ 200' of left bank on outside bend.

	STREAM CHANNE		L DEBRIS/BLOCKAGES ("x" indicates assigned category)
	Description/Exten t		Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime
Х	D-1	None	Minor amounts of small, floatable material
	D-2	Infrequent	Debris consists of small, easily moved, floatable material, i.e. leaves, needles, small limbs, twigs, etc
	D-3	Moderate	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.
	D-4	Numerous	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.
	D-5	Extensive	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.
	D-6	Dominatin g	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross- section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull.
	D-7	Beaver Dams - Few	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.
	D-8	Beaver Dams - Frequent	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced, and channel dimensions or conditions are influenced.
	D-9	Beaver Dams - Abandone d	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.
	D-10	Human Influences	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have influence on the existing flow regime, such that significant channel adjustments occur.

Notes: none

Silver Creek Below Camino Dam (Site CD-G1)

Survey Date: 8/6/2019 Survey Crew: Ryley Tauzer, Joey Verdian, Chris Lyle

Depositional Features ("x" indicates assigned category)

	B-1	Point bars
	B-2	Point bars with few mid channel bars
	B-3	Many mid channel bars
х	B-4	Side bars
	B-5	Diagonal bars
	B-6	Main branching with many mid channel bars and islands
	B-7	Mixed side bar and mid channel bars exceeding 2-3X width
	B-8	Delta bars

Description: Very few bars present, reach is predominately bedrock.

Meander Pattern ("x" indicates assigned category)

	M-1	Regular meander
	M-2	Tortuous meander
	M-3	Irregular meander
х	M-4	Truncated meander
	M-5	Unconfined meander scrolls
	M-6	Confined meander scrolls
	M-7	Distorted meander loops
	M-8	Irregular with oxbows

Description: Meander structure is limited by bedrock banks.

	STRE	AM CHANNE	L DEBRIS/BLOCKAGES ("x" indicates assigned category)
	Description/Exten t		Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime
	D-1	None	Minor amounts of small, floatable material
х	D-2	Infrequent	Debris consists of small, easily moved, floatable material, i.e. leaves, needles, small limbs, twigs, etc
	D-3	Moderate	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.
	D-4	Numerous	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.
	D-5	Extensive	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.
	D-6	Dominatin g	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross- section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull.
	D-7	Beaver Dams - Few	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.
	D-8	Beaver Dams - Frequent	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced, and channel dimensions or conditions are influenced.
	D-9	Beaver Dams - Abandone d	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.
	D-10	Human Influences	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have influence on the existing flow regime, such that significant channel adjustments occur.

Notes: Very little/infrequent debris in channel and no channel spanning LWD. Predominately small, transportable, and easily floatable organic materials.

South Fork American River Below Slab Creek Dam (Site SCD-G1)

Survey Date: 7/15/2019 Survey Crew: Joey Verdian, Ryley Tauzer, Ian Pryor

Depositional Features ("x" indicates assigned category)

	B-1	Point bars
	B-2	Point bars with few mid channel bars
	B-3	Many mid channel bars
х	B-4	Side bars
	B-5	Diagonal bars
	B-6	Main branching with many mid channel bars and islands
	B-7	Mixed side bar and mid channel bars exceeding 2-3X width
	B-8	Delta bars

Description: 1 alternate bar on upstream end of site composed of boulders.

Meander Pattern ("x" indicates assigned category)

х	M-1	Regular meander
	M-2	Tortuous meander
	M-3	Irregular meander
х	M-4	Truncated meander
	M-5	Unconfined meander scrolls
	M-6	Confined meander scrolls
	M-7	Distorted meander loops
	M-8	Irregular with oxbows

Description: The channel reach is straight, with planform confined by the valley with extensive bedrock and large boulders stabilizing the channel and limiting sinuosity.

	Deser		EL DEBRIS/BLOCKAGES ("x" indicates assigned category)				
	Description/Exten t		Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime				
	D-1	None	Minor amounts of small, floatable material				
X	D-2	Infrequent	Debris consists of small, easily moved, floatable material, i.e. leaves, needles, small limbs, twigs, etc				
	D-3	Moderate	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.				
	D-4	Numerous	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that ma occupy 10 to 30% of the active cross-sectional area.				
	D-5	Extensive	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of th active channel.				
	D-6	Dominatin g	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross- section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are a less than bankfull.				
	D-7	Beaver Dams - Few	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.				
	D-8	Beaver Dams - Frequent	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced, and channel dimensions or conditions are influenced.				
	D-9	Beaver Dams - Abandone d	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsior aggradations and degradation.				
	D-10	Human Influences	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have influence on the existing flow regime, such that significant channel adjustments occur.				

Notes: Very small quantities of debris in channel, limited to easily transportable organic materials.

APPENDIX D11

Bank Erosion and Vegetation

This Page Intentionally Left Blank

Rubicon River Below Rubicon Dam (Site RRD-G1)

Survey Date: 9/10/2019 Survey Crew: Karley Rodriguez, Joey Verdian, Christian Braudrick, Chris Lyle

Table not completed if ba	anks are coi	nposed of bedro	ock or boulders	
1	Bank a	Bank b	Bank c	Bank d
Bank height (ft)	3	2	8	5
Bankfull height (ft)	3	2	3	3
Root depth (ft)	>3	>2	4	4
Root Density (%)	100	60	70	25
Bank angle (degrees)	90	15	70-90	80
Surface protection (%)	95	80	40	15
% of total study reach	40	45	10	5

Notes: none

Stratification of unstable layers in banks (below bankfull): Bottom of bank

Bank material: Cobble and sand

Sediment supply: low (sand supply may be high)

Vertical streambed stability: Stable

Bank and channel bed condition notes: Vegetation is continuous along both banks. Some cobbles are embedded in the banks. The bed is sandy gravel. Mid-channel bars are vegetated and sandy.

Riparian Vegetation							
Vegetation type	Density	Density (indicate all that apply)					
	Low	Moderate	High	Notes			
Bare	1						
Forbs only	2a						
Annual grass w/ forbs	3a						
Perennial grass		4b					
Rhizomatous grasses	5a						
Riparian shrubs		6b					
High brush				ALIN, Cornus, Spirea			
Combination grass/brush		8b		Perennial grasses under			
				Alin, Cornus			
Deciduous overstory	9a			Not present			
Deciduous w/ brush/grass	10b			Not present			
understory							
Perennial overstory			11c	High cover of CADE,			
				PICO, PILA			
Wetland vegetation							
community							

Notes: Vegetated mid-channel bars w/ lodgepole and cedar, lots of perennial vegetation. Conifers encroaching on channel. The overstory is dominated by conifers with deciduous shrubs dominating the understory.

Gerle Creek Below Loon Lake Dam Upper Reach (Site LLD-G1)

Survey Date: 7/18/2019 Survey Crew: Joey Verdian, Ryley Tauzer, Ian Pryor

Bank Erosion Potential									
Table not completed if ba	anks are cor	nposed of bedro	ock or boulders						
	Bank a	Bank a 🛛 Bank b 👘 Bank c 👘 Bank d							
Bank height (ft)	3	3	3	-					
Bankfull height (ft)	10	10	10	-					
Root depth (ft)	NA	3	1-5	-					
Root Density (%)	NA	90	40	-					
Bank angle (degrees)	30-90	90	90	-					
Surface protection	70	20	25	-					
(%)									
% of total study reach	5	20	75	-					

Notes: none

Stratification of unstable layers in banks (below bankfull):

Bank material: Sand

Sediment supply: Low

Vertical streambed stability: Degrading

Bank and channel bed condition notes: Bank a = bedrock, Bank b = root mats, Bank c = meadow

Riparian Vegetation				
Vegetation type	Densit	ty (indicate all	()	
	Low	Moderate	High	Notes
Bare				
Forbs only				
Annual grass w/ forbs		3b		Very low variety and relatively low density
Perennial grasses		4b		
Riparian shrubs				
High brush				
Combination grass/brush				
Deciduous overstory				
Deciduous w/ brush/grass				
understory				
Perennial overstory				
Wetland vegetation community				

Notes: Saturated wetland meadows, relatively low variety of vegetation, some grasses encroaching on channel. Some aquatic grasses present on channel bottom.

Gerle Creek Below Loon Lake Dam Middle Reach (Site LLD-G2)

Survey Date: 8/7/2019 Survey Crew: Ryley Tauzer, Joey Verdian, Chris Lyle

Bank Erosion Potential				
Table not completed if ba	anks are cor	nposed of bedro	ck or boulders	
	Bank a	Bank b	Bank c	Bank d
Bank height (ft)	1-2	4	-	-
Bankfull height (ft)	0.5-1	3.5	-	-
Root depth (ft)	1-2	1-2	-	-
Root Density (%)	35-40	35-40	-	-
Bank angle (degrees)	45-85	60-80	-	-
Surface protection	90	90	-	-
(%)				
% of total study reach	40	60	-	-

Notes: none

Stratification of unstable layers in banks (below bankfull):

Bank material: Cobble and gravel with moderate sand

Sediment supply: Low

Vertical streambed stability: Stable

Bank and channel bed condition notes: Bank a = soil/sand floodplain in downstream end of reach. Bank b = cobble dominant banks at upstream end of reach

Riparian Vegetation Vegetation type	Density (indicate all that apply)				
vegetation type	Low	Moderate	High	/ Notes	
Bare					
Forbs only					
Annual grass w/ forbs					
Perennial grass					
Rhizomatous grasses					
Riparian shrubs			a,b		
High brush					
Combination grass/brush					
Deciduous overstory					
Deciduous w/ brush/grass					
understory					
Perennial overstory			a,b		
Wetland vegetation community					

South Fork Silver Creek Below Ice House Reservoir Upper Reach (Site IHD-G1)

Survey Date:8/8/2019	Survey Crew: Joey Verdian, Ryley Tauzer, Chris Lyle
----------------------	---

Bank Erosion Potential				
Table not completed if ba	anks are cor	nposed of bedro	ck or boulders	
	Bank a	Bank b	Bank c	Bank d
Bank height (ft)	3.5	2.5	-	-
Bankfull height (ft)	3.5	2.5	-	-
Root depth (ft)	2-3	3-5	-	-
Root Density (%)	35-45	20-30	-	-
Bank angle (degrees)	80	80	-	-
Surface protection	30	55	-	-
(%)				
% of total study reach	65	35	-	-

Notes: none

Stratification of unstable layers in banks (below bankfull): Middle of bank

Bank material: Sand

Sediment supply: Moderate (sand supply is high). Evidence of gravel transport.

Vertical streambed stability: Aggrading

Bank and channel bed condition notes: Bank a = sandy banks w/ dense roots and veg. Bank b= boulders buried in sand

Densit	Density (indicate all that apply)			
Low	Moderate	High	Notes	
1				
	2b			
	3b			
	4b			
	5b			
6a				
	7b			
		8c		
		9c		
	10b			
	Low 1	Low Moderate 1 2b 3b 3b 4b 5b 6a 7b 1 1	Low Moderate High 1 2b 3b 2b 3b 4b 5b 5b 6a 7b 8c 9c	

South Fork Silver Creek Below Ice House Reservoir Lower Reach (Site IHD-G2)

Survey Date: 8/9/2019 Survey Crew: Chris Lyle, Ryley Tauzer, Joey Verdian

Bank Erosion Potential						
Table not completed if ba	anks are cor	mposed of bedro	ck or boulders			
Bank a Bank b Bank c Bank d						
Bank height (ft)	-	-	-	-		
Bankfull height (ft)	-	-	-	-		
Root depth (ft)	-	-	-	-		
Root Density (%)	-	-	-	-		
Bank angle (degrees)	-	-	-	-		
Surface protection	-	-	-	-		
(%)						
% of total study reach	-	-	-	-		

Notes: none

Stratification of unstable layers in banks (below bankfull):

Bank material: Bedrock, cobble, sand

Sediment supply: Low

Vertical streambed stability: Stable

Bank and channel bed condition notes:

Density (indicate all that apply)			
Low	Moderate	High	Notes
1			
	2b		
4a			
	5b		
6a			
	Low 1 4a	LowModerate12b4a4a5b	LowModerateHigh12b4a

Silver Creek Below Camino Dam (Site CD-G1)

Survey Date: Survey Crew: Joey Verdian, Chris Lyle, Ryley Tauzer

Bank Erosion Potential				
Banks are comprised of	bedrock and	l boulders, there	fore the table was r	not completed
	Bank a	Bank b	Bank c	Bank d
Bank height (ft)	-	-	-	-
Bankfull height (ft)	-	-	-	-
Root depth (ft)	-	-	-	-
Root Density (%)	-	-	-	-
Bank angle (degrees)	-	-	-	-
Surface protection	-	-	-	-
(%)				
% of total study reach	-	-	-	-

Notes: none

Stratification of unstable layers in banks (below bankfull): n/a

Bank material: Bedrock

Sediment supply: Low

Vertical streambed stability: Stable

Bank and channel bed condition notes:

Riparian Vegetation				
Vegetation type	Densit	y (indicate all	that apply)
	Low	Moderate	High	Notes
Bare		1		
Forbs only				
Annual grass w/ forbs	3a			
Perennial grass				
Rhizomatous grasses				
Riparian shrubs				
High brush				
Combination grass/brush				
Deciduous overstory				
Deciduous w/ brush/grass	10a			
understory				
Perennial overstory				
Wetland vegetation community				

South Fork American River Below Slab Creek Dam (Site SCD-G1)

Survey Date: 7/15/2019 Survey Crew: Ryley Tauzer, Ian Pryor, Joey Verdian

Bank Erosion Potential				
Banks are composed of	bedrock or k	boulders, therefo	re table not comple	ted.
	Bank a	Bank b	Bank c	Bank d
Bank height (ft)	-	-	-	-
Bankfull height (ft)	-	-	-	-
Root depth (ft)	-	-	-	-
Root Density (%)	-	-	-	-
Bank angle (degrees)	-	-	-	-
Surface protection (%)	-	-	-	-
% of total study reach	-	-	-	-

Notes: none

Stratification of unstable layers in banks (below bankfull):

Bank material: Bedrock

Sediment supply: Low

Vertical streambed stability: Stable

Bank and channel bed condition notes:

Riparian Vegetation				
Vegetation type	Densit	y (indicate all	that apply)
	Low	Moderate	High	Notes
Bare				
Forbs only				
Annual grass w/ forbs				
Rhizomatous grasses	5a			
Perennial grass				
Low brush	6a			
High brush				
Combination grass/brush				
Deciduous overstory				
Deciduous w/ brush/grass	10a			
understory				
Perennial overstory				
Wetland vegetation community				

This Page Intentionally Left Blank

2019 Annual Monitoring Report June 2020

APPENDIX D12

Channel Stability (Pfankuch)

This Page Intentionally Left Blank

Survey I	Date:	9/10/2019 Sur	vey Crew: Karley Rodriguez, Joey Verdian, C Christian Braudrick	Chris I	_yle,
		Category	"x" indicates the assigned value		
			Bank slope gradient <30%	2	
	4	Landform along	Bank slope gradient 30-40%	4	
	1	Landform slope	Bank slope gradient 40-60%	6	
			Bank slope gradient 60+%	8	х
			No evidence of past or future mass wasting	3	х
			Infrequent. Most likely healed over. Low future potential	6	
	2	Mass wasting	Frequent or large, causing sediment nearly year long	9	
			Frequent or large causing sediment nearly	40	
			year long or imminent danger of same	12	
Upper Banks			Essentially absent from immediate channel area	2	
		Dahaisian	Present, but mostly small twigs and limbs	4	х
	3	3 Debris jam potential	Moderate to heavy amounts, mostly larger sizes	6	
			Moderate to heavy amounts, predominately lager sizes	8	
	4	4 Vegetative bank protection	90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	3	х
			70-90% density. Fewer species or less vigor suggest less dense or deep root mass	6	
			<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass	9	
			<50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass	12	
			Ample for present plus some increases. Peak flows contained. W/D ration <7	1	
			Adequate. Bank overflows rare. W/D ratio 8- 15	2	х
	5	Channel capacity	Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	3	
			Inadequate. Overbank flows common. W/D ratio >25	4	
Lower			65%+ with large angular boulders. 12"+ common.	2	
Banks	6	Bank rock content	40-65%. Mostly small boulders to cobbles 6- 12"	4	
			20-40%. With most in the 3-6" diameter class	6	
			20% rock fragments of gravel sizes, 1-3" or less	8	x
	7	Obstructions to	Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable Bed	2	x
	7 flow		Some present causing erosive cross currents and minor pool filling. Obstructions newer and less firm	4	

Rubicon River Below Rubicon Dam (Site RRD-G1)

				1	
			Moderately frequent, unstable obstructions move with high flows causing bank cutting	6	
			and pool filling Sediment traps full, channel migration occurring		
			Little or none. Infrequent raw banks less than 6"	4	x
			Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6	
	8	Cutting	Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12	
			Almost continuous cuts, some over 24" high. Failure of overhangs frequent	16	
			Little or no enlargement of channel or point bars	4	x
	9	Deposition	Some new bar increase, mostly from coarse gravel	8	
		Deposition	Moderate deposition of new gravel and course sand on old and some new bars	12	
			Extensive deposits of predominately fine particles. Accelerated bar development	16	
		0 Rock angularity	Sharp edges and corners. Plane surfaces rough. Rounded corners and edges, surfaces	1	
	10		Smooth, flat Corners and edges well rounded in two	2	
			dimensions Well rounded in all dimensions, surfaces	3	
			Surfaces dull, dark, or stained. Generally not	4	х
		1 Brightness	bright Mostly dull, but may have <35% bright	1	
	11		surfaces	2	х
			Mixture dull and bright, ie 35-65% mixture range	3	
Bottom			Predominately bright, 65% exposed or scoured surfaces	4	
			Assorted sizes tightly packed or overlapping	2	v
	12	Consolidation of particles	Moderately packed with some overlapping Mostly loose assortment with no apparent overlap	6	X
		P	No packing evident. Loose assortment easily moved	8	
			No size change evident. Stable mater. 80- 100%	4	
	13	Bottom size	Distribution shift light. Stable material 50- 80%	8	x
	10	distribution	Moderate changes in sizes. Stable materials 20-50%	12	
			Marked distribution change. Stable materials 0-20%	16	
	14	Scouring and deposition	<5% of bottom affected by scour or deposition	6	

		5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools	12	
		30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools	18	x
		More than 50% of the bottom in a state of flux or change nearly year long	24	
	15 Aquatic vegetation	Abundant growth moss-like, dark green perennial. In swift water too.	1	
15		Common. Algae forms in low velocity and pool areas. Moss here too	2	
10		Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick	3	
		Perennial types scare or absent. Yellow- green, short term bloom may be present	4	x

Score guidelines: <38 Excellent, 39-76 Good, 77-114 Fair, >114 Poor Score: 76 (Good)

Gerle Creek Below Loon Lake Dam Upper Reach (Site LLD-G1)

		Survey Date: 7/8/20	19 Survey Crew: Joey Verdian, Ryley Tauzer, Ian	Pryo	or
		Category	"x" indicates the assigned value	-	
			Bank slope gradient <30%	2	
	1	Landform slope	Bank slope gradient 30-40%	4	
	1	Lanuloini Siope	Bank slope gradient 40-60%	6	х
			Bank slope gradient 60+%	8	
			No evidence of past or future mass wasting	3	
		Massivesting	Infrequent. Most likely healed over. Low future potential	6	х
	2	Mass wasting	Frequent or large, causing sediment nearly year long	9	
			Frequent or large causing sediment nearly year long or imminent danger of same	12	
Unnor			Essentially absent from immediate channel area	2	
Upper Banks		Debrie iere	Present, but mostly small twigs and limbs	4	
Danks	3	Debris jam	Moderate to heavy amounts, mostly larger sizes	6	
		potential	Moderate to heavy amounts, predominately lager sizes	8	x
			90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	3	
		Vegetative bank protection	Vegetative bank 70-90% density. Fewer species or less vigor sugges		
	4		<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass		x
			<50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass	12	
			Ample for present plus some increases. Peak flows contained. W/D ration <7	1	
	_		Adequate. Bank overflows rare. W/D ratio 8-15	2	
	5	Channel capacity	Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	3	
			Inadequate. Overbank flows common. W/D ratio >25	4	х
			65%+ with large angular boulders. 12"+ common.	2	
			40-65%. Mostly small boulders to cobbles 6-12"	4	
	6	Bank rock content	20-40%. With most in the 3-6" diameter class	6	
			20% rock fragments of gravel sizes, 1-3" or less	8	х
Lower			Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable Bed	2	
Banks		Obstructions to	Some present causing erosive cross currents and minor pool filling. Obstructions newer and less firm	4	
	7	flow	Moderately frequent, unstable obstructions move with		
		now	high flows causing bank cutting and pool filling	6	x
			Sediment traps full, channel migration occurring		
			Little or none. Infrequent raw banks less than 6"	4	
	8	Cutting	Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6	x
			Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12	

			Almost continuous cuts, some over 24" high. Failure of		
			overhangs frequent	16	
			Little or no enlargement of channel or point bars	4	х
			Some new bar increase, mostly from coarse gravel	8	
			Moderate deposition of new gravel and course sand	40	
			on old and some new bars	12	
			Extensive deposits of predominately fine particles.	10	
			Accelerated bar development	16	
	10	Rock angularity	Sharp edges and corners. Plane surfaces rough.	1	
			Rounded corners and edges, surfaces smooth, flat	2	
			Corners and edges well rounded in two dimensions	3	
			Well rounded in all dimensions, surfaces smooth	4	Х
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	
		U U	Mostly dull, but may have <35% bright surfaces	2	
			Mixture dull and bright, ie 35-65% mixture range	3	
			Predominately bright, 65% exposed or scoured	4	х
			surfaces		
	12	Consolidation of	Assorted sizes tightly packed or overlapping	2	
		particles	Moderately packed with some overlapping	4	
			Mostly loose assortment with no apparent overlap	6	х
-			No packing evident. Loose assortment easily moved	8	
	13	Bottom size	No size change evident. Stable mater. 80-100%	4	х
		distribution	Distribution shift light. Stable material 50-80%	8	
			Moderate changes in sizes. Stable materials 20-50%	12	
Bottom			Marked distribution change. Stable materials 0-20%	16	
Bottom	14	Scouring and	<5% of bottom affected by scour or deposition	6	
		deposition	5-30% affected. Scour at constrictions and where	12	
			grades steepen. Some deposition in		
			pools		
			30-50% affected. Deposits and scour at obstructions,	18	
			constrictions, and bends. Some		
			filling of pools		
			More than 50% of the bottom in a state of flux or	24	х
			change nearly year long		
	15	Aquatic	Abundant growth moss-like, dark green perennial. In	1	
		vegetation	swift water too.		
			Common. Algae forms in low velocity and pool areas.	2	х
			Moss here too		\mid
			Present but spotty, mostly in backwater. Seasonal	3	
			algae growth makes rocks slick		
1					1
			Perennial types scare or absent. Yellow-green, short term bloom may be present	4	

Score guidelines: <38 Excellent, 39-76 Good, 77-114 Fair, >114 Poor Score: 101 (Fair)

Gerle Creek Below Loon Lake Dam Middle Reach (Site LLD-G2)

	Survey Dat	te: 8/7/2019 Survey Cre	w: Ryley Tauzer, Joey Verdian, Chris Lyle		
		Category	"x" indicates the assigned value	•	
			Bank slope gradient <30%	2	
	1	Landform slope	Bank slope gradient 30-40%	4	х
	1	Landionn slope	Bank slope gradient 40-60%	6	
			Bank slope gradient 60+%	8	
			No evidence of past or future mass wasting	3	
			Infrequent. Most likely healed over. Low	6	v
			future potential	0	х
	2	Mass wasting	Frequent or large, causing sediment nearly year long	9	
			Frequent or large causing sediment nearly year long or imminent danger of same	12	
			Essentially absent from immediate channel area	2	
			Present, but mostly small twigs and limbs	4	х
Upper	3	Debris jam potential	Moderate to heavy amounts, mostly larger		~
Banks	Ũ	Dobilo jam potolitiai	sizes	6	
			Moderate to heavy amounts, predominately		
			lager sizes	8	
			90%+ plant density. Vigor and variety		
			suggest a deep, dense soil binding root	3	х
		Vegetative bank protection	mass	-	
			70-90% density. Fewer species or less	(
			vigor suggest less dense or deep root mass	6	
	4		<50-70% density. Lower vigor and fewer		
			species from a shallow, discontinuous	9	
			root mass		
			<50% density, fewer species and less vigor		
			indicate poor, discontinuous and shallow	12	
			root mass		
		Channel capacity	Ample for present plus some increases. Peak flows contained. W/D ration <7	1	
	_		Adequate. Bank overflows rare. W/D ratio 8-15	2	
	5		Barely contains present peaks. Occasional	6	
			overbank floods. W/D ratio 15 to 25	3	х
			Inadequate. Overbank flows common. W/D ratio >25	4	
			65%+ with large angular boulders. 12"+ common.	2	х
Lower Banks	6	Double readly constant	40-65%. Mostly small boulders to cobbles 6-12"	4	
	6	Bank rock content	20-40%. With most in the 3-6" diameter class	6	
			20% rock fragments of gravel sizes, 1-3" or less	8	
	-7		Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable Bed	2	
	7	Obstructions to flow	Some present causing erosive cross currents and minor pool filling. Obstructions newer and less firm	4	x

			Moderately frequent, unstable obstructions move with high flows causing bank	6	
			cutting and pool filling Sediment traps full, channel migration occurring		
			Little or none. Infrequent raw banks less than 6"	4	x
	8	Cutting	Some, intermittently at outcurves and constrictions. Raw banks may be up to 12" Significant. Cuts 12-24" high. Root mat	6	
			overhangs and sloughing evident Almost continuous cuts, some over 24"	12	
			high. Failure of overhangs frequent	16	
			Little or no enlargement of channel or point bars	4	х
	9	Deposition	Some new bar increase, mostly from coarse gravel	8	
			Moderate deposition of new gravel and course sand on old and some new bars	12	
			Extensive deposits of predominately fine particles. Accelerated bar development	16	
			Sharp edges and corners. Plane surfaces rough.	1	
	10	Rock angularity	Rounded corners and edges, surfaces smooth, flat	2	
	10		Corners and edges well rounded in two dimensions	3	х
			Well rounded in all dimensions, surfaces smooth	4	
		Brightness	Surfaces dull, dark, or stained. Generally not bright	1	х
			Mostly dull, but may have <35% bright surfaces	2	
	11		Mixture dull and bright, ie 35-65% mixture range	3	
			Predominately bright, 65% exposed or scoured surfaces	4	
Dettern			Assorted sizes tightly packed or overlapping	2	
Bottom	12	Consolidation of particles	Moderately packed with some overlapping Mostly loose assortment with no apparent	4 6	X
			overlap No packing evident. Loose assortment easily moved	8	
			No size change evident. Stable mater. 80- 100%	4	x
			Distribution shift light. Stable material 50- 80%	8	
	13	Bottom size distribution	Moderate changes in sizes. Stable materials 20-50%	12	
			Marked distribution change. Stable materials 0-20%	16	
			<5% of bottom affected by scour or deposition	6	x
	14	Scouring and deposition	5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools	12	

		30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools	18	
		More than 50% of the bottom in a state of flux or change nearly year long	24	
	Aquatic vegetation	Abundant growth moss-like, dark green perennial. In swift water too.	1	
15		Common. Algae forms in low velocity and pool areas. Moss here too	2	
15		Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick	3	
		Perennial types scare or absent. Yellow- green, short term bloom may be present	4	x

Score guidelines: <38 Excellent, 39-76 Good, 77-114 Fair, >114 Poor Score: 56 (Good)

South Fork Silver Creek Below Ice House Reservoir Upper Reach (Site IHD-G1)

S	urvey	Date: 8/8/2019	Survey Crew: Ryley Tauzer, Chris Lyle, Joey Verdian		
		Category	"x" indicates the assigned value		
	1	Landform slope	Bank slope gradient <30%	2	х
			Bank slope gradient 30-40%	4	
			Bank slope gradient 40-60%	6	
			Bank slope gradient 60+%	8	
	2	Mass wasting	No evidence of past or future mass wasting	3	
			Infrequent. Most likely healed over. Low future potential	6	х
			Frequent or large, causing sediment nearly year long	9	
			Frequent or large causing sediment nearly year long	12	
			or imminent danger of same		
Upper	3	Debris jam potential	Essentially absent from immediate channel area	2	
			Present, but mostly small twigs and limbs	4	
Banks			Moderate to heavy amounts, mostly larger sizes	6	Х
			Moderate to heavy amounts, predominately lager	8	
			sizes		
	4	Vegetative bank	90%+ plant density. Vigor and variety suggest a	3	Х
		protection	deep, dense soil binding root mass		
			70-90% density. Fewer species or less vigor suggest	6	
			less dense or deep root mass		
			<50-70% density. Lower vigor and fewer species from	9	
			a shallow, discontinuous		
			root mass		
			<50% density, fewer species and less vigor indicate	12	
			poor, discontinuous and shallow root mass		
	5	Channel capacity	Ample for present plus some increases. Peak flows contained. W/D ration <7	1	
			Adequate. Bank overflows rare. W/D ratio 8-15	2	
			Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	3	
			Inadequate. Overbank flows common. W/D ratio >25	4	
	6	Bank rock content	65%+ with large angular boulders. 12"+ common.	2	х
			40-65%. Mostly small boulders to cobbles 6-12"	4	
			20-40%. With most in the 3-6" diameter class	6	
			20% rock fragments of gravel sizes, 1-3" or less	8	х
Lower	7	Obstructions to flow	Rocks and logs firmly embedded. Flow pattern w/out	2	
Banks			cutting or deposition. Stable Bed	_	
			Some present causing erosive cross currents and	4	х
			minor pool filling. Obstructions newer and less firm		
			Moderately frequent, unstable obstructions move with	6	
			high flows causing bank cutting and pool filling		
			Sediment traps full, channel migration occurring		
	8	Cutting	Little or none. Infrequent raw banks less than 6"	4	х
		Ŭ	Some, intermittently at outcurves and constrictions.	6	
			Raw banks may be up to 12"		
			Significant. Cuts 12-24" high. Root mat overhangs	12	
			and sloughing evident		

			Almost continuous cuts, some over 24" high. Failure	16	
			of overhangs frequent		
	9	Deposition	Little or no enlargement of channel or point bars	4	
	_		Some new bar increase, mostly from coarse gravel	8	
			Moderate deposition of new gravel and course sand	12	х
			on old and some new bars		
			Extensive deposits of predominately fine particles.	16	
			Accelerated bar development		
	10	Rock angularity	Sharp edges and corners. Plane surfaces rough.	1	
		0,1	Rounded corners and edges, surfaces smooth, flat	2	
			Corners and edges well rounded in two dimensions	3	х
			Well rounded in all dimensions, surfaces smooth	4	
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	
		0	Mostly dull, but may have <35% bright surfaces	2	
			Mixture dull and bright, ie 35-65% mixture range	3	х
			Predominately bright, 65% exposed or scoured	4	
			surfaces	-	
	12	Consolidation of	Assorted sizes tightly packed or overlapping	2	
		particles	Moderately packed with some overlapping	4	
		•	Mostly loose assortment with no apparent overlap	6	х
			No packing evident. Loose assortment easily moved	8	
	13	Bottom size	No size change evident. Stable mater. 80-100%	4	
		distribution	Distribution shift light. Stable material 50-80%	8	
			Moderate changes in sizes. Stable materials 20-50%	12	
Bottom			Marked distribution change. Stable materials 0-20%	16	
Bottom	14	Scouring and	<5% of bottom affected by scour or deposition	6	х
		deposition	5-30% affected. Scour at constrictions and where	12	
			grades steepen. Some deposition in		
			pools		
			30-50% affected. Deposits and scour at obstructions,	18	
			constrictions, and bends. Some		
			filling of pools		
			More than 50% of the bottom in a state of flux or	24	х
			change nearly year long		
	15	Aquatic vegetation	Abundant growth moss-like, dark green perennial. In	1	
			swift water too.		
			Common. Algae forms in low velocity and pool areas.	2	
			Moss here too		
			Present but spotty, mostly in backwater. Seasonal	3	
			algae growth makes rocks slick		
			Perennial types scare or absent. Yellow-green, short	4	х
			term bloom may be present		

Score guidelines: <38 Excellent, 39-76 Good, 77-114 Fair, >114 Poor Score: 105 (Fair)

South Fork Silver Creek Below Ice House Reservoir
Lower Reach (Site IHD-G2)

		Survey Date: 8/9/201		<u>l auz</u>	er
		Category	"x" indicates the assigned valu	е	
	1	Landform slope	Bank slope gradient <30%	2	
			Bank slope gradient 30-40%	4	х
			Bank slope gradient 40-60%	6	
			Bank slope gradient 60+%	8	
	2	Mass wasting	No evidence of past or future mass wasting	3	х
			Infrequent. Most likely healed over. Low future	6	
			potential		
			Frequent or large, causing sediment nearly year long	9	
			Frequent or large causing sediment nearly year long	12	
			or imminent danger of same		
	3	Debris jam	Essentially absent from immediate channel area	2	х
Upper Banks		potential	Present, but mostly small twigs and limbs	4	
Danks			Moderate to heavy amounts, mostly larger sizes	6	
			Moderate to heavy amounts, predominately lager	8	
			sizes	-	
	4	Vegetative bank	90%+ plant density. Vigor and variety suggest a deep,	3	
		protection	dense soil binding root mass	_	
			70-90% density. Fewer species or less vigor suggest	6	х
			less dense or deep root mass	_	
			<50-70% density. Lower vigor and fewer species from	9	
			a shallow, discontinuous root mass	_	
			<50% density, fewer species and less vigor indicate	12	
			poor, discontinuous and shallow root mass		
	5	Channel capacity	Ample for present plus some increases. Peak flows	1	х
		, ,	contained. W/D ration <7		
			Adequate. Bank overflows rare. W/D ratio 8-15	2	
			Barely contains present peaks. Occasional overbank	3	
			floods. W/D ratio 15 to 25		
			Inadequate. Overbank flows common. W/D ratio >25	4	
	6	Bank rock content	65%+ with large angular boulders. 12"+ common.	2	
			40-65%. Mostly small boulders to cobbles 6-12"	4	х
			20-40%. With most in the 3-6" diameter class	6	
			20% rock fragments of gravel sizes, 1-3" or less	8	
Lower	7	Obstructions to flow	Rocks and logs firmly embedded. Flow pattern w/out	2	х
Banks			cutting or deposition. Stable Bed		
			Some present causing erosive cross currents and	4	
			minor pool filling. Obstructions newer and less firm		
			Moderately frequent, unstable obstructions move with	6	
			high flows causing bank cutting and pool filling		
			Sediment traps full, channel migration occurring		
	8	Cutting	Little or none. Infrequent raw banks less than 6"	4	х
	_		Some, intermittently at outcurves and constrictions.	6	
			Raw banks may be up to 12"		
			Significant. Cuts 12-24" high. Root mat overhangs and	12	

			Alexant continuous cuto como cuto O4" high Esiluna	40	1
			Almost continuous cuts, some over 24" high. Failure	16	
	9	Deposition	of overhangs frequent Little or no enlargement of channel or point bars	4	x
	9	Deposition	Some new bar increase, mostly from coarse gravel	8	^
			Moderate deposition of new gravel and course sand	0	
			on old and some new bars	12	
			Extensive deposits of predominately fine particles.		
				16	
	10	Dools on gularity	Accelerated bar development	1	1
	10	Rock angularity	Sharp edges and corners. Plane surfaces rough.	1	
			Rounded corners and edges, surfaces smooth, flat	2	
			Corners and edges well rounded in two dimensions	3	х
			Well rounded in all dimensions, surfaces smooth	4	
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	Х
			Mostly dull, but may have <35% bright surfaces	2	
			Mixture dull and bright, ie 35-65% mixture range	3	
			Predominately bright, 65% exposed or scoured	4	
			surfaces		
	12	Consolidation of	Assorted sizes tightly packed or overlapping	2	
		particles	Moderately packed with some overlapping	4	х
			Mostly loose assortment with no apparent overlap	6	
			No packing evident. Loose assortment easily moved	8	
	13	Bottom size	No size change evident. Stable mater. 80-100%	4	х
		distribution	Distribution shift light. Stable material 50-80%	8	
			Moderate changes in sizes. Stable materials 20-50%	12	
Bottom			Marked distribution change. Stable materials 0-20%	16	
Bottom	14	Scouring and	<5% of bottom affected by scour or deposition	6	
		deposition	5-30% affected. Scour at constrictions and where	12	х
			grades steepen. Some deposition in		
			pools		
			30-50% affected. Deposits and scour at obstructions,	18	
			constrictions, and bends. Some		
			filling of pools		
			More than 50% of the bottom in a state of flux or	24	
			change nearly year long		
	15	Aquatic vegetation	Abundant growth moss-like, dark green perennial. In	1	
		, quane regenance.	swift water too.		
			Common. Algae forms in low velocity and pool areas.	2	
			Moss here too	-	
			Present but spotty, mostly in backwater. Seasonal	3	
			algae growth makes rocks slick	Ŭ	
			Perennial types scare or absent. Yellow-green, short	4	x
			term bloom may be present	-	^
	alinaa		and 77 114 Fair & 114 Dear	1	I

Score guidelines: <38 Excellent, 39-76 Good, 77-114 Fair, >114 Poor Score: 52 (Good)

Silver Creek Below Camino Dam (Site CD-G1)

Survey Date: 8/6/2019			Survey Crew: Joey Verdian, Chris Lyle, Ryley Tauzer			
Category		Category	"x" indicates the assigned value			
Upper	1	Landform slope	Bank slope gradient <30%	2		
Banks			Bank slope gradient 30-40%	4	Х	

			Bank slope gradient 40-60%	6	
			Bank slope gradient 60+%	8	
	2	Mass wasting	No evidence of past or future mass wasting	3	
			Infrequent. Most likely healed over. Low future	6	х
			potential	-	
			Frequent or large, causing sediment nearly year long	9	
			Frequent or large causing sediment nearly year long	12	
	_		or imminent danger of same	_	
	3	Debris jam potential	Essentially absent from immediate channel area	2	
			Present, but mostly small twigs and limbs	4	Х
			Moderate to heavy amounts, mostly larger sizes	6	
			Moderate to heavy amounts, predominately lager sizes	8	
	4	Vegetative bank	90%+ plant density. Vigor and variety suggest a deep,	3	
		protection	dense soil binding root mass		
			70-90% density. Fewer species or less vigor suggest	6	
			less dense or deep root mass		
			<50-70% density. Lower vigor and fewer species from	9	
			a shallow, discontinuous root mass		
			<50% density, fewer species and less vigor indicate	12	х
			poor, discontinuous and shallow root mass		
	5	Channel capacity	Ample for present plus some increases. Peak flows contained. W/D ration <7	1	х
			Adequate. Bank overflows rare. W/D ratio 8-15	2	
			Barely contains present peaks. Occasional overbank	3	
			floods. W/D ratio 15 to 25		
			Inadequate. Overbank flows common. W/D ratio >25	4	
	6	Bank rock content	65%+ with large angular boulders. 12"+ common.	2	х
			40-65%. Mostly small boulders to cobbles 6-12"	4	
			20-40%. With most in the 3-6" diameter class	6	
			20% rock fragments of gravel sizes, 1-3" or less	8	
	7	Obstructions to flow	Rocks and logs firmly embedded. Flow pattern w/out	2	Х
			cutting or deposition. Stable Bed		
			Some present causing erosive cross currents and	4	
Lower			minor pool filling. Obstructions newer and less firm		
Banks			Moderately frequent, unstable obstructions move with	6	
Barris			high flows causing bank		
			cutting and pool filling		
			Sediment traps full, channel migration occurring		
	8	Cutting	Little or none. Infrequent raw banks less than 6"	4	Х
			Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6	
			Significant. Cuts 12-24" high. Root mat overhangs and	12	
			sloughing evident		
			Almost continuous cuts, some over 24" high. Failure	16	
			of overhangs frequent	-	
	9	Deposition	Little or no enlargement of channel or point bars	4	х
			Some new bar increase, mostly from coarse gravel	8	
			Moderate deposition of new gravel and course sand	12	
			on old and some new bars		
1		1		1	

			Extensive deposits of predominately fine particles.	16	
	40	Deels en eulerites	Accelerated bar development	4	
	10	Rock angularity	Sharp edges and corners. Plane surfaces rough.	1	
			Rounded corners and edges, surfaces smooth, flat	2	Х
			Corners and edges well rounded in two dimensions	3	
			Well rounded in all dimensions, surfaces smooth	4	
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	
			Mostly dull, but may have <35% bright surfaces	2	
			Mixture dull and bright, ie 35-65% mixture range	3	Х
			Predominately bright, 65% exposed or scoured	4	
			surfaces		
	12	Consolidation of	Assorted sizes tightly packed or overlapping	2	
		particles	Moderately packed with some overlapping	4	Х
			Mostly loose assortment with no apparent overlap	6	
			No packing evident. Loose assortment easily moved	8	
	13	Bottom size	No size change evident. Stable mater. 80-100%	4	Х
		distribution	Distribution shift light. Stable material 50-80%	8	
			Moderate changes in sizes. Stable materials 20-50%	12	
Bottom			Marked distribution change. Stable materials 0-20%	16	
20110111	14	Scouring and	<5% of bottom affected by scour or deposition	6	х
		deposition	5-30% affected. Scour at constrictions and where	12	
			grades steepen. Some deposition in		
			pools		
			30-50% affected. Deposits and scour at obstructions,	18	
			constrictions, and bends. Some		
			filling of pools		
			More than 50% of the bottom in a state of flux or	24	
			change nearly year long		
	15	Aquatic vegetation	Abundant growth moss-like, dark green perennial. In	1	
			swift water too.		
			Common. Algae forms in low velocity and pool areas.	2	
			Moss here too	_	
			Present but spotty, mostly in backwater. Seasonal	3	х
			algae growth makes rocks slick		
			Perennial types scare or absent. Yellow-green, short	4	
	1		term bloom may be present	1	

Score guidelines: <38 Excellent, 39-76 Good, 77-114 Fair, >114 Poor Score: 61 (Good)

South Fork American River Below Slab Creek Dam (Site SCD-G1)

		Survey Date: 7/15/20	19 Survey Crew: Ryley Tauzer, Joey Verdian, Ian	Pryc	or
		Category	"x" indicates the assigned value		
	1	Landform slope	Bank slope gradient <30%	2	
			Bank slope gradient 30-40%	4	
Unnor			Bank slope gradient 40-60%	6	
Upper Banks			Bank slope gradient 60+%	8	х
Daliks	2	Mass wasting	No evidence of past or future mass wasting	3	
			Infrequent. Most likely healed over. Low future potential	6	х
			Frequent or large, causing sediment nearly year long	9	

			Frequent or large causing sediment nearly year long or imminent danger of same	12	
-	3	Debris jam	Essentially absent from immediate channel area	2	х
	•	potential	Present, but mostly small twigs and limbs	4	~
		P = 1 = 1 = 1	Moderate to heavy amounts, mostly larger sizes	6	
			Moderate to heavy amounts, predominately lager sizes	8	
	4	Vegetative bank	90%+ plant density. Vigor and variety suggest a deep,	3	
		protection	dense soil binding root mass		
			70-90% density. Fewer species or less vigor suggest less dense or deep root mass	6	
			<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass	9	
			<50% density, fewer species and less vigor indicate	12	х
			poor, discontinuous and shallow root mass	12	^
	5	Channel capacity	Ample for present plus some increases. Peak flows	1	x
	5	Channel capacity	contained. W/D ration <7	1	^
			Adequate. Bank overflows rare. W/D ratio 8-15	2	
			Barely contains present peaks. Occasional overbank	3	
			floods. W/D ratio 15 to 25	5	
			Inadequate. Overbank flows common. W/D ratio >25	4	
	6	Bank rock content	65%+ with large angular boulders. 12"+ common.	2	х
	0	Dank TOCK CONCERN	40-65%. Mostly small boulders to cobbles 6-12"	4	^
			20-40%. With most in the 3-6" diameter class	6	
			20% rock fragments of gravel sizes, 1-3" or less	8	
	7	Obstructions to		0 2	v
	1	flow	Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable Bed		х
			Some present causing erosive cross currents and minor	4	
			pool filling. Obstructions		
Lower			newer and less firm		
Banks			Moderately frequent, unstable obstructions move with	6	
Burnto			high flows causing bank cutting and pool filling		
			Sediment traps full, channel migration occurring		
	8	Cutting	Little or none. Infrequent raw banks less than 6"	4	Х
			Some, intermittently at outcurves and constrictions.	6	
			Raw banks may be up to 12"	40	
			Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12	
			Almost continuous cuts, some over 24" high. Failure of	16	
			overhangs frequent	10	
	9	Deposition	Little or no enlargement of channel or point bars	4	х
	°.		Some new bar increase, mostly from coarse gravel	8	~
			Moderate deposition of new gravel and course sand on	12	
			old and some new bars		
			Extensive deposits of predominately fine particles.	16	
			Accelerated bar development		
Bottom	10	Rock angularity	Sharp edges and corners. Plane surfaces rough.	1	
			Rounded corners and edges, surfaces smooth, flat	2	х
			Corners and edges well rounded in two dimensions	3	
			Well rounded in all dimensions, surfaces smooth	4	
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	
			Mostly dull, but may have <35% bright surfaces	2	
	1		initiating and have Not 70 blight suitables	~	

			Mixture dull and bright, ie 35-65% mixture range	3	
			Predominately bright, 65% exposed or scoured	4	х
			surfaces		
	12	Consolidation of	Assorted sizes tightly packed or overlapping	2	
		particles	Moderately packed with some overlapping	4	х
			Mostly loose assortment with no apparent overlap	6	
			No packing evident. Loose assortment easily moved	8	
	13	Bottom size	No size change evident. Stable mater. 80-100%	4	х
		distribution	Distribution shift light. Stable material 50-80%	8	
			Moderate changes in sizes. Stable materials 20-50%	12	
			Marked distribution change. Stable materials 0-20%	16	
	14	Scouring and	<5% of bottom affected by scour or deposition	6	х
		deposition	5-30% affected. Scour at constrictions and where	12	
			grades steepen. Some deposition in		
			pools		
			30-50% affected. Deposits and scour at obstructions,	18	
			constrictions, and bends. Some		
			filling of pools		
			More than 50% of the bottom in a state of flux or	24	
			change nearly year long		
	15	Aquatic vegetation	Abundant growth moss-like, dark green perennial. In	1	
			swift water too.		
			Common. Algae forms in low velocity and pool areas.	2	
			Moss here too		
			Present but spotty, mostly in backwater. Seasonal	3	х
			algae growth makes rocks slick		
			Perennial types scare or absent. Yellow-green, short	4	
			term bloom may be present		

Score guidelines: <38 Excellent, 39-76 Good, 77-114 Fair, >114 Poor Score: 64 (Good)

APPENDIX E1

2019 Riparian Site Photos

Figure E1-1. Representative photo of Site LLD-RV17.

Figure E1-2. Representative photo of Site LLD-RV10.

Figure E1-3. Representative photo of Site LLD-RV3.

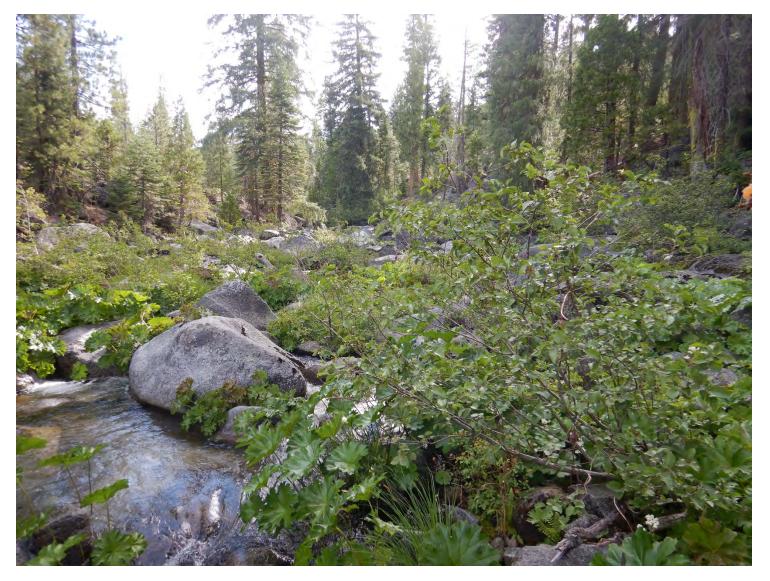


Figure E1-4. Representative photo of Site GCD-RV1.

Figure E1-5. Representative photo of Site IHD-RV5.

Figure E1-6. Representative photo of Site IHD-RV1.

Figure E1-7. Representative photo of Site CD-RV4.

Figure E1-8. Representative photo of Site SCD-RV5.

Figure E1-9. Representative photo of Site SCD-RV3.

Figure E1-10. Representative photo of Site SCD-RV1.

This Page Intentionally Left Blank

APPENDIX E2

2019 Riparian Vegetation Map

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

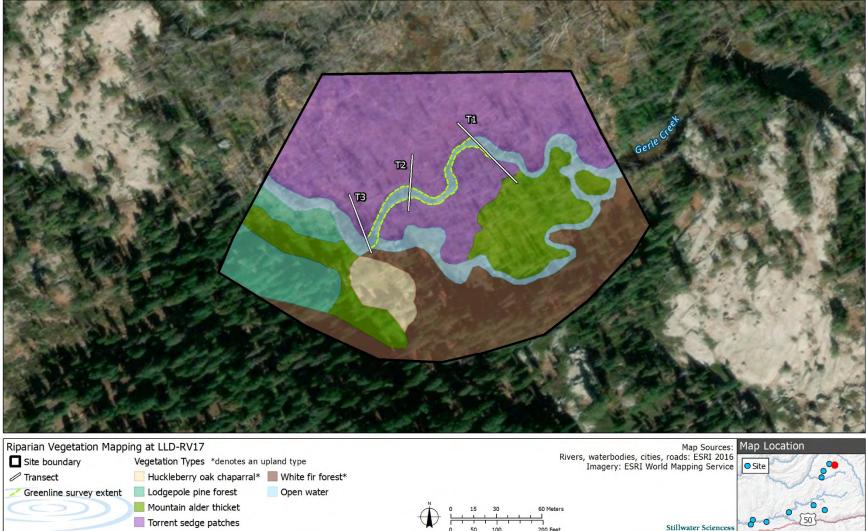


Figure E2-1. Vegetation mapping, greenline survey extent, and location of riparian transects at Site LLD-RV17.

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

Figure E2-2. Vegetation mapping, greenline survey extent, and location of riparian transects at Site LLD-RV10.

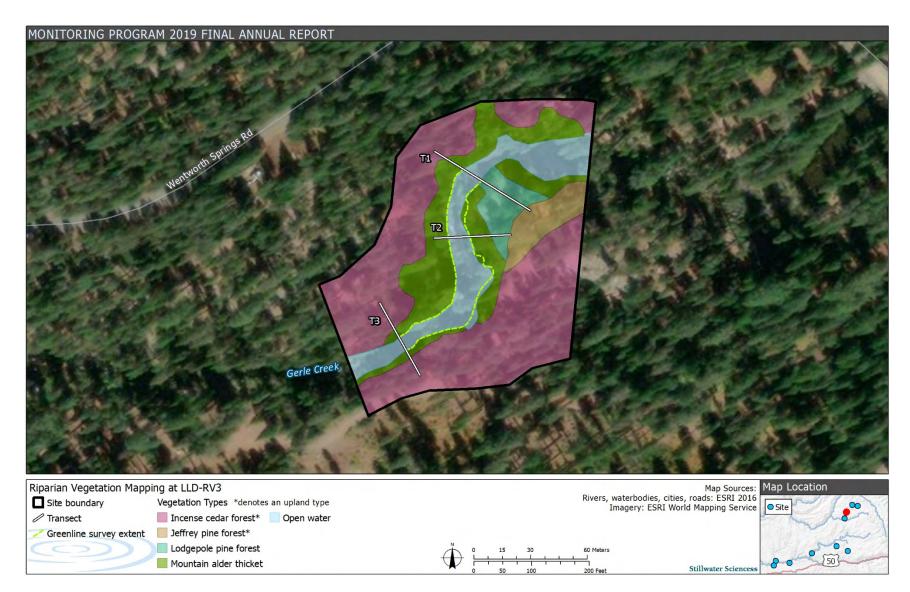


Figure E2-3. Vegetation mapping, greenline survey extent, and location of riparian transects at Site LLD-RV3.

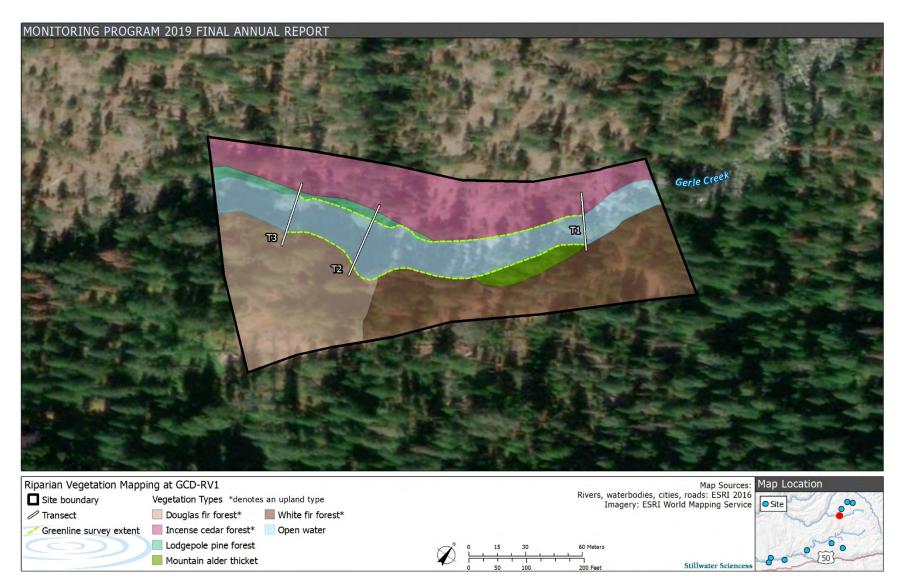


Figure E2-4. Vegetation mapping, greenline survey extent, and location of riparian transects at Site GCD-RV1.

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

Figure E2-5. Vegetation mapping, greenline survey extent, and location of riparian transects at Site IHD-RV5.

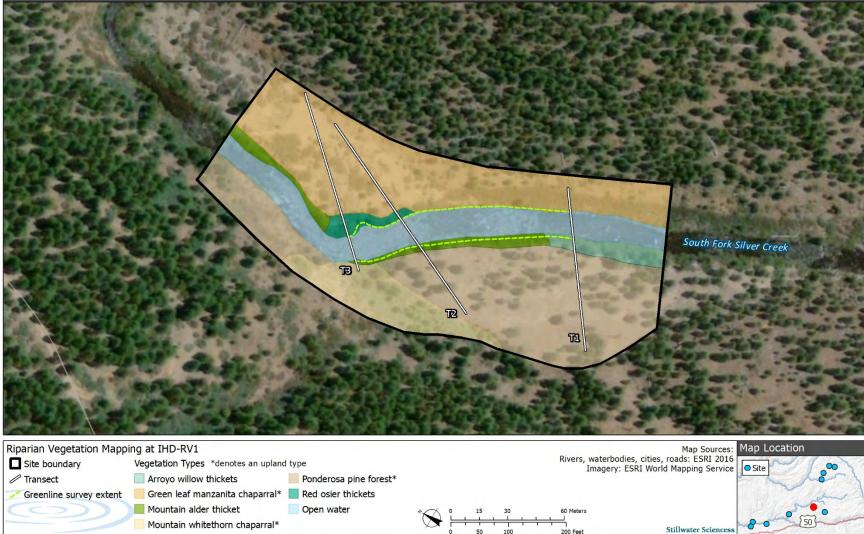


Figure E2-6. Vegetation mapping, greenline survey extent, and location of riparian transects at Site IHD-RV1.

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

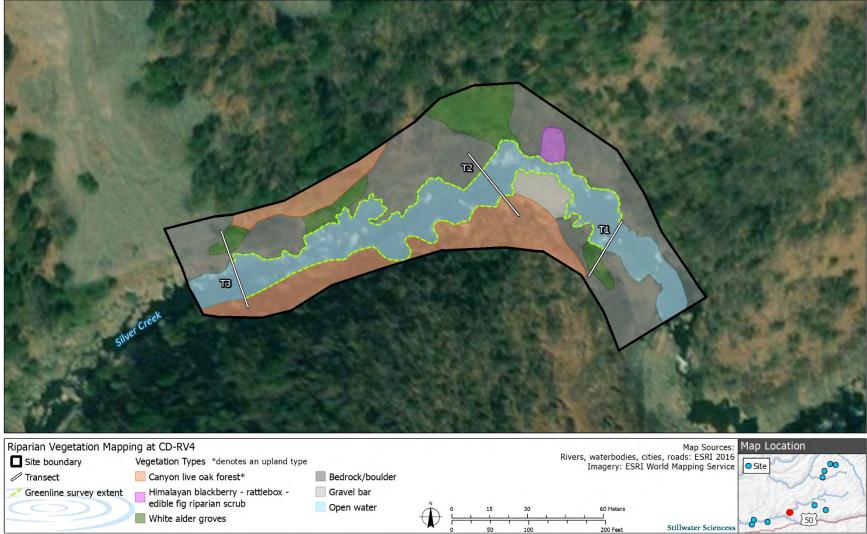


Figure E2-7. Vegetation mapping, greenline survey extent, and location of riparian transects at Site CD-RV4.

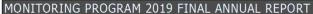


Figure E2-8. Vegetation mapping, greenline survey extent, and location of riparian transects at Site SCD-RV5.

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

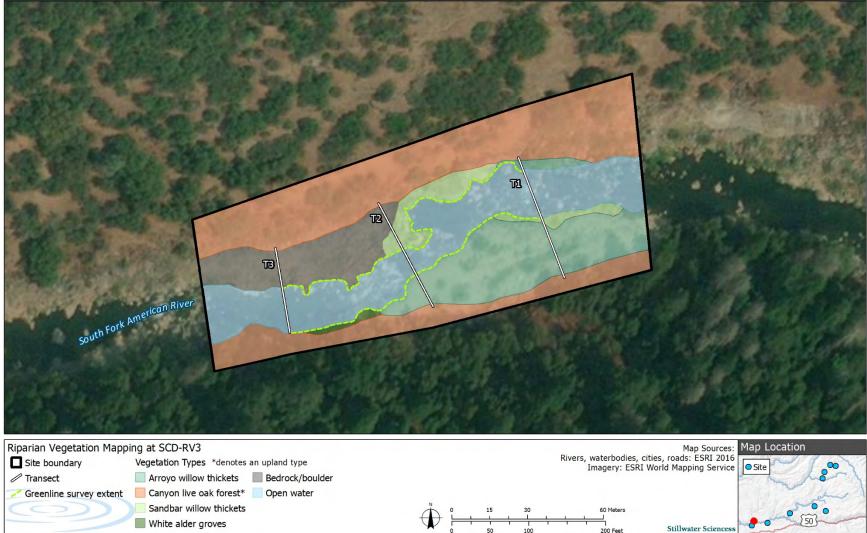


Figure E2-9. Vegetation mapping, greenline survey extent, and location of riparian transects at Site SCD-RV3.

MONITORING PROGRAM 2019 FINAL ANNUAL REPORT

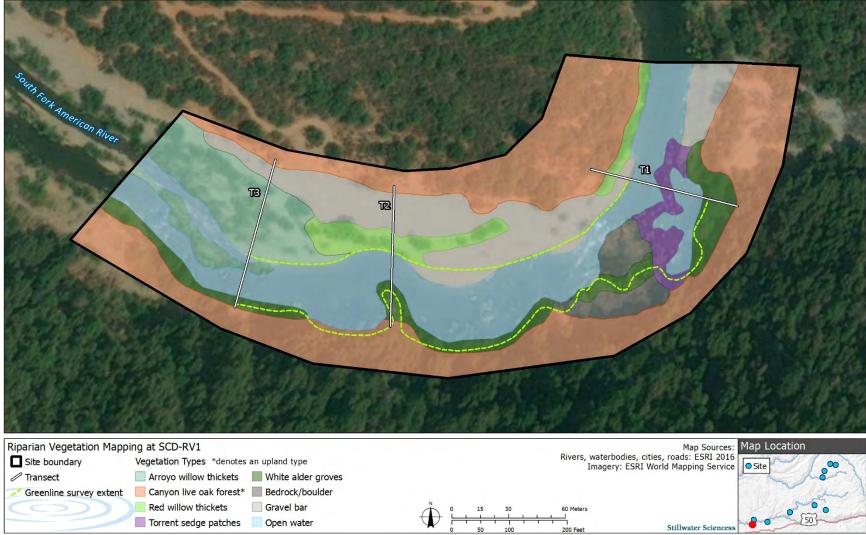


Figure E2-10. Vegetation mapping, greenline survey extent, and location of riparian transects at Site SCD-RV1.

This Page Intentionally Left Blank

APPENDIX E3

2019 Riparian Vegetation Line-point Intercept Results

This Page Intentionally Left Blank

	019 UARP Riparian Vegetation Line-Point			Wetland	< 1 m		1 to 5		> 5 m	
Site	Scientific name	Common name	Native?	indicator status ¹	Occurrences	Relative cover	Occurrences	Relative cover	Occurrences	Relative cover
	Agrostis gigantea	redtop	no	FACW	1	2%	_	0%	_	0%
	Alnus incana subsp. tenuifolia	mountain alder	yes	FACW	2	3%	1	2%		0%
	Calamagrostis canadensis var. canadensis	bluejoint reed grass	yes	FACW	1	2%	-	0%	_	0%
	Carex nudata	torrent sedge	yes	FACW	33	55%	_	0%	_	0%
LLD-RV17	Carex utriculata	southern beaked sedge	yes	OBL	12	20%	_	0%	_	0%
	Glyceria elata	fowl manna grass	yes	OBL	3	5%	_	0%	_	0%
	Juncus effusus	soft or lamp rush	yes	FACW	1	2%	_	0%	_	0%
	Juncus xiphioides	iris-leaved rush	yes	OBL	6	10%	_	0%	_	0%
	Pteridium aquilinum var. pubescens	hairy brackenfern	yes	FACU	1	2%	-	0%	-	0%
	Abies concolor	white fir	yes	NL	1	1%	6	7%	2	2%
	Alnus incana subsp. tenuifolia	mountain alder	yes	FACW	14	17%	20	25%	_	0%
	Anthoxanthum odoratum	sweet vernal grass	no	FAC	2	2%	-	0%	_	0%
	Athyrium filix-femina var. cyclosorum	subarctic ladyfern	yes	FAC	2	2%	_	0%	_	0%
	Calocedrus decurrens	incense cedar	yes	NL	-	0%	6	7%	3	4%
	Cornus sericea	American dogwood	yes	FACW	29	36%	28	35%	-	0%
	Hosackia oblongifolia var. oblongifolia	streambank bird's-foot trefoil	yes	OBL	7	9%	-	0%	_	0%
	Juncus xiphioides	iris-leaved rush	yes	OBL	5	6%	-	0%	_	0%
	Mentha pulegium	pennyroyal	no	OBL	2	2%	_	0%	_	0%
	Pinus contorta	lodgepole pine	yes	FAC	1	1%	25	31%	37	46%
LLD-RV10	Pinus jeffreyi	Jeffrey pine	yes	NL	_	0%	_	0%	5	6%
	Populus tremuloides	quaking aspen	yes	FACU	-	0%	2	2%	26	32%
	Pseudotsuga menziesii var. menziesii	Douglas-fir	yes	FACU	-	0%	_	0%	4	5%
	Quercus vacciniifolia	huckleberry oak	yes	NL	1	1%	_	0%	_	0%
Γ	Senecio triangularis	arrowleaf ragwort	yes	FACW	8	10%	2	2%	_	0%
	Sidalcea glaucescens	waxy checkerbloom	yes	NL	1	1%	_	0%	_	0%
Γ	Spiraea splendens	rose meadowsweet	yes	FAC	3	4%	_	0%	_	0%
Γ	Vaccinium uliginosum subsp. occidentale	western blueberry	yes	FACW	1	1%	_	0%	_	0%
Γ	Veratrum californicum var. californicum	California false hellebore	yes	FACW	3	4%	_	0%	_	0%
Γ	<i>Viola</i> sp.	violet	yes	unk	1	1%	_	0%	_	0%

Table E3-1. 2019 UARP Riparian Vegetation Line-Point Intercept Results for Nativity, Wetland Indicator Status, and Percent Relative Cover of Each Species by Canopy Class.

				Wetland	< 1 m	1	1 to 5	n	> 5 m	1
Site	Scientific name Common name Native? indicator Abies concolor white fir yes NL	Occurrences	Relative cover	Occurrences	Relative cover	Occurrences	Relative cover			
	Abies concolor	white fir	yes	NL	1	2%	8	15%	9	16%
	Alnus incana subsp. tenuifolia	mountain alder	yes	FACW	4	7%	15	27%	_	0%
	Anthoxanthum odoratum	sweet vernal grass	no	FAC	1	2%	_	0%	_	0%
	Athyrium filix-femina var. cyclosorum	subarctic ladyfern	yes	FAC	1	2%	_	0%	-	0%
	Calocedrus decurrens	incense cedar	yes	NL	5	9%	6	11%	21	38%
	Carex nudata	torrent sedge	yes	FACW	4	7%	-	0%	_	0%
	Cornus sericea	American dogwood	yes	FACW	4	7%	3	5%	0	0%
	Equisetum arvense	common horsetail	yes	FAC	3	5%	_	0%	_	0%
	Hosackia oblongifolia var. oblongifolia	streambank bird's-foot trefoil	yes	OBL	4	7%	-	0%	_	0%
LLD-RV3	Juncus xiphioides	iris-leaved rush	yes	OBL	4	7%	-	0%	_	0%
	Mentha pulegium	pennyroyal	no	OBL	2	4%	_	0%	-	0%
	Pinus contorta	lodgepole pine	yes	FAC	7	13%	12	22%	7	13%
	Pinus jeffreyi	Jeffrey pine	yes	NL	2	4%	7	13%	5	9%
	Pteridium aquilinum var. pubescens	hairy brackenfern	yes	FACU	5	9%	-	0%	_	0%
	Quercus vacciniifolia	huckleberry oak	yes	NL	1	2%	-	0%	_	0%
	Salix jepsonii	Jepson's willow	yes	OBL	1	2%	_	0%	_	0%
	Scirpus diffusus	umbrella bulrush	yes	FACW	1	2%	_	0%	_	0%
	Senecio triangularis	arrowleaf ragwort	yes	FACW	1	2%	_	0%	_	0%
	Spiraea splendens	rose meadowsweet	yes	FAC	4	7%	_	0%	_	0%

				Wetland	< 1 m	1	1 to 5	m	> 5 m	1
Site	Scientific name	Common name	Native?	indicator status ¹	Occurrences	Relative cover	Occurrences	Relative cover	Occurrences	Relative cover
	Abies concolor	white fir	yes	NL	_	0%	4	13%	6	18%
	Alnus incana subsp. tenuifolia	mountain alder	yes	FACW	7	14%	10	31%	0	0%
	Amelanchier utahensis	Utah service-berry	yes	FACU	1	2%	-	0%	-	0%
	Boykinia occidentalis	coastal brookfoam	yes	FAC	3	6%	-	0%	-	0%
	Calocedrus decurrens	incense cedar	yes	NL	0	0%	6	19%	1	3%
	Carex nudata	torrent sedge	yes	FACW	4	8%	-	0%	-	0%
	Cornus sericea	American dogwood	yes	FACW	3	6%	2	6%	0	0%
	Darmera peltata	Indian rhubarb	yes	OBL	14	29%	2	6%	-	0%
	Juncus xiphioides	iris-leaved rush	yes	OBL	2	4%	0	0%	0	0%
GCD-RV1	Lonicera conjugialis	purpleflower honeysuckle	yes	FAC	2	4%	1	3%	-	0%
	Pinus contorta	lodgepole pine	yes	FAC	_	0%	1	3%	5	15%
	Pinus ponderosa	ponderosa pine	yes	FACU	_	0%	2	6%	4	12%
	Pseudotsuga menziesii var. menziesii	Douglas-fir	yes	FACU	_	0%	2	6%	14	42%
	Pteridium aquilinum var. pubescens	hairy brackenfern	yes	FACU	6	12%	0	0%	0	0%
	Quercus kelloggii	California black oak	yes	NL	3	6%	1	3%	3	9%
	Quercus vacciniifolia	huckleberry oak	yes	NL	1	2%	-	0%	-	0%
	Rosa californica	California rose	yes	FAC	1	2%	-	0%	-	0%
	Rosa pisocarpa subsp. ahartii	Ahart rose	yes	FAC	1	2%	1	3%	_	0%
	Salix jepsonii	Jepson's willow	yes	OBL	1	2%	_	0%	_	0%

				Wetland	< 1 m		1 to 5	m	> 5 m)
Site	Scientific name	Common name	Native?	indicator status ¹	Occurrences	Relative cover	Occurrences	Relative cover	Occurrences	Relative cover
	Abies concolor	white fir	yes	NL	5	4%	15	12%	14	11%
	Agrostis exarata	spike bent grass	yes	FACW	1	1%	-	0%	_	0%
	Alnus incana subsp. tenuifolia	mountain alder	yes	FACW	23	18%	27	21%	_	0%
	Aquilegia formosa	western columbine	yes	FAC	1	1%		0%	-	0%
	Artemisia douglasiana	mugwort	yes	FAC	5	4%	_	0%	_	0%
	Athyrium filix-femina var. cyclosorum	subarctic ladyfern	yes	FAC	1	1%	_	0%	_	0%
	Bromus suksdorfii	Suksdorf's brome	yes	NL	1	1%	_	0%	_	0%
	Carex fracta	fragile-sheathed sedge	yes	FAC	1	1%	_	0%	_	0%
	Carex leptopoda	slender-footed sedge	yes	FAC	2	2%	_	0%	_	0%
	Carex nudata	torrent sedge	yes	FACW	2	2%	_	0%	_	0%
	Carex pellita	woolly sedge	yes	OBL	3	2%	_	0%	_	0%
_	Circaea alpina subsp. pacifica	small enchanter's nightshade	yes	FAC	1	1%	_	0%	_	0%
	Cornus sericea	American dogwood	yes	FACW	7	5%	6	5%	_	0%
	Elymus glaucus	blue or western wild-rye	yes	FACU	11	9%	_	0%	_	0%
	Epilobium ciliatum	fringed willowherb	yes	FACW	1	1%	_	0%	_	0%
	Epilobium sp.	willowherb	unk	NL	1	1%	_	0%	_	0%
	Erythranthe moschata	musk monkeyflower	yes	FACW	1	1%	_	0%	_	0%
	Festuca rubra	red fescue	yes	FAC	7	5%	_	0%	_	0%
	Glyceria elata	fowl manna grass	yes	OBL	7	5%	_	0%	_	0%
IHD-RV5	Heracleum maximum	cow parsnip, giant hogweed	yes	FACW	2	2%	_	0%	_	0%
	Hieracium albiflorum	white hawkweed	yes	NL	1	1%	_	0%	_	0%
_	Hypericum perforatum subsp. perforatum	Klamathweed	no	FACU	1	1%	_	0%	_	0%
_	Juncus xiphioides	iris-leaved rush	yes	OBL	1	1%	_	0%	_	0%
	Lathyrus nevadensis var. nevadensis	Sierra pea	yes	NL	2	2%	_	0%	_	0%
	Lonicera conjugialis	purpleflower honeysuckle	yes	FAC	3	2%	2	2%	_	0%
	Myrica hartwegii	Sierra sweet bay	yes	FAC	1	1%	_	0%	_	0%
	Osmorhiza berteroi	sweetcicely	yes	FACU	1	1%	_	0%	_	0%
	Phacelia heterophylla var. virgata	varied leaf phacelia	yes	FACU	2	2%	_	0%	_	0%
	Pinus contorta	lodgepole pine	yes	FAC	4	3%	29	22%	23	18%
_	Pinus jeffreyi	Jeffrey pine	yes	NL	_	0%	3	2%	6	5%
_	Populus tremuloides	quaking aspen	yes	FACU	2	2%	2	2%	_	0%
_	, Ribes nevadense	mountain pink currant	yes	FAC	2	2%	_	0%	_	0%
F	Salix laevigata	red willow	yes	FACW	2	2%	3	2%	_	0%
F	Salix lasiolepis	arroyo willow	yes	FACW	11	9%	6	5%	_	0%
F	Senecio triangularis	arrowleaf ragwort	yes	FACW	1	1%	_	0%	_	0%
F	Solidago elongata	West Coast Canada goldenrod	yes	FACU	9	7%	_	0%	_	0%
F	Thalictrum fendleri var. fendleri	Fendler's meadow rue	yes	FAC	2	2%	_	0%	_	0%
F	Vaccinium uliginosum subsp. occidentale	western blueberry	yes	FACW	1	1%	_	0%	_	0%

				Wetland	< 1 m	1	1 to 5	m	> 5 m	1
Site	Scientific name	Common name	Native?	indicator status ¹	Occurrences	Relative cover	Occurrences	Relative cover	Occurrences	Relative cover
	Acmispon parviflorus	desert deervetch	yes	NL	1	1%	_	0%	_	0%
	Alnus incana subsp. tenuifolia	mountain alder	yes	FACW	4	3%	1	1%	_	0%
	Amelanchier alnifolia	Saskatoon serviceberry	yes	FACU	1	1%	_	0%	_	0%
	Arctostaphylos patula	greenleaf manzanita	yes	NL	12	10%	_	0%	_	0%
	Artemisia douglasiana	mugwort	yes	FAC	3	3%	_	0%	_	0%
	Boykinia occidentalis	coastal brookfoam	yes	FAC	2	2%	_	0%	_	0%
	Carex nudata	torrent sedge	yes	FACW	1	1%	-	0%	_	0%
	Ceanothus cordulatus	mountain whitethorn	yes	NL	18	15%	-	0%	_	0%
	Ceanothus prostratus	prostrate ceanothus	yes	NL	1	1%	_	0%	_	0%
	Cornus sericea	American dogwood	yes	FACW	7	6%	4	3%	_	0%
	Diplacus torreyi	Torrey's monkeyflower	yes	NL	2	2%	_	0%	_	0%
	Elymus elymoides	squirreltail	yes	FACU	2	2%	_	0%	_	0%
	Elymus glaucus	blue or western wild-rye	yes	FACU	4	3%	_	0%	_	0%
	Festuca rubra	red fescue	yes	FAC	4	3%	_	0%	_	0%
	Gayophytum diffusum	spreading groundsmoke	yes	NL	5	4%	_	0%	_	0%
	Heracleum maximum	cow parsnip, giant hogweed	yes	FACW	3	3%	_	0%	_	0%
	Hosackia oblongifolia var. oblongifolia	streambank bird's-foot trefoil	yes	OBL	2	2%	_	0%	_	0%
IHD-RV1	Juncus xiphioides	iris-leaved rush	yes	OBL	1	1%	_	0%	_	0%
	Lupinus microcarpus	chick lupine	yes	NL	2	2%	_	0%	_	0%
	Myrica hartwegii	Sierra sweet bay	yes	FAC	6	5%	_	0%	_	0%
	Pinus contorta	lodgepole pine	yes	FAC	_	0%	1	1%	_	0%
	Pinus ponderosa	ponderosa pine	yes	FACU	4	3%	14	12%	2	2%
	Rhododendron occidentale	California azalea	yes	FAC	2	2%	_	0%	_	0%
	Rosa pisocarpa subsp. ahartii	Ahart rose	yes	FAC	1	1%	_	0%	_	0%
	Rumex acetosella	sheep sorrel	no	FACU	1	1%	_	0%	_	0%
	Salix jepsonii	Jepson's willow	yes	OBL	_	0%	1	1%	_	0%
	Salix laevigata	red willow	yes	FACW	2	2%	_	0%	_	0%
	Salix lasiolepis	arroyo willow	yes	FACW	2	2%	2	2%	_	0%
	Salix scouleriana	Scouler's willow	yes	FAC	1	1%	4	3%	_	0%
	Scirpus diffusus	umbrella bulrush	yes	FACW	3	3%	_	0%	_	0%
	Solidago elongata	West Coast Canada goldenrod	yes	FACU	12	10%	_	0%	_	0%
	Spiraea splendens	rose meadowsweet	yes	FAC	2	2%	_	0%	_	0%
	Stipa occidentalis var. californica	California needle grass	yes	NL	8	7%	_	0%	_	0%
F	Symphoricarpos mollis	creeping snowberry, trip vine	yes	FACU	1	1%	_	0%	_	0%

				Wetland	< 1 m	1	1 to 5	m	> 5 m	1
Site	Scientific name	Common name	Native?	indicator status ¹	Occurrences	Relative cover	Occurrences	Relative cover	Occurrences	Relative cover
	Acer macrophyllum	big-leaf maple	yes	FAC	-	0%	2	8%	2	12%
	Alnus rhombifolia	white alder	yes	FACW	5	31%	16	67%	4	24%
	Athyrium filix-femina var. cyclosorum	subarctic ladyfern	yes	FAC	1	6%	0	0%	0	0%
	Carex nudata	torrent sedge	yes	FACW	1	6%	_	0%	_	0%
	Cornus sericea	American dogwood	yes	FACW	_	0%	1	4%	_	0%
	Drymocallis glandulosa var. glandulosa	sticky cinquefoil	yes	FAC	2	13%	_	0%	_	0%
	Panicum acuminatum var. fasciculatum	Pacific panic grass	yes	FAC	2	13%	_	0%	_	0%
CD-RV4	Pinus contorta	lodgepole pine	yes	FAC	_	0%	_	0%	_	0%
	Pinus jeffreyi	Jeffrey pine	yes	NL	_	0%	_	0%	4	24%
	Quercus chrysolepis	maul oak, canyon live oak	yes	NL	_	0%	_	0%	6	35%
	Salix lasiandra	Pacific willow	yes	FACW	_	0%	_	0%	1	6%
	Salix lasiolepis	arroyo willow	yes	FACW	2	13%	2	8%	_	0%
	Symphyotrichum bracteolatum	Eaton's aster	yes	FAC	1	6%	_	0%	_	0%
	Toxicodendron diversilobum	western poison oak	yes	FACU	2	13%	3	13%	_	0%
	Epilobium canum	California fuchsia, zauschneria	yes	NL	1	3%	_	0%	—	0%
	Frangula californica	California coffee berry	yes	NL	1	3%	1	3%	_	0%
	Fraxinus latifolia	Oregon ash	yes	FACW	1	3%	_	0%	_	0%
SCD-RV5	Philadelphus lewisii	wild mock orange	yes	NL	1	3%	_	0%	_	0%
SCD-RV5	Quercus chrysolepis	maul oak, canyon live oak	yes	NL	—	0%	1	3%	_	0%
	Rubus armeniacus	Himalayan blackberry	no	FAC	21	55%	_	0%	_	0%
	Salix lasiolepis	arroyo willow	yes	FACW	10	26%	11	29%	_	0%
	Toxicodendron diversilobum	western poison oak	yes	FACU	3	8%	2	5%	—	0%

				Wetland	< 1 m)	1 to 5	m	> 5 m	
Site	Scientific name	Common name	Native?	indicator status ¹	Occurrences	Relative cover	Occurrences	Relative cover	Occurrences	Relative cover
	Alnus rhombifolia	white alder	yes	FACW	-	0%	7	10%	10	14%
	Carex nudata	torrent sedge	yes	FACW	10	14%	_	0%	_	0%
	Cyperus eragrostis	tall flatsedge	yes	FACW	1	1%	_	0%	_	0%
	Cytisus scoparius	Scotch broom	no	NL	1	1%	_	0%	_	0%
	Erythranthe guttata	seep monkeyflower	yes	OBL	1	1%	_	0%	_	0%
	Heteromeles arbutifolia	toyon	yes	NL	-	0%	1	1%	_	0%
	Heuchera micrantha	crevice alumroot	yes	NL	1	1%	_	0%	_	0%
	Juncus xiphioides	iris-leaved rush	yes	OBL	1	1%	—	0%	_	0%
	Leersia oryzoides	rice cutgrass	yes	OBL	2	3%	_	0%	_	0%
	Melilotus albus	white sweetclover	no	FACU	1	1%	_	0%	_	0%
	Pseudotsuga menziesii var. menziesii	Douglas-fir	yes	FACU	1	1%	4	6%	_	0%
SCD-RV3	Quercus agrifolia	coast live oak, encina	yes	NL	2	3%	_	0%	_	0%
	Quercus chrysolepis	maul oak, canyon live oak	yes	NL	-	0%	1	1%	3	4%
	Rubus armeniacus	Himalayan blackberry	no	FAC	20	28%	9	13%	_	0%
	Rumex transitorius	willow dock	yes	FACW	1	1%	_	0%	_	0%
	Salix exigua	narrowleaf willow	yes	FACW	6	8%	6	8%	-	0%
	Salix gooddingii	Goodding's black willow	yes	FACW	1	1%	_	0%	-	0%
	Salix laevigata	red willow	yes	FACW	6	8%	8	11%	-	0%
Γ	Salix lasiolepis	arroyo willow	yes	FACW	11	15%	8	11%	_	0%
Γ	Toxicodendron diversilobum	western poison oak	yes	FACU	3	4%	1	1%	_	0%
Γ	Umbellularia californica	California laurel	yes	FAC	-	0%	1	1%	_	0%
	Vitis californica	California wild grape	yes	FACU	2	3%	_	0%	_	0%

				Wetland	< 1 m	n	1 to 5	m	> 5 m)
Site	Scientific name	Common name	Native? indicator status ¹		Occurrences	Relative cover	Occurrences	Relative cover	Occurrences	Relative cover
	Alnus rhombifolia	white alder	yes	FACW	-	0%	7	10%	10	14%
	Carex nudata	torrent sedge	yes	FACW	10	14%	_	0%	_	0%
	Cyperus eragrostis	tall flatsedge	yes	FACW	1	1%	_	0%	_	0%
	Cytisus scoparius	Scotch broom	no	NL	1	1%	_	0%	_	0%
	Erythranthe guttata	seep monkeyflower	yes	OBL	1	1%	-	0%	_	0%
	Heteromeles arbutifolia	toyon	yes	NL	-	0%	1	1%	_	0%
	Heuchera micrantha	crevice alumroot	yes	NL	1	1%	_	0%	_	0%
	Juncus xiphioides	iris-leaved rush	yes	OBL	1	1%	-	0%	_	0%
	Leersia oryzoides	rice cutgrass	yes	OBL	2	3%	_	0%	_	0%
	Melilotus albus	white sweetclover	no	FACU	1	1%	_	0%	_	0%
	Pseudotsuga menziesii var. menziesii	Douglas-fir	yes	FACU	1	1%	4	6%	_	0%
SCD-RV1	Quercus agrifolia	coast live oak, encina	yes	NL	2	3%	_	0%	_	0%
	Quercus chrysolepis	maul oak, canyon live oak	yes	NL	_	0%	1	1%	3	4%
	Rubus armeniacus	Himalayan blackberry	no	FAC	20	28%	9	13%	_	0%
	Rumex transitorius	willow dock	yes	FACW	1	1%	_	0%	_	0%
	Salix exigua	narrowleaf willow	yes	FACW	6	8%	6	8%	_	0%
	Salix gooddingii	Goodding's black willow	yes	FACW	1	1%	_	0%	_	0%
	Salix laevigata	red willow	yes	FACW	6	8%	8	11%	_	0%
	Salix lasiolepis	arroyo willow	yes	FACW	11	15%	8	11%	_	0%
Γ	Toxicodendron diversilobum	western poison oak	yes	FACU	3	4%	1	1%	_	0%
	Umbellularia californica	California laurel	yes	FAC	_	0%	1	1%	_	0%
	Vitis californica	California wild grape	yes	FACU	2	3%	_	0%	_	0%

1 Wetland indicator status (Lichvar 2016):

Wetland indicator status (Lichvar 2016):
OBL = obligate; almost always occur in wetland
FACW = facultative wetland; usually occur in wetland, but may occur in non-wetland
FAC = facultative; occur in wetland and non-wetland
FACU = facultative upland; usually occur in non-wetland, but may occur in wetland
UPL = upland; almost never occur in wetland
NL = not listed; generally assumed to be an upland species
unk = unknown; identification to species was not feasible, therefore the wetland indicator status could not be determined

Table E3-2. Line-Point Intercept Results in Each Site and Transect for Absolute
Cover by Canopy Class.

Site	Transect	Transect points with vegetation (< 1 m)	Transect points with vegetation (1 to 5 m)	Transect points with vegetation (> 5 m)	Total transect points
	1	7	1	-	57
	2	26	_	_	38
	3	27	_	_	43
LLD-RV17	Total vegetated points	60	1	-	-
	Percent vegetated (absolute)	43%	1%	0%	_
	1	22	22	24	45
	2	26	35	22	45
	3	33	32	31	52
LLD-RV10	Total vegetated points	81	89	77	_
	Percent vegetated (absolute)	57%	63%	54%	
	1	23	17	8	63
	2	23	21	12	43
	3	9	13	22	42
LLD-RV3	Total vegetated points	55	51	42	_
	Percent vegetated	37%	34%	28%	_
	1	16	11	4	31
	2	18	14	12	39
	3	15	7	17	37
GCD-RV1	Total vegetated points	49	32	33	-
	Percent vegetated	46%	30%	31%	_
	1	54	45	26	72
	2	37	19	1	38
	3	38	29	16	38
IHD-RV5	Total vegetated points	129	93	43	_
	Percent vegetated	87%	63%	29%	-

Site	Transect	Transect points with vegetation (< 1 m)	Transect points with vegetation (1 to 5 m)	Transect points with vegetation (> 5 m)	Total transect points
	1	36	-	—	79
	2	41	15	2	101
	3	43	12	—	101
IHD-RV1	Total vegetated points	120	27	2	_
	Percent vegetated	43%	10%	1%	_
	1	3	1	5	26
	2	3	10	2	34
	3	10	13	10	36
CD-RV4	Total vegetated points	16	24	17	_
	Percent vegetated	17%	25%	18%	_
	1	9	1	-	56
	2	19	7	_	51
	3	10	7	-	50
SCD-RV5	Total vegetated points	38	15	-	_
	Percent vegetated	24%	10%	0%	_
	1	15	3	2	26
	2	11	6	-	47
	3	8	1	_	37
SCD-RV3	Total vegetated points	34	10	2	_
	Percent vegetated	31%	9%	2%	-
	1	35	25	13	86
	2	11	7	-	76
	3	25	14	_	83
SCD-RV1	Total vegetated points	71	46	13	_
	Percent vegetated	29%	19%	5%	_

APPENDIX E4

2019 Riparian Vegetation Point-Centered Quarter Results

This Page Intentionally Left Blank

Avg. DBH Mean Mean No. of Mean Mean no. Site Scientific name Common name Composition per stem basal area age individuals vigor² of stems class¹ (in²) (in) Alnus incana subsp. tenuifolia mountain alder 10 91% 2.5 5.6 2.1 0.11 0.18 LLD-RV17 9% 5.0 4.0 2.0 7.00 102.10 Pinus contorta lodgepole pine 1 Total 11 2.7 5.5 N/A N/A N/A 100% 8 2.6 1.0 3.08 10.97 Abies concolor white fir 10% 5.1 Alnus incana subsp. tenuifolia 29 35% 2.8 3.8 1.8 0.83 2.18 mountain alder Calocedrus decurrens incense cedar 5 6% 3.2 4.6 0.8 5.30 44.65 LLD-RV10 4 5% 3.3 4.5 1.3 0.10 0.04 Cornus sericea American dogwood 34 41% 3.7 3.3 1.0 7.19 72.09 Pinus contorta lodgepole pine 3 4% 3.7 4.3 0.7 12.33 185.62 Populus trichocarpa black cottonwood 83 3.2 Total 100% 3.8 N/A N/A N/A 37 1.52 6.36 Alnus incana subsp. tenuifolia 53% 2.9 3.4 2.7 mountain alder 3 4% 3.0 5.7 2.0 0.66 1.62 Cornus sericea American dogwood Pinus contorta lodgepole pine 1 1% 2.0 4.0 0.0 0.00 0.00 Salix exigua narrowleaf willow 6 9% 2.0 4.8 0.2 0.02 0.00 LLD-RV3 Salix jepsonii 3 4% 3.0 2.3 0.0 0.00 0.00 Jepson's willow 0 Spiraea splendens 1% 2.0 6.0 0.0 0.00 rose meadowsweet 1 19 27% N/A N/A N/A N/A N/A n/a upland Total 70 2.7 100% 3.7 N/A N/A N/A 43 3.5 1.53 Alnus incana subsp. tenuifolia 74% 3.8 1.9 0.58 mountain alder 2 3% 2.0 3.5 0.0 0.00 0.00 Calocedrus decurrens incense cedar 7% Cornus sericea American dogwood 4 3.5 5.3 2.0 0.10 0.06 GCD-RV1 Salix jepsonii Jepson's willow 3 5% 3.7 4.0 4.7 0.13 0.15 Rhododendron occidentale 2% 2.0 0.01 California azalea 1 5.0 1.0 0.10 5 9% N/A N/A N/A N/A n/a upland N/A 58 N/A Total 100% 3.4 4.0 N/A N/A 3 4% 2.3 0.3 1.93 8.81 Abies concolor white fir 5.3 37 3.5 0.78 2.36 Alnus incana subsp. tenuifolia 46% 3.9 4.6 mountain alder 3 4% 3.7 6.0 11.7 0.43 4.33 Cornus sericea American dogwood Pinus contorta lodgepole pine 15 19% 2.8 5.0 0.7 2.74 14.90 1% 132.73 Pinus jeffreyi Jeffrey pine 5.0 3.0 1.0 13.00 1 IHD-RV5 Pinus ponderosa 1% 1.0 6.0 0.0 0.00 0.00 ponderosa pine 1 1.3 Populus tremuloides 1% 3.0 5.0 1.0 1.3 quaking aspen 1 5% 4.0 6.0 12.8 0.25 0.70 Salix jepsonii Jepson's willow 4 Salix laevigata red willow 1 1% 3.0 2.0 1.0 0.40 0.13 14 18% 3.6 5.4 3.1 0.32 Salix lasiolepis arroyo willow 0.41 Total 80 100% 3.6 4.9 N/A N/A N/A

Table E4-1. 2019 UARP Riparian Vegetation Results of Point-Centered Quarter Analysis by Site.

Density individuals/ac)	Cover (ft²/ac)	Relative cover	Frequency
31	0.02	2%	19%
2	1.06	98%	5%
90	1.08	100%	38%
76	3.87	1%	33%
382	2.96	1%	76%
31	9.49	2%	24%
126	0.03	0%	14%
566	330.37	82%	76%
45	55.82	14%	14%
1226	402.55	100%	238%
129	5.72	98%	76%
12	0.11	2%	10%
1	0.00	0%	5%
34	0.00	0%	14%
17	0.00	0%	14%
6	0.00	0%	5%
49	N/A	N/A	43%
248	5.84	100%	167%
120	1.81	100%	71%
3	0.00	0%	14%
8	0.00	0%	19%
3	0.00	0%	14%
4	0.00	0%	5%
22	N/A	N/A	10%
161	1.81	100%	133%
21	2.09	8%	10%
321	4.86	19%	76%
34	1.03	4%	10%
149	12.62	50%	48%
5	4.27	17%	5%
11	0.00	0%	5%
5	0.04	0%	5%
19	0.09	0%	14%
11	0.01	0%	5%
134	0.34	1%	38%
709	25.35	100%	214%

Site	Scientific name	Common name	No. of individuals	Composition	Mean age class ¹	Mean vigor ²	Mean no. of stems	Avg. DBH per stem (in)	Mean basal area (in²)	Density (individuals/ac)	Cover (ft²/ac)	Relative cover	Frequency
IHD-RV1	Abies concolor	white fir	1	2%	2.0	6.0	0.0	0.00	0.00	3	0.00	0%	5%
	Alnus incana subsp. tenuifolia	mountain alder	18	33%	3.1	4.9	1.7	0.17	0.57	212	0.20	5%	52%
	Cornus sericea	American dogwood	6	11%	3.3	5.8	5.2	0.17	0.63	79	0.47	11%	24%
	Pinus contorta	lodgepole pine	1	2%	4.0	6.0	1.0	4.00	12.57	1	0.10	2%	5%
	Pinus ponderosa	ponderosa pine	5	9%	3.4	5.6	0.8	5.74	36.91	13	3.25	77%	14%
	Salix jepsonii	Jepson's willow	1	2%	2.0	4.0	0.0	0.00	0.00	18	0.00	0%	5%
	Salix laevigata	red willow	18	33%	2.7	4.9	2.0	0.07	0.08	186	0.17	4%	57%
	Salix lasiolepis	arroyo willow	2	4%	2.5	5.0	0.0	0.00	0.00	2	0.00	0%	5%
	Salix scouleriana	Scouler's willow	1	2%	4.0	4.0	7.0	0.50	1.37	3	0.03	1%	5%
	n/a	upland	2	4%	N/A	N/A	N/A	N/A	N/A	2	N/A	N/A	5%
	Total		55	100%	3.0	5.1	N/A	N/A	N/A	519	4.22	100%	176%
CD-RV4	Alnus rhombifolia	white alder	8	57%	3.0	4.6	1.6	5.11	49.93	18	13.11	99%	33%
	Cornus sericea	American dogwood	2	14%	2.5	4.0	2.0	0.40	1.01	2	0.01	0%	10%
	Salix lasiandra	Pacific willow	1	7%	3.0	4.0	1.0	5.00	19.63	1	0.13	1%	5%
	Umbellularia californica	California laurel	2	14%	1.5	5.5	0.5	0.05	0.00	2	0.00	0%	10%
	n/a	upland	1	7%	N/A	N/A	N/A	N/A	N/A	1	N/A	N/A	5%
	Total		14	100%	2.7	4.6	N/A	N/A	N/A	24	13.24	100%	62%
SCD-RV5	Frangula californica	California coffee berry	2	13%	3.0	5.0	0.5	0.05	0.00	1	0.00	0%	5%
	Prunus emarginata	bitter cherry	1	7%	3.0	5.0	0.0	0.00	0.00	1	0.00	0%	5%
	Salix lasiolepis	arroyo willow	10	67%	3.7	5.6	25.1	0.39	4.47	7	0.22	100%	33%
	n/a	upland	2	13%	N/A	N/A	N/A	N/A	N/A	1	N/A	N/A	5%
	Total		15	100%	3.5	5.5	N/A	N/A	N/A	10	0.22	100%	48%
SCD-RV3	Alnus rhombifolia	white alder	2	6%	3.5	3.5	2.5	3.50	7.85	4	0.26	17%	10%
	Salix exigua	narrowleaf willow	10	32%	2.0	5.4	0.1	0.01	0.00	21	0.00	0%	29%
	Salix laevigata	red willow	5	16%	3.2	5.0	3.6	1.00	6.30	10	0.49	32%	24%
	Salix lasiolepis	arroyo willow	14	45%	3.0	5.3	6.9	0.46	4.33	26	0.80	52%	52%
	Total		31	100%	2.7	5.2	N/A	N/A	N/A	61	1.55	100%	114%
SCD-RV1	Alnus rhombifolia	white alder	11	16%	3.9	4.5	1.2	4.01	8.98	46	3.73	44%	41%
	Cephalanthus occidentalis	California button willow	2	3%	4.0	3.5	1.5	0.30	0.14	16	0.02	0%	9%
	Fraxinus latifolia	Oregon ash	1	1%	3.0	4.0	1.0	2.60	5.31	8	0.29	3%	5%
	Salix exigua	narrowleaf willow	17	25%	2.5	6.0	2.3	0.41	0.48	66	0.26	3%	36%
	Salix laevigata	red willow	20	29%	2.5	5.7	1.8	0.87	5.10	108	3.13	37%	45%
	Salix lasiandra	Pacific willow	1	1%	2.0	4.0	2.0	0.20	0.00	3	0.00	0%	5%
	Salix lasiolepis	arroyo willow	15	22%	3.7	5.2	8.1	0.39	1.76	80	1.00	12%	32%
	n/a	upland	1	1%	N/A	N/A	N/A	N/A	N/A	3	N/A	N/A	5%
	Total		68	100%	3.0	5.4	N/A	N/A	N/A	329	8.44	100%	177%

¹ Age classes (SMUD 2016): 1 = tree and shrub seedlings ≤1 year old 2 = trees and shrubs 2–4 years old

- 3 = young trees (i.e., 4–10 years old) and mature shrubs (i.e., >4 years old and <20% dead) 4 = mature trees (i.e., >10 years old and <20% dead) and decadent shrubs (i.e., >4 years old and ≥20% dead) 5 = decadent trees (i.e., >10 years old and ≥20% dead)
- ² Vigor classes (SMUD 2016):
- 1 = dead; complete leaf death that is not attributable to normal winter or summer deciduous species
- 2 = critically stressed; major leaf death and/or branch die back (i.e., >50% of canopy affected)
- 3 = significantly stressed; prominent leaf death and/or branch die back (i.e., 21–50% of canopy affected)
- 4 = stressed; minimal leaf death and/or branch die back (i.e., 11–20% of canopy affected)
- 5 = normal; little or no sign of leaf stress (i.e., 5-10% of canopy affected)
- 6 = vigorous; no sign of leaf stress/very healthy-looking canopy (i.e., <5% of canopy affected)

This Page Intentionally Left Blank

APPENDIX E5

2019 Riparian Vegetation Greenline Results



Table E5-1.	2019 UARP Riparian Vegetation Greenline Data Results for Stability Class and Successional Status
by Site.	

Site	Component	Common name (if applicable)	Proportion of greenline	Stability class ¹	Successional status ¹
	Carex nudata	torrent sedge	51%	9	L
	Carex utriculata	southern beaked sedge	21%	9	L
LLD-RV17	Juncus xiphioides	iris-leaved rush	14%	7	L
	Wood		14%	10	L
	Totals		100%	8.9	L (100%)
	Alnus incana subsp. tenuifolia	mountain alder	39%	7	L
Γ	Anthoxanthum odoratum	sweet vernal grass	3%	3	E
	Boulder		1%	10	L
LLD-RV10	Carex nudata	torrent sedge	3%	9	L
	Cornus sericea	American dogwood	41%	7	L
	Hosackia oblongifolia		10%	4	E
	Wood		2%	10	L
F	Totals		100%	6.7	L (87%), E (13%)

Site	Component	Common name (if applicable)	Proportion of greenline	Stability class ¹	Successional status ¹
	Alnus incana subsp. tenuifolia	mountain alder	26%	7	L
	Bedrock		4%	10	L
	Boulder		6%	10	L
	Carex nudata	torrent sedge	16%	9	L
	Carex utriculata	southern beaked sedge	7%	9	L
	Cornus sericea	American dogwood	5%	7	L
LLD-RV3	Hosackia oblongifolia		5%	4	E
LLD-RV3	Juncus xiphioides	iris-leaved rush	14%	7	L
	No greenline		6%	1	E
	Salix lasiandra	Pacific willow	1%	6	L
	Salix lasiolepis	arroyo willow	2%	6	E
	Spiraea splendens	rose meadowsweet	4%	5	E/L
	Wood		5%	10	L
	Totals		100%	7.3	L (83%), E/L (4%), E (13%)
	Alnus incana subsp. tenuifolia	mountain alder	11%	7	L
	Bedrock/boulder		58%	10	L
	Boulder		16%	10	L
	Boykinia occidentalis	coastal brookfoam	2%	6	L
	Carex nudata	torrent sedge	2%	9	L
	Darmera peltata	Indian rhubarb	5%	6	L
GCD-RV1	Glyceria elata	fowl manna grass	0%	8	E/L
	Juncus xiphioides	iris-leaved rush	0%	7	L
[[Pinus contorta	lodgepole pine	0%	8	E/L
Γ Γ	Rhododendron occidentale	California azalea	4%	6	L
Γ Γ	Rosa pisocarpa subsp. ahartii		t	6	E
[Salix jepsonii	Jepson's willow	0%	7	L
	Spiraea splendens	rose meadowsweet	1%	5	E/L

Site	Component	Common name (if applicable)	Proportion of greenline	Stability class ¹	Successional status ¹
	Totals		100%	9.2	L (99%), E/L (1%), E (t)
	Alnus incana subsp. tenuifolia	mountain alder	35%	7	L
	Athyrium filix-femina var. cyclosorum	subarctic ladyfern	1%	5	E
	Boulder		4%	10	L
	Boykinia occidentalis	coastal brookfoam	1%	6	L
	Carex nudata	torrent sedge	1%	9	L
	Carex pellita	woolly sedge	4%	8	L
IHD-RV5	Cornus sericea	American dogwood	1%	7	L
	Glyceria elata	fowl manna grass	7%	8	E/L
	Juncus xiphioides	iris-leaved rush	21%	7	L
	Salix laevigata	red willow	8% 6		L
	Salix lasiolepis	arroyo willow	8%	6	E
	Scirpus diffusus	umbrella bulrush	8%	9	E
	Wood		2%	10	L
	Totals		100%	7.3	L (76%), E/L (7%), E (17%)

Site	Component	Common name (if applicable)	Proportion of greenline	Stability class ¹	Successional status ¹
	Alnus incana subsp. tenuifolia	mountain alder	16%	7	L
	Bedrock/boulder		2%	10	L
	Boulder		6%	10	L
	Boykinia occidentalis	coastal brookfoam	3%	6	L
	Cornus sericea	American dogwood	3%	7	L
	Darmera peltata	Indian rhubarb	3%	6	L
	Juncus xiphioides	iris-leaved rush	22%	7	L
IHD-RV1	Myrica hartwegii	Sierra sweet bay	18%	6	L
	Rhododendron occidentale	California azalea	6%	6	L
	Rosa pisocarpa subsp. ahartii	Ahart rose	2%	6	#N/A
	Salix laevigata	red willow	11%	6	L
	Salix lasiolepis	arroyo willow	5%	6	E
	Scirpus diffusus	umbrella bulrush	3%	9	E
	Wood		1%	10	L
	Totals		100%	6.9	L (90%, E (10%)
	Acer macrophyllum	big-leaf maple	1%	8	L
	Alnus rhombifolia	white alder	2%	8	L
	Athyrium filix-femina var. cyclosorum	subarctic ladyfern	1%	5	E
	Bedrock		13%	10	L
	Carex nudata	torrent sedge	6%	9	L
CD-RV4	Darmera peltata	Indian rhubarb	0%	6	L
	No greenline		75%	1	E
	Pinus jeffreyi	Jeffrey pine	1%	7	L
	Salix lasiandra	Pacific willow	1%	6	L
	Salix lasiolepis	arroyo willow	0%	6	E
	Totals		100%	3.0	L (24%), E (76%)

Site	Component	Common name (if applicable)	Proportion of greenline	Stability class ¹	Successional status ¹
	Bedrock		26%	10	L
	Boulder		65%	10	L
SCD-RV5	Rubus armeniacus	Himalayan blackberry	0%	7	E
	Salix lasiolepis	arroyo willow	8%	6	E
	Totals		100%	9.7	L (91%), E (9%)
	Bedrock		19%	10	L
	Boulder		43%	10	L
	Carex nudata	torrent sedge	13%	9	L
	Darmera peltata	Indian rhubarb	1%	6	L
SCD-RV3	No greenline		19%	1	E
3CD-RV3	Salix exigua var. hindsiana	Hinds' willow	2%	6	E
	Salix laevigata	red willow	2%	6	L
	Salix lasiolepis	arroyo willow	2%	6	E
	Scirpus diffusus	umbrella bulrush	0%	8	E
	Totals		100%	7.9	L (L (77%), E (23%)

Site	Component	Common name (if applicable)	Proportion of greenline	Stability class ¹	Successional status ¹
	Alnus rhombifolia	white alder	4%	8	L
	Bedrock		43%	10	L
-	Bedrock/boulder		2%	10	L
-	Carex nudata	torrent sedge	6%	9	L
	No greenline		25%	1	E
SCD-RV1	Rubus armeniacus	Himalayan blackberry	4%	7	E
SCD-RVI	Salix exigua	narrowleaf willow	0%	6	E
	Salix laevigata	red willow	4%	6	L
	Salix lasiolepis	arroyo willow	6%	6	E
-	Vitis californica	California wild grape	0%	6	L
	Wood		5%	10	L
	Totals		100%	7.1	L (65%), E (35%)

¹ From Winward (2000) when available; otherwise interpreted based on nearest equivalent and professional experience with the component's successional status in the UARP ecosystems.

Stability class is a rating of a component's ability to buffer the forces of moving water

1-2 = very low

3-4 = 100

5-6 = mid

7–8 = high

9–10 excellent

Successional status is defined as the present state of vegetation on an area in relation to the potential natural community(ies) that could occur on that area

E = early; community type is known to occur in the earlier stage of succession along the greenline

L = late; community type is known to occur in the latter successional stages along the greenline

Table E5-2. Crosswalk of UARP Riparian Vegetation Greenline Components (2004 and 2019) to Nearest Winward (2000) Riparian Community Type, Stability Class, and Successional Stage.

Greenline component	Winward 2000 equivalent ¹	Stability Class	Successional stage
Acer macrophyllum	(Acer negundo/Equisetum arvense)	8	L
Agrostis gigantea-Panicum acuminatum	(Agrostis stolonifera)	3	E
Alnus incana subsp. tenuifolia	(Alnus incana/Cornus sericea)	8	L
Alnus incana-Athyrium filix-femina	(Alnus incana/Equisetum arvense)	7	L
Alnus incana-Carex aquatilis	(Alnus incana/Mesic Graminoid)	7	L
Alnus incana-Carex aquatilis-Darmera peltata	(Alnus incana/Mesic Graminoid)	7	L
Alnus incana-Carex vesicaria	(Alnus incana/Mesic Graminoid)	7	L
Alnus incana-Cornus sericea	(Alnus incana/Cornus sericea)	8	L
Alnus incana-Darmera peltata	(Alnus incana/Mesic Forb)	7	L
Alnus incana-Glyceria elata	(Alnus incana/Mesic Graminoid)	7	L
Alnus incana-Juncus xiphioides	(Alnus incana/Mesic Graminoid)	7	L
Alnus incana-Juncus xiphioides-Darmera peltata	(Alnus incana/Mesic Graminoid)	7	L
Alnus incana-Lotus pinnatus-Helenium bigelovii	(Alnus incana/Mesic Forb)	7	L
Alnus incana-Pinus contorta	(Alnus incana/Cornus sericea)	8	L
Alnus incana-Pinus contorta-Calocedrus decurrens	(Alnus incana/Cornus sericea)	8	L
Alnus incana-Pinus contorta-Spiraea densiflora	(Alnus incana/Cornus sericea)	8	L
Alnus incana-Populus balsamifera var. trichocarpa	(Alnus incana/Cornus sericea)	8	L
Alnus incana-Pteridium aquilinum	(Alnus incana/Equisetum arvense)	7	L
Alnus incana-Salix lucida	(Alnus incana/Cornus sericea)	8	L
Alnus incana-Salix sp.	(Alnus incana/Cornus sericea)	8	L
Alnus incana-Scirpus microcarpus	(Alnus incana/Mesic Graminoid)	7	L
Alnus incana-Spiraea densiflora	(Alnus incana/Ribes hudsonianum)	7	L
Alnus rhombifolia	(Populus/Betula occidentalis)	8	L
Alnus rhombifolia-Apocynum cannabinum	(Populus angustifolia/Poa pratensis)	6	E
Alnus rhombifolia-Carex aquatilis	(Populus/Betula occidentalis)	8	L

Greenline component	Winward 2000 equivalent ¹	Stability Class	Successional stage
Alnus rhombifolia-Mimulus guttatus	(Populus angustifolia/Poa pratensis)	6	E
Alnus rhombifolia-Paspalum dilatatum.	(Populus angustifolia/Poa pratensis)	6	E
Alnus rhombifolia-Rubus discolor	(Populus/Cornus sericea)	8	L
Alnus rhombifolia-Salix exigua	(Populus/Salix)	8	L
Alnus rhombifolia-Salix exigua-Carex aquatilis	(Populus/Salix)	8	L
Alnus rhombifolia-Salix exigua-Paspalum dilatatum	(Populus/Salix)	8	L
Alnus rhombifolia-Salix exigua-Paspalum dilatatum-Carex aquatilis	(Populus/Salix)	8	L
Alnus rhombifolia-Salix exigua-Rubus discolor	(Populus/Salix)	8	L
Alnus rhombifolia-Salix exigua-Salix lucida-Carex aquatilis	(Populus/Salix)	8	L
Alnus rhombifolia-Salix lucida	(Populus/Salix)	8	L
Alnus rhombifolia-Salix lucida-Carex aquatilis	(Populus/Salix)	8	L
Alnus rhombifolia-Salix lucida-Carex aquatilis-Solidago occidentalis	(Populus/Salix)	8	L
Alnus rhombifolia-Salix lucida-Paspalum dilatatum.	(Populus/Salix)	8	L
Alnus rhombifolia-Salix lucida-Salix exigua	(Populus/Salix)	8	L
Ambrosia psilostachya	(Mesic Forb Meadow)	5	E
Anthoxanthum odoratum	(Alopecurus arundinaceus)	6	E
Athyrium filix-femina var. cyclosorum	(Equisetum arvense)	5	E
Bedrock	Anchored Rock	10	L
Bedrock-sparse Alnus incana	Anchored Rock	10	L
Bedrock- sparse Darmera peltata	Anchored Rock	10	L
Bedrock-sparse Salix lucida and Carex aquatilis	Anchored Rock	10	L
Bedrock with sparse herbs	Anchored Rock	10	L
Bedrock/Boulder	Anchored Rock	10	L
Boulder	Anchored Rock	10	L

Greenline component	Winward 2000 equivalent ¹	Stability Class	Successional stage
Boulder/cobble	Anchored Rock	10	L
Boykinia occidentalis	(Caltha leptosepala)	6	L
Brickellia californica-Agrostis gigantea-Panicum acuminatum- Mimulus guttatus	(Artemisia cana/Mesic Graminoid)	5	Е
Carex aquatilis	Carex aquatilis	9	L
Carex aquatilis-Carex vesicaria	Carex aquatilis	9	L
Carex aquatilis-Darmera peltata	Carex aquatilis	9	L
Carex aquatilis-Darmera peltata.	Carex aquatilis	9	L
Carex aquatilis-Geum macrophyllum	Carex aquatilis	9	L
Carex aquatilis-Glyceria elata	Carex aquatilis	9	L
Carex aquatilis-Hypericum mutilum	Carex aquatilis	9	L
Carex aquatilis-Juncus effusus	Carex aquatilis	9	L
Carex aquatilis-Juncus xiphioides	Carex aquatilis	9	L
Carex aquatilis-Lotus oblongifolius	Carex aquatilis	9	L
Carex aquatilis-Paspalum dilatatum.	Carex aquatilis	9	L
Carex aquatilis-Scirpus microcarpus	Carex aquatilis	9	L
Carex aquatilis-Setaria sp.	Carex aquatilis	9	L
Carex aquatilis-Solidago occidentalis	Carex aquatilis	9	L
Carex nudata	(Carex aquatilis)	9	L
Carex pellita	(Carex saxatilis)	8	L
Carex sp.	Carex aquatilis	9	L
Carex spSolidago canadensis	Carex aquatilis	9	L
Carex utriculata	Carex utriculata	9	L
Carex vesicaria	(Carex aquatilis)	9	L
Carex vesicaria-Juncus xiphioides	(Carex aquatilis)	9	L
Cephalanthus occidentalis	(Cornus sericea)	7	L
Cobble with sparse herbs	Barren	1	E

Greenline component	Winward 2000 equivalent ¹	Stability Class	Successional stage
Cobble/gravel (no vegetation)	Barren	1	E
Cobbles- sparsely vegetated	Barren	1	E
Cornus sericea	Cornus sericea	7	L
Cornus sericea-Lotus pinnatus	Cornus sericea	7	L
Cornus sericea-Pinus contorta	Cornus sericea	7	L
Cornus sericea-Populus balsamifera var. trichocarpa	Cornus sericea	7	L
Darmera peltata	(Typha latifolia)	9	L
Darmera peltata-Carex aquatilis	(Typha latifolia)	9	L
Darmera peltata-Glyceria elata	(Typha latifolia)	9	L
Darmera peltata-Lotus oblongifolius	(Typha latifolia)	9	L
Disturbed (no vegetation)	Barren	1	E
Disturbed (trail) (no vegetation)	Barren	1	E
Dryopteris sp.	(Mesic Forb Meadow)	5	E
Euthamia occidentalis	(Solidago canadensis)	8	L
Forbs/grass – dense	Mesic Forb Meadow	5	E
Forbs/grass – sparse	Mesic Forb Meadow	5	E
Fraxinus latifolia	(Populus tremuloides/Mesic Forb)	7	L
Glyceria elata	<i>Glyceria</i> spp.	8	E/L
Grass	(Mesic Forb Meadow)	5	E
Grass-Galium trifidum	(Mesic Forb Meadow)	5	E
Helenium bigelovii	(Mesic Forb Meadow)	5	E
Hosackia oblongifolia	(Mesic Forb Meadow)	5	E
Hypericum mutilum – Cephalanthus occidentalis	(Cornus sericea)	7	L
Hypericum mutilum – w/Boulders	(Rock)	10	
Juncus effusus	(Juncus balticus)	9	L
Juncus xiphioides	(Juncus ensifolius)	7	L

Greenline component	Winward 2000 equivalent ¹	Stability Class	Successional stage
Juncus xiphioides -Scirpus microcarpus - Carex sp.	(Juncus ensifolius)	7	L
Juncus xiphioides-Carex aquatilis	(Juncus ensifolius)	7	L
Juncus xiphioides-Carex aquatilis-Lotus oblongifolius	(Juncus ensifolius)	7	L
Juncus xiphioides-Eleocharis acicularis	(Juncus ensifolius)	7	L
Juncus xiphioides-Geum macrophyllum	(Juncus ensifolius)	7	L
Juncus xiphioides-Glyceria sp.	(Juncus ensifolius)	7	L
Juncus xiphioides-Hypericum anagalloides	(Juncus ensifolius)	7	L
Juncus xiphioides-Lotus oblongifolius	(Juncus ensifolius)	7	L
Juncus xiphioides-Lotus pinnatus	(Juncus ensifolius)	7	L
Juncus xiphioides-Lotus pinnatus-Senecio triangularis	(Juncus ensifolius)	7	L
Juncus xiphioides-Poa sp.	(Juncus ensifolius)	7	L
Juncus xiphioides-Scirpus microcarpus	(Juncus ensifolius)	7	L
Juncus xiphioides-Scirpus microcarpus-Equisetum arvense	(Juncus ensifolius)	7	L
Large Woody Debris (logs)	Anchored Log	10	L
Lotus oblongifolius	(Mesic Forb Meadow)	5	E
Lotus oblongifolius-Stachys alba	(Mesic Forb Meadow)	5	E
Lotus pinnatus	(Mesic Forb Meadow)	5	E
<i>Lotus</i> sp.	(Mesic Forb Meadow)	5	E
<i>Ludwigia</i> sp.	(Nasturtium officinale)	4	E
Ludwigia sp. – Eleocharis spPolygonum sp.	(Nasturtium officinale)	4	E
Lupinus sp.	(Lupinus polyphyllus-Senecio triangularis)	5	E
Lycopus americanus – Paspalum dilatatum	(Mentha arvensis)	4	E
Mimulus guttatus	Mimulus guttatus	3	E/L
Mimulus guttatus-Equisetum arvense	Mimulus guttatus	3	E/L
Mixed Forbs – (Prunella vulgaris, Panicum acuminatum, Mimulus guttatus, Xanthium strumarium, Solidago occidentalis, Bidens sp., Mentha arvensis, Aster campestris)	Mesic Forb Meadow	5	E/L

Greenline component	Winward 2000 equivalent ¹	Stability Class	Successional stage
Mixed herb community (8 co-dominant sp.)	(Mesic Forb Meadow)	5	E
Myrica hartwegii	(Low Salix / Mesic Forb)	8	L
Myrica hartwegii-Darmera peltata	(Low Salix / Mesic Forb)	8	L
Myrica hartwegii-Juncus xiphioides	(Low Salix / Mesic Forb)	8	L
Myrica hartwegii-Rhododendron occidentale	(Low Salix / Mesic Forb)	8	L
Myrica hartwegii-Scirpus macrocarpus	(Low Salix / Mesic Forb)	8	L
No greenline	Barren	1	E
Palustrine emergent community (10 co-dominant sp.)	(Scirpus microcarpus)	9	L
Panicum sp.	(Agrostis scabra)	2	E
Paspalum dilatatum	(Alopecurus arundinaceaus)	6	E
Paspalum dilatatum-Bidens frondosa-Polygonum spTypha	(Mesic Forb Meadow)	5	E
Paspalum dilatatum-Hypericum mutilum	(Mesic Forb Meadow)	5	E
Pinus contorta	Pinus contorta/Carex scopulorum	8	L
Pinus contorta-Alnus incana	Conifer/Cornus sericea	8	L
Pinus contorta-Alnus incana-Spiraea densiflora	Conifer/Cornus sericea	8	L
Pinus contorta-Carex aquatilis	Pinus contorta/Carex scopulorum	8	L
Pinus contorta-Glyceria elata	Pinus contorta/Carex scopulorum	8	L
Pinus contorta-Spiraea densiflora	Conifer/Rosa woodsii	7	E
Pinus jeffreyi	(Conifer/Mesic Forb)	6	L
Poa sp.	(Poa pratensis)	3	E
Polygonum persicaria	(Equisetum spp.)	7	E
Pteridium aquilinum	(<i>Equisetum</i> spp.)	7	E
Recreation disturbed (no vegetation)	Barren	1	E
Rhododendron occidentale	(Rosa woodsii)	6	L
Rhododendron occidentale - Pteridium aquilinum	(Rosa woodsii)	6	L

Greenline component	Winward 2000 equivalent ¹	Stability Class	Successional stage
Rhododendron occidentale –Myrica hartwegii- Spiraea			
densiflora	(Rosa woodsii)	6	L
Rosa pisocarpa subsp. ahartii	(Rosa woodsii)	7	L
Rosa spGlyceria elata	(Rosa woodsii)	6	E
Rubus armeniacus	(Salix exigua/Rosa woodsii)	8	E
Salix exigua	(<i>Salix exigua</i> /Barren)	6	Е
Salix exigua – w/boulders	(<i>Salix exigua</i> /Barren)	6	Е
Salix exigua var. hindsiana	(Salix exigua/Mesic Graminoid)	8	Е
Salix exigua-Carex aquatilis	(Salix exigua/Mesic Graminoid)	8	E
Salix exigua-Rubus discolor	(Salix exigua/Rosa woodsii)	8	E
Salix exigua-Rubus discolor-Paspalum dilatatum	(Salix exigua/Rosa woodsii)	8	Е
Salix exigua-Salix lucida	(Salix exigua/Rosa woodsii)	8	E
Salix exigua-Solidago occidentalis	(Salix exigua/Mesic Forb)	7	E
Salix geyeriana	(Salix geyeriana/Mesic Graminoid)	8	L
Salix jepsonii	(Salix lemmonii/Mesic Forb)	7	L
Salix jepsonii-Darmera peltata	(<i>Salix</i> /Tall Forb)	7	L
Salix laevigata	(Salix lasiandra/Mesic Forb)	7	E
Salix lasiandra	Salix lasiandra/Mesic Forb	7	E
Salix lasiolepis	Salix lasiolepis/Barren	6	E
Salix lasiolepis / Verbena hastata	Salix lasiolepis/Barren	6	E
Salix lasiolepis / Verbena hastata/ Fraxinus latifolia	Salix lasiolepis/Barren	6	Е
Salix lasiolepis-mixed forbs (Prunella vulgaris, Panicum acuminatum, Mimulus guttatus, Xanthium sp., Solidago occidentalis, Bidens sp., Mentha arvensis, Aster campestris)	Salix lasiolepis/Barren	6	E
Salix lucida	Salix lasiandra/Mesic Forb	7	E
Salix lucida-Carex aquatilis	Salix lasiandra/Mesic Forb	7	E
•	Salix lasiandra/Mesic Forb	7	E
Salix lucida-Populus fremontii (saplings)		/	E

Greenline component	ent Winward 2000 equivalent ¹		Successional stage	
Salix lucida-Rubus discolor	Salix lasiandra/Mesic Forb	7	E	
Salix lucida-Salix exigua-Carex aquatilis-Melilotus alba	Salix lasiandra/Mesic Forb	7	E	
Salix lucida-Salix exigua-Rubus discolor-Carex aquatilis	Salix lasiandra/Mesic Forb	7	E	
<i>Salix</i> sp.	(Salix/Mesic Graminoid)	8	L	
Salix sp. (saplings)-Juncus xiphioides	Salix/Mesic Graminoid	8	L	
Salix sp Scirpus microcarpus	Salix/Mesic Graminoid	8	L	
Salix spScirpus microcarpus-Juncus xiphioides	Salix/Mesic Graminoid	8	L	
Scirpus diffusus	(Scirpus microcarpus)	9	L	
Scirpus microcarpus	Scirpus microcarpus	9	L	
Scirpus microcarpus – grass	Scirpus microcarpus	9	L	
Scirpus microcarpus-Eleocharis acicularis	Scirpus microcarpus	9	L	
Scirpus microcarpus-Juncus effusus	Scirpus microcarpus	9	L	
Scirpus microcarpus-Juncus effusus-Glyceria elata	Scirpus microcarpus	9	L	
Scirpus microcarpus-Juncus effusus-Juncus xiphioides	Scirpus microcarpus	9	L	
Scirpus microcarpus-Solidago canadensis	Scirpus microcarpus	9	L	
Senecio triangularis	(Mesic Forb Meadow)	5	E	
Senecio triangularis-grass	(Mesic Forb Meadow)	5	E	
Solidago canadensis	Solidago canadensis	8	L	
Spiraea densiflora	(Rosa woodsii)	6	E	
Spiraea densiflora-Carex aquatilis	(Rosa woodsii)	6	E	
Spiraea densiflora-Lotus pinnatus	(Rosa woodsii)	6	E	
Spiraea densiflora-Lotus pinnatus-Juncus xiphioides- Glyceria elata	(Rosa woodsii)	6	E	
Spiraea densiflora-Pinus contorta	(Rosa woodsii)	6	E	
Spiraea splendens	(Rosa woodsii)	6	E	
Unidentified grass	(Mesic Forb Meadow)	5	E	

Greenline component	Winward 2000 equivalent ¹	Stability Class	Successional stage
Verbena hastata	(Mesic Forb Meadow)	5	E
Verbena hastata – Hypericum mutilum	(Mesic Forb Meadow)	5	E
Verbena hastata – sparse with boulders	(Anchored Rock)	9	L
Verbena hastata – w/ boulder	(Anchored Rock)	9	L
Vitis californica	(Rosa woodsii)	6	E
Wood	Anchored Log	10	L

¹ Source: Appendix B in Winward (2000); those in parentheses were not listed in Winward (2000) and therefore were translated based on equivalent species and professional determination.

APPENDIX F1

Incidental Observations of Avian Species in the Study Area

This Page Intentionally Left Blank

Incidental Observations of Avian Species in the Study Area (2016-2019)

Common Name	Scientific Name
Canada goose	Branta canadensis
mallard	Anas platyrhynchos
cinnamon teal	Spatula cyanoptera
bufflehead	Bucephala albeola
common merganser	Mergus merganser
mountain quail	Oreortyx pictus
common loon	Gavia immer
pied-billed grebe	Podilymbus podiceps
eared grebe	Podiceps nigricollis
western grebe	Aechmophorus occidentalis
red-necked grebe	Podiceps grisegena
turkey vulture	Cathartes aura
osprey	Pandion haliaetus
sharp-shinned hawk	Accipiter striatus
northern goshawk	Accipiter gentillis
Cooper's hawk	Accipiter cooperii
red-tailed hawk	Buteo jamaicensis
American kestrel	Falco sparverius
peregrine falcon	Falco peregrinus
killdeer	Charadrius vociferus
spotted sandpiper	Actitis macularius
band-tailed pigeon	Patagioenas fasciata
California spotted owl	Strix occidentalis occidentalis
common nighthawk	Chordeiles minor
Vaux's swift	Chaetura vauxi
red-breasted sapsucker	Sphyrapicus ruber
hairy woodpecker	Picoides villosus
white-headed woodpecker	Picoides albolarvatus
northern flicker	Colaptes auratus
pileated woodpecker	Dryocopus pileatus
olive-sided flycatcher	Contopus cooperi
western wood-pewee	Contopus sordidulus
dusky flycatcher	Empidonax oberholseri
black phoebe	Sayornis nigricans
Cassin's vireo	Vireo cassinii
warbling vireo	Vireo gilvus
Steller's jay	Cyanocitta stelleri
Clark's nutcracker	Nucifraga columbiana
American crow	Corvus brachyrhynchos
common raven	Corvus corax
northern rough-winged swallow	Stelgidopteryx serripennis
tree swallow	Tachycineta bicolor

Common Name	Scientific Name
bushtit	Psaltriparus minimus
mountain chickadee	Poecile gambeli
brown creeper	Certhia americana
red-breasted nuthatch	Sitta canadensis
white-breasted nuthatch	Sitta carolinensis
rock wren	Salpinctes obsoletus
golden-crowned kinglet	Regulus satrapa
Townsend's solitaire	Myadestes townsendi
mountain bluebird	Sialia currucoides
hermit thrush	Catharus guttatus
American robin	Turdus migratorius
orange-crowned warbler	Oreothlypis celata
Nashville warbler	Oreothlypis ruficapilla
yellow warbler	Dendroica petechia
yellow-rumped warbler	Setophaga coronata
hermit warbler	Setophaga occidentalis
MacGillivray's warbler	Geothlypis tolmiei
Wilson's warbler	Cardellina pusilla
western tanager	Piranga ludoviciana
spotted towhee	Pipilo maculatus
California towhee	Melozone crissalis
rufous-crowned sparrow	Aimophila ruficeps
chipping sparrow	Spizella passerina
fox sparrow	Passerella iliaca
dark-eyed junco	Junco hyemalis
Brewer's blackbird	Euphagus cyanocephalus
black-headed grosbeak	Pheucticus melanocephalus
evening grosbeak	Coccothraustes vespertinus
Cassin's finch	Haemorhous cassinii
purple finch	Haemorhous purpureus

APPENDIX F2

Bald Eagle Survey Forms

This Page Intentionally Left Blank

STATE OF CALIFORNIA THE RESOURCE AGENCY DEPARTMENT OF FISH AND GAME

BALD EAGLE BREEDING SURVEY INSTRUCTIONS

The breeding season of bald eagles in California extends primarily from February through July. Each year cooperating agencies, organizations, and private individuals participate in a statewide monitoring program to document nesting activities at each nesting territory. In 1997, 160 recently active breeding territories were surveyed, and the number increases yearly.

Annual breeding season surveys are an important part of the population recovery effort. Survey information is used by resource agencies to aid breeding territory management or protection activities. Additionally, population status and trends must be monitored annually to provide the data needed for assessing population recovery.

Specific assignments and scheduling of observer time are usually handled at the agency district or regional office level. In general, agencies are responsible for surveys or territories on or near their own lands, with Department of Fish and Game also surveying on private lands. Field personnel should coordinate with other agencies or volunteers to avoid duplication of effort or to arrange for survey help.

The bald eagle breeding population is increasing annually. So, it is important that suspected new nesting territories be adequately checked, especially early in the breeding season.

Territories should be checked at least three times during the nesting season, although more frequent checking is preferred. Emphasis should be placed on checking during incubation and early nesting periods.

- 1. **Early March** (early incubation) Territories in northern California should be checked in the first half of March, if possible, or as soon thereafter as road or weather conditions allow. The purpose of the first check is to determine whether a territory is occupied (record presence of adults, courtship behavior, evidence of nest repair or construction, incubation).
- 2. Late April or early May (early nesting period) This check is needed to confirm that a territory is unoccupied, or if occupied in March, to determine whether the breeding pair is still tending the nest (incubating eggs or tending young nestlings).
- 3. **Mid-June (late nesting period)** The main purpose of this check is to determine how many nestlings are approaching fledgling age.

Survey dates maybe modified from these recommended time periods if the territories can be checked more frequently or if particular breeding pairs are known to begin nesting especially early or late in the season.

We recommend that observers report the stage of development of nestlings in accordance with <u>An Illustrated Guide for</u> <u>Identifying Developmental Stages of Bald Eagle Nestlings in the Field</u>, by G.P. Carpenter (April 1990). This booklet is available from the San Francisco Zoological Society, Sloat Blvd. At the Pacific Ocean, San Francisco, CA 94132 (415-753-7080).

SUBMITTAL OF SURVEY FORMS

Please report observations on the CALIFORNIA BALD EALGE NESTING TERRITORY FORM (revised 4/2010).

Please mail all completed forms by September 1 of the survey year to:

California Department of Fish and Game Wildlife Branch 1812 Ninth St. Sacramento, CA 95814 ATTN: Carie Battistone

Forms will be maintained in Department files and annual survey results will be compiled on the basis of these reports. If you have any questions, please contact Carie Battistone at the above address or at <u>cbattistone@dfg.ca.gov</u>. Electronic forms can be found at <u>http://www.dfg.ca.gov/wildlife/nongame/survey_monitor.html</u>.

California Department of Fish and Game CALIFORNIA BALD EAGLE NESTING

TERRITORY SURVEY FORM

Revised 4/2010

Territory Code: IHR			
County: El Dorado	Su	rvey Year: <u>2019</u>	
Property Owner: <u>USFS</u>	If 1	USFS: <u>El Dorado</u>	National Forest
Name (or general location of	of territory): <u>Ice H</u>	ouse Reservoir	
Name of nearest water bod	y: <u>Ice House Reser</u>	voir	
Location of Nest Site:			
UTM E: <u>N/A</u>	UTM N: <u>N/A</u>	Zone: <u>N/A</u>	
No. of nests in territory -	Intact: 0	Remnant: 0	

Nest Tree:	Species:	N/A	Year Last Used	I: <u>N/A</u>
------------	-----------------	-----	----------------	---------------

NOTE: Please attach a map showing the location of any newly documented nest tree.

Describe tree and nest condition and size and add other remarks: <u>No evidence of BAEA nesting observed.</u>

For each visit to a territory, note, in detail, the times, number and age of birds, behavior of birds (lying, perching, etc.), evidence of nesting (nest maintenance, courtship, incubation posture), disturbances, and other pertinent information:

Observers	Date	Observations/Notes
Krista Orr Steven Wood	03.25.19 (07:00 to 11:30)	 <u>Early Breeding Season Survey</u>: Reservoir fully covered with snow and ice; survey conducted from vantage points on dam and parking lot for boat ramp on west end of reservoir. No BAEA activity observed. No recreational activity.
Eric Sommerauer Krista Orr Michael Scaffidi Steven Wood	05.13.19 (14:00 to 18:30)	 Incidental BAEA observations made during preconstruction nesting raptor surveys on Lakeshore Road along northern perimeter of Ice House Reservoir: 17:30 – Adult BAEA flying W from SE end of reservoir, perching in fir on south shore of reservoir. 18:15 – Adult BAEA departing perch in fir and flying NE over reservoir.

Observers	Date	Observations/Notes
Eric Sommerauer Michael Scaffidi Krista Orr Steven Wood	05.14.19 (09:45 to 20:15)	 Mid Breeding Season Survey: After visiting the potentially failed nest at Union Valley Reservoir for an additional reproductive status check, surveyors (2) observed from land-based vantage points and while in boat on reservoir; additional surveyors (2) joined at 14:15 after completing BAEA surveys at Loon Lake. 16:30 – Adult BAEA (male) perched in snag located on SE perimeter of reservoir. 17:30 – Adult BAEA (male) departing perch after altercation with osprey (osprey nest noted approximately 0.25 mi W) and relocating to perch approximately 300 ft W. BAEA vocalizations heard from farther SW, indicating presence of additional bird. 18:00 – Adult BAEA (female) departing snag on S side of reservoir. 18:25 – Adult BAEA (female) departing snag on S side of reservoir and relocating to dominant sugar pine on S side of reservoir across from Strawberry Point. Surrounding area thoroughly canvassed by foot for further evidence of BAEA activity and indication of nesting: whitewash noted under snag and sugar pine, but no nest located. Survey concluded at 20:15, with both adult BAEA remaining in their separate, respective locations after sunset. Recreation activity low (3 fishing boats); no BAEA disturbance observed.

Observers	Date	Observations/Notes
Krista Orr Eric Sommerauer Steven Wood Emily Applequist	06.11.19 (07:00 to 12:00) (19:00 to 20:30)	 Late Season Survey: SMUD staff (E. Koenigs) reported an altercation between an adult BAEA and an osprey at Ice House Reservoir on 06.05.19. Late breeding season surveys conducted in conjunction with preconstruction nesting raptor surveys along North Union Valley Road (staff split between objectives with 2 to 3 surveyors observing from established vantage points on Ice House Reservoir at times indicated). Suitable habitat around Ice House Reservoir surveyed for indication of BAEA presence and nesting by boat and foot, including area on S perimeter of reservoir across from Strawberry Point where multiple BAEA observations made in previous surveys. No BAEA observations during morning observations. 19:10 – Pair of adult BAEA perched in previously documented tree on S side of reservoir across from Strawberry Point. 19:45 – Adult BAEA (male) departing perch and relocating in small fir approximately 150 ft E. 20:05 – Adult BAEA (female) departing perch and flying west approximately 0.25 mi. Recreational activity heavy (approximately 10 multi-passenger boats and many SUPs, tubers, and kayaks); no BAEA disturbance observed.

Observers	Date	Observations/Notes
Krista Orr Steven Wood	06.12.19 (06:30 to 07:15) (17:55 to 19:00)	 <u>Additional reproductive status check during late breeding season</u>: While in the area for mid breeding season survey at Loon Lake (delayed due to elevation), surveyors stopped by in early morning and late evening at indicated times for additional observation of area S of Strawberry Point due to repeat BAEA observations in the vicinity. Observations made from land-based vantage point on Strawberry Point. 07:00 – Adult BAEA (female) perched in snag with broken top upslope and approximately 100 ft E of previously documented dominant sugar pine across from Strawberry Point. 07:10 – Adult BAEA (female) departing perch and relocating to previously documented dominant sugar pine. 18:15 – Adult BAEA (female) perched in previously documented dominant sugar pine across from Strawberry Point. 19:00 – Adult BAEA (female) departing perch and relocating to sugar pine (newly documented perch) approximately 0.5 mi W.
Krista Orr Steven Wood	07.09.19 (17:45 to 20:15)	 Additional reproductive status check during late breeding season: While in the area for late breeding season survey at Loon Lake (delayed due to elevation), surveyors returned in late evening at indicated time for additional observation of area S of Strawberry Point due to repeat BAEA observations in the vicinity. Observations made from boat and on foot in areas accessed by boat. 18:15 – Adult BAEA (female) perched in previously documented dominant sugar pine across from Strawberry Point. 19:00 – Adult BAEA (male) perched in prominent snag on SE end of reservoir. S side of reservoir across from Strawberry Point thoroughly canvassed again by foot for further evidence of BAEA activity: no indication of nesting.

SUMMARY:

- **A. Successful Nestings:** 0 **No. of young known fledged:** 0 **or probably fledged:** 0
- **B.** If no fledglings were produced this season please answer the following:

How many adults seen in the territory? 2

Was there evidence of nest repair or construction? No

Were adults seen in the nest? No

Were adults in incubating posture? No

Number of nestlings observed? 0

Failed during incubation or nesting stage? N/A

Other remarks: Territory last surveyed in 2016 in accordance with frequency outlined in SMUD's monitoring plan.

Observer Contact Information:

Surveys conducted by Stillwater Sciences, contractors for the Sacramento Municipal Utility District. For additional information contact Ethan Koenigs, SMUD Project Manager (Ethan.Koenigs@smud.org).

STATE OF CALIFORNIA THE RESOURCE AGENCY DEPARTMENT OF FISH AND GAME

BALD EAGLE BREEDING SURVEY INSTRUCTIONS

The breeding season of bald eagles in California extends primarily from February through July. Each year cooperating agencies, organizations, and private individuals participate in a statewide monitoring program to document nesting activities at each nesting territory. In 1997, 160 recently active breeding territories were surveyed, and the number increases yearly.

Annual breeding season surveys are an important part of the population recovery effort. Survey information is used by resource agencies to aid breeding territory management or protection activities. Additionally, population status and trends must be monitored annually to provide the data needed for assessing population recovery.

Specific assignments and scheduling of observer time are usually handled at the agency district or regional office level. In general, agencies are responsible for surveys or territories on or near their own lands, with Department of Fish and Game also surveying on private lands. Field personnel should coordinate with other agencies or volunteers to avoid duplication of effort or to arrange for survey help.

The bald eagle breeding population is increasing annually. So, it is important that suspected new nesting territories be adequately checked, especially early in the breeding season.

Territories should be checked at least three times during the nesting season, although more frequent checking is preferred. Emphasis should be placed on checking during incubation and early nesting periods.

- 1. **Early March** (early incubation) Territories in northern California should be checked in the first half of March, if possible, or as soon thereafter as road or weather conditions allow. The purpose of the first check is to determine whether a territory is occupied (record presence of adults, courtship behavior, evidence of nest repair or construction, incubation).
- 2. Late April or early May (early nesting period) This check is needed to confirm that a territory is unoccupied, or if occupied in March, to determine whether the breeding pair is still tending the nest (incubating eggs or tending young nestlings).
- 3. **Mid-June (late nesting period)** The main purpose of this check is to determine how many nestlings are approaching fledgling age.

Survey dates maybe modified from these recommended time periods if the territories can be checked more frequently or if particular breeding pairs are known to begin nesting especially early or late in the season.

We recommend that observers report the stage of development of nestlings in accordance with <u>An Illustrated Guide for</u> <u>Identifying Developmental Stages of Bald Eagle Nestlings in the Field</u>, by G.P. Carpenter (April 1990). This booklet is available from the San Francisco Zoological Society, Sloat Blvd. At the Pacific Ocean, San Francisco, CA 94132 (415-753-7080).

SUBMITTAL OF SURVEY FORMS

Please report observations on the CALIFORNIA BALD EALGE NESTING TERRITORY FORM (revised 4/2010).

Please mail all completed forms by September 1 of the survey year to:

California Department of Fish and Game Wildlife Branch 1812 Ninth St. Sacramento, CA 95814 ATTN: Carie Battistone

Forms will be maintained in Department files and annual survey results will be compiled on the basis of these reports. If you have any questions, please contact Carie Battistone at the above address or at <u>cbattistone@dfg.ca.gov</u>. Electronic forms can be found at <u>http://www.dfg.ca.gov/wildlife/nongame/survey_monitor.html</u>.

California Department of Fish and Game CALIFORNIA BALD EAGLE NESTING

TERRITORY SURVEY FORM

Revised 4/2010

Territory Code: LLR			
County: El Dorado	Survey Yea	r: <u>2019</u>	
Property Owner: <u>USFS</u>	<u>If USFS: El</u>	Dorado	National Forest
Name (or general location of	of territory): <u>Loon Lake Rese</u>	ervoir	
Name of nearest water body	y: <u>Loon Lake Reservoir</u>		
Location of Nest Site:			
UTM E: 733613	UTM N: <u>4319278</u>	Zone: <u>10S</u>	
No. of nests in territory -	Intact: Remnant	: 1	

Nest Tree:	Species:	Jeffrey Pine	e Year Last Used	<u>2018</u>
------------	-----------------	--------------	------------------	-------------

NOTE: Please attach a map showing the location of any newly documented nest tree.

Describe tree and nest condition and size and add other remarks: <u>Dominant Jeffrey pine located on south</u> side of Loon Lake west of the summer camp; nest structure deteriorated and unused in 2019.

For each visit to a territory, note, in detail, the times, number and age of birds, behavior of birds (lying, perching, etc.), evidence of nesting (nest maintenance, courtship, incubation posture), disturbances, and other pertinent information:

Observers	Date	Observations/Notes
Krista Orr Steven Wood	05.14.19 (07:15 to 13:00)	 Early Breeding Season Survey (postponed due to elevation and weather conditions): Main body of Loon Lake approximately 90% iced over, but far eastern portion (i.e., Pleasant Lake) mostly free of ice at time of survey. Nest from previous year appeared empty with notable amount of snow on top. 09:10 – Adult BAEA observed flying east to west toward dam. 10:15 – Adult BAEA observed perched in snag on NW side of reservoir. No additional BAEA activity observed on lake or at nest tree from previous year. Survey ended early due to inaccessibility of other land-based vantage points and unsafe conditions for boating on lake. No recreational activity observed.

Observers	Date	Observations/Notes
Observers Steven Wood Krista Orr	Date 06.12.19 (08:00 to 16:45)	 Mid Breeding Season Survey: 08:00 – Surveyors split up and alternate observations from dam and spillway. No BAEA activity observed over lake or at nest site from previous year. 10:45 – Surveyors launch boat from vantage point west of spillway; suitable habitat around Loon Lake and Pleasant Lake, including previously documented roosts and perches, surveyed for BAEA and/or evidence of BAEA presence by boat and foot. No BAEA activity or evidence of nesting observed. 13:00 – Surveyors land boat at vantage point on south shore, observe lake, and cross-country hike to nest site from previous year. 13:45 – Nest from previous year present but deteriorated in comparison to previous year and determined to be inactive (no BAEA activity and lack of evidence of occupancy or attempted nest building); suitable habitat in surrounding area surveyed for BAEA and/or evidence of BAEA presence by foot. 15:45 – Surveyors launch boat from vantage point on south shore, observe from lake, and return to launching point. No BAEA activity observed. Recreational activity low (3 fishing boats and 2 kayaks); maintenance activity at
		cross-country hike to nest site from previous year.
Charles Marcal		 13:45 – Nest from previous year present but deteriorated in comparison to
		previous year and determined to be inactive (no BAEA activity and lack of evidence
		of occupancy or attempted nest building); suitable habitat in surrounding area
		surveyed for BAEA and/or evidence of BAEA presence by foot.
		• 15:45 – Surveyors launch boat from vantage point on south shore, observe from
		lake, and return to launching point.
		No BAEA activity observed.
		 Recreational activity low (3 fishing boats and 2 kayaks); maintenance activity at
		North Shore Campground with moderate noise; no BAEA disturbance observed.
		• 16:45 – Surveyors split up and observe from two vantage points on nearby Gerle
		Reservoir due to anecdotal reports from SMUD staff of BAEA activity in area;
		suitable habitat around reservoir surveyed for evidence of nesting attempt. No
		BAEA or evidence of BAEA nesting observed.

Observers	Date	Observations/Notes
Krista Orr Steven Wood	07.09.19 (07:30 to 16:30)	 Late Breeding Season Survey: 07:30 – Surveyors split up and alternate observations from dam and spillway. No BAEA activity observed over lake or at nest site from previous year. 09:45 – Surveyors launch boat from spillway; suitable habitat around Loon Lake and Pleasant Lake surveyed for BAEA and/or evidence of BAEA presence by boat. 11:30 – Adult BAEA flying W to E in southern section of Pleasant Lake. 11:50 – Adult BAEA flying S to N toward northern section of Pleasant Lake. 12:30 – Area surrounding Pleasant Lake, including previously documented roosts and perches around Pleasant Lake, canvassed for BAEA and/or evidence of BAEA nesting (no additional BAEA activity and no evidence of nesting attempt). 14:00 – Surveyors land boat at vantage point on south shore, observe lake, and cross-country hike to nest site from previous year: site unchanged from previous visit and no evidence of nesting or BAEA presence. 16:00 – Surveyors launch boat from vantage point on south shore, observe from lake, and return to launching point. No additional BAEA activity observed. Recreational activity moderate to high (8 fishing boats, 5 kayaks, 3 people fishing from spillway, and approximately 10 jeepers); maintenance activity at North Shore Campground with moderate noise; no BAEA disturbance observed.

SUMMARY:

- A. Successful Nestings: 0 No. of young known fledged: 0 or probably fledged: N/A
- **B.** If no fledglings were produced this season please answer the following:

How many adults seen in the territory? 2

Was there evidence of nest repair or construction? No

Were adults seen in the nest? No

Were adults in incubating posture? No

Number of nestlings observed? 0

Failed during incubation or nesting stage? N/A

Other remarks: No evidence of nesting attempt observed (e.g., nest building or courtship behavior)

Observer Contact Information:

Surveys conducted by Stillwater Sciences, contractors for the Sacramento Municipal Utility District. For additional information contact Ethan Koenigs, SMUD Project Manager (Ethan.Koenigs@smud.org).

STATE OF CALIFORNIA THE RESOURCE AGENCY DEPARTMENT OF FISH AND GAME

BALD EAGLE BREEDING SURVEY INSTRUCTIONS

The breeding season of bald eagles in California extends primarily from February through July. Each year cooperating agencies, organizations, and private individuals participate in a statewide monitoring program to document nesting activities at each nesting territory. In 1997, 160 recently active breeding territories were surveyed, and the number increases yearly.

Annual breeding season surveys are an important part of the population recovery effort. Survey information is used by resource agencies to aid breeding territory management or protection activities. Additionally, population status and trends must be monitored annually to provide the data needed for assessing population recovery.

Specific assignments and scheduling of observer time are usually handled at the agency district or regional office level. In general, agencies are responsible for surveys or territories on or near their own lands, with Department of Fish and Game also surveying on private lands. Field personnel should coordinate with other agencies or volunteers to avoid duplication of effort or to arrange for survey help.

The bald eagle breeding population is increasing annually. So, it is important that suspected new nesting territories be adequately checked, especially early in the breeding season.

Territories should be checked at least three times during the nesting season, although more frequent checking is preferred. Emphasis should be placed on checking during incubation and early nesting periods.

- 1. **Early March** (early incubation) Territories in northern California should be checked in the first half of March, if possible, or as soon thereafter as road or weather conditions allow. The purpose of the first check is to determine whether a territory is occupied (record presence of adults, courtship behavior, evidence of nest repair or construction, incubation).
- 2. Late April or early May (early nesting period) This check is needed to confirm that a territory is unoccupied, or if occupied in March, to determine whether the breeding pair is still tending the nest (incubating eggs or tending young nestlings).
- 3. **Mid-June (late nesting period)** The main purpose of this check is to determine how many nestlings are approaching fledgling age.

Survey dates maybe modified from these recommended time periods if the territories can be checked more frequently or if particular breeding pairs are known to begin nesting especially early or late in the season.

We recommend that observers report the stage of development of nestlings in accordance with <u>An Illustrated Guide for</u> <u>Identifying Developmental Stages of Bald Eagle Nestlings in the Field</u>, by G.P. Carpenter (April 1990). This booklet is available from the San Francisco Zoological Society, Sloat Blvd. At the Pacific Ocean, San Francisco, CA 94132 (415-753-7080).

SUBMITTAL OF SURVEY FORMS

Please report observations on the CALIFORNIA BALD EALGE NESTING TERRITORY FORM (revised 4/2010).

Please mail all completed forms by September 1 of the survey year to:

California Department of Fish and Game Wildlife Branch 1812 Ninth St. Sacramento, CA 95814 ATTN: Carie Battistone

Forms will be maintained in Department files and annual survey results will be compiled on the basis of these reports. If you have any questions, please contact Carie Battistone at the above address or at <u>cbattistone@dfg.ca.gov</u>. Electronic forms can be found at <u>http://www.dfg.ca.gov/wildlife/nongame/survey_monitor.html</u>.

California Department of Fish and Game CALIFORNIA BALD EAGLE NESTING

TERRITORY SURVEY FORM

Revised 4/2010

Territory Code: UVR				
County: El Dorado	Survey Yea	nr: <u>2019</u>		
Property Owner: <u>USFS</u>	If USFS: <u>EI</u>	If USFS: El Dorado		
Name (or general location	of territory): <u>Union Valley R</u>	Reservoir		
Name of nearest water bod	y: <u>Union Valley Reservoir</u>			
Location of Nest Site:				
UTM E: 725334	UTM N: <u>4305602</u>	Zone: 10S		
No. of nests in territory -	Intact: Remnant	t: <u>1</u>		

NOTE: Please attach a map showing the location of any newly documented nest tree.

Describe tree and nest condition and size and add other remarks: <u>Dominant ponderosa pine located NW of</u> site #19 in Sunset Campground with remnant nest in moderate condition.

For each visit to a territory, note, in detail, the times, number and age of birds, behavior of birds (lying, perching, etc.), evidence of nesting (nest maintenance, courtship, incubation posture), disturbances, and other pertinent information:

Observers	Date	Observations/Notes
Krista Orr Steven Wood	03.24.19 (07:00 to 17:30)	 Early Breeding Season Survey: Reservoir largely free of ice (approximately 75%); approximately 2 to 3 feet of snow on surrounding ground. Surveys conducted by boat launched from Union Valley Dam and by snowshoeing on Fashoda Sunset Peninsula. 10:15 – Adult BAEA observed in foraging perch on SE side of Union Valley Dam, flying W toward Fashoda Sunset Peninsula. Nest in dominant ponderosa pine in Sunset Campground notably larger in size in comparison with previous season with occasional and slightly perceptible movement, suggesting occupancy. 13:30 – Adult BAEA (male) first heard vocalizing then seen in previously documented roost S of nest tree. Other suitable habitat around Union Valley Reservoir surveyed for evidence of BAEA nesting by boat. No additional BAEA activity observed. Recreational activity low (~8 people fishing from Union Valley Dam and approximately 3 to 4 fishing boats on reservoir); no BAEA disturbance observed.

Observers	Date	Observations/Notes
Krista Orr Eric Sommerauer Michael Scaffidi Steven Wood	05.13.19 (06:45 to 13:30) (18:45 to 20:00)	 Mid Breeding Season Survey: SMUD staff (E. Koenigs) reported an adult BAEA perched for approximately 30 minutes above the nest identified during previous survey in Sunset Campground on 05.06.19. Mid breeding season surveys conducted in conjunction with preconstruction nesting raptor surveys on Lakeshore Road north of Ice House Reservoir (staff split between objectives with at least 1 surveyor stationed at the Sunset Campground nest tree and/or on Granlees Point during times indicated). 11:25 – Adult BAEA (male) flying in from N and landing in previously documented foraging perch along reservoir shore, approximately 500 ft from nest tree. 11:30 – Adult BAEA (male) departing foraging perch, flying over nest, and continuing SW towards Jones Fork. USFS nest platform at Granlees Point visited: no evidence of BAEA activity at platform, but evidence of roosting (e.g., feathers and whitewash) in nearby snag approximately 250 ft NE of platform. Other suitable habitat around Union Valley Reservoir surveyed for indication of BAEA nesting by vehicle and foot. No additional BAEA activity observed at Sunset Campground or elsewhere on Union Valley Reservoir until surveyor departure at 13:30. 18:45 – Surveyors (2) returned to Sunset Campground for further observation, remaining until after sunset to look for evidence of nest occupancy and/or nearby roosting. No evidence of nest occupancy, nearby roosting, or other BAEA activity observed. Recreational activity low (3 fishing boats); no BAEA disturbance observed.
Eric Sommerauer Michael Scaffidi	05.14.19 (06:45 to 09:15)	 <u>Additional reproductive status check during mid breeding season</u>: Surveyors returned to nest tree at Sunset Campground during time indicated for further observation while in the area for pre-construction nesting raptor surveys (along Lakeshore Road) and BAEA surveys at Ice House Reservoir. No evidence of nest occupancy, nearby roosting, or other BAEA activity observed.

Observers	Date	Observations/Notes
Krista Orr Eric Sommerauer Steven Wood Mike Davis	06.10.19 (06:45 to 11:00) (19:00 to 20:15)	 Late Season Survey: Late breeding season surveys conducted in conjunction with preconstruction nesting raptor surveys along North Union Valley Road (staff split between objectives with at least one surveyor stationed at the Sunset nest tree and/or on Granlees Point during times indicated). No evidence of nest occupancy, nearby roosting, or other BAEA activity observed at Sunset Campground. USFS nest platform at Granlees Point visited: no evidence of BAEA activity at platform, but continued evidence of roosting in nearby snag approximately 250 ft NE of platform.
Mike Davis	06.11.19 (06:30 to 09:30)	 <u>Additional reproductive status check during late breeding season</u>: Surveyor returned to nest tree at Sunset Campground during time indicated for further observation while in the area for pre-construction nesting raptor surveys along North Union Valley Road. No evidence of nest occupancy, nearby roosting, or other BAEA activity observed.
Krista Orr Steven Wood	06.12.19 (19:20 to 20:30)	 <u>Additional reproductive status check during late breeding season</u>: Surveyors returned to nest tree at Sunset Campground during time indicated for further observation while in the area for mid breeding season survey (delayed due to elevation) at Loon Lake. No evidence of nest occupancy, nearby roosting, or other BAEA activity observed.

SUMMARY:

A. Successful Nestings: 0 **No. of young known fledged:** 0 **or probably fledged:** 0

B. If no fledglings were produced this season please answer the following:

How many adults seen in the territory? 2

Was there evidence of nest repair or construction? Nesting building observed during the early breeding season survey; nest was intact during subsequent surveys but unoccupied.

Were adults seen in the nest? Yes, during the early breeding season survey only.

Were adults in incubating posture? Yes.

Number of nestlings observed? 0

Failed during incubation or nesting stage? Unknown

Other remarks: Successful nesting in 2016 and 2017 with two fledged juveniles in each respective year; failed attempt in 2018 (courtship and nesting building observed in early breeding season, but no activity during subsequent visits); failed attempt in 2019 (nesting building and adult in incubation posture observed during early breeding season, but no activity observed during subsequent visits).

Observer Contact Information:

Surveys conducted by Stillwater Sciences, contractors for the Sacramento Municipal Utility District. For additional information contact Ethan Koenigs, SMUD Project Manager (Ethan.Koenigs@smud.org).

This Page Intentionally Left Blank

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

APPENDIX H1

2019 Representative Amphibian and Aquatic Reptile Habitat Photos

This Page Intentionally Left Blank

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

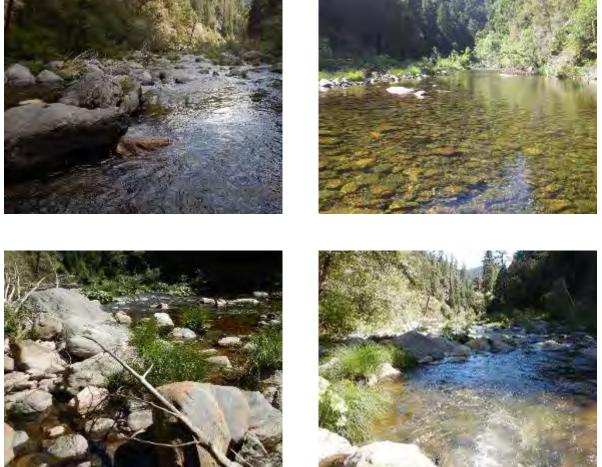


Figure H-1. Junction Dam Reach (on Silver Creek)(JD-A15) amphibian and aquatic reptile monitoring site habitat photographs, 2019.

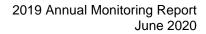


Figure H-2. Silver Creek at adit (Below Camino Reservoir Dam)(CD-A3) amphibian and aquatic reptile monitoring site habitat photographs, 2019.

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

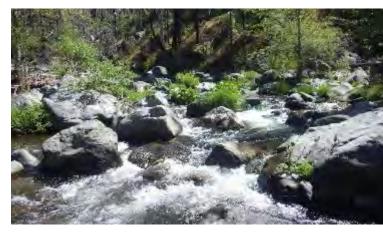


Figure H-3. Silver Creek at South Fork American River (Below Camino Dam)(CD-A4) amphibian and aquatic reptile monitoring site habitat photographs, 2019.

Figure H-4. South Fork American River (Slab Creek Dam Reach)(SCD-A1) amphibian and aquatic reptile monitoring site habitat photographs, 2019.

Edgewater 1

Edgewater 2

Edgewater 3

Edgewater 4

Figure H-5. Edgewater thermograph habitat photographs at Silver Creek below Camino Reservoir Dam (near Camino Adit) (CD-A3), 2019 (1 of 2).

Edgwater 5

Edgewater 6

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

Thalweg (over winter deployment)

Figure H-6. Edgewater thermograph habitat photographs at Silver Creek below Camino Reservoir Dam (near Camino Adit) (CD-A3), 2019 (2 of 2).

Edgewater 1 (over winter deployment)

Edgewater 2 (overwinter deployment)

Edgewater 3

Edgewater 4

Figure H-7. Edgewater thermograph habitat photographs at Silver Creek Below Camino Reservoir Dam (Near Confluence with SF American River) (CD-A4), 2019 (1 of 2).

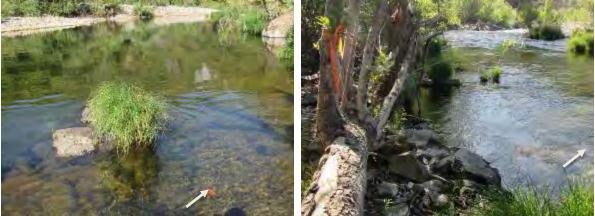
Edgewater 5

Edgewater 6

Figure H-8. Edgewater thermograph habitat photographs at Silver Creek below Camino Reservoir Dam (Near Confluence with SF American River) (CD-A4), 2019 (2 of 2).

Edgewater 1

Edgewater 2



Edgewater 3

Edgewater 4

Figure H-9. Edgewater thermograph habitat photographs at SF American River below Slab Creek Reservoir Dam (SCD-A1), 2019 (1 of 2).

Edgewater 5 (over winter deployment)

Edgewater 6 (over winter deployment)

Figure H-10. Edgewater thermograph habitat photographs at SF American River below Slab Creek Reservoir Dam (SCD-A1), 2019 (2 of 2).

This Page Intentionally Left Blank

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

APPENDIX I

Sierra Nevada Yellow-legged Frog Habitat Photo Points

This Page Intentionally Left Blank

Site Code Aquatic Feature		Photo Point	Photo		UTM ^b	
	Code	ID ^a	Photo Point Description Notes	Northing	Easting	
	1	Ru	bicon Rese	ervoir Inlet Monitoring Area		
		RR-100	-	From Rubicon Reservoir Inlet looking upstream towards confluence with the Rubicon River	4318288	740875
		RR-101	-	From river right at the Rubicon River and Rubicon Reservoir Inlet confluence, looking downstream towards confluence	4318279	740965
RUB-A1	Rubicon River		а	Near downstream survey start, looking downstream	4318221	740932
		RR-102	b	Looking upstream towards backwater pool		740332
		RR-103	-	Looking downstream	4318219	740992
		RR-104	-	Looking upstream	4318223	741003
		RR-105	а	At the upstream end of the river reach; looking downstream	4318228	741049
			b	Looking upstream		
		Rubl-1	а	At the downstream end of the inlet on the granite boulder/outcropping, looking downstream	740647	4318414
			b	Looking northeast towards other side of inlet	740647	4318414
		Rubl-2	-	Looking towards the Rubicon Reservoir (downstream) from the river left bank	4318349	740633
	Rubicon	Rubl-3	а	Looking downstream	4318367	740673
RUB-A1	Reservoir Inlet	Rubi-5	b	Looking upstream	10001	140013
	Reservoir miet	Reservoir met Rubl-4	-	Looking northwest from the Rubicon Reservoir side of the Rubicon Reservoir Inlet island	4318418	740721
		Dulle	а	Looking downstream	4240400	740740
		Rubl-5	b	Looking upstream	4318198	740740
		Rubl-6	а	From downstream of the cascade, looking downstream	4318236	740873
			b	Looking upstream		

Table I1-1. Sierra Nevada Yellow-legged Frog Photo Point Locations and Descriptions.

Site		Photo Point	Photo		UTM ^b	
Code	Aquatic Feature	c Feature Code ID ^a Photo Point Description Notes	Photo Point Description Notes	Northing	Easting	
			с	Looking across the inlet channel (to the northwest)		
		Rubl-7	-	Looking downstream towards the Rubicon Reservoir	4318326	740813
		P-1	-	At north end of the pond, looking towards center of the pond (south)	4318468	740893
RUB-A1	Pond (perennial)	P-2	-	Looking east	4318424	740873
		P-3	-	At south end of pond, looking towards the center of the pond (north)	4318379	740848
		Rub	icon Rese	rvoir Outlet Monitoring Area		
		RR-1	а	At the downstream end of the Rubicon river, looking downstream	4319446	740679
			b	Looking upstream		
		RR-2	-	At riffle with suitable habitat, looking downstream, July 2019 photo is taken from a different location in the same habitat unit	4319416	740603
		RR-3	-	At the downstream end of the gage pool, looking upstream	4319405	740571
RUB-A2	Rubicon River	RR-4	-	In the vicinity of the habitat switch on the Rubicon River, looking downstream	4319412	740458
		RR-5	-	In the vicinity of the habitat switch on the Rubicon River, looking upstream	4319403	740457
		RR-6 RR-7 RR-8	а	Looking downstream	4040004	740444
			b	Looking upstream	4319334	740414
			а	Near the top of the reach, looking downstream		
			b	Looking upstream towards the dam	4319289	740513
			-	At top of the reach near dam, looking downstream at pool below the dam	4319224	740516
		DS-1	-	At the downstream end of the dam seep, looking upstream	4319368	740654
	Bubicon Dom	DS-2	-	Looking upstream	4319339	740658
RUB-A2	Rubicon Dam Seep	DS-3	-	Looking upstream, July 2019 photo is taken from a different location and looking downstream in the same habitat unit	4319306	740673

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

Appendix I-4

Site			Photo		UTM⁵	
Code	A duatio Foaturo		ID ^a	Photo Point Description Notes	Northing	Easting
		DS-4	-	Looking upstream towards the dam at the end of the reach	4319283	740677
		DS-4 (July)	-	Looking upstream towards dam at the end of the reach, July photo location was upstream	4319263	740690
RUB-A2	Pond (ephemeral)	PE-1	-	Looking towards the center of pond.	4319423	740281
	-	Ro	ockbound	Lake Inlet Monitoring Area		
		RCKI-1	а	From top of the bank in the upland area at the downstream end of the Rockbound Lake Inlet, looking upstream	4319605	739534
			b	Looking downstream		
		RCKI-2	а	From in the channel at the downstream end of the Rockbound Lake Inlet, looking upstream towards confluence with Highland Creek, no July photo	4319570	739516
			b	Looking across channel towards marsh area, July photo is representative of habitat but taken at a different location		
RCK-A1	Rockbound Lake		с	Looking downstream towards Rockbound Reservoir, no July photo		
RCK-A1	Inlet		а	Looking downstream, July photo is representative of habitat but taken at a different location	4319551	739544
			b	Looking upstream, July photo is representative of habitat but taken at a different location		
		RCKI-4	а	Looking downstream	4040504	739620
			b	Looking upstream	4319524	139020
			а	At upstream end of the Rockbound Lake Inlet from river left bank, looking upstream	4319497	739731
		RCKI-5	b	Looking downstream		
			с	Looking across the channel towards backwater pond		

Site			Photo	Photo Point Description Notes	UTM ^b	
Code	Code Aquatic Feature		ID ^a		Northing	Easting
		RCKI-6	-	At upstream end of the Rockbound Lake Inlet from river right bank near the confluence with the pond, looking upstream	4319510	739719
		RCKI-7	-	From the pool and river confluence, looking towards backwater pool	4319518	739728
		RCKI-8	-	Looking towards center of backwater pool; July photo is representative of habitat but taken at a different location	4319541	739751
		RCKI-9	-	Backwater pond bank habitat, looking north	4319609	739789
		RCKI-10	а	From Island and north end of the pond, looking south towards confluence with channel	4319669	739735
			b	Looking west on side channel bank habitat		
		RCKI-11	а	From west most bank of backwater pond (not on the island), looking south towards main pool	4319677	739711
			b	Looking upstream		
		HC-101	c a	Looking across channel towards island At the downstream end of Highland Creek near the confluence with Rockbound Lake Inlet, looking downstream	4319498	739585
			b	Looking upstream		
		HC-102	-	Log debris jam, looking downstream, no July photo	4319484	739588
RCK-A1	Upper Highland Creek	HC-103	а	At hiking trail crossing, looking downstream	4319336	739592
			b	Looking upstream		
		HC-104	-	At pool above hiking trail, looking upstream towards cascade	4319336	739582
		HC-105	-	Looking upstream towards cascade	4319258	739561
		HC-106	а	At upstream end of stream reach, looking downstream	4319183	739576
			b	Looking upstream at cascade		

Site Code Aquatic Feature		Photo Point	Photo		U	UTM⁵			
	Code	ID ^a	Photo Point Description Notes	Northing	Easting				
	Highland Creek Monitoring Area								
		HC-1		From upland habitat looking northwest towards Buck Island Reservoir	4320466	738260			
		HC-2		At river left looking towards channel split	4320454	738277			
		HC-3	а	Representative start and stop overview photo, looking downstream towards pool and channel split	4320462	738297			
			b	Looking upstream towards cascade					
		HC-4	-	Looking upstream	4320438	738300			
	Lower Highland	HC-5	а	Looking downstream of cascade	4320354	738367			
HC-A1	Creek		b	Looking upstream towards pool					
Creek	CIEEK	HC-6	-	Backwater pool area, looking upstream towards river right	4320343	738454			
		HC-7	а	Looking upstream towards cascade	4320337	738500			
			b	Looking downstream towards pool, no July photo					
	HC-8	-	Near upstream end of river reach looking towards dam	4320303	738545				
		HC-9	а	At the end of river reach, looking downstream	4320307	738572			
				b	Looking upstream				

^a Photo identifiers (ID) were used to distinguish photo directions if multiple photos were taken at one photo point.

^b Projection: NAD83 ÚTM Zone 10 North

This Page Intentionally Left Blank

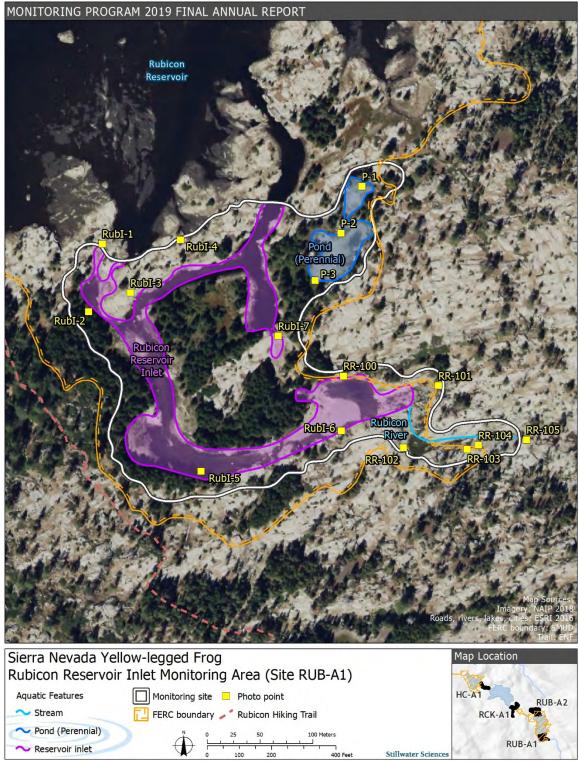


Figure I1-1. Photo Points at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1), 2019.

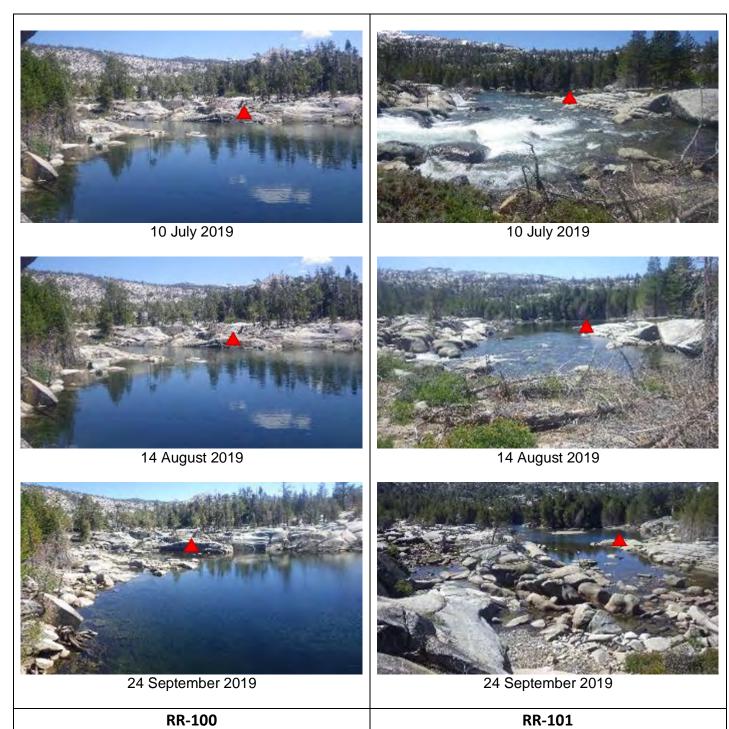
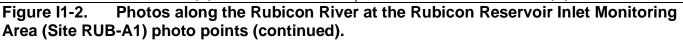


Figure I1-2. Photos along the Rubicon River at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1) photo points.



24 September 2019

24 September 2019

RR-102(a)

RR-102(b)

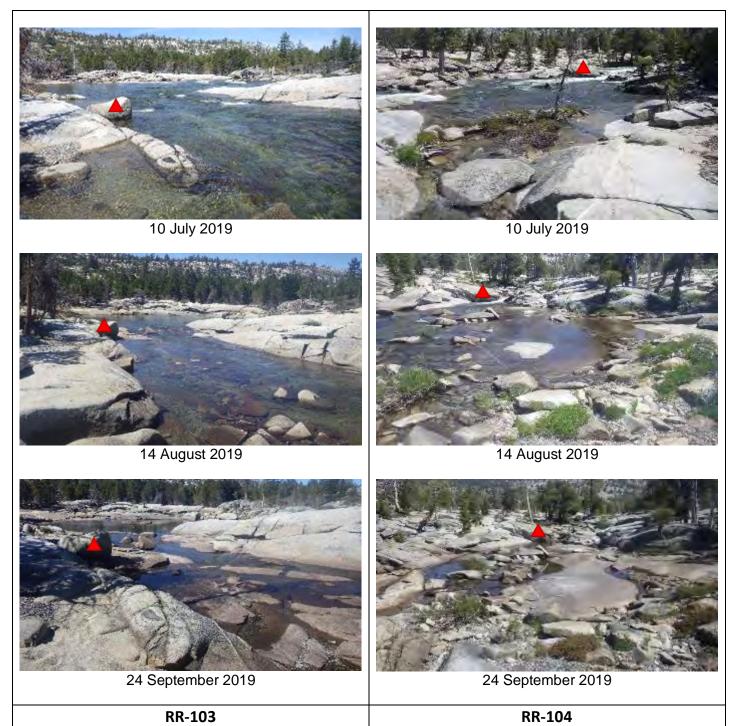
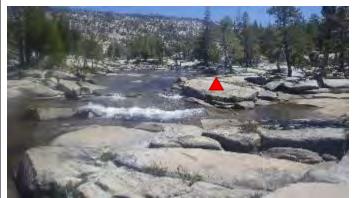


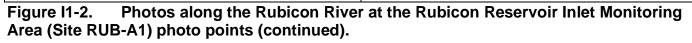
Figure I1-2. Photos along the Rubicon River at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1) photo points (continued).


10 July 2019

10 July 2019

14 August 2019

14 August 2019



24 September 2019

RR-105 (a)

RR-105 (b)

24 September 2019

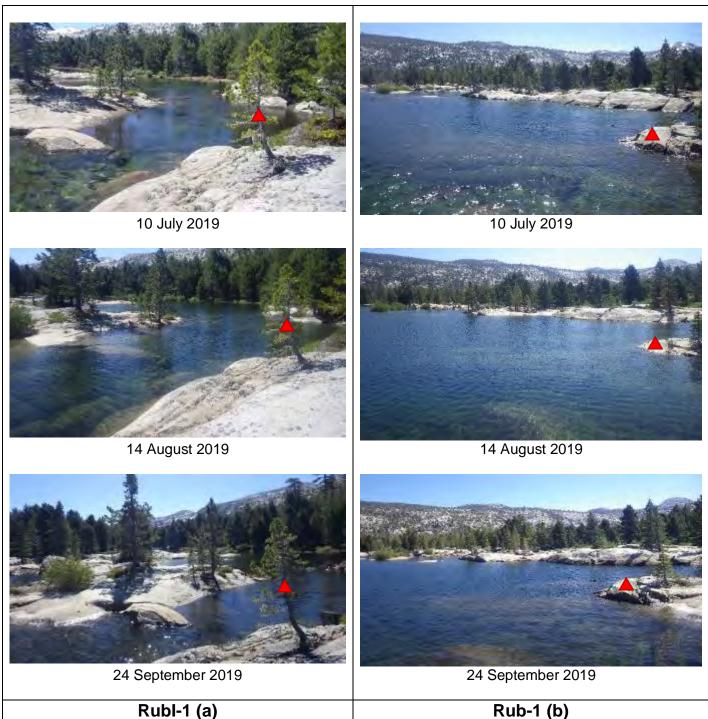



Figure I1-3. Photos along the Rubicon Reservoir Inlet at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1) photo points.

10 July 2019

14 August 2019

Rubl-2

Figure I1-3. Photos along the Rubicon Reservoir Inlet at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1) photo points (continued).

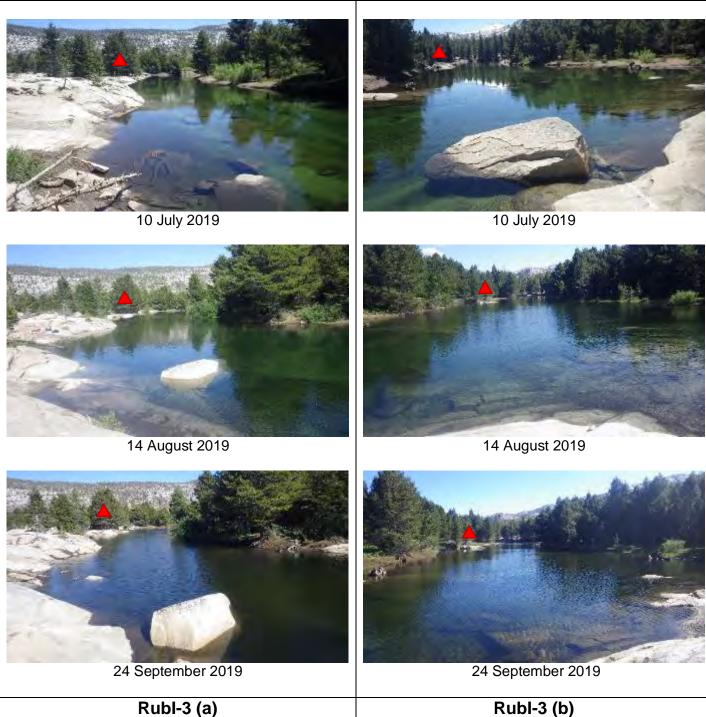


Figure I1-3. Photos along the Rubicon Reservoir Inlet at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1) photo points (continued).

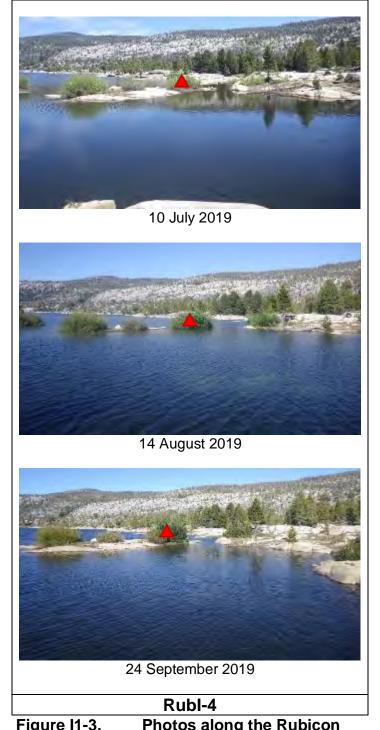
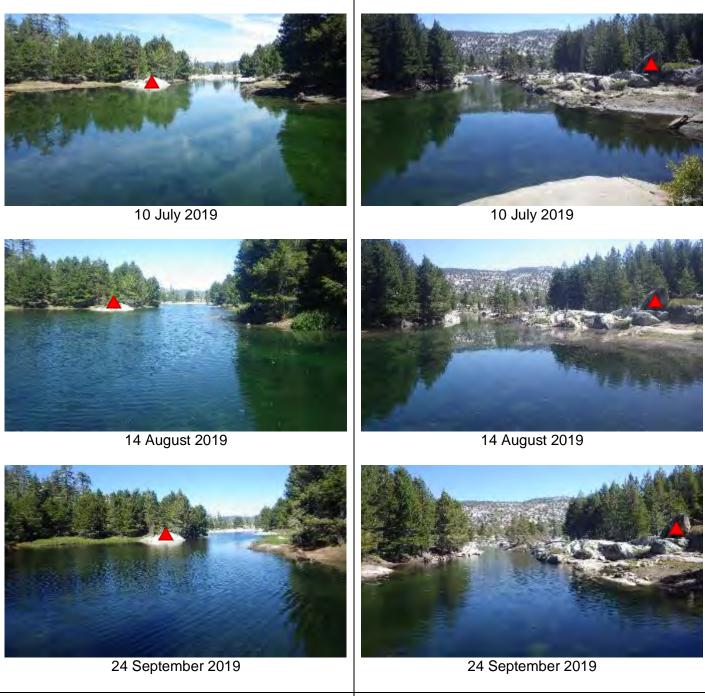



Figure I1-3. Photos along the Rubicon Reservoir Inlet at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1) photo points (continued).

Rubl-5 (a)

Rubl-5 (b)

Figure I1-3. Photos along the Rubicon Reservoir Inlet at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1) photo points (continued).

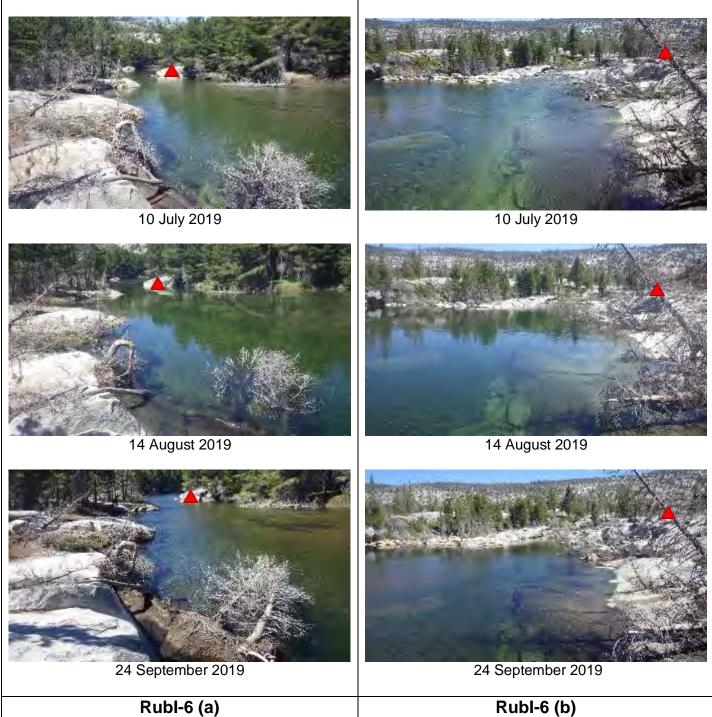


Figure I1-3. Photos along the Rubicon Reservoir Inlet at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1) photo points (continued).

14 August 2019

24 September 2019

Rubl-6 (c)

Figure I1-3. Photos along the Rubicon Reservoir Inlet at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1) photo points (continued).

10 July 2019

14 August 2019

Rubl-7

Figure I1-3. Photos along the Rubicon Reservoir Inlet at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1) photo points (continued).

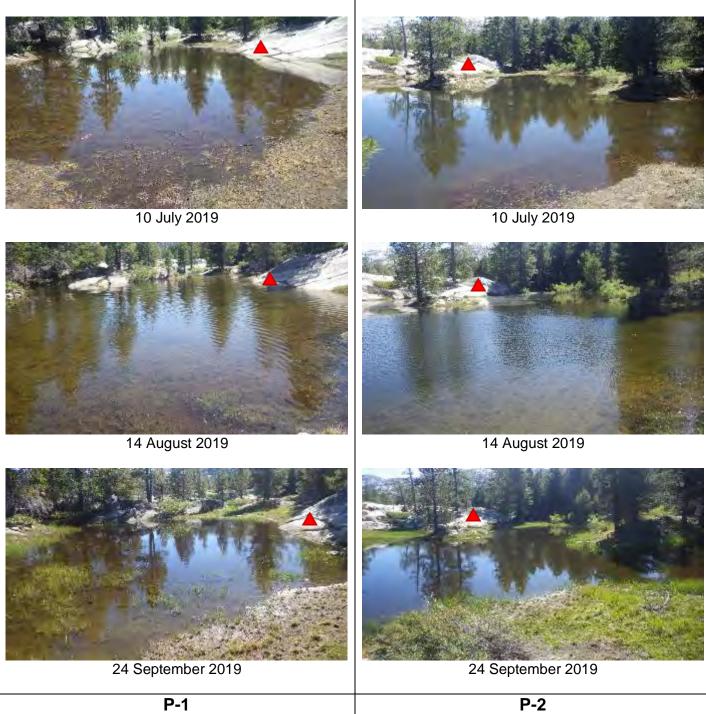


Figure I1-4. Photos at the perennial pond at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1) photo points.

10 July 2019

14 August 2019

P-3

Figure I1-4. Photos at the perennial pond at the Rubicon Reservoir Inlet Monitoring Area (Site RUB-A1) photo points (continued).

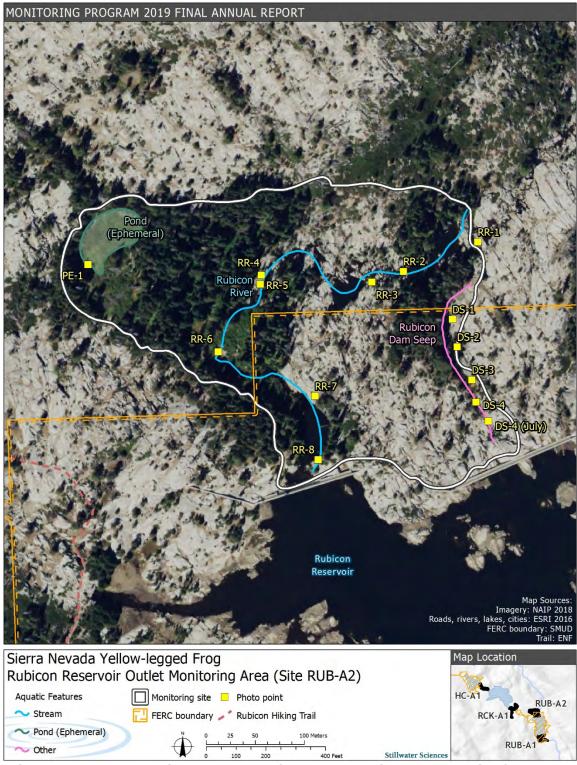


Figure I1-5. Photo points at the Rubicon Reservoir Outlet Monitoring Area (Site RUB-A2), 2019

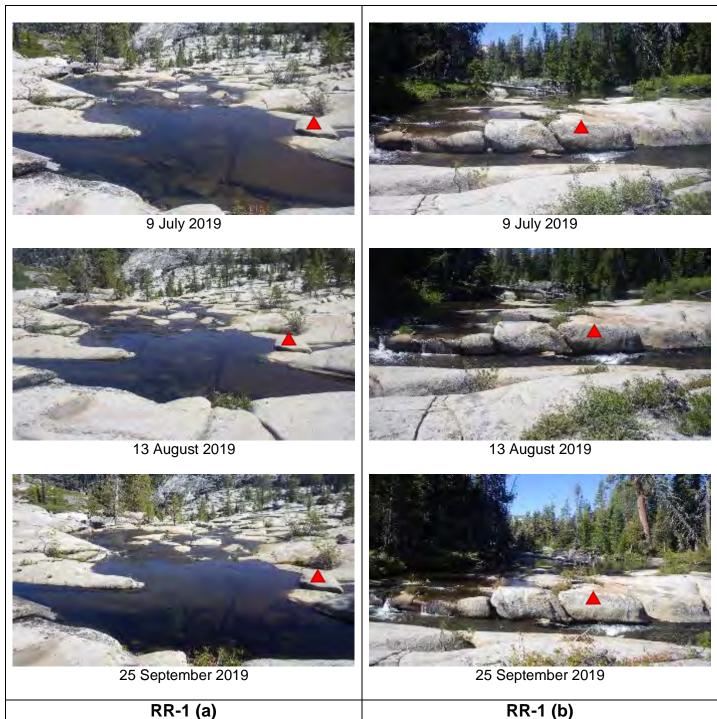


Figure I1-6. Photos along the Rubicon River at the Rubicon Reservoir Outlet Monitoring Area (Site RUB-A2) photo points.

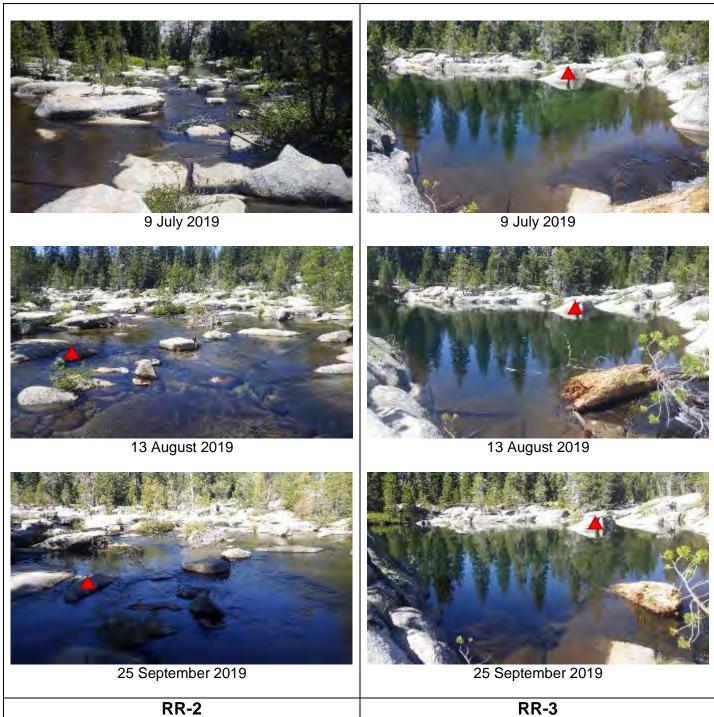


Figure I1-6. Photos along the Rubicon River at the Rubicon Reservoir Outlet Monitoring Area (Site RUB-A2) photo points (continued).

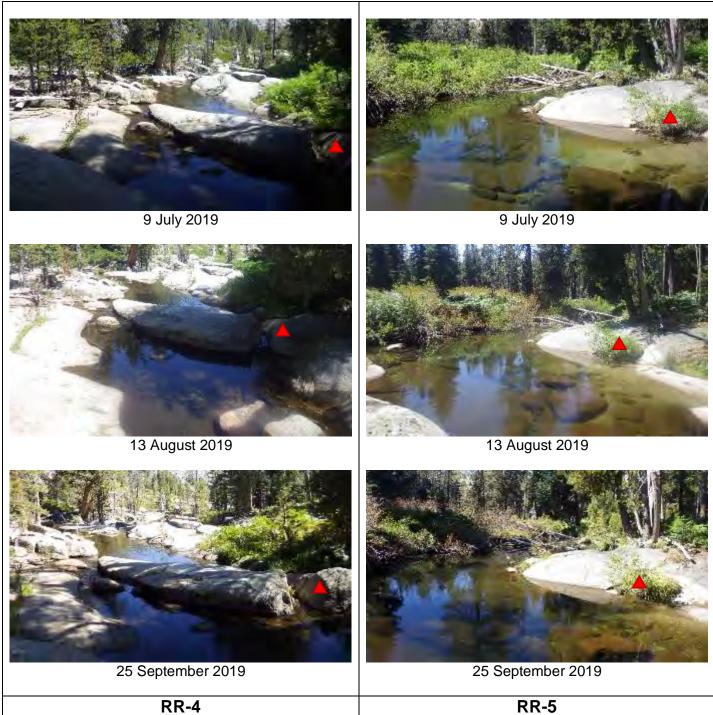


Figure I1-6. Photos along the Rubicon River at the Rubicon Reservoir Outlet Monitoring Area (Site RUB-A2) photo points (continued).

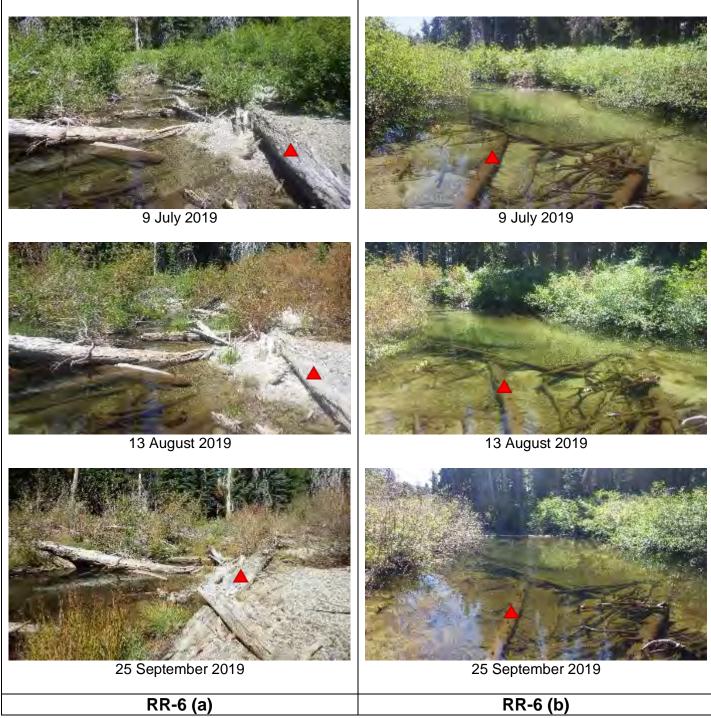


Figure I1-6. Photos along the Rubicon River at the Rubicon Reservoir Outlet Monitoring Area (Site RUB-A2) photo points (continued).

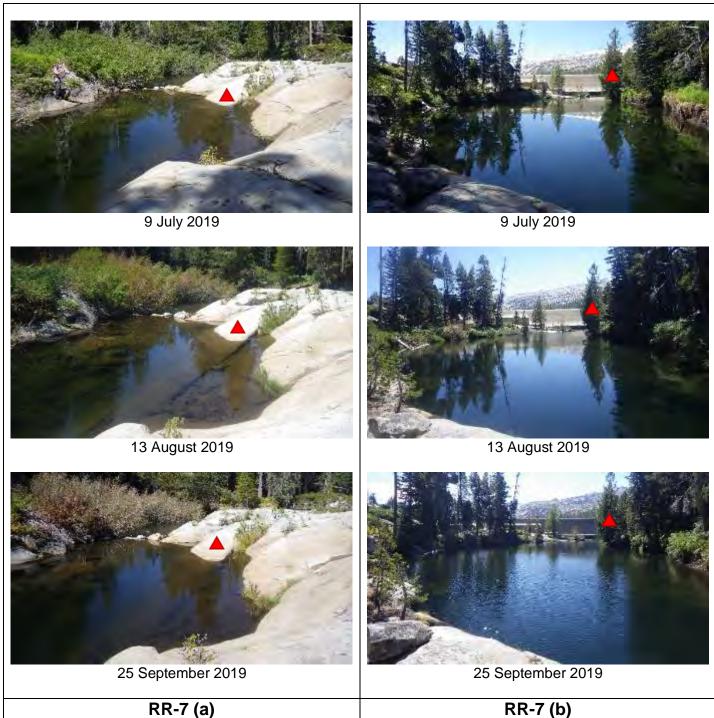


Figure I1-6. Photos along the Rubicon River at the Rubicon Reservoir Outlet Monitoring Area (Site RUB-A2) photo points (continued).

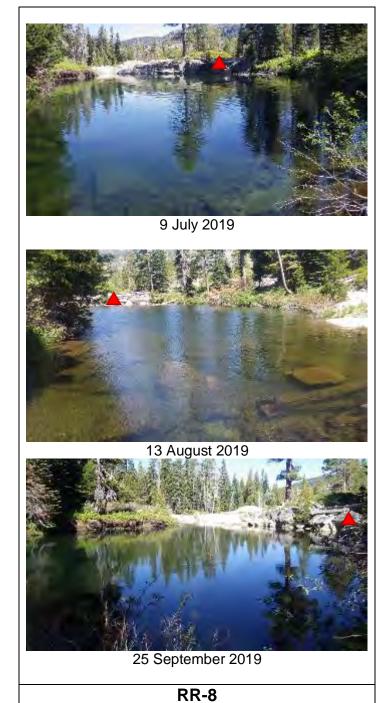


Figure I1-6. Photos along the Rubicon River at the Rubicon Reservoir Outlet Monitoring Area (Site RUB-A2) photo points (continued).

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

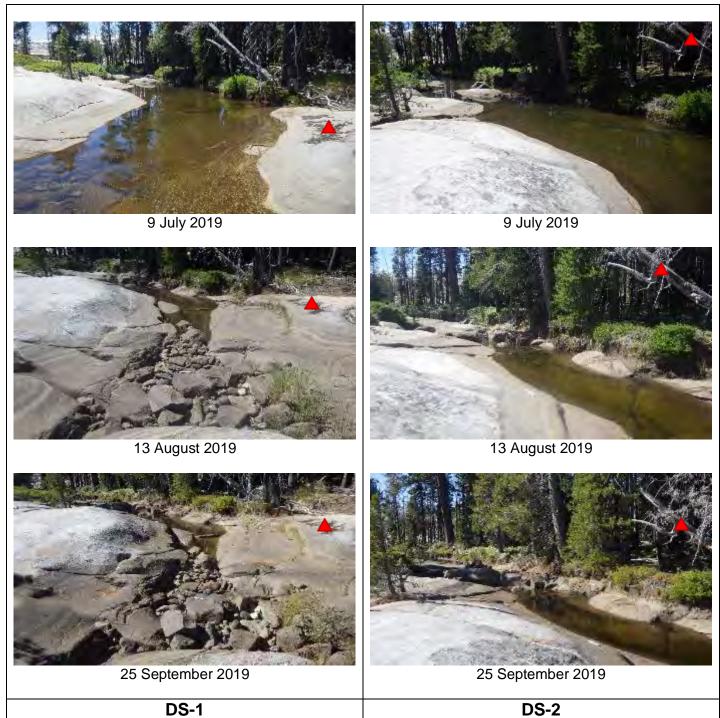


Figure I1-7. Photos along the Rubicon Dam Seep at the Rubicon Reservoir Outlet Monitoring Area (Site RUB-A2) photo points.

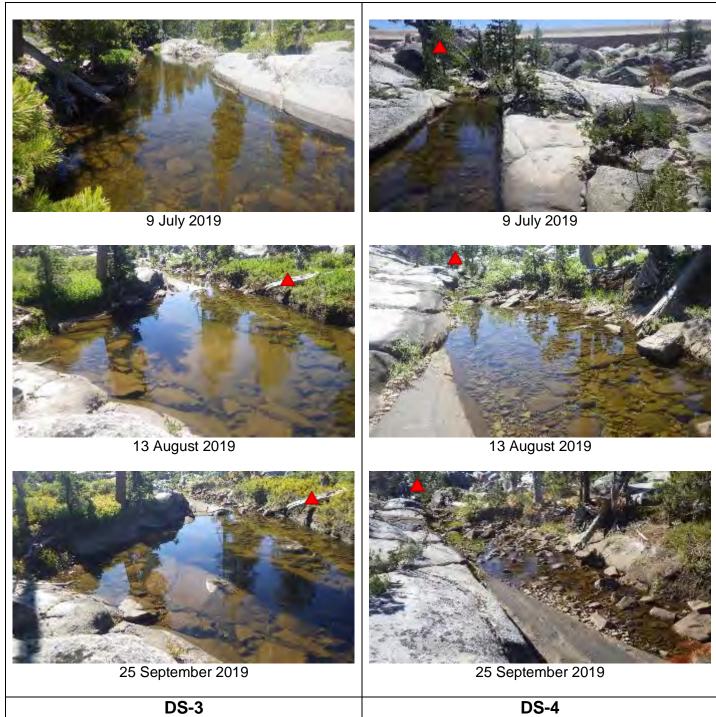


Figure I1-7. Photos along the Rubicon Dam Seep at the Rubicon Reservoir Outlet Monitoring Area (Site RUB-A2) photo points (continued).

Monitoring Area (Site RUB-A2) photo points.

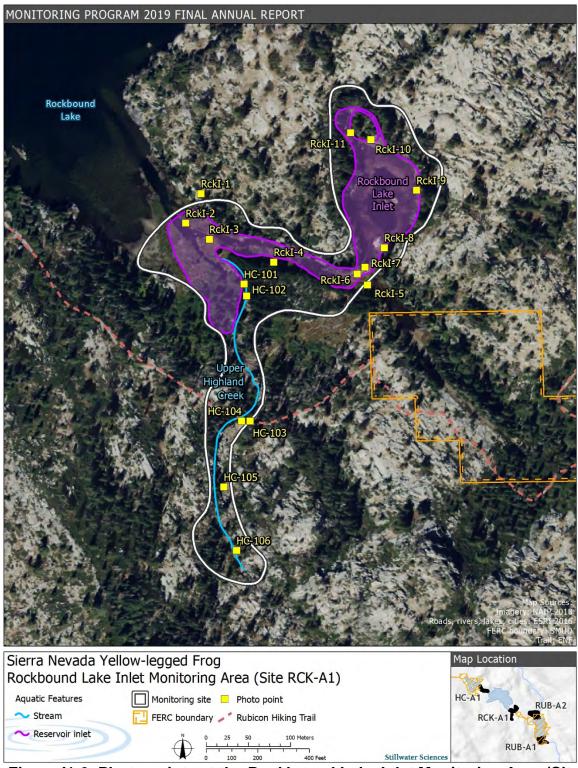


Figure I1-9. Photo points at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1), 2019

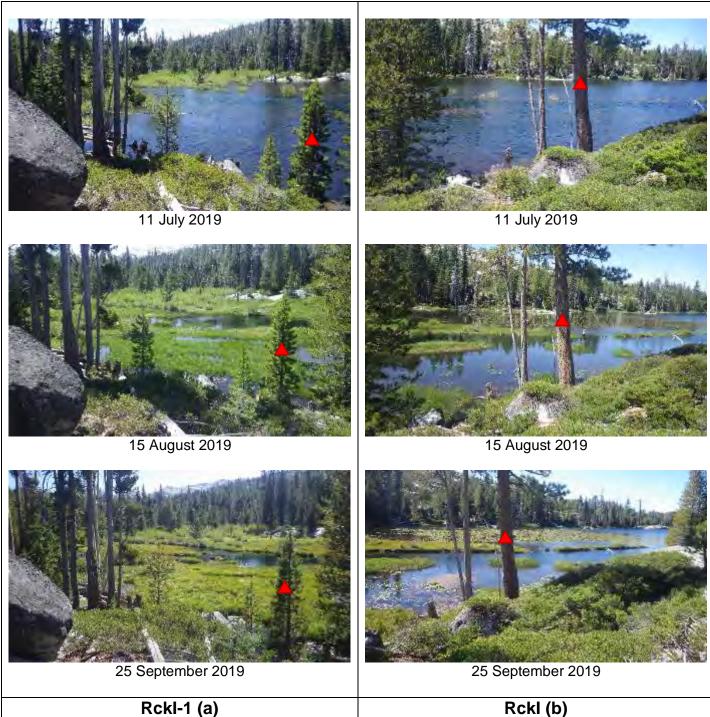


Figure I1-10. Photos along the Rockbound Lake Inlet at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points.

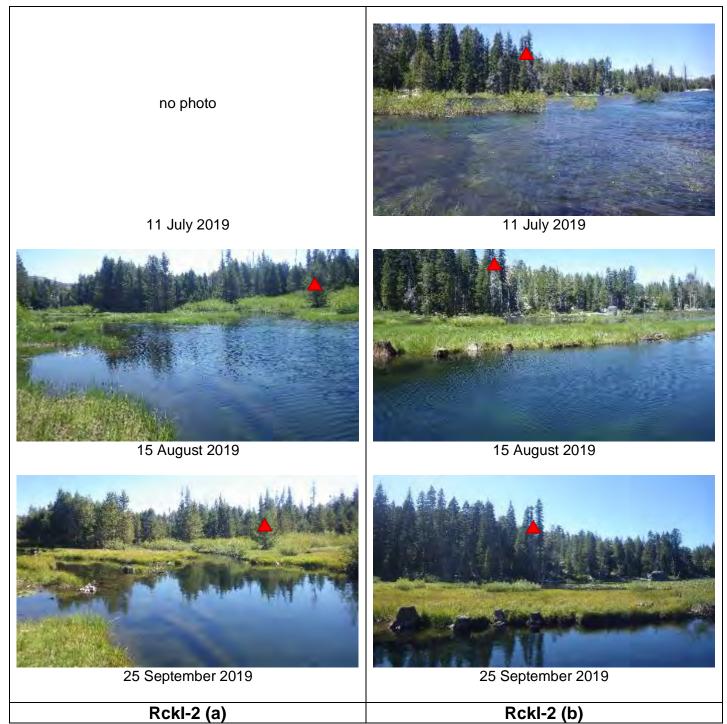


Figure I1-10. Photos along the Rockbound Lake Inlet at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points (continued).

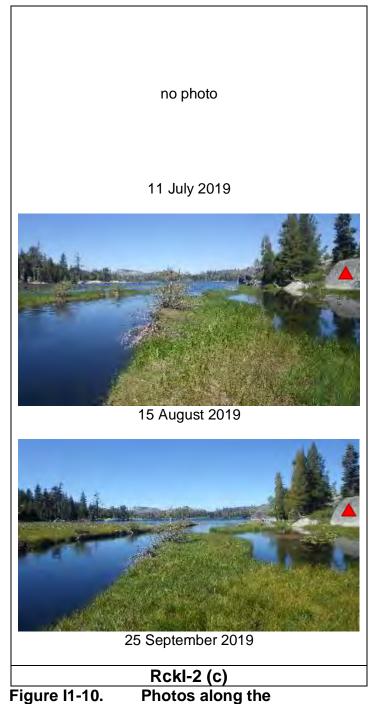


Figure I1-10. Photos along the Rockbound Lake Inlet at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points (continued).

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

Rckl-3 (a)

Rckl-3 (b)

Figure I1-10. Photos along the Rockbound Lake Inlet at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points (continued).

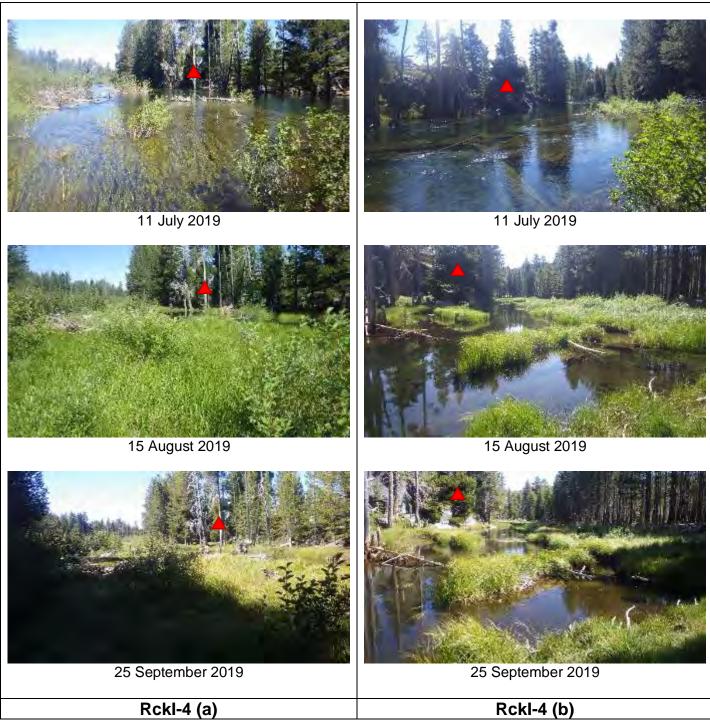


Figure I1-10. Photos along the Rockbound Lake Inlet at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points (continued).

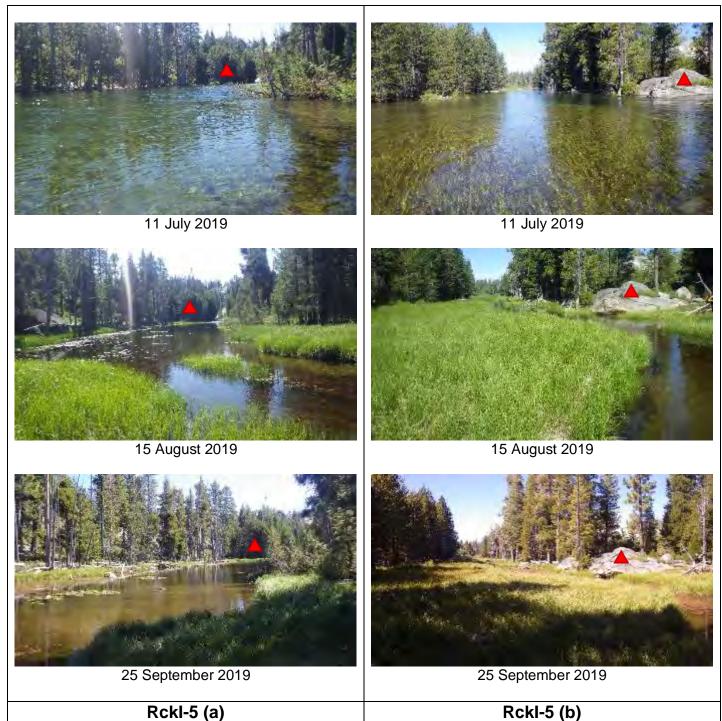


Figure I1-10. Photos along the Rockbound Lake Inlet at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points (continued).

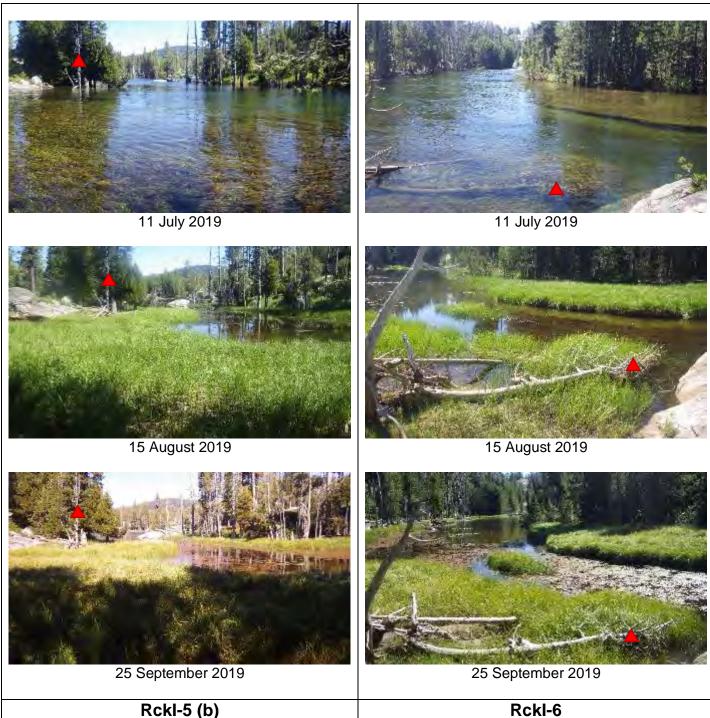


Figure I1-10. Photos along the Rockbound Lake Inlet at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points (continued).

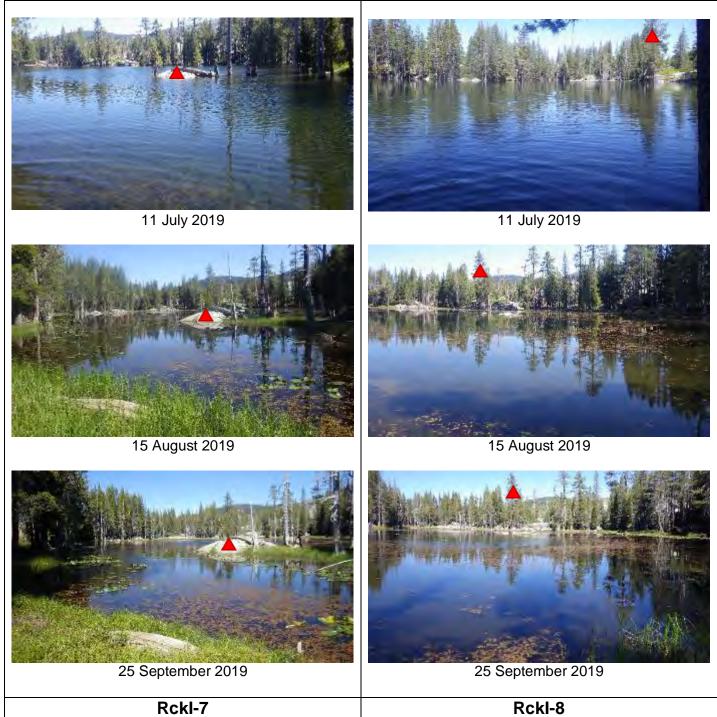


Figure I1-10. Photos along the Rockbound Lake Inlet at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points (continued).

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

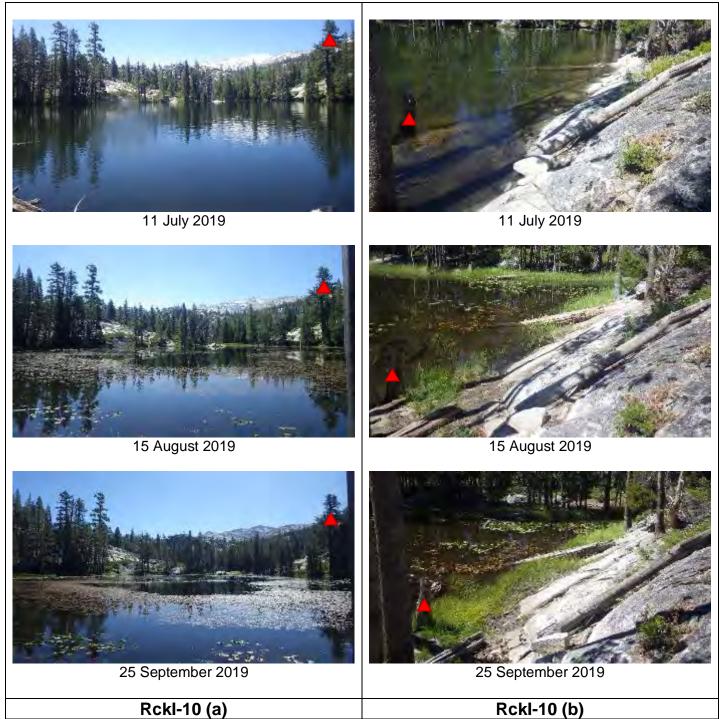
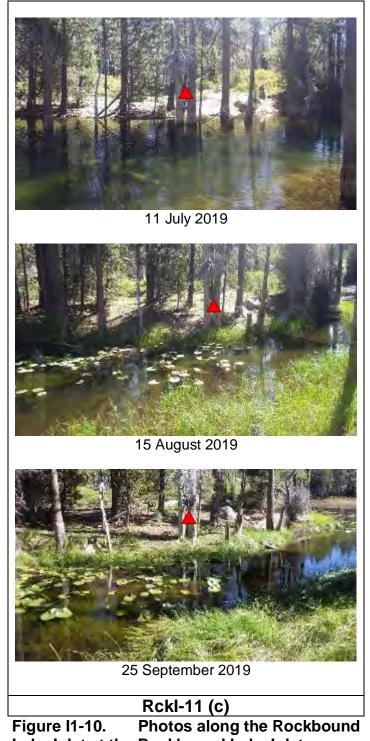


Figure I1-10. Photos along the Rockbound Lake Inlet at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points (continued).



Rckl-11 (a)

Rckl-11 (b)

Figure I1-10. Photos along the Rockbound Lake Inlet at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points (continued).

Lake Inlet at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points (continued).

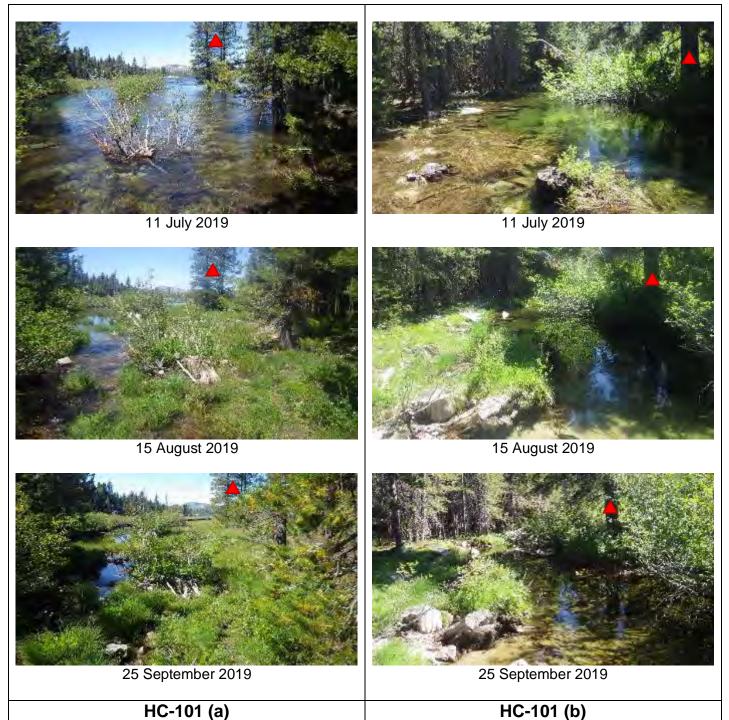


Figure I1-11. Photos along upper Highland Creek at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points.

Figure I1-11. Photos along upper Highland Creek at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points (continued).

HC-103 (a)

HC-103 (b)

Figure I1-11. Photos along upper Highland Creek at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points (continued).

HC-104

HC-105

Figure I1-11. Photos along upper Highland Creek at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points (continued).

HC-106 (a)

HC-106 (b)

Figure I1-11. Photos along upper Highland Creek at the Rockbound Lake Inlet Monitoring Area (Site RCK-A1) photo points (continued).

Figure I1-12. Photo points at the Highland Creek Monitoring Area (Site HC-A1), 2019.

HC-1

HC-2

Figure I1-13. Photos along lower Highland Creek at the Highland Creek Monitoring Area (Site HC-A1) photo points.

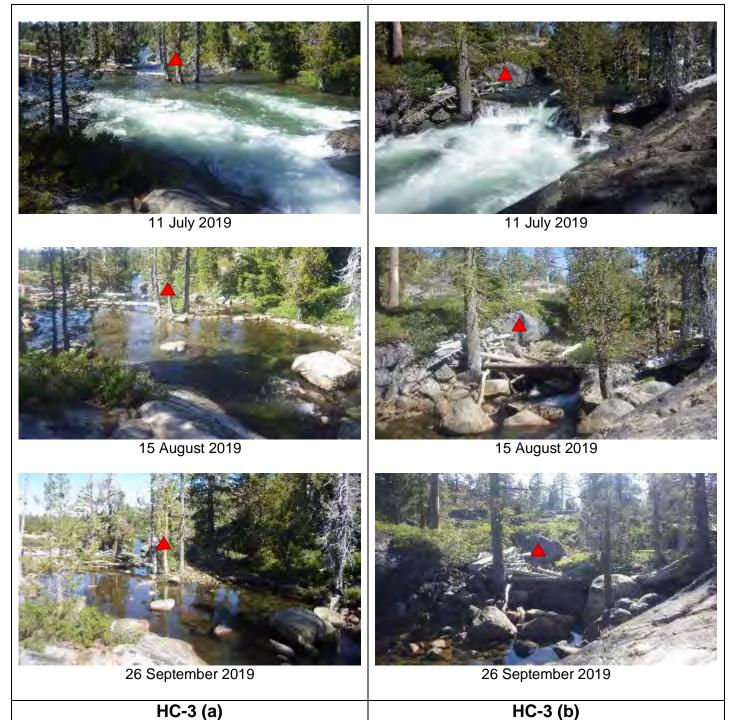
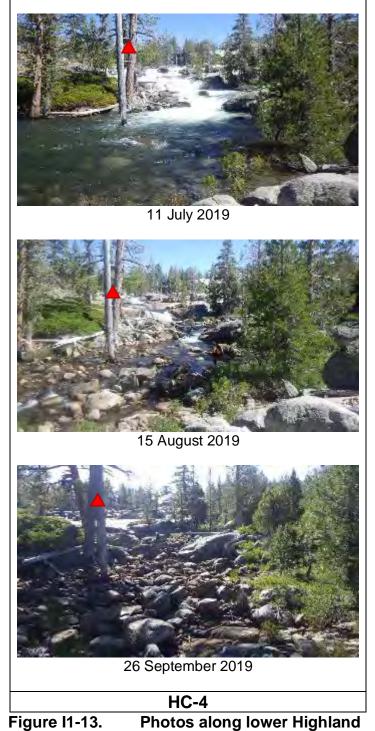



Figure I1-13. Photos along lower Highland Creek at the Highland Creek Monitoring Area (Site HC-A1) photo points (continued).

2019 Annual Monitoring Report June 2020

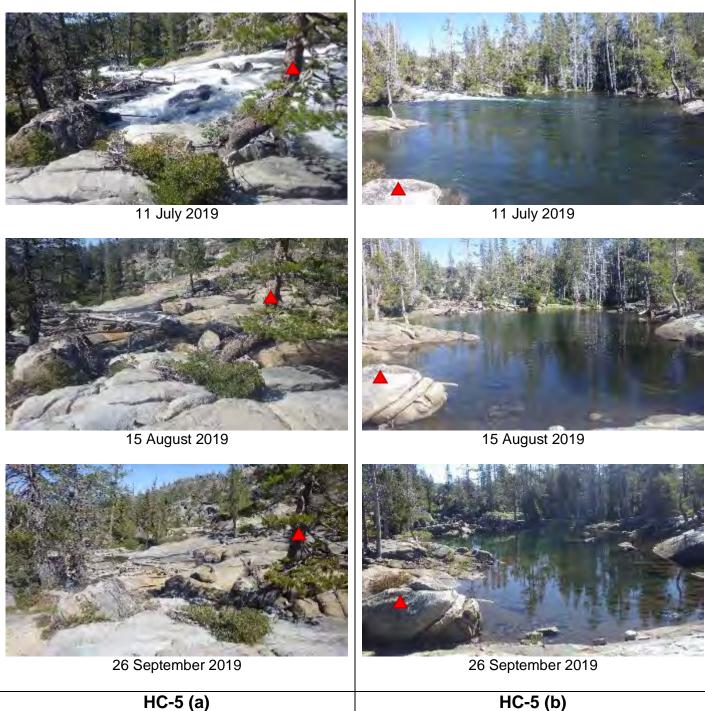
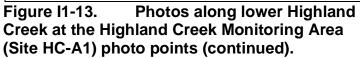
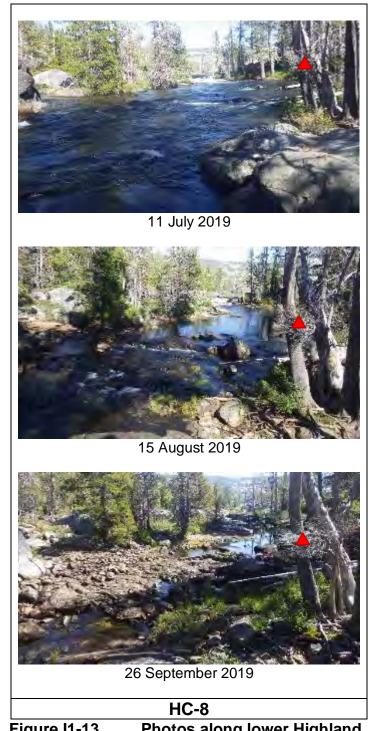
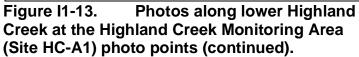



Figure I1-13. Photos along lower Highland Creek at the Highland Creek Monitoring Area (Site HC-A1) photo points (continued).

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

2019 Annual Monitoring Report June 2020




HC-7 (a)

HC-7 (b)

Figure I1-13. Photos along lower Highland Creek at the Highland Creek Monitoring Area (Site HC-A1) photo points (continued).

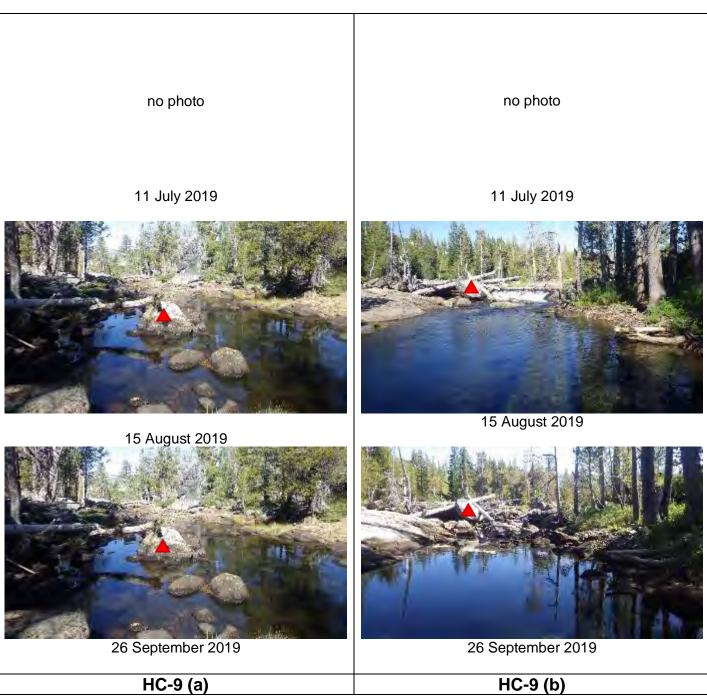
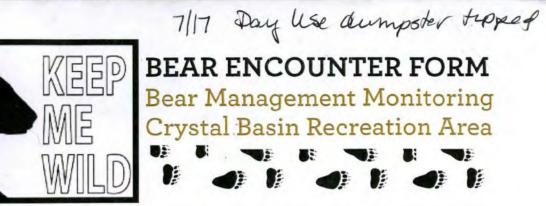


Figure I1-13. Photos along lower Highland Creek at the Highland Creek Monitoring Area (Site HC-A1) photo points (continued).

2019 Annual Monitoring Report June 2020

APPENDIX J1

2019 Bear Forms


Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

This Page Intentionally Left Blank

	and have been a series
Report collected by:	(USFS/camp host)
Date:	
*	

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir. Forms also can be dropped off at the Pacific Ranger Station at 7887 Highway 50, Pollock Pines, CA 95726.

1. Person(s) involved:	
Name:	
Address:	
City: _	State:
Zip code:	Phone:
Country:(
2. Describe yourself:	3. Visitor activity:
 a) Visitor b. Camp host c. USFS employee d. Contractor e. Other 	 a) Camping – developed campground → SITE 2 b. Camping – undeveloped campsite/wilderness c. Day use area d. Hiking on maintained trail e. Other
4. Group size:	itered the bear)

5. Time of encounter: Month: 07 Day: 07 Year: 2019 Time: 10:30 am pm

a. Airport Flat campground

b. Angel Creek day userarea

c. Azalea Cove campground

e. Camino Cove campground

f. Fashoda campground

h. Ice House campground/

i. Jones Fork campground

k. Lone Rock campground

n. Northshore campground

m. Loon Lake chalet

boat launch/day use area

o. Northshore RV camparound p. Pleasant campground q. Red Fir group campground d. Big Silver group campground r. Strawberry Point campground s. Sunset campground/boat launch t. Union Valley bike trail G. Gerle Creek campground complex u. Wench Creek campground v. Wench Creek group campground w. West Point campground/boat launch x. Wolf Creek campground i. Junction Reservoir boat launch y. Wolf Creek group campground z. Yellowjacket campground/boat launch I. Loon Lake campground/boat ramp Other

7. Number and description of bears (how many, what color, size, adult or cub, sex?):

(INKNOWN (WE BELIEVE ONLY ONE BEAR WAS IN OURSITE)

8. Did the bear(s) harm anyone?

a. No.b. Yes* (describe)

9. What were you doing before you saw the bear?

DID NOT SEE BEAR, CHIMP WAS RANSACKED BY BEAR

WHILF WE WERE AT THE PIER,

10. What was the bear doing when you first saw it?

* If there was a physical encounter with the bear or a bear was harmed in the incident, please report to the USFS Ranger and California Department of Fish and Wildlife.

11. How did the bear react to you? NA

12. What did you do then?

1A

13. How did the bear react to your response?

14. How close did you come to the bear (how many feet)?

1A

15. Was human food present?

a. Food not in bear resistant container (d.) Food hung in tree -> TRASH BAG HUNG IN TREE b. Food in bear resistant container e. No food present c. Food odor only f. Unknown

16. Did the bear eat any human food? a. No (D. Pes (what?) DAGELS c. Unknown

17. Did the bear damage property? a. No/b. Yes (list property and estimate costs)

18. Details of bear-human interaction (optional):

DID NOT ACTUALLY COME INTO CONTACT W/BEAR, HEARD NOISES

IN THE TREELINE BEFORE BEAR RANSACKED CAMPSITE, WE

CAME BACK TO THE SITE TO FIND THE TRASH BAG SHREDDED SOUR BAGELS EATENS BEAR SLOBBER ALLOVER THE TABLE.

S/camp host

5/26 3 aumpsters tipped over **BEAR ENCOUNTER FORM** Bear Management Monitoring Crystal Basin Recreation Area

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir. Forms also can be dropped off at the Pacific Ranger Station at 7887 Highway 50, Pollock Pines, CA 95726.

1. Person(s) involved:

Name:		
Address:		
City: _		State:
Zip code:	Phone:	
Country:		

2. Describe yourself:

b. Camp host c. USFS employee d. Contractor e. Other

3. Visitor activity:

Camping – developed campground
b. Camping – undeveloped campsite/wilderness
c. Day use area
d. Hiking on maintained trail
 e. Other

4. Group size: JUST ME - 6 OTHERS WERE SLEEPING (number of people who encountered the bear)

5. Time of encounter: Month: 5 Day: 25 Year: 2019 Time: 3 am/pm

- o. Northshore RV campground a. Airport Flat campground b. Angel Creek day use area c. Azalea Cove campground d. Big Silver group campground e. Camino Cove campground f. Fashoda campground G. Gerle Creek campground complex h. Ice House campground/ boat launch/day use area i. Jones Fork campground i. Junction Reservoir boat launch
- k. Lone Rock campground
- I. Loon Lake campground/boat ramp
- m. Loon Lake chalet
- n. Northshore campground
- p. Pleasant campground g. Red Fir group campground r. Strawberry Point campground s. Sunset campground/boat launch t. Union Valley bike trail u. Wench Creek campground v. Wench Creek group campground w. West Point campground/boat launch x. Wolf Creek campground y. Wolf Creek group campground z. Yellowjacket campground/boat launch Other

7. Number and description of bears (how many, what color, size, adult or cub, sex?):

HUGE MALE BROWN

8. Did the bear(s) harm anyone?

(a. No b. Yes* (describe)

9. What were you doing before you saw the bear?

CLEANING UP HIS MESS

10. What was the bear doing when you first saw it?

SNEAKING L	P	ON	ME
------------	---	----	----

* If there was a physical encounter with the bear or a bear was harmed in the incident. please report to the USFS Ranger and California Department of Fish and Wildlife.

11. How did the bear react to you? WE LOCKED EVES 12. What did you do then? HIT THE BEAR BOX WITH GOLF CLUB. 13. How did the bear react to your response? HE LEFT

14. How close did you come to the bear (how many feet)?

6 FEET

15. Was human food present?

Food not in bear resistant container d. Food hung in tree b. Food in bear resistant container e. No food present c. Food odor only f. Unknown

16. Did the bear eat any human food?

a. No (Yes) what?) SALAD SALAMI c. Unknown

17. Did the bear damage property? a. No 6. Yes)(list property and estimate costs) COOLER

18. Details of bear-human interaction (optional):

NOW HAVE A STORY TO TELL

\$30

FOR LIFE.

Report collected by:_ Date: <u>7/10/19</u>	Liz	Carroll	(USFS/camp host)
Date. 7/10/14	-		

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir.

1. Person(s) involved:

2. Describe yourself:		3. Visitor activity:
Visitor		a. Camping – developed campground
b. Camp host		Camping – undeveloped campsite/wilderness
c. USFS employee		c. Day use area
d. Contractor		d. Hiking on maintained trail
e. Other		e. Other
4. Group size:	2	

a. Airport Flat campground	o. Northshore RV campground
b. Angel Creek day use area	p. Pleasant campground
c. Azalea Cove campground	q. Red Fir group campground
d. Big Silver group campground	r. Strawberry Point campground
e. Camino Cove campground	s. Sunset campground/boat launch
f. Fashoda campground	t. Union Valley bike trail
g. Gerle Creek campground complex	u. Wench Creek campground
h. Ice House campground/	v. Wench Creek group campground
boat launch/day use area	w. West Point campground/boat launch
i. Jones Fork campground	x. Wolf Creek campground
j. Junction Reservoir boat launch	y. Wolf Creek group campground
k. Lone Rock campground	z. Yellowjacket campground/boat launch
l. Loon Lake campground/boat ramp	Other M. Mionarc Comp

m. Loon Lake chalet

n. Northshore campground

7. Number and description of bears (how many, what color, size, adult or cub, sex?):

dow

COPI

P

8. What was the bear doing when you first saw it?

arge adult

9. Did you react to the bear? shat into relled and ben 10. How did the bear react to your response? Tried andon dra 10 11. Was human food present? a. Some food/trash NOT in bear resistant container d. Food hung in tree b. All food/trash in bear resistant container e. Unknown c. No food present/ordor only f. Some food in vehicle 12. Did the bear eat any human food? a No b. Yes (what?) c. Unknown 13. Did the bear damage property?

15. Details of bear-human interaction (optional): yelle Grane bu Che and ground

a. No (b) Yes (list property and estimate costs) teeth holes in cooler

14. Did the bear(s) harm anyone?

(a No b. Yes* (describe).

* If there was a physical encounter with the bear or a bear was harmed in the incident, please report to the USFS Ranger and California Department of Fish and Wildlife.

For office use only:	
Report collected by:	(USFS/camp host)
Date:	

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir.

1. Person(s) involved.

2. Describe yourself:	3. Visitor activity:
a. Visitor	a. Camping - developed campground
b. Camp host	b. Camping – undeveloped campsite/wilderness
c. USFS employee	c. Day use area
d. Contractor	d. Hiking on maintained trail
e. Other	e. Other
4. Group size:	ered the bear)

a. Airport Flat campground	o. Northshore RV campground
b. Angel Creek day use area	p. Pleasant campground
c. Azalea Cove campground	q. Red Fir group campground
d. Big Silver group campground	r. Strawberry Point campground
e. Camino Cove campground	s. Sunset campground/boat launch
f. Fashoda campground	t. Union Valley bike trail
g. Gerle Creek c ampground comple x	u. Wench Creek campground
h. Ice House campground/	v. Wench Creek group campground
boat launch/day use area	w. West Point campground/boat launch
i. Jones Fork campground	x. Wolf Creek campground
j. Junction Reservoir boat launch	y. Wolf Creek group campground
k. Lone Rock campground	z. Yellowjacket campground/boat launch
l. Loon Lake campground/boat ramp	Other
m. Loon Lake chalet	

n. Northshore campground

7. Number and description of bears (how many, what color, size, adult or cub, sex?): 3 - Brown 100 LD Black 110 - Red 160#

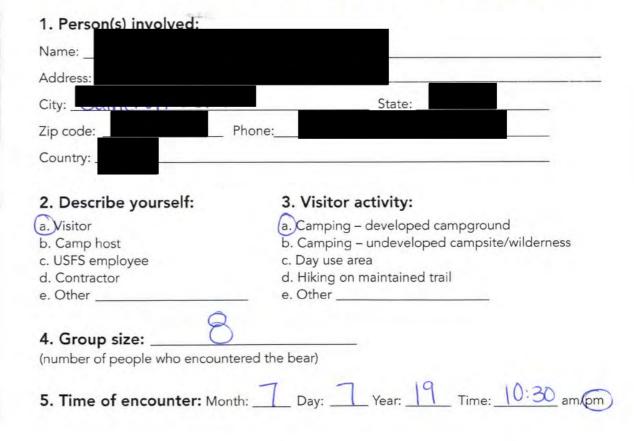
NAME AND ADDRESS OF AD

8. What was the bear doing when you first saw it?

nO 10. How did the bear react to your response? 11. Was human food present? a. Some food/trash NOT in bear resistant container d. Food hung in tree b. All food/trash in bear resistant container e. Unknown c/No food present/ordor only f. Some food in vehicle 12. Did the bear eat any human food? a, No b. Yes (what?) c. Unknown 13. Did the bear damage property? (a) No b. Yes (list property and estimate costs) _____ 14. Did the bear(s) harm anyone? a. No b. Yes* (describe)_ 15. Details of bear-human interaction (optional):

9. Did you react to the bear?

* If there was a physical encounter with the bear or a bear was harmed in the incident, please report to the USFS Ranger and California Department of Fish and Wildlife.


Walking

For office use only:	
Report collected by:	(USFS/camp host)
Date:	
*	**

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir. Forms also can be dropped off at the Pacific Ranger Station at 7887 Highway 50, Pollock Pines, CA 95726.

- a. Airport Flat campground
 b. Angel Creek day use area
 c. Azalea Cove campground
 d. Big Silver group campground
 e. Camino Cove campground
 f. Fashoda campground
 g. Gerle Creek campground complex
 h. Ice House campground/ boat launch/day use area
 i. Jones Fork campground
 j. Junction Reservoir boat launch
 k. Lone Rock campground
 l. Loon Lake campground/boat ramp
- m. Loon Lake chalet
- n. Northshore campground
- o. Northshore RV campground
 p. Pleasant campground
 q. Red Fir group campground
 r. Strawberry Point campground
 s. Sunset campground/boat launch
 t. Union Valley bike trail
 u. Wench Creek campground
 v. Wench Creek group campground
 w. West Point campground/boat launch
 x. Wolf Creek campground
 y. Wolf Creek group campground
 z. Yellowjacket campground/boat launch
 Other

7. Number and description of bears (how many, what color, size, adult or cub, sex?): 2 Bears / Dark Brown / huge / adult

8. Did the bear(s) harm anyone?

a. No b. Yes* (describe)

9. What were you doing before you saw the bear? Getting ready for bed.

10. What was the bear doing when you first saw it? Bear flipped over the dumpster- went to look-yelled at it.

* If there was a physical encounter with the bear or a bear was harmed in the incident, please report to the USFS Ranger and California Department of Fish and Wildlife.

11. How did the bear react to you? Dumpstor bear (bear#1) walked away when I yelled. Bear just looked at me. 12. What did you do then? Yelled at it - #1 It walked away so I walked away. Then bear#2 walked behind Campground # 18 and #19. Horn was used on that 13. How did the bear react to your response? One # it just continued to walk.

14. How close did you come to the bear (how many feet)?

About 50 feet from bear

15. Was human food present?

a. Food not in bear resistant containerd. Food hung in treeb. Food in bear resistant containere. No food presentc. Food odor onlyf. Unknown

16. Did the bear eat any human food?

a. No b. Yes (what?) c. Unknown

17. Did the bear damage property?

a. No b. Yes (list property and estimate costs)_

18. Details of bear-human interaction (optional): Bear and human interaction was just using the horn and voice to scare them away. The did move on.

For office use only:	
Report collected by:	(USFS/camp host)
Date:	

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir. Forms also can be dropped off at the Pacific Ranger Station at 7887 Highway 50, Pollock Pines, CA 95726.

1. Person(s) involved: Name: Address: City: State: Zip code: hone Country: 3. Visitor activity: 2. Describe yourself: a. Camping – developed campground a. Visitor b. Camping - undeveloped campsite/wilderness b. Camp host c. USFS employee c. Day use area d. Hiking on maintained trail d. Contractor e. Other e. Other 4. Group size: 1 One (number of people who encountered the bear)

5. Time of encounter: Month: 7 Day: 15 Year: 20/9 Time: 12:37 ampm

a. Airport Flat campground

- b. Angel Creek day use area
 c. Azalea Cove campground
 d. Big Silver group campground
 e. Camino Cove campground
 f. Fashoda campground
 g. Gerle Creek campground complex
 h. Ice House campground/ boat launch/day use area
 i. Jones Fork campground
 j. Junction Reservoir boat launch
 k. Lone Rock campground
 l. Loon Lake campground/boat ramp
- m. Loon Lake chalet
- n. Northshore campground
- o. Northshore RV campground
 p. Pleasant campground
 q. Red Fir group campground
 r. Strawberry Point campground
 s. Sunset campground/boat launch
 t. Union Valley bike trail
 u. Wench Creek campground
 v. Wench Creek group campground
 w. West Point campground/boat launch
 x. Wolf Creek group campground
 y. Wolf Creek group campground
 z. Yellowjacket campground/boat launch
 Other

7. Number and description of bears (how many, what color, size, adult or cub, sex?): 1 - Blond Brown Adult 200 53 (1)

8. Did the bear(s) harm anyone?

a. No b. Yes* (describe)

9. What were you doing before you saw the bear?

eepiha

10. What was the bear doing when you first saw it?

Stoped /Kan after T. Talked

* If there was a physical encounter with the bear or a bear was harmed in the incident, please report to the USFS Ranger and California Department of Fish and Wildlife.

to

him/

11. How did the bear react to you?

12. What did you do then? Talked to Him/her

13. How did the bear react to your response?

Tock OFF RUNNING

14. How close did you come to the bear (how many feet)?

alm

15. Was human food present?

a. Food not in bear resistant container b. Food in bear resistant container c. Food odor only f. Unknown f. Unknown

16. Did the bear eat any human food?

a. No b. Yes (what?)_ c. Unknown

17. Did the bear damage property?

a. No b. Yes (list property and estimate costs)

18. Details of bear-human interaction (optional):

Good no Problems. Bear was People

PEINTED FLASHLIGHT STANDORCAN DO HIS. 7941AL

CONTINNES LIKE OF LAPS HIS JUS

Report colle	cted by:		(US	FS/camp h	ost)
Date	WANTER AND	we in	EROUY I	DOK	W.
72247	A550027	AND	House	214	1A'

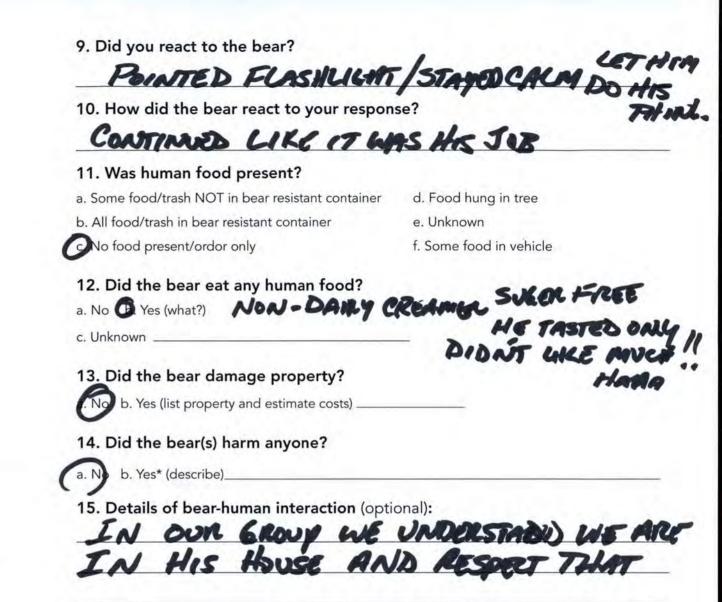
BEAR ENCOUNTER FORM Bear Management Monitoring Crystal Basin Recreation Area

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir.

1. Person(s) involved:

5

- a. Airport Flat campground
- b. Angel Creek day use area
- c. Azalea Cove campground
- d. Big Silver group campground
- e. Camino Cove campground
- f. Fashoda campground
- Gerle Creek campground complex h. Ice House campground/ boat launch/day use area
- i. Jones Fork campground
- j. Junction Reservoir boat launch
- k. Lone Rock campground
- I. Loon Lake campground/boat ramp
- m. Loon Lake chalet
- n. Northshore campground


o. Northshore RV campground
p. Pleasant campground
q. Red Fir group campground
r. Strawberry Point campground
s. Sunset campground/boat launch
t. Union Valley bike trail
u. Wench Creek campground
v. Wench Creek group campground
w. West Point campground/boat launch
x. Wolf Creek campground
y. Wolf Creek group campground
z. Yellowjacket campground/boat launch

7. Number and description of bears (how many, what color, size, adult or cub, sex?):

Other

BROWN, MALE 650-750LBS

8. What was the bear doing when you first saw it? INVESTICATING OUR CAMPSOR.

* If there was a physical encounter with the bear or a bear was harmed in the incident, please report to the USFS Ranger and California Department of Fish and Wildlife.

For office use only:	
Report collected by:	(USFS/camp host)
Date:	

Houmpsters tipped over this weekincluding a Hyperd (not happened BEAR ENCOUNTER FORM (fine) Bear Management Monitoring Niter Crystal Basin Recreation Area Complete Not

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir.

ame:	
Describe yourself:	3. Visitor activity:
Visitor	a. Camping – developed campground
Camp host	b. Camping – undeveloped campsite/wilderness
USFS employee	c. Day use area
Contractor	d. Hiking on maintained trail
Other	e. Other
Group size:	ed ampsite onleg- camp steep
Time of encounter: Mont	h: Day: Year: Time; am/pm

a. Airport Flat campground

b. Angel Creek day use area

c. Azalea Cove campground

d. Big Silver group campground

e. Camino Cove campground

f. Fashoda campground

h. Ice House campground/

i. Jones Fork campground

k. Lone Rock campground

boat launch/day use area

j. Junction Reservoir boat launch

- o. Northshore RV campground p. Pleasant campground g. Red Fir group campground r. Strawberry Point campground s. Sunset campground/boat launch t. Union Valley bike trail (g. Gerle Creek campground complex u. Wench Creek campground v. Wench Creek group campground w. West Point campground/boat launch x. Wolf Creek campground y. Wolf Creek group campground z. Yellowjacket campground/boat launch Other _____ I. Loon Lake campground/boat ramp
- m. Loon Lake chalet
- n. Northshore campground

7. Number and description of bears (how many, what color, size, adult or cub, sex?): Jossibly one only - ad

8. What was the bear doing when you first saw it? it - exteroid without for

9. Did you react to the bear? el vere steepin 10. How did the bear react to your response?

11. Was human food present?

a. Some food/trash NOT in bear resistant container b. All food/trash in bear resistant container c. No food present/ordor only

d. Food hung in tree e. Unknown f. Some food in vehicle

12. Did the bear eat any human food? a. No b. Yes (what?) c. Unknown

13. Did the bear damage property? a. No b. Yes (list property and estimate costs) ____

Just abin \$10.00

14. Did the bear(s) harm anyone?

a No b. Yes* (describe)_

15. Details of bear-human interaction (optional):

* If there was a physical encounter with the bear or a bear was harmed in the incident, please report to the USFS Ranger and California Department of Fish and Wildlife.

Report collected by:	(USFS/camp host)
Date:	

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir.

a. Visitor a. Camping – developed campground b. Camp host b. Camping – undeveloped campsite/wilderness c. USFS employee c. Day use area d. Contractor d. Hiking on maintained trail e. Other e. Other	2. Describe yourself:	3. Visitor activity:
c. USFS employee c. Day use area d. Contractor d. Hiking on maintained trail	a. Visitor	a. Camping - developed campground
d. Contractor d. Hiking on maintained trail	b. Camp host	b. Camping – undeveloped campsite/wilderness
	c. USFS employee	c. Day use area
e. Othere. Other	d. Contractor	d. Hiking on maintained trail
	e. Other	e. Other

a. Airport Flat campground

b. Angel Creek day use area

c. Azalea Cove campground

e. Camino Cove campground

. Ice House campground/

i. Jones Fork campground

k. Lone Rock campground

boat launch/day use area

f. Fashoda campground

p. Pleasant campground g. Red Fir group campground d. Big Silver group campground r. Strawberry Point campground s. Sunset campground/boat launch t. Union Valley bike trail . Gerle Creek campground complex u. Wench Creek campground v. Wench Creek group campground x. Wolf Creek campground i. Junction Reservoir boat launch y. Wolf Creek group campground I. Loon Lake campground/boat ramp Other

o. Northshore RV campground w. West Point campground/boat launch z. Yellowjacket campground/boat launch

n. Northshore campground

m. Loon Lake chalet

7. Number and description of bears (how many, what color, size, adult or cub, sex?):

ONE BLACK 30016 (esi)

8. What was the bear doing when you first saw it?

SNIFFING AT BEAR BIN

9. Did you react to the bear?

YES - MADE NOISE

10. How did the bear react to your response?

NO RESPONSE

11. Was human food present? a. Some food/trash NOT in bear resistant container d. Food hung in tree b. All food/trash in bear resistant container c. No food present/ordor only

e Unknown

f. Some food in vehicle

.

12. Did the bear eat any human food?

a. No b. Yes (what?)

c. Unknown

13. Did the bear damage property?

a. No b. Yes (list property and estimate costs)

14. Did the bear(s) harm anyone? a. No b. Yes* (describe)

15. Details of bear-human interaction (optional): NO INTERACTION - BEAM DID NOT SEEMED AFFECTED BY NOISES - APPEARED TOBE GOING CAMP TU CAMP LOOKING FOR ACCESSIBLE FOOD

* If there was a physical encounter with the bear or a bear was harmed in the incident, please report to the USFS Ranger and California Department of Fish and Wildlife.

For office use only:	
Report collected by:	(USFS/camp host)
Date:	

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir.

escribe yourself:	3. Visitor activity:
sitor	(a.) Camping – developed campground
amp host	b. Camping – undeveloped campsite/wilderness
SFS employee	c. Day use area
ontractor	d. Hiking on maintained trail
ther	e. Other

a.

b.

C

d

e

g.

h.

i.

k. Lone Rock campground

n. Northshore campground

m. Loon Lake chalet

I. Loon Lake campground/boat ramp

Airport Flat campground	o. No
. Angel Creek day use area	p. Ple
Azalea Cove campground	q. Rec
. Big Silver group campground	r. Stra
Camino Cove campground	s. Sun
Fashoda campground	t. Unio
. Gerle Creek campground complex	u. We
Ice House campground/	v. Wei
boat launch/day use area	w. We
Jones Fork campground	x. Wo
Junction Reservoir boat launch	y. Wo

o. Northshore RV campground
p. Pleasant campground
q. Red Fir group campground
r. Strawberry Point campground
s. Sunset campground/boat launch
t. Union Valley bike trail
u. Wench Creek campground
v. Wench Creek group campground
w. West Point campground/boat launch
x. Wolf Creek campground
y. Wolf Creek group campground
z. Yellowjacket campground/boat launch
Other ________

7. Number and description of bears (how many, what color, size, adult or cub, sex?):

8. What was the bear doing when you first saw it? It was in our ice chest.

9. Did you react to the bear? Ves we yelled at it 10. How did the bear react to your response? Not scared of Humans or dogs

11. Was human food present?

a) Some food/trash NOT in bear resistant container
b. All food/trash in bear resistant container
c. No food present/ordor only

d. Food hung in treee. Unknownf. Some food in vehicle

.

* If there was a physical encounter with the bear or a bear was harmed in the incident, please report to the USFS Ranger and California Department of Fish and Wildlife.

For office use only:	
Report collected by:	(USFS/camp host)
Date:	
	-

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir.

1. Person(s) involved:

2. Describe yourself:	3. Visitor activity:
a. Visitor	a. Camping – developed campground
b. Camp host	b. Camping – undeveloped campsite/wilderness
c. USFS employee	c. Day use area
d. Contractor	d. Hiking on maintained trail
e. Other	e. Other
4. Group size: 3 (number of people who encount	ered the bear)
5. Time of encounter: Mon	th: Day: Year: 2019 Time: 10:30 Pm and again at
	and again a 1:30 am

a. Airport Flat campground
b. Angel Creek day use area
c. Azalea Cove campground
d. Big Silver group campground
e. Camino Cove campground
f. Fashoda campground
g. Gerle Creek campground complex
h. Ice House campground/
boat launch/day use area
i. Jones Fork campground
j. Junction Reservoir boat launch
k. Lone Rock campground/
l. Loon Lake campground/boat ramp

m. Loon Lake chalet

n. Northshore campground

NIZ across Air Port flats o. Northshore RV campground p. Pleasant camparound g. Red Fir group campground r. Strawberry Point campground s. Sunset campground/boat launch t. Union Valley bike trail u. Wench Creek campground v. Wench Creek group campground w. West Point campground/boat launch x. Wolf Creek campground y. Wolf Creek group campground z. Yellowjacket campground/boat launch Other

7. Number and description of bears (how many, what color, size, adult or cub, sex?): 1 bear, brown, huge 400 lbs plus, Adult, Not Sure 8. What was the bear doing when you first saw it? Riping my cooler to pieces. ask.

9. Did you react to the bear? Horked my car horn and yelled at it, 10. How did the bear react to your response? Looked at me briefly then continued to her 11. Was human food present? d. Food hung in tree a. Some food/trash NOT in bear resistant container b. All food/trash in bear resistant container e. Unknown c. No food present/ordor only f. Some food in vehicle 12. Did the bear eat any human food? a. No b. Yes (what?) 16 really tasty hot dogs 1 1 chicken breast, c. Unknown <u>3 Freeze dried foods</u> packets 1,200 caleries a packet. 13. Did the bear damage property? a. No b. (Yes fist property and estimate costs) _ice chest, cheap 14. Did the bear(s) harm anyone? a. No b. Yes* (describe) Not aggressive just hunging 15. Details of bear-human interaction (optional): horked my horn and yelled at it. Bear looked at me and continued to eat.

* If there was a physical encounter with the bear or a bear was harmed in the incident, please report to the USFS Ranger and California Department of Fish and Wildlife.

(USFS/camp host)
*

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir. Forms also can be dropped off at the Pacific Ranger Station at 7887 Highway 50, Pollock Pines, CA 95726.

1. Person(s) involved:

Address City: _	State:
Zip code:	Phone:
Country: _	
2. Describe yourself:	3. Visitor activity:
a. Visitor	(a) Camping – developed campground
b. Camp host	b. Camping – undeveloped campsite/wilderness
c. USFS employee	c. Day use area
d. Contractor e. Other	d. Hiking on maintained trail e. Other
4. Group size:	
(number of people who enco	ountered the bear)

a. Airport Flat campground
b. Angel Creek day use area
c. Azalea Cove campground
d. Big Silver group campground
e. Camino Cove campground
fashoda campground
Gerle Creek campground complex
h. Ice House campground/ boat launch/day use area
i. Jones Fork campground
j. Junction Reservoir boat launch
k. Lone Rock campground
l. Loon Lake campground/boat ramp

n. Northshore campground

m. Loon Lake chalet

o. Northshore RV campground
p. Pleasant campground
q. Red Fir group campground
r. Strawberry Point campground
s. Sunset campground/boat launch
t. Union Valley bike trail
u. Wench Creek campground
v. Wench Creek group campground
w. West Point campground/boat launch
x. Wolf Creek campground
y. Wolf Creek group campground
z. Yellowjacket campground/boat launch
Other ______

7. Number and description of bears (how many, what color, size, adult or cub, sex?): UNKNOWN - DID NOT SEE THE BEAR

8. Did the bear(s) harm anyone?

9. What were you doing before you saw the bear? BEAR WENT INBETWEEN THREE SITES WHERE PEOPLE WERE AT CAMPFIRES, BUT WASN'T SEEN 10. What was the bear doing when you first saw it? EMPTIED AN ICE CHEST BUT NEVER SEEN

* If there was a physical encounter with the bear or a bear was harmed in the incident, please report to the USFS Ranger and California Department of Fish and Wildlife.

11. How did the bear react to you?

12. What did you do then?

13. How did the bear react to your response?

14. How close did you come to the bear (how many feet)?

15. Was human food present?

a. Food not in bear resistant containerb. Food in bear resistant containerc. Food odor onlyd. Food hung in treee. No food presentf. Unknown

16. Did the bear eat any human food?

a. No b. Yes (what?) c. Unknown

17. Did the bear damage property?

a. No b. Yes (list property and estimate costs)_

18. Details of bear-human interaction (optional):

For office use only:		
Report collected by:	 	(USFS/camp host)
Date:		

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir.

1. Person(s) involved:

2. Describe yourself:	3. Visitor activity:
a. Visitor	a. Camping – developed campground
b. Camp host	b. Camping – undeveloped campsite/wilderness
c. USFS employee	c. Day use area
d. Contractor	d. Hiking on maintained trail
e. Other	e. Other

- a. Airport Flat campground
- b. Angel Creek day use area
- c. Azalea Cove campground
- d. Big Silver group campground
- e. Camino Cove campground
- f. Fashoda campground
- g. Gerle Creek campground complex
- h. Ice House campground/
- boat launch/day use area
- i. Jones Fork campground
- j. Junction Reservoir boat launch
- k. Lone Rock campground
- I. Loon Lake campground/boat ramp
- m. Loon Lake chalet
- n. Northshore campground

o. Northshore RV campground
p. Pleasant campground
q. Red Fir group campground
r. Strawberry Point campground
s. Sunset campground/boat launch
t. Union Valley bike trail
u. Wench Creek campground
v. Wench Creek group campground
w. West Point campground/boat launch
x. Wolf Creek group campground
y. Wolf Creek group campground
z. Yellowjacket campground/boat launch

Other _____

7. Number and description of bears (how many, what color, size, adult or cub, sex?):

LARGE TAN ADULT MALE

8. What was the bear doing when you first saw it?

XES YELLED AT IT 10. How did the bear react to your response? WALKED AWAY 11. Was human food present? a. Some food/trash NOT in bear resistant container d. Food hung in tree b. All food/trash in bear resistant container e Unknown c. No food present/ordor only f. Some food in vehicle 12. Did the bear eat any human food? a. No b. Yes (what?) C. Unknown CHOCOLATE PACKAGE FOUND NEXT DAY 13. Did the bear damage property? a. No b. Yes (list property and estimate costs) _ 14. Did the bear(s) harm anyone? a. No b. Yes* (describe)_ 15. Details of bear-human interaction (optional): 3 OTHER CAMPERS VELLED AT IT.

9. Did you react to the bear?

* If there was a physical encounter with the bear or a bear was harmed in the incident, please report to the USFS Ranger and California Department of Fish and Wildlife.

E.

For office use only:	
Report collected by:	(USFS/camp host)
Date:	
	×

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir.

1. Person(s) involved:

2. Describe yourself:	3. Visitor activity:
a. Visitor	a. Camping – developed campground
b. Camp host	b. Camping – undeveloped campsite/wilderness
c. USFS employee	c. Day use area
d. Contractor	d. Hiking on maintained trail
e. Other	e. Other
4. Group size: 2 (number of people who encount	aread the beer)

f. Fashoda campground

i. Jones Fork campground

k. Lone Rock campground

n. Northshore campground

m. Loon Lake chalet

o. Northshore RV campground a. Airport Flat campground b. Angel Creek day use area p. Pleasant campground c. Azalea Cove campground g. Red Fir group campground d. Big Silver group campground r. Strawberry Point campground e. Camino Cove campground s. Sunset campground/boat launch t. Union Valley bike trail g. Gerle Creek campground complex u. Wench Creek campground v. Wench Creek group campground h. Ice House campground/ w. West Point campground/boat launch boat launch/day use area x. Wolf Creek campground j. Junction Reservoir boat launch y. Wolf Creek group campground z. Yellowjacket campground/boat launch I. Loon Lake campground/boat ramp Other

7. Number and description of bears (how many, what color, size, adult or cub, sex?): male-maybe, adult, brown (dark 8. What was the bear doing when you first saw it? It was behind the tent warking very close twined and looked at us and just kinda

14. Did the bear(s) harm anyone? a. No b. Yes* (describe) 15. Details of bear-human interaction (optional): Shoed away from behin

* If there was a physical encounter with the bear or a bear was harmed in the incident, please report to the USFS Ranger and California Department of Fish and Wildlife.

11. Was human food present? - we were still awalce a.Some food/trash NOT in bear resistant container d. Food hung in tree b. All food/trash in bear resistant container e. Unknown f. Some food in vehicle

12. Did the bear eat any human food? a. No b. Yes (what?) c. Unknown not out of our camp

10. How did the bear react to your response?

Slowly away

13. Did the bear damage property? a. No b. Yes (list property and estimate costs)

9. Did you react to the bear?

yes, yelled

c. No food present/ordor only

wallad

For office use only:	
Report collected by:	(USFS/camp host)
Date:	

Use a separate form for each individual incident. For example, if the same bear enters two campsites while people are present, a person from each campsite should report the specifics of their encounter. Give completed forms to campground hosts. If your recreation site has no host, forms should be placed in the appropriate receptacle at the site or dropped off at the Crystal Basin Information Station on Ice House Road between Ice House Reservoir and Union Valley Reservoir.

2. Describe yourself:	3. Visitor activity:
. Visitor	a. Camping - developed campground
o. Camp host	b. Camping – undeveloped campsite/wilderness
. USFS employee	c. Day use area
. Contractor	d. Hiking on maintained trail
. Other	e. Other
. Group size:	

6. Location of encounter:

a. Airport Flat campground

b. Angel Creek day use area

c. Azalea Cove campground

d. Big Silver group campground

e. Camino Cove campground

f. Fashoda campground

h. Ice House campground/

i. Jones Fork campground

k. Lone Rock campground

m. Loon Lake chalet

boat launch/day use area

j. Junction Reservoir boat launch

o. Northshore RV campground p. Pleasant campground q. Red Fir group campground r. Strawberry Point campground s. Sunset campground/boat launch t. Union Valley bike trail Gerle Creek campground complex u. Wench Creek campground v. Wench Creek group campground w. West Point campground/boat launch x. Wolf Creek campground y. Wolf Creek group campground z. Yellowjacket campground/boat launch I. Loon Lake campground/boat ramp Other _____

n. Northshore campground

7. Number and description of bears (how many, what color, size, adult or cub, sex?):

adult arge one

8. What was the bear doing when you first saw it?

digging in a cooler

10. How did the bear react to your respo	nse?
	was doing & worked
11. Was human food present?	· awar
a. Some food/trash NOT in bear resistant container	d. Food hung in tree
b. All food/trash in bear resistant container	e. Unknown
c. No food present/ordor only	f. Some food in vehicle
12. Did the bear eat any human food?	
a. No b. Yes (what?)	
c. Unknown 13. Did the bear damage property? a. No b. Yes (list property and estimate costs)	
c. Unknown 13. Did the bear damage property? a. No b. Yes (list property and estimate costs) 14. Did the bear(s) harm anyone?	
c. Unknown 13. Did the bear damage property? a. No b. Yes (list property and estimate costs)	
 c. Unknown	tional):
 c. Unknown	tional): rages, but a bottle
c. Unknown 13. Did the bear damage property? a. No b. Yes (list property and estimate costs) 14. Did the bear(s) harm anyone? a. No b. Yes* (describe) 15. Details of bear-human interaction (opt 	tional): rages, but a bottle in there. He opened

APPENDIX J2

2019 Bear Encounter Results

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

This Page Intentionally Left Blank

Bear Encounter Form - Bear Management Monitoring, Crystal Basin Recreation Area - UARP, Eldorado National Forest

2019 Results Summary - Compiled by Ethan Koenigs, SMUD

								15. Food Present	16.Consumption by Bear		
Adam Z.	Visitor	Camping - Undeveloped	3	7/18/2019	Airport Flat	1 large brown	Bear got into cooler and ate food; campers could not scare bear away	Yes - no container	Yes	Yes	Camper was near Airport Flat. Bear ate 2 packs of hot dogs, chicken breast, 3 packs of freeze-dried food; cooler was damaged
David W.	Visitor	Camping - developed	7	7/17/2019	Airport Flat	1 black	Bear got into cooler and ate food; campers could not scare bear away	Yes - no container	Yes	Yes	Bear ate a variety of food, tore lid off ice chest; was not scared of humans or dogs
Michael P.	Visitor	Camping - developed	2	8/12/2019	Gerle Creek	1 adult brown	Bear rumaging through cooler; campers made noise to get bear to leave	Yes	No	No	Bear was in beverage cooler with ketchup
Ken W.	Visitor	Camping - developed	2	8/9/2019	Gerle Creek	1 adult brown	Bear walking through camp	Yes - in resistant container	No	No	Campers were awake and were able to get bear to leave
Chris M.	Visitor	Camping - developed	6	8/9/2019	Gerle Creek	1 adult tan	Bear waling through camp	Yes - in resistant container	Unknown	No	Bear walked off when campers confronted it; chocolate package found next day
Skylar W.	Visitor	Camping - developed	1	8/9/2019	Gerle Creek	Unknown	Bear emptied an ice chest but was not seen	Yes - no container	Unknown	No	Bear was not seen by reporter; only evidence of bear was cooler emptied.
Richard B.	Visitor	Camping -developed	6	8/1/2019	Gerle Creek	1 - large black	Bear sniffing around near bear locker	Yes - no container	Unknown	No	Bear not dertered by noise or campers activities to scare it away.
Michael C.	Visitor	Camping - developed	?	7/25/2019	Gerle Creek	Unknown	Bear went through camp and knocked things over	Yes - in resistant container	No	Yes	Bear damaged 10 dollar bin
Kohlstedt	Visitor	Camping - developed	6	8/3/2019	Gerle Creek	1 - large brown	Bear passed through camp looking for food	Yes - no container	Yes	No	Bear did try to eat non- dairy, sugar free creamer but moved on.
Mark K.	Visitor	Camping - developed	1	7/15/2019	Gerle Creek	1 blonde/brown	Bear investigating camp at night	Yes - in resistant container	No	No	Visitor's experience was positive; bear was afraid of people and ran off wher seen
Blandon R.	Visitor	Camping - developed	8	7/7/2019	Gerle Creek	2 - large brown	Bear knocking over dumpter and passing through camp	Yes - no container	no	No	Camper yelled and used horn; 1 bear walked away and 1 continued to do its thing.
Mark K.	Visitor	Camping - developed	1	7/8/2019	Gerle Creek	3 - 100-160lbs/ 1 brown, 1 black, 1 red	Bears just observed	No	No	No	Just a sighting; visitor expressed positive experience
Christopher L.	Visitor	Camping - developed	7	5/25/2019	Gerle Creek	1 Huge brown male		Yes - no container	Yes	Yes	Bear got into cooler and damaged it; ate salami and salad; bear got within 6 feet; camper scared bear off with golf club hitting bear box
Steven S.	Visitor	Camping - developed	6	7/7/2019	Gerle Creek	Unknown	Campers did not see bear bu camp was plundered.	^t Yes - no container	Yes	No	Bear got into trash bag; ate bagels.
Russel K	Visitor	ampground - undevlope	2	7/18/2019	Millionaire Camp	1 - large, dark	Bear attempting to get into cooler	Yes - in resistant container	No	Yes	Bear did not respond to yelling, tried to drag off cooler; Camper fired a shot into ground near bear and bear ran off.

APPENDIX K1

2019 Water Temperature Graphs

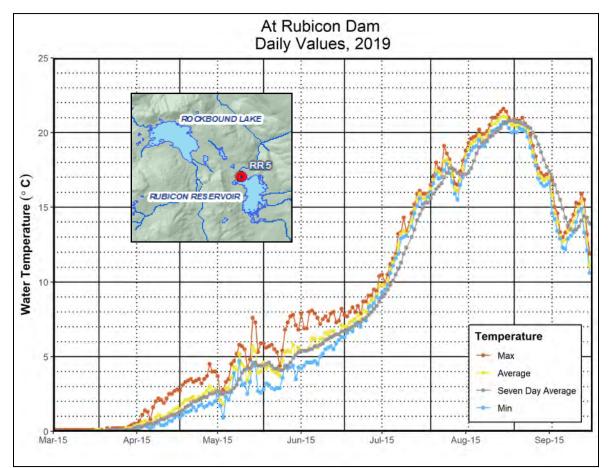


Figure K1-1. Rubicon River immediately below Rubicon Reservoir Dam (RR5)

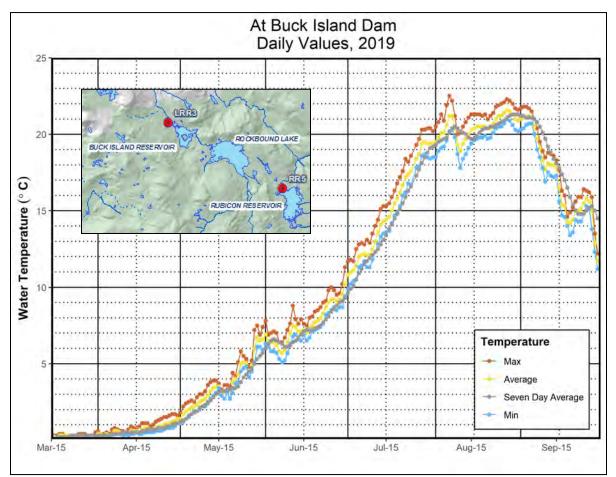


Figure K1-2. Little Rubicon River Immediately below Buck Island Reservoir Dam (LRR3)

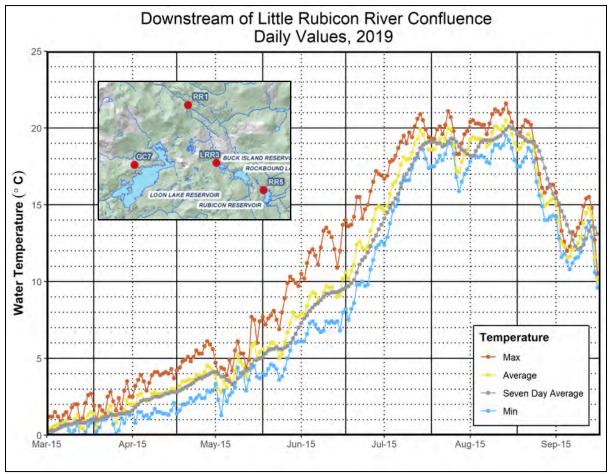


Figure K1-3. Rubicon River below confluence of Little Rubicon River at the Project boundary (RR1)

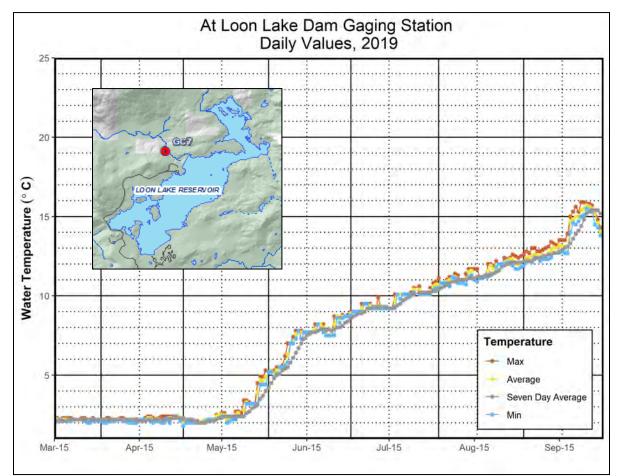


Figure K1-4. Gerle Creek Immediately below Loon Lake Reservoir Dam (GC7)

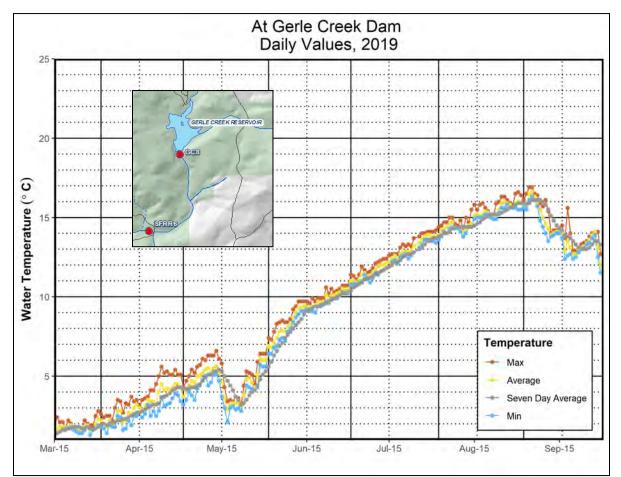


Figure K1-5. Gerle Creek immediately below Gerle Creek Reservoir Dam (GC8)

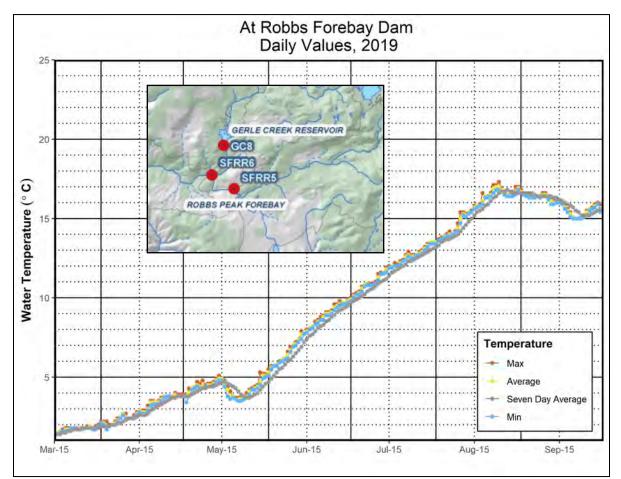


Figure K1-6, SF Rubicon River immediately below Robbs Peak Reservoir Dam (SFRR5)

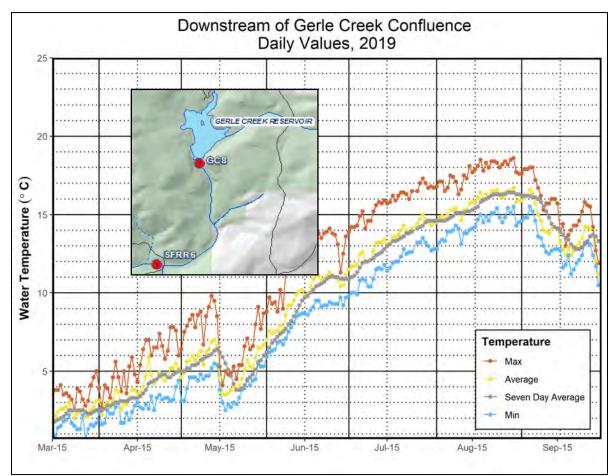


Figure K1-7. SF Rubicon River below confluence of Gerle Creek (SFRR6)

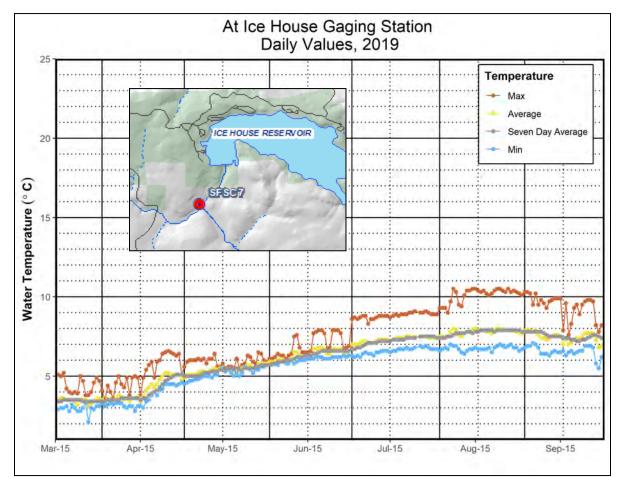


Figure K1-8. South Fork Silver Creek immediately below Ice House Reservoir Dam (SFSC7)

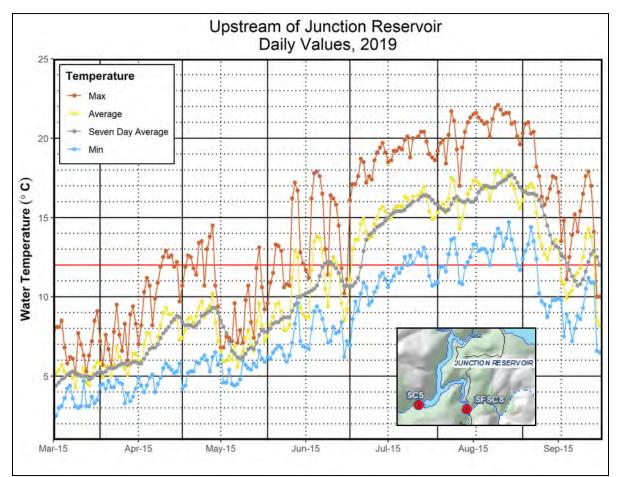


Figure K1-9. South Fork Silver Creek immediately upstream of Junction Reservoir (SFSC8)

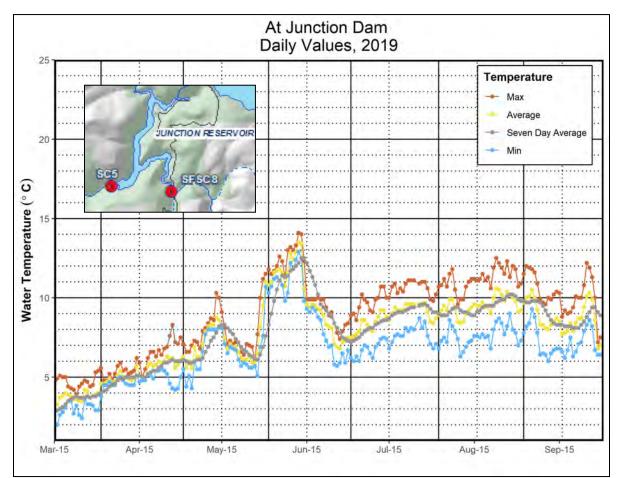


Figure K1-10. Silver Creek immediately below Junction Reservoir Dam (SC5)

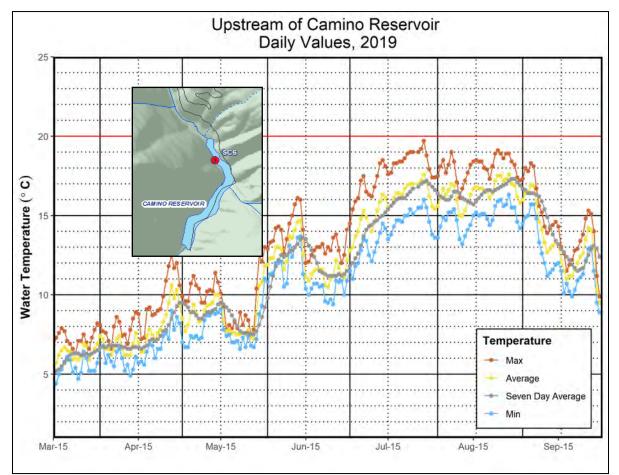


Figure K1-11. Silver Creek immediately above Camino Reservoir Dam (SC6)

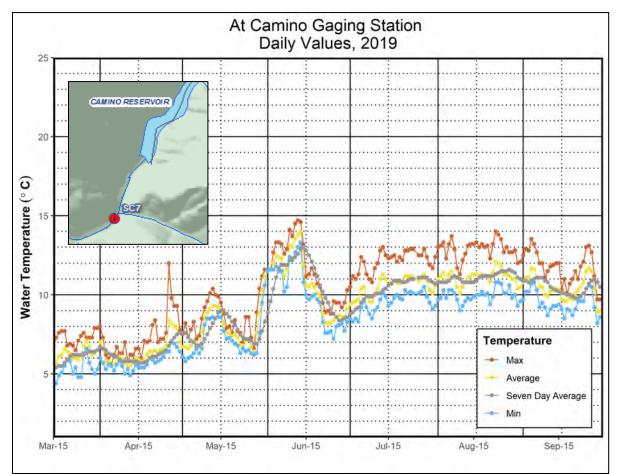


Figure K1-13: Silver Creek immediately below Camino Reservoir Dam (SC7)

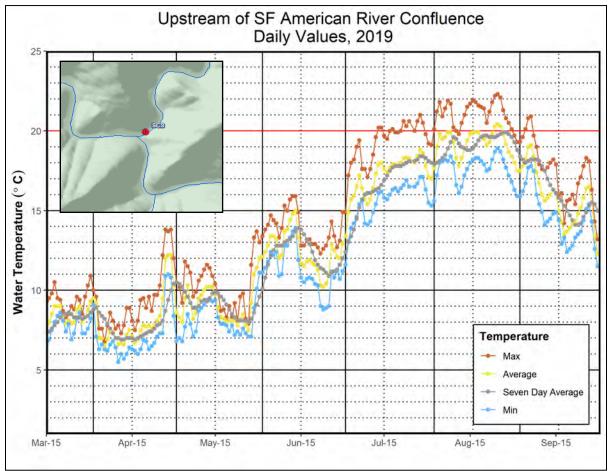


Figure K1-14: Silver Creek immediately upstream of SF American River (SC8)

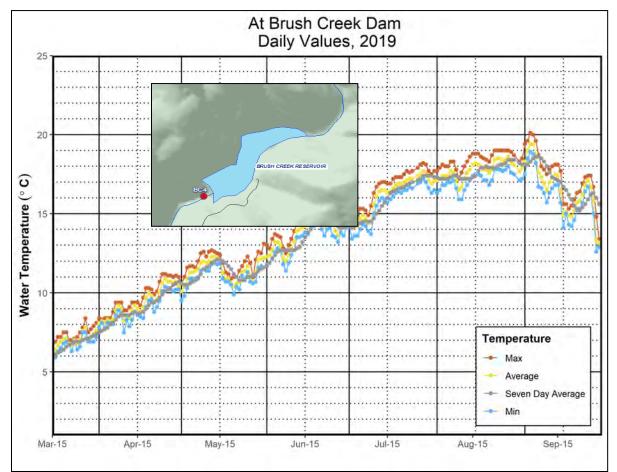


Figure K1-15: Brush Creek immediately below Brush Creek Reservoir Dam (BC4)

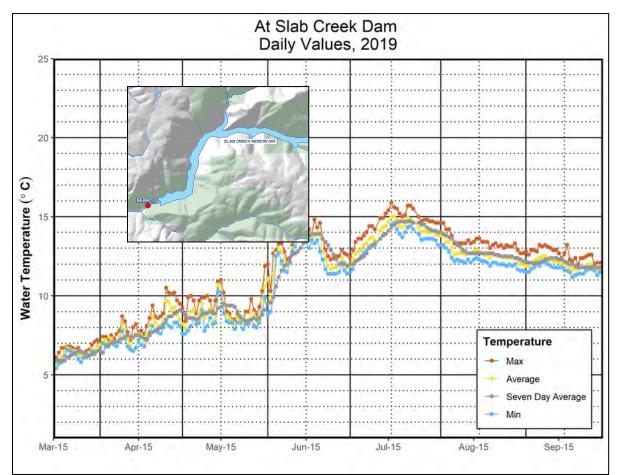


Figure K1-16: SF American River immediately below Slab Creek Reservoir Dam (SFAR13)

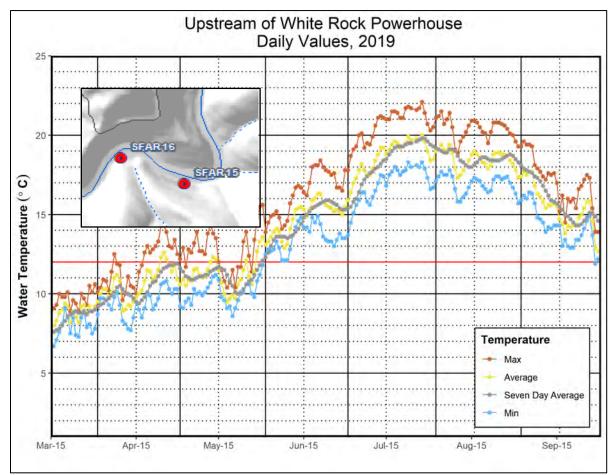


Figure K1-17. SF American River approximately $\frac{1}{2}$ mile upstream of White Rock Powerhouse (SFAR15)

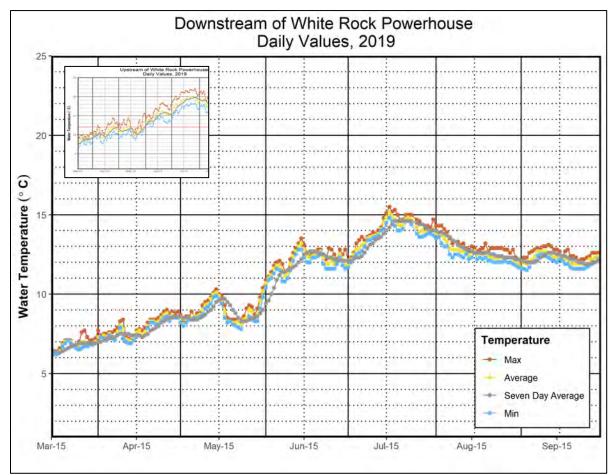


Figure K1-18: SF American River to record White Rock Powerhouse discharge temps (SFAR16)