SACRAMENTO MUNICIPAL UTILITY DISTRICT UPPER AMERICAN RIVER PROJECT (FERC Project No. 2101)

and

PACIFIC GAS AND ELECTRIC COMPANY CHILI BAR PROJECT (FERC Project No. 2155)

CHANNEL MORPHOLOGY TECHNICAL REPORT

Prepared by:

Devine Tarbell & Associates, Inc. Sacramento, California Stillwater Sciences Davis, California

Prepared for:

Sacramento Municipal Utility District Sacramento, California

and

Pacific Gas and Electric Company San Francisco, California

APRIL 2005 Version 2

TABLE OF CONTENTS

Secti	ion & Description Pa			
1.0	INTR	ODUCTION	2	
2.0	BAC	KGROUND	3	
	2.1 2.2 2.3	Channel Morphology Study Plan Water Year Type Agency Requested Information	4	
3.0	MET	HODS	5	
	3.1 3.2	Geomorphic Characterization Identify and Select Morphological Description and Channel Condition Assessment Sites		
		 3.2.1 Identification of Potential Morphological Description and Channel Condition Assessment Sites. 3.2.2 Selection of Morphological Description and Channel Condition Assessment Sites. 		
	3.3	Morphological Description and Channel Condition Assessment 3.3.1 Morphological Description Surveys 3.3.2 Channel Condition Assessment	9 9	
	3.4	Channel Bed Mobility		
4.0	RESU	JLTS	14	
	4.1	 Results for the UARP	15	
		 4.1.3 Gerle Creek Dam Reach Site (Geomorphology Site GC-G1) 4.1.4 Robbs Peak Dam Reach Site (Geomorphology Site RPD-G1) 4.1.5 Ice House Dam Reach Sites (Geomorphology Sites IH-G1, IH-G2) 4.1.6 Junction Dam Reach Site (Geomorphology Site JD-G1) 4.1.7 Camino Dam Reach Site (Geomorphology Site CD-G1) 	20 21 22 24	
	4.2	 4.1.8 South Fork American River Reach Site (Geomorphology Site SFAR-G1) 4.1.9 Slab Creek Dam Reach Site (Geomorphology Site SC-G1) Results for the Reach Downstream of Chili Bar	26 28 30	

		4.2.3 Lower Coloma Site (Geomorphology Site CB-G3)	
		4.2.4 Gorge Site (Geomorphology Site CB-G4)	
	4.3	Channel Bed Mobility	
	4.4	Bankfull Flow Analysis	
5.0	DISCU	JSSION	
	5.1	Transport Sites of the UARP	
		5.1.1 B Channel Type	
	5.2	Transport Sites of the Reach Downstream of Chili Bar	
		5.2.1 F Channel Type	
	5.2.2	C Channel Type	
	5.3	Response Sites of the UARP	
		5.3.1 F Channel Type	
		5.3.2 E Channel Type	
		5.3.3 C Channel Type	
	5.4	Response Sites of the Reach Downstream of Chili Bar	
		5.4.1 C Channel Type	
6.0	LITER	ATURE CITED	

LIST OF TABLES

Table No. & Description		
Table 2.2-1.	Water year types applied to individual months of years 2001-2004	4
Table 3.2-1.	Sites for the UARP and the Reach Downstream of Chili Bar	8
Table 4.1-1.	UARP geomorphic data summary table	16
Table 4.2-1.	Reach Downstream of Chili Bar geomorphic data summary table	29
Table 4.4-1.	Results of bankfull discharge comparisons	35

LIST OF FIGURES

(Located after text)

Figure No. & Description

Figure 3.2-1 Summary map showing the locations of the geomorphology sites.

Appendix & Description

APPENDIX	А	ROSGEN STREAM CLASSIFICATION SYSTEM	
APPENDIX	В	LEVEL II/III SITE MAPS WITH LEVEL I STREAM TYP DELINEATION	E
APPENDIX	С	REACH-SCALE LONGITUDINAL PROFILE PLOTS II/III SITES	FOR LEVEL
•	Rubicon	Dam Reach	C-1
•		Tunnel Outlet Reach	
•		Ind Dam Reach	
•		and Dam Reach	
•		ke Dam Reach	
•		eek Dam Reach	
•		eak Dam Reach	
•		e Dam Reach	
•		Dam Reach	
•		Dam Reach	
•		erican (SFAR) Reach	
•		reek Dam Reach	
•		ek Dam Reach	
•	Reach D	ownstream of Chili Bar	C-14
APPENDIX	D	SAMPLE LEVEL II/III FIELD DATA SHEETS	
APPENDIX	Е	REPRESENTATIVE PHOTOGRAPHS	
•	Figure E	-1 Rubicon Dam Reach Site (RD-G1): Upper cross-sec	tion
	C	(1), looking downstream	
•	Figure E	-2 Rubicon Dam Reach Site (RD-G1): Middle cross-se	ction
		(2), looking at river-left bank from river-right bank	E-1
•	Figure E	-3 Rubicon Dam Reach Site (RD-G1): Lower (3) cross	, –
		section, looking downstream	E-2
•	Figure E	-4 Loon Lake Dam Reach Upper Site (LL-G1): Upper	cross-
		section (1), looking upstream	
•	Figure E		
		cross-section, looking upstream	
•	Figure E		
		section (3), looking downstream	E-3

Appendix & Description

•	Figure E-7	Loon Lake Dam Reach Middle Site (LL-G2): Approximately 40 feet upstream of upper cross-section (1) looking downstream	E-4
•	Figure E-8	Loon Lake Dam Reach Middle Site (LL-G2): Middle cross-section (2), from 40 feet downstream of middle cross-	
	Eigura E 0	section (2) looking upstream Loon Lake Dam Reach Middle Site (LL-G2): Lower (3)	E-4
•	Figure E-9	cross-section, looking downstream; note transect tape	Е 5
•	Figure E-10	Loon Lake Dam Reach Lower Site (LL-G3): Upper cross-	Ľ-J
•	Figure E-10	section (1), looking upstream at cross-section tape	F-5
•	Figure E-11	Loon Lake Dam Reach Lower Site (LL-G3): Middle cross-	L-J
•	Figure E-11	section (2), looking upstream from river-left bank	F-6
•	Figure E-12	Loon Lake Dam Reach Lower Site (LL-G3): Lower (3)	L U
•	riguie L 12	cross-section, looking upstream; note transect tape.	E-6
•	Figure E-13	Gerle Creek Dam Reach Site (GC-G1): Upstream of upper	0
	1.8010 2.10	cross-section (1) looking downstream with surveyor and	
		stadia rod	E-7
•	Figure E-14	Gerle Creek Dam Reach Site (GC-G1): Upstream of	
	C	middle (2) cross-section, looking downstream with	
		surveyor; note transect tape.	E-7
٠	Figure E-15	Gerle Creek Dam Reach Site (GC-G1): Lower cross-	
		section (3), river-right bank looking at river-left bank with	
		surveyor	E-8
٠	Figure E-16	Robbs Peak Dam Reach Site (RPD-G1): Upper cross-	
		section (1), looking downstream at right edge	E-8
٠	Figure E-17	Robbs Peak Dam Reach Site (RPD-G1): Middle cross-	
		section (2) looking downstream - note upstream cross-	
		section flagging	E-9
٠	Figure E-18	Robbs Peak Dam Reach Site (RPD-G1): Lower (3) cross-	
		section, looking upstream with surveyor.	E-9
•	Figure E-19	Ice House Dam Reach Upper Site (IH-G1): Upper cross-	
		section (1) looking downstream from mid-channel with	F 10
	E. E 2 0	surveyor and stadia rod	E-10
•	Figure E-20	Ice House Dam Reach Upper Site (IH-G1): Middle cross-	
		section (2) looking downstream from mid-channel with	E 10
		surveyor and stadia rod	E-10

Pacific Gas and Electric Company Chili Bar Project FERC Project No. 2155

LIST OF APPENDICES

Appendix & Description

•	Figure E-21	Ice House Dam Reach Upper Site (IH-G1): Lower (3) cross-section, looking downstream from river-right bank	F 11
•	Figure E-22	with surveyor; note transect tape Ice House Dam Reach Lower Site (IH-G2): Upper cross- section (1), looking upstream from river-left bank with	E-11
		surveyor and stadia rod	E-11
•	Figure E-23	Ice House Dam Reach Lower Site (IH-G2): Middle (2) cross-section, looking downstream from river-left bank with surveyor; note transect tape.	
•	Figure E-24	Ice House Dam Reach Lower Site (IH-G2): Lower cross-	L-12
•	-	section (3), looking upstream from river-right bank	E-12
•	Figure E-25	Junction Dam Reach Site (JD-G1): Upper cross-section	
		(1), looking downstream from river-left bank with surveyor for scale	E 13
•	Figure E-26	Junction Dam Reach Site (JD-G1): Middle (2) cross-	L-15
•	I Igure E 20	section, looking upstream at river-left bank from river-right	
		bank with surveyor; note transect tape.	E-13
٠	Figure E-27	Junction Dam Reach Site (JD-G1): Lower cross-section	
	-	(3), looking upstream from river-right bank with surveyor	
		and stadia rod	E-14
•	Figure E-28	Camino Dam Reach Site (CD-G1): Upper cross-section	
		(1), looking from river left bank pin at river right bank pin	F 14
-	Eigung E 20	with surveyor for scale	E-14
•	Figure E-29	Camino Dam Reach Site (CD-G1): Middle (2) cross- section, looking downstream from river-left bank	F_15
•	Figure E-30	Camino Dam Reach Site (CD-G1): Lower cross-section	L-15
•	I Igule E 50	(3) looking downstream from river-left bank	E-15
•	Figure E-31	S. F. American Reach Site (SFAR-G1): Upper (1) cross-	
	e	section, above riffle looking from center of river	
		downstream; note transect tape	E-16
٠	Figure E-32	S. F. American Reach Site (SFAR-G1): On river-right	
		bank, looking downstream at lower cross-section	E-16
٠	Figure E-33	Slab Creek Dam Reach Site (SC-G1): Looking upstream at	F 15
	D . D . 2 (upper (1) cross-section toward river-left bank	E-17
•	Figure E-34	Slab Creek Dam Reach Site (SC-G1): Middle cross-	C 17
•	Figure E-35	section (2), looking upstream toward river-right bank Slab Creek Dam Reach Site (SC-G1): Lower cross-section	с-1/
•		(3), looking at river-left bank pin from river-right bank pin	E-18

Appendix & Description

•	Figure E-36	Reach Downstream of Chili Bar, Upper Canyon Site (CB-G1): Upper (1) cross-section, looking downstream from	F 10
			E-18
٠	Figure E-37	Reach Downstream of Chili Bar, Upper Canyon Site (CB-	
		G1): Middle cross-section (2), from river-left bank looking	
		toward river-right bank	E-19
٠	Figure E-38	Reach Downstream of Chili Bar, Upper Canyon Site (CB-	
		G1): Lower cross-section (3), downstream from a boulder	
		in the channel, showing cross section tape	E-19
٠	Figure E-39	Reach Downstream of Chili Bar, Upper Coloma Site (CB-	
		G2): Upper cross-section island, looking toward river-left	
		bank pin - island separates two channels of river	E-20
٠	Figure E-40	Reach Downstream of Chili Bar, Upper Coloma Site (CB-	
		G2): Middle cross-section, from river-left bank looking	
		upstream	E-20
٠	Figure E-41	Reach Downstream of Chili Bar, Upper Coloma Site (CB-	
	-	G2): Lower (3) cross-section, looking downstream from	
			E-21
٠	Figure E-42	Reach Downstream of Chili Bar, Lower Coloma Site (CB-	
	0	G3): Upper cross-section (1), looking downstream from	
		river-right bank	E-21
٠	Figure E-43	Reach Downstream of Chili Bar, Lower Coloma Site (CB-	
	0	G3): Middle cross-section (2), looking downstream from	
		river-left bank	E-22
•	Figure E-44	Reach Downstream of Chili Bar, Lower Coloma Site (CB-	
-	I Iguio E TT	G3): Lower (3) cross-section, from river-right bank	
		looking downstream with surveyor; note transect tape	E-22
•	Figure E-45	Reach Downstream of Chili Bar, Gorge Site (CB-G4):	
•	I Iguie L-45	Upper (1) cross-section, from mid-channel bar looking	
		downstream.	E-23
•	Figure E-46	Reach Downstream of Chili Bar, Gorge Site (CB-G4):	L-23
•	Figure E-40		
		Middle cross-section, from mid-channel looking	E-23
-	Eigung E 47	downstream	E-23
•	Figure E-47	Reach Downstream of Chili Bar, Gorge Site (CB-G4):	
		Downstream (lower) cross-section, looking toward river-	E 04
		right bank pin from river-left bank	E-24

Appendix & Description

APPENDIX	F SITE PHOTOGRAPHS (COMPLETE SET, BY REACH ON CD – PHOTO INDEX IN HARDCOPY) AND GPS COORDINATES (OI	N CD)
APPENDIX	G DATA SETS: LONGITUDINAL PROFILE DATA, CROSS-SECT DATA, AND PEBBLE COUNT TABLES FOR THE UARP	ION
APPENDIX	H GRAPHS: LONGITUDINAL PROFILES, CROSS-SECTIONS, AN PEBBLE COUNT PLOTS FOR THE UARP	1D
•	Site Names for the UARP	H-1
•	Rubicon Dam Reach Site (RD-G1) long profile	
•	Rubicon Dam Reach Site (RD-G1) upper cross-section	
•	Rubicon Dam Reach Site (RD-G1) middle cross-section	
•	Rubicon Dam Reach Site (RD-G1) lower cross-section	
•	Rubicon Dam Reach Site (RD-G1) particle size distribution plot	
•	Loon Lake Dam Reach Upper Site (LL-G1) long profile	H - 7
•	Loon Lake Dam Reach Upper Site (LL -G1) upper cross-section	
•	Loon Lake Dam Reach Upper Site (LL -G1) middle cross-section	
•	Loon Lake Dam Reach Upper Site (LL -G1) lower cross-section	
•	Loon Lake Dam Reach Middle Site (LL-G2) long profile	H - 11
•	Loon Lake Dam Reach Middle Site (LL –G2) upper cross-section	
•	Loon Lake Dam Reach Middle Site (LL –G2) middle cross-section	H-13
•	Loon Lake Dam Reach Middle Site (LL –G2) lower cross-section	H-14
•	Loon Lake Dam Reach Middle Site (LL -G2) particle size distribution plot	H-15
•	Loon Lake Dam Reach Lower Site (LL –G3) long profile	
•	Loon Lake Dam Reach Lower Site (LL –G3) upper cross-section	
•	Loon Lake Dam Reach Lower Site (LL –G3) middle cross-section	
•	Loon Lake Dam Reach Lower Site (LL –G3) lower cross-section	H-19
•	Loon Lake Dam Reach Lower Site (LL-G3) particle size distribution plot	H - 20
•	Gerle Dam Reach Site (GC –G1) long profile	
•	Gerle Dam Reach Site (GC –G1) upper cross-section	H - 22
•	Gerle Dam Reach Site (GC –G1) middle cross-section	
•	Gerle Dam Reach Site (GC –G1) lower cross-section	
•	Gerle Dam Reach Site (GC –G1) particle size distribution plot	H - 25
•	Robbs Peak Dam Reach Site (RPD –G1) long profile	
•	Robbs Peak Dam Reach Site (RPD –G1) upper cross-section	
•	Robbs Peak Dam Reach Site (RPD –G1) middle cross-section	
•	Robbs Peak Dam Reach Site (RPD –G1) lower cross-section	

Appendix & Description

Page

•	Robbs Peak Dam Reach Site (RPD –G1) particle size distribution plot	H-30
٠	Ice House Dam Reach Upper Site (IH –G1) long profile	
٠	Ice House Dam Reach Upper Site (IH –G1) upper cross-section	Н-32
٠	Ice House Dam Reach Upper Site (IH –G1) middle cross-section	
٠	Ice House Dam Reach Upper Site (IH –G1) lower cross-section	H-34
٠	Ice House Dam Reach Upper Site (IH –G1) particle size distribution plot	Н-35
٠	Ice House Dam Reach Lower Site (IH –G2) long profile	
•	Ice House Dam Reach Lower Site (IH –G2) upper cross-section	H - 37
•	Ice House Dam Reach Lower Site (IH –G2) middle cross-section	Н-38
•	Ice House Dam Reach Lower Site (IH –G2) lower cross-section	Н-39
•	Ice House Dam Reach Lower Site (IH –G2) particle size distribution plot	H-40
•	Junction Dam Reach Site (JD –G1) long profile	H - 41
•	Junction Dam Reach Site (JD –G1) upper cross-section	H-42
•	Junction Dam Reach Site (JD –G1) middle cross-section	
•	Junction Dam Reach Site (JD –G1) lower cross-section	H - 44
•	Junction Dam Reach Site (JD –G1) particle size distribution plot	H-45
•	Camino Dam Reach Site (CD –G1) long profile	H - 46
•	Camino Dam Reach Site (CD –G1) upper cross-section	H - 47
•	Camino Dam Reach Site (CD –G1) middle cross-section	H - 48
•	Camino Dam Reach Site (CD –G1) lower cross-section	H - 49
•	Camino Dam Reach Site (CD –G1) particle size distribution plot	Н-50
•	S.F. American Reach Site (SFAR –G1) long profile	H-51
•	S.F. American Reach Site (SFAR –G1) upper cross-section	H-52
•	S.F. American Reach Site (SFAR –G1) middle cross-section	H-53
•	S.F. American Reach Site (SFAR –G1) lower cross-section	H - 54
•	S.F. American Reach Site (SFAR –G1) particle size distribution plot	Н-55
•	Slab Creek Dam Reach Site (SC –G1) long profile	Н-56
•	Slab Creek Dam Reach Site (SC –G1) upper cross-section	H - 57
•	Slab Creek Dam Reach Site (SC –G1) middle cross-section	H-58
•	Slab Creek Dam Reach Site (SC –G1) lower cross-section	H-59
•	Slab Creek Dam Reach Site (SC –G1) particle size distribution plot	Н-60

APPENDIX I LEVEL III DATA FOR THE UARP

APPENDIX J DATA SETS: LONGITUDINAL PROFILE DATA, CROSS-SECTION DATA, AND PEBBLE COUNT TABLES FOR THE REACH DOWNSTREAM OF CHILI BAR

Appendix & Description

APPENDIX	PEBBLE COUNT PLOTS FOR THE REACH DOWNSTREAM OF	D
	CHILI BAR	
•	Site Names for the Reach Downstream of Chili Bar	
•	Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) long profile	. K-2
•	Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) upper cross-	
	section	. K-3
•	Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) middle cross-	
	section	. K-4
•	Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) lower cross-	
	section	. K-5
•	Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) particle size	
	distribution plot	
•	Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) long profile	. K- 7
•	Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) upper cross-	** 0
	section	. K-8
•	Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) middle cross-	V O
	section	. K-9
•	Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) lower cross-	17 10
	section	K-10
•	Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) particle size	IZ 11
-	distribution plot Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) long profile	
•	Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) upper cross-	K- 12
•	× / 11	K-13
•	Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) middle cross-	K-1 5
•	section	K-14
•	Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) lower cross-	12-14
•	section	K-15
•	Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) particle size	K -15
·	distribution plot	K-16
•	Reach Downstream of Chili Bar: Gorge Site (CB-G4) long profile	K-17
•	Reach Downstream of Chili Bar: Gorge Site (CB-G4) upper cross-section	
•	Reach Downstream of Chili Bar: Gorge Site (CB-G4) middle cross-section	
•	Reach Downstream of Chili Bar: Gorge Site (CB-G4) lower cross-section	
•	Reach Downstream of Chili Bar: Gorge Site (CB-G4) nowel closs section	20
-	plot	K-21
	Proteining and the second seco	1

Appendix & Description

APPENDIX	L	LEVEL III DATA FOR THE REACH DOWNSTREAM OF CHILI BAR
APPENDIX		ENHANCED ACRONYM SERIES (1 & 2) WITH INTERFACE (<i>EASI</i>): MODEL DOCUMENTATION
•	Table M-	Acronym series
•	Figure M-	-1. Parameters $\sigma 0$ and ωo as functions of ϕ sgo in Parker equationM-2
•	Figure M-	
•	Figure M-	51
•	Figure M-	•
•	Figure M-	•
•	Figure M-	
•	0	-7. Predicted normalized Shields stress as presented in the example.M-11
APPENDIX	N]	BEDLOAD TRANSPORT AND SHEAR STRESS PLOTS
•	Figure N-	1: Estimated bedload transport rating curve for the Rubicon Dam Reach Site
•	Figure N-	
•	Figure N-	10: Estimated Shields stress rating curve for the Ice House Dam Reach Upper Site
•	Figure N-	11: Estimated bedload transport rating curve for the Ice House Dam Reach Lower Site

Appendix & Description

Page

•	Figure N-12: Estimated Shields stress rating curve for the Ice House Dam	
	Reach Lower Site	. N-12
•	Figure N-13: Estimated bedload transport rating curve for the Reach	
	Downstream of Chili Bar, Upper Coloma Study Site	
•	Figure N-14: Estimated Shields stress rating curve for the Reach Downstream	
	of Chili Bar, Upper Coloma Study Site	. N-14
APPENDIX	O FACIES MAPS FOR THE UARP PROJECT AREA SITES	
•	Rubicon Dam Reach Site (RD-G1).	O-2
•	Loon Lake Dam Reach Upper Site (LL-G2)	
•	Loon Lake Dam Reach Middle Site (LL-G3)	
•	Loon Lake Dam Reach Lower Site (LL-G3)	. O-10
•	Gerle Creek Dam Reach Site (GC-G1).	. O-12
•	Robbs Peak Dam Reach Site (RPD-G1)	. O-14
•	Ice House Dam Reach Upper Site (IH-G1)	. 0-16
•	Ice House Dam Reach Lower Site (IH-G2)	
•	Junction Dam Reach Site (JD-G1).	. O-22
•	Camino Dam Reach (CD-G1)	. O-25
•	S.F. American Reach Site (SFAR-G1)	. O-27
•	Slab Creek Dam Reach (SC-G1)	. 0-29
APPENDIX	P FACIES MAPS FOR THE REACH DOWNSTREAM OF CHILI BA	AR
•	Upper Canyon Site (CB-G1)	P-2
•	Upper Coloma Site (CB-G2)	
•	Lower Coloma Site (CB-G3)	
•	Gorge Site (CB-G4)	
APPENDIX	Q BANKFULL ELEVATION AND DISCHARGE COMPARISONS	
•	Q Calculations	Q-1
•	Roughness "n" Comparisons	-
•	Roughness "n" values based on Cowan (1956)	~
•	1.5 Regulated	-
•	1.5 Unregulated	-
•	1.5 Unregulated Gages Outside	

• 1.5 Gages Inside......Q-18

Pacific Gas and Electric Company Chili Bar Project FERC Project No. 2155

LIST OF APPLICABLE STUDY PLANS

Description

• Channel Morphology Study Plan

2.1 Channel Morphology Study Plan

This study is designed to provide information regarding the geomorphologic condition of river reaches downstream of Sacramento Municipal Utility District's (SMUD) Upper American River Project (UARP) and Pacific Gas and Electric Company's Chili Bar Project using the Rosgen methodology. The overall approach is to perform Rosgen Level I classification of all river reaches downstream of dams using available maps and photographs, and then to refine this typing by conducting Rosgen Level II classification and Level III condition assessment in sensitive reaches using site-specific measurements. Should any of the reaches seem impaired (e.g., excess sediment, lack of bedload sediment, excessive scouring or channel entrenchment, lack of or excess large woody debris (LWD), poor riparian vegetation, etc.), additional studies will be considered. Field data will only be collected in 2002 unless results indicate additional sampling is warranted.

2.1.1 Pertinent Issue Questions

This Channel Morphology Study Plan addresses the following Aquatic/Water Issue Questions:

- 5. What effects do project features and operations have on fluvial geomorphology and stream habitat?
- 6. What are the physical attributes (i.e., available pools and presence of large debris) of the Project? How have they been affected by the Project? What habitat is provided by those attributes (habitat mapping)?
- 19. Do project features affect distribution of large wood in streams? Do they comply with Forest Service standards?
- 23. What Project flows affect recruitment and reproduction of riparian plants?
- 34. How are the Project operations affecting gravel recruitment (related to spawning and macroinvertebrate habitat)?
- 48. Does operation of the Project affect stream bank stability?
- 61. Does the existing minimum stream flow requirements adequately protect the fluvial geomorphological processes?

2.1.2 Background

Effects of dams and flow regulation on channel morphology are expected to be more pronounced in alluvial reaches that have bed and banks composed of fluvially-derived sediment, as compared to bedrock channels that remain relatively unaltered due to high sediment transport capacities and resistant substrate (Montgomery and Buffington 1993). Alluvial reaches are characterized by fluvial transport of sediment over a variety of bed morphologies. At the reach-level, channel slope, sediment supply, transport capacity, and (LWD) loading are key determinants of channel form. Broad-level channel classification based on channel slope and confinement can be used to identify "sensitive reaches. "Sensitive reaches" are unconfined, low-gradient alluvial reaches where channel response to changes in sediment supply or transport dynamics is most likely to occur. Detailed field surveys in sensitive reaches downstream of the dams can be used to identify and quantify the effects of the dams and the altered flow regime on channel morphology.

2.1.3 <u>Study Objectives</u>

The study objectives are to identify:

potential sensitive reaches downstream of the UARP's and Chili Bar Project's dams

effects of the projects on channel morphology, sediment transport, and LWD dynamics, loading, and function in sensitive downstream reaches

feasible measures to sustain geomorphic processes such as sediment transport and LWD loading that support aquatic and riparian habitat diversity in downstream reaches.

2.1.4 <u>Study Area</u>

The study area will include all stream reaches identified by the Aquatics TWG. This includes the downstream reaches of all UARP dams and Chili Bar Dam.

2.1.5 Information Needed From Other Relicensing Studies

Information needed from other studies includes: 1) the effects of flow regulation and diversion on flow conditions in the channel, which is necessary for developing hypotheses of anticipated effects of the projects on channel morphology and identifying potential field survey reaches, from the Hydrology Study; 2) results from water quality and turbidity studies from survey and existing data; and 3) the results of the Riparian Vegetation Study to assess linkages between geomorphic processes (and the effects of the Project on geomorphic process) and riparian vegetation. Bathymetric data from UARP reservoirs will also be made available for analysis. Information from the Channel Morphology Study may be useful in the Riparian Vegetation Study, Amphibians and Aquatic Reptiles Study, Aquatic Bioassessment Study, and the Water Quality Study. Information regarding blockage of connectivity of tributaries and side channels from the instream flow habitat mapping will be needed.

2.1.6 <u>Study Methods And Schedule</u>

The study methods will include the following sequential steps:

<u>Rosgen Level I Classification</u> - The first phase will include a Rosgen Level I classification based on available topographic and geologic data. The purpose of the Level I classification is to provide a broad characterization that integrates the landform and fluvial features of valley morphology with channel relief, pattern, shape, and dimension for all stream reaches (Rosgen 1994). The initial evaluation will use material such as low-altitude video of channels in the area of the projects available from SMUD or other sources; USGS maps, historic and current aerial photographs, topographic and geologic maps as well as other available data for rivers affected by the projects to determine channel slope, approximate channel width and cross sectional form, and channel planform morphology (e.g., sinuosity and channel form, etc.). This information is needed to classify all reaches into Rosgen Level I types. The purpose of the Level I classification is to identify potential sensitive reaches and to predict anticipated reach-level morphology in alluvial (non-bedrock) reaches in all Rosgen channel types. Sensitive reaches will be delineated based upon their slope, channel confinement, and bed and bank sediment composition (e.g., alluvial versus bedrock). Using the Rosgen Level I classification, sensitive reaches could occur in type B, C, D, E, and F channels. Based on the results of the Level I effort, a recommendation will be made to the Aquatic TWG regarding the sampling locations for Level II surveys.

<u>Rosgen Level II Typing</u> - Locations for Rosgen Level II surveys will be determined based upon the Level I classification. While the number and distribution of potential sites is unknown at this time, at least one study site will be analyzed in each reach. A study site will be approximately 20 to 30 bankfull widths, where appropriate, in length with upper and lower boundaries geo-referenced. If there is more than one potential study site in each reach, the study site where channel response to operation of the projects is most likely will be analyzed. Additional sites (e.g., near recreation areas) may be considered. Interested parties from the Aquatics TWG and Plenary Group will be invited to visit the sites in the field to concur with or modify the selected survey sites. Level II field surveys will include, but not be limited to, measurements of 1) longitudinal profile (water surface and thalweg), 2) valley width, 3) approximately three monumented channel cross sections (including bankfull indicators, thalweg, water's edge, flood-prone area, where identifiable), and 4) pebble counts (Wolman 1954). Cross sections will be established with a sufficient number of verticals to clearly depict channel geometry (Harrelson, et al. 1994). Each transect will be photo-documented. Wherever possible, study sites for this effort will coincide with instream flow study sites. Based on the results of the Level II effort, a recommendation will be made to the Aquatic TWG regarding the sampling locations for Level III surveys.

<u>Rosgen Level III Condition</u> – It is anticipated that a Rosgen Level III condition analysis will be performed at a subset of the Level II study sites. The Level III analysis will include the following data collection elements: 1) bed surface texture based on facies mapping (stratification and delineation of channel bed features based on particle sizes and organization), 2) sediment deposition in pools will be assessed using an appropriate method (e.g., V*, S*, Q*) (USFS 1997, Lisle and Hilton 1992, Hilton and Lisle 1993). In each reach examined as part of the Level III analysis, large woody debris (LWD) loading in the active channel will be measured and the geomorphic and ecological function of the LWD will be examined. For the purpose of this analysis, LWD is defined as in the USFS Region 5 Stream Condition Inventory (SCI) protocol: all pieces of wood lying within the bankfull width of the channel that measures one half bankfull width or longer. Wood must be both downed,

and with a portion lying within the bankfull channel, and dead or dying to be considered LWD. This will involve dividing the LWD into size classes and tallying the total number of LWD pieces in each size class in the reach. Because some LWD can be suspended over the channel or are too small to alter bed morphology, the interaction between LWD and the bed will be assessed. LWD, as a biological component, will be examined during the habitat mapping component of the instream flow study.

Additional Investigations – Depending upon the results of the above evaluations, additional studies may be conducted in some specific areas (e.g. Rosgen Level IV sediment budget).

It is expected that Rosgen Level I classification will occur in spring/early summer 2002. Selection of Rosgen Level II and III sampling sites and fieldwork will occur in summer 2002/2003. Note that interested parties from the Aquatics TWG and Plenary Group will be invited to visit the sites in the field to concur with or modify the selected survey sites before any fieldwork is conducted. Data analysis will occur in fall 2002/2003, and the results of the study will be presented to the Aquatic TWG in late 2002/2003. Should the data indicate that additional investigation is warranted in specific area (i.e., additional surveys, including identifying reference reaches to help isolate Project impacts, this study plan will be amended, in consultation with the Aquatics/Water TWG and Plenary Group, to include data gathering and analysis in these specific problem areas in 2003.

2.1.7 <u>Analysis</u>

The results would be used to describe the existing channel conditions and to identify effects of the projects on channel morphology. The magnitude of sediment trapping by the reservoirs will be estimated. An incipient motion analysis will be performed using Shield's (and associated sensitivity analysis) equation (also perform sensitivity analyses in conjunction with opportunistic flow events) for each Level III study site. Potential problem areas (excess sediment, lack of bedload sediment, excessive scouring or channel entrenchment, lack or excess of LWD, poor riparian vegetation, etc.) will be identified, and potential mitigation measures will be evaluated.

2.1.8 <u>Study Output</u>

A presentation on the preliminary results from the study will be made to the Aquatics TWG and the Plenary Group in late 2002. The ultimate study output will be a written report that includes the issues addressed, objectives, study area including sampling locations, methods, analysis, results, discussion and conclusions. The report will be prepared in a format so that it can easily be incorporated into SMUD's draft environmental assessment report that will be submitted to FERC with SMUD's application for a new license.

2.1.9 <u>Preliminary Estimated Study Cost</u>

A preliminary study cost estimate will be prepared after the Plenary Group approves this study plan.

2.1.10 <u>TWG Endorsement</u>

The Aquatics TWG approved this plan for the UARP on February 28, 2002. The participants at the meeting who said they could "live with" this study plan were BLM, PCWA, CSPA, SWRCB, USFS and SMUD. None of the participants at the meeting said they could not "live with" this study plan except for the PG&E participant who said PG&E would defer at this time since the plan did not include the Chili Bar Project and downstream. At the April 3, 2002 Plenary Group meeting, the plan was directed back to the Aquatic TWG to include the area below Chili Bar. At the April 11, 2002 Aquatic TWG meeting, the TWG approved the study plan. The participants at the meeting who said they could "live with" this study plan were BLM, SWRCB, USFS, PG&E, Camp Lotus, and SMUD. None of the participants at the meeting said they could not "live with" this study plan, except that PG&E said it needed management approval. PG&E obtained this approval as of April 30, 2002.

On May 1, 2002 the following participants gave Plenary Group approval to the plan: USFS, BLM, USFWS, Taxpayers of El Dorado County, Friends of El Dorado County, Camp Lotus, El Dorado County Water Agency, El Dorado County, Placer County Water Agency, California Department of Fish and Game, California State Water Resources Control Board, Pacific Gas and Electric and Friends of the River. None of the participants at the meeting said they could not "live with" this study plan.

2.1.11 Literature Cited

Harrelson, C., C. Rawlins, and J. Potyondy. 1984. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. USDA Forest Service, Rocky Mountain Forest Range and Experiment Station. General Technical Report RM-245.

Hilton, S., and T. E. Lisle. 1993. Measuring the fraction of pool volume filled with fine sediment. Research Note PSW-RN-414. USDA Forest Service, Pacific Southwest Research Station, Berkeley, California.

Lisle, T.E. and S. Hilton. 1992. The volume of fine sediment in pools: an index of the supply of mobile sediment in stream channels. Water Resources Bulletin 28(2): 371-383.

Rosgen, D. L. 1994. A classification of natural rivers. Catena 22: 169-199.

Rosgen, D. L. 1998. Applied River Morphology. Western Hydrology, Lakewood, Colorado

SMUD (Sacramento Municipal Utility District). 2001. Initial Information Package for Relicensing of the Upper American River Project (FERC Project No. 2101). Sacramento, CA.

USFS (U.S. Forest Service) 1997. A reconnaissance level indicator of pool fine sediment. Sierra National Forest, Kings River Ranger District. Unpublished report.

Wolman, G. M. 1954. A method of sampling coarse river-bed material. Transactions of the American Geophysical Union 35: 951-956.

AQUATICS TWG NOTE:

1. This study area will be revisited once SMUD and the USFS reach agreement regarding responsibility for and potential Project actions in "Defense and Threat" zones as defined in the Forest Service Plan Amendment EIS and Record of Decision

CHANNEL MORPHOLOGY TECHNICAL REPORT

SUMMARY

This technical report characterizes channel morphology and describes existing geomorphic functions in streams affected by the Sacramento Municipal Utility District's (SMUD) Upper American River Project (UARP) and Pacific Gas and Electric's (PG&E) Chili Bar Project.

Study results presented here reflect hierarchical studies conducted between 2002 and 2004. The initial studies involved a broad geomorphic characterization (Rosgen Level I) of the stream reaches affected by the two projects, including the Reach Downstream of Chili Bar. These results were used to identify potential response reaches. Response reaches are most likely to show effects from alterations to hydrology or sediment supply and are defined by Montgomery and Buffington (1998) as reaches with: 1) low slope (<4 percent); predominantly alluvial bed and banks (cobble-gravel facies or finer); and 3) plane bed or pool-riffle morphology.

Morphological description (Rosgen Level II) and channel condition assessment (Rosgen Level III) sites were selected in potential response reaches identified from the results of geomorphic characterization. In conjunction with the Aquatics Technical Work Group (TWG), 16 sites were selected for morphological description and/or channel condition assessment, including 4 sites in the Reach Downstream of Chili Bar. Low altitude aerial photographs and video footage taken during a helicopter flyover of the study area were used for site selection.

The channel morphological description and channel condition assessment revealed seven response sites in the UARP area, and one response site in the Reach Downstream of Chili Bar. Channels at these sites primarily exhibited pool-riffle morphology with well-developed floodplains. The following sites were designated response sites:

- Rubicon Dam Reach Site;
- Loon Lake Dam Reach Upper Site;
- Loon Lake Dam Reach Middle Site;
- Loon Lake Dam Reach Lower Site;
- Robbs Peak Dam Reach Site;
- Ice House Dam Reach Upper Site;
- Ice House Dam Reach Lower Site; and
- Upper Coloma Site in the Reach Downstream of Chili Bar.

The remaining five sites in the UARP and three sites in the Reach Downstream of Chili Bar were categorized as transport sites because they all occur in reaches where bedrock outcrops control channel morphology and sediment transport dynamics (Montgomery and Buffington 1993).

In order to evaluate the magnitude of flows that would mobilize the current bed material, Shields stress and bedload transport were evaluated for six response sites in the UARP and one response site in the Reach Downstream of Chili Bar, using the *EASI* (Enhanced Acronym Series with Interface) model. The results indicate that incipient bed mobility occurs between:

- 168-189 cubic feet per second (cfs) for the Rubicon Dam Reach Site;
- 86-326 cfs for the Loon Lake Dam Reach Middle Site;
- 940-1,241 cfs for the Loon Lake Dam Reach Lower Site;
- 917-1,568 cfs for the Robbs Peak Dam Site;
- 185-393 cfs for the Ice House Dam Reach Upper Site;
- 531-775 cfs for the Ice House Dam Reach Lower Site; and

• 1,703-4,317 cfs for the Lower Coloma Site in the Reach Downstream of Chili Bar.

The Loon Lake Dam Reach Upper Site was excluded from the Shields stress and bedload transport evaluation because dominant grain sizes in the channel bed are too small. Bedrock outcrops and boulders at all remaining project sites preclude an accurate assessment of Shields stress due to the influence of large flow obstructions on flow dynamics and sediment transport.

1.0 INTRODUCTION

This technical report is one in a series of reports prepared by Devine Tarbell and Associates, Inc., and Stillwater Sciences for the Sacramento Municipal Utility District (SMUD) and Pacific Gas and Electric Company (PG&E) (jointly referred to as the Licensees) to support the relicensings of SMUD's Upper American River Project (UARP) and PG&E's Chili Bar Project. The Licensees intend to append this technical report to their respective applications to the Federal Energy Regulatory Commission (FERC) for new licenses. This report addresses the existing geomorphic form and function of streams in UARP reaches and the Reach Downstream of Chili Bar. This report includes the following sections:

- **BACKGROUND** Includes when the applicable study plan was approved by the UARP Relicensing Plenary Group; a brief description of the issue questions addressed, in part, by the study plan; the objectives of the study plan; and the study area. In addition, requests by resource agencies for additions to and modifications of this technical report are described in this section.
- **METHODS** A description of the methods used in the study, including a listing of study sites.
- **RESULTS** A description of the most important data results. Raw data, where copious and detailed model results are provided in a separate compact disc (CD) for additional data analysis and review by interested parties.
- SUMMARY A brief discussion of the results.
- LITERATURE CITED A listing of all literature cited in the report.

This technical report does not include a detailed description of the UARP Alternative Licensing Process (ALP) or the project, which can be found in the following sections of the Licensee's application for a new license: The UARP Relicensing Process, Exhibit A (Project Description), Exhibit B (Project Operations), and Exhibit C (Construction).

In addition, this technical report does not include a discussion regarding the effects of the projects on channel morphology or associated environmental resources, nor does the report include a discussion of appropriate protection, mitigation, and enhancement measures. An impacts discussion regarding the UARP is included in the applicant-prepared preliminary draft environmental assessment (PDEA) document, which is part of the Licensee's application for a new license. Development of resource measures will occur in settlement discussions, which will commence in 2004, and will be reported on in the PDEA.

2.0 BACKGROUND

2.1 Channel Morphology Study Plan

The Channel Morphology Study Plan was developed and approved by the Aquatic Technical Working Group (TWG) on April 11, 2002. The UARP Relicensing Plenary Group approved the study plan on May 1, 2002. This study plan was designed to address, in part, the following issue questions developed by the UARP Relicensing Plenary Group:

Issue Question 5.	What effects do project features and operations have on fluvial geomorphology and stream habitat?
Issue Question 6.	What are the physical attributes (e.g., available pools and presence of large debris) of the projects? How have they been affected by the projects? What habitat is provided by those attributes (habitat mapping)?
Issue Question 19.	Do project features affect distribution of large wood in streams? Do they comply with Forest Service standards?
Issue Question 23.	What project flows affect recruitment and reproduction of riparian plants?
Issue Question 34.	How are the project operations affecting gravel recruitment (related to spawning and macroinvertebrate habitat)?
Issue Question 48.	Does the operation of the projects affect stream bank stability?
Issue Question 61.	Do the existing minimum stream flow requirements adequately protect the fluvial geomorphologic processes?

Specifically, the objectives of the study plan were to identify:

- Potential response reaches within the UARP and in the Reach Downstream of Chili Bar.
- The effects of the projects on channel morphology: sediment transport and LWD dynamics, loading, and function in response downstream reaches.
- Feasible measures to sustain geomorphic processes (e.g., sediment transport and LWD loading) that support aquatic and riparian habitat diversity in downstream reaches.

As described above, this technical report does not include a comprehensive impacts assessment of the UARP and Chili Bar Project on channel morphology. This assessment will be done during settlement discussions. Therefore, the portions of the Issue Questions and objectives that pertain to impacts analysis are not addressed in detail in this report. The study area included all reaches affected by the two projects identified by the Aquatics TWG, including the Reach Downstream of Chili Bar.

In general, the methods approved by the UARP Relicensing Plenary Group included the application of channel morphology methods proposed by Rosgen (1996). Specifically, these methods included:

- Level I Geomorphic Characterization;
- Level II Morphological Description;
- Level III Channel Condition Assessment; and
- Additional Investigations depending on the results of the previous steps.

The results of the study would be used to describe the existing channel conditions and to identify potential problem areas (excess sediment, lack of bedload sediment, excessive scouring or channel entrenchment, lack or excess of LWD, poor riparian vegetation, etc.).

2.2 Water Year Type

The information in this subsection is provided for informational purposes, as requested by agencies. The derivation of water year types is described in the *Water Quality Technical Report*. Table 2.2-1 presents water year types for the period that is pertinent to this *Channel Morphology Technical Report*.

Table 2	Gable 2.2-1. Water year types applied to individual months of years 2001-2004.*											
Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
2001	AN	D	D	D	D	D	D	D	D	D	D	D
2002	D	BN	BN	BN	BN	BN	BN	BN	BN	BN	BN	BN
2003	BN	BN	BN	D	BN	BN	BN	BN	BN	BN	BN	BN
2004	BN	BN	BN	BN	BN	BN	BN	BN	BN	-	-	-

*CD=Critically Dry; D=Dry; BN=Below Normal; AN=Above Normal; W=Wet

2.3 Agency Requested Information

In a letter dated December 17, 2003, the agencies requested that SMUD provide the following information with regard to channel morphology:

- Geographic Information Systems (GIS) map with validated channel classification of project-affected reaches, with the locations of Level II and III analysis sites delineated (This information is included in Appendix B of this *Channel Morphology Technical Report.*);
- Global Positioning System (GPS) coordinates of sites (Appendix F);
- Field survey methodology (Section 3.3);
- Level II and III data sheets with all survey information (Appendices G-L);
- Incipient motion analysis (Section 4.3);

Pacific Gas and Electric Company Chili Bar Project FERC Project No. 2155

- Field site visits to validate methods (e.g., bank full determination) (visits conducted to Ice House Dam Reach and Robbs Peak Dam Reach on June 23, 2004; to Loon Lake Dam Reach on July 12, 2004; to Slab Creek Dam Reach and Reach Downstream of Chili Bar on July 13, 2004);
- Field site photos (Appendix F);
- Aerial photography and videography conducted for the projects (previously provided on CD and DVD to TWG participants); and
- Review of this information to determine if additional field work is needed to complete Level III analysis and possibly Level IV analysis.

3.0 METHODS

The overall approach of this study involved geomorphic characterization (Rosgen Level I) of all river reaches downstream of dams using available maps and photographs, followed by morphological description (Rosgen Level II) and channel condition assessment (Rosgen Level III) in response reaches using site-specific measurements (Rosgen 1996). In addition, a bed incipient motion analysis is presented for each geomorphology site, where applicable, using Shields equation (Shields 1936).

Effects of dams and flow regulation on channel morphology are expected to be more pronounced in response reaches. Response reaches are reaches that are the most likely to show an impact from alterations to hydrology or sediment supply and are defined by Montgomery and Buffington (1998) as reaches with: 1) low slope (<4 percent); 2) predominantly alluvial bed and banks (cobble-gravel facies or finer); and 3) plane bed or pool-riffle morphology. Bedrock channels, or reaches with clasts comparable in size to depth of flow, remain relatively unaltered due to high sediment transport capacities and resistant substrate. Broad-level channel classification based on channel slope and confinement can be used to identify response reaches. Detailed field surveys are used to characterize channel morphology and describe existing geomorphic functions at response sites downstream of UARP and Chili Bar Project dams. These data may be used to identify and quantify the effects of changes in discharge and sediment regime on channel morphology.

3.1 Geomorphic Characterization

The first step in the channel morphology assessment included a geomorphic characterization (Level I) of stream reaches based on available data (Rosgen 1996). In this classification system, reaches are subdivided and assigned a letter designation based on the following channel attributes:

- Slope
- Planform (sinuosity)
- Entrenchment
- Valley type
- Landforms/soil type

Appendix A contains a schematic of the classification system (Rosgen 1996) depicting the channel form and associated metrics for each of the channel types in the Rosgen classification system.

Five primary data sources were used for the initial Level I channel characterization:

- United States Geological Survey (USGS) 1:24,000 topographic maps
- Channel slope data generated from a GIS
- Geologic maps
- Aerial photographs
- Video footage from helicopter aerial shoot.

Initially, USGS 1:24,000 topographic maps were evaluated to identify associations between topography and the processes that form them. These were used to determine the valley types within the study area, as defined by Rosgen (1996).

Next, channel slope data were generated from 1:24,000 USGS topographic maps and used as the basis for initial channel classification. Reach-scale gradients for all of the stream reaches were generated based on digitized and vectorized USGS 1:24,000 topographic separates. For this analysis, contour and stream network layers were used to generate the reach gradients at a 40-foot contour interval. The precision of the channel gradient data sets are the same as the USGS 1:24,000 topographic maps, which are generated from aerial photographic interpretation.

Geologic maps (Saucedo and Wagner 1992, Jenkins 1932) provided the locations of important changes in lithology, and provided an overall geologic context for analyzing field data.

Color aerial photographs taken in August 2002 at base flows for that season were orthorectified (1 foot = 1 pixel) and converted to a suitable format for use in GIS. Aerial photographs and low altitude (tree-top level) video coverage (August and October 2002) from a helicopter were used to define alluvial stream sections and to refine the slope-based channel geomorphic characterization.

In addition to these primary data sources, field data from coincidental habitat mapping, macroinvertebrate, and resident fish population surveys were used to determine the habitat type (low gradient riffle, run, pool, etc.) and the dominant bed material where these survey sites overlapped with the selected geomorphology study sites.

The purpose of the geomorphic characterization was to provide a broad classification that integrated valley morphology with channel relief, pattern, shape, and dimension for all stream reaches (Rosgen 1996). This information was used to identify potential response reaches. Potential response reaches were delineated based upon their slope, channel confinement, and bed and bank sediment composition (e.g., alluvial versus bedrock); these reaches occurred in Rosgen B, C, D, E, and F channel types.

3.2 Identify and Select Morphological Description and Channel Condition Assessment Sites

3.2.1 Identification of Potential Morphological Description and Channel Condition Assessment Sites

Morphological description (Level II) and channel condition assessment (Level III) sites were selected in consultation with the Aquatic TWG based on results of the geomorphic characterization (Level I). Wherever possible, sites were selected in response reaches. Survey sites were selected with the following characteristics:

- alluvial channel;
- slopes less than four percent (4%);
- well developed floodplains;
- accessible by field crews;
- coincide with the instream flow or other sites whenever possible; and
- sites where the channel is not confined by bedrock banks or valley walls.

In reaches where there was more than one potential survey site, the site where channel response to project operation is most likely to be evident was selected. The upstream-most response site in a stream reach was selected to measure potential scour below UARP or Chili Bar Project dams, and because effects of the projects can be more difficult to observe as new sources of sediment and water enter from tributaries downstream of a dam. Additional sites on some stream reaches were selected in the lower portion of the reach, where the combination of reduced peak flows and potentially increased sediment supply from tributaries can cause excess fine sediment deposition. In cases where the entire reach is confined by valley walls, survey sites were selected based on the presence of developed floodplains and continuous deposition of alluvial sediment.

3.2.2 <u>Selection of Morphological Description and Channel Condition Assessment Sites</u>

After geomorphic characterization (Level I), low altitude aerial photos and video footage conducted during a helicopter flyover of the study area were reviewed to confirm or reject potential sites.

3.2.2.1 Sites of the UARP

A total of 12 UARP sites were selected for morphological description (Level II) in conjunction with the Aquatics TWG on February 6, 2003. Each of these sites was also used for any channel condition assessment. UARP survey sites ranged from an elevation of 6,140 feet on the Rubicon River to 1,114 feet on the SFAR near the confluence of Rock Creek. Table 3.2-1 includes the list of Level II and III sites. Figure 3.2-1 is a summary map showing the locations of the Level II and III sites. Complete site maps are in Appendix B. Locations are also plotted on reach-scale longitudinal profile graphs in Appendix C.

Table 3.	.2-1. Sites f	or the UARP and th	e Reach Downstream of Chili	Bar.						
Site Project Code Reach	Stream	Site Description	Rosgen Level	Length (feet)	Elevation (feet)	UTM (NAD 27) Upper End		UTM (NAD 27) Lower End		
	Reach			Level	(leet)	(leet)	Easting	Northing	Easting	Northing
			UPPER AMERIC	AN RIVER PI	ROJECT ARE	EA				
RD-G1	Rubicon Dam	Rubicon River	Rubicon Dam Reach Site	II and III	500	6,140	740129	4320854	740107	4320964
LL-G1		Gerle Creek	Upper Loon Lake Dam Reach Site	II and III	400	6,150	732038	4321014	731917	4321065
LL-G2	Loon Lake Dam		Middle Loon Lake Dam Reach Site	II and III	700	5,900	729615	4321280	729409	4321268
LL-G3			Lower Loon Lake Dam Reach Site	II and III	600	5,340	726848	4318075	726748	4317963
GC-G1	Gerle Creek Dam		Gerle Creek Dam Reach Site	II and III	800	5,020	725971	4314928	725814	4314817
RPD- G1	Robbs Peak Dam	South Fork Rubicon River	Robbs Peak Dam Reach Site	II and III	900	5,130	725810	4314102	725643	4313979
IH-G1	Ice House	South Fork Silver	Upper Ice House Dam Reach Site	II and III	1,200	5,190	727497	4299547	727289	4299300
IH-G2	Dam	Creek	Lower Ice House Dam Reach Site	II and III	1,300	4,665	722203	4301833	722142	4302103
JD-G1	Junction Dam	Silver Creek	Junction Dam Reach Site	II and III	820	4,200	*	*	*	*
CD-G1	Camino Dam	Sliver Creek	Camino Dam Reach Site	II and III	700	2,380	710325	4298451	710194	4298291
SFAR- G1	SF American	SF American	SF American River Reach Site	II and III	520	1,980	708402	4296421	708253	4296406
SC-G1	Slab Creek Dam	51 American	Slab Creek Dam Reach Site	II and III	650	1,114	693510	4294895	693338	4294848
			REACH DOWN	NSTREAM OF	F CHILI BAR					
CB-G1	Upper Subreach		Upper Canyon Site	II	1,000	840	686944	4293491	687153	4293697
CB-G2	Middle	SF American	Upper Coloma Site	II and III	650	764	684924	4295468	684751	4295494
CB-G3	Subreach		Lower Coloma Site	II and III	700	680	680615	4297466	680466	4297595
CB-G4	Lower Subreach		Gorge Site	II	600	502	674040	4293233	673908	4293156

* Poor satellite signal

3.2.2.2 Sites in the Reach Downstream of Chili Bar

In consultation with the Aquatics TWG on September 4, 2003, four sites were selected for morphological description (Level II) in the Reach Downstream of Chili Bar. Of these, only two were selected for channel condition assessment (Level III). Sites that were not chosen for channel condition assessment (Level III) were located in areas where the river is confined within a steep bedrock gorge with bedrock and large boulder channel substrate and few alluvial deposits. Survey sites in the Reach Downstream of Chili Bar ranged from an elevation of 840 feet to 502 feet on the SFAR. Table 3.2-1 includes the list of Level II and III sites. Figure 3.2-1 is a summary map showing the locations of the Level II and III sites. Complete site maps are in Appendix B. Locations are also plotted on reach-scale longitudinal profile graphs in Appendix C.

3.3 Morphological Description and Channel Condition Assessment

Morphological description (Level II) and channel condition assessment (Level III) data were collected following the survey methodologies and protocols listed below. During each visit, standardized Level II and Level III data sheets were completed. Appendix D includes sample datasheets.

3.3.1 <u>Morphological Description Surveys</u>

Morphological description (Level II) field surveys included, but were not limited to, the following site-scale measurements:

- longitudinal profile (water surface and thalweg);
- approximately three monumented channel cross-sections, each surveyed at intervals sufficient to clearly depict channel geometry (Harrelson *et al.* 1994);
- pebble counts of channel substrate at cross-sections (Wolman 1954); and
- bankfull indicators, thalweg, water's edge, and flood-prone areas were delineated where identifiable.

Each cross-section was photo-documented and any observations of potential anthropogenic influences on the channel were recorded, including excess fine sediment, excessively coarse channel bed, or channel incision. A site was approximately 20 to 30 bankfull widths in length, where appropriate, with upper and lower boundaries geo-referenced. Nine sites were less than 20 to 30 channel widths long. These sites were short (<20 bankfull widths long) alluvial sections with bedrock channels immediately upstream and downstream.

The elevation of bankfull discharge was estimated at each site. Bankfull discharge is the flow rate at which the water surface is at the floodplain level, or the elevation of the top of channel banks (Leopold 1994). This discharge is thought to have morphological significance because it represents the breakpoint between active channel formation and floodplain formation (Copeland *et al.* 2000). Much research has focused on the concept of a single representative discharge,

sometimes referred to as the channel-forming or dominant discharge, which may be used to determine stable channel geometry (Wolman and Miller 1960, Emmett 1975, Pickup and Warner 1976, Andrews 1980, Richards 1982, Ashmore and Day 1988, Leopold 1994, Nash 1994, Knighton 1998, Biedenharn *et al.* 2000, Copeland *et al.* 2000, Doyle *et al.* in review). Past research has shown that bankfull discharge (Q_{bf}) may approximate the channel-forming discharge in stable, alluvial channels (Wolman and Miller 1960, Emmett 1975, Andrews 1980, Leopold 1994). In the context of the Rosgen approach, bankfull discharge is "the single most important parameter used in Level II classifications" (Rosgen 1996). Therefore, a meaningful evaluation of the delineative criteria set forth in the Rosgen stream classification system, and its implications for channel maintenance in the UARP and the Reach Downstream of Chili Bar, depends on the successful determination of bankfull discharge from field surveys. In the field component of this study, bankfull elevations were estimated from field indicators, including:

- topographic breaks;
- top of bar surfaces;
- distinct changes in vegetation; and
- obvious differences in grain size distributions at the surface (Leopold 1994).

Establishing "reference" sites upstream of the reservoirs is advised to compare delineative criteria and verify bankfull stage elevations between sites of the same type (Rosgen 1996). Few candidates for such sites exist in the UARP or the Reach Downstream of Chili Bar, because many of the upstream areas are bedrock dominated, non-alluvial transport reaches. Those that do exist are not comparable in character to the sites within the study areas. Thus, reference reaches were not established in the context of this study.

There are several important caveats concerning the definition and interpretation of bankfull discharge. First, field estimations of bankfull are generally difficult to make given the number of different criteria in common use to define bankfull stage, none of which appear to be universally applicable and/or free of subjectivity (Leopold *et al.* 1992, Leopold 1994, Copeland *et al.* 2000). Identification of bankfull indicators in the field should only be performed in stream channels that are stable and alluvial (Knighton 1998, Copeland *et al.* 2000). Thus, channels that are not stable, in the sense that they are adjusting to present or past human disturbance (e.g. dam construction, road building, instream mining), may not be good candidates for reliable bankfull estimation. Likewise, channels that deviate from the self-forming, alluvial channels typical of lowland, flat regions of a watershed, are also less likely to display clear bankfull indicators. As an alternative to bankfull, research has shown that the channel-forming discharge in alluvial channels may correlate best with the *effective* discharge (Q_{eff}), or the discharge that transports the largest fraction of the average annual bed-material load (Pickup and Warner 1976, Richards 1982, Ashmore and Day 1988, Nash 1994, Biedenharn *et al.* 2000, Copeland *et al.* 2000, Doyle *et al.* in review).

Bedrock and boulder dominated mountain streams adjust according to a wide range of flows that mobilize both coarse and fine boundary sediments (Nolan *et al.* 1987, Wohl 2000, McBain and Trush 2004). Rapid variations in valley width, channel cross-sectional form, slope, substrate

composition, and other roughness elements, such as the presence or absence of vegetation or woody debris, contribute to the high variability of both velocity and channel dimensions in mountain environments (Wohl 2000). Therefore, indirect calculations of discharge (e.g., by Manning (1889) or Chezy (1769) equations (as presented in Knighton 1998)) may be imprecise given the complexity of grain, form, free-surface and boundary roughness in these environments. Further, the assumptions of downstream hydraulic geometry (e.g., empirical relations that assume that discharge (Q) is the dominant independent variable (Leopold and Maddock 1953)). on which the concept of a single channel forming discharge is based, may be less applicable in mountain rivers that are strongly influenced by non-fluvial processes (e.g., debris flows, landslides, glaciers), bedrock control, and/or large woody debris (McBain and Trush 2004, Wohl et al. 2004). Thus, field estimated bankfull elevations in these systems will naturally vary according to local controls over relatively short distances along a stream's longitudinal profile. There may also be few bankfull indicators along mountain streams: floodplain surfaces "are most prominent along low-gradient, meandering reaches..." and "are often hard or impossible to identify along steeper mountain streams" (Harrelson et al. 1994). This is because the rough channel boundaries and high transport capacity typical of these systems often leave little or no trace of a floodplain deposit.

Stream channels within the UARP and the Reach Downstream of Chili Bar are all strongly influenced by the underlying metamorphic and igneous complex that creates the Sierra Nevada range and foothills. Segments of these channels with alluvial deposits have been distinguished from those that are entirely bedrock controlled as potential "response" sites, where Level II and III channel morphology surveys were completed. Yet, as described by McBain and Trush (2004), these are "highly dynamic depositional environments" where large-scale geomorphic controls such as bedrock and boulders control the deposition of finer material as "nested" features. The significance of various flow thresholds and the existence of downstream hydraulic relationships are being studied in bedrock dominated and mountain channels, but show few significant correlations (Wohl et al. 2004, Wohl in review). In addition, it is important to note that the alluvial deposits that do occur in the UARP and Reach Downstream of Chili Bar may still be adjusting to changes to sediment and discharge regime under the recent 40-60 years of dam regulation. Considering all of the above, field estimates of bankfull level indicators may be expected to be highly variable over short reaches of channel, and potentially unreliable in some reaches. These factors combine to make estimates of bankfull discharge highly variable for most sites in the UARP and the Reach Downstream of Chili Bar. To obtain some understanding of the variability involved in the discharge estimates, and the meaningfulness of the field bankfull indicators, the study results are discussed in the context of current and pre-regulation hydrology in Section 4.4 of this report.

In some cases, field conditions precluded collecting cross-section survey data across the entire channel width at the flood-prone elevation, due to particularly wide floodplains, flood elevations above the upper terrace surfaces, thick vegetation, steep slopes, or other factors. In these cases, surveyor observations, extrapolated slope angle data, field notes, and/or site photographs were used to estimate the flood-prone width as accurately as possible. Slope extrapolations were typically based on the slope angles defined by the last few surveyed points. In most cases,

potential errors from flood-prone width estimates would not affect channel classification because cross-section survey data (or on-site observations) had already documented a sufficiently wide flood-prone width to place the cross-section in the highest entrenchment ratio category (floodplain width/bankfull width greater than 2.2). In a few cases where the calculated entrenchment ratio was less than 2.2, there was very high confidence in the flood-prone width estimate.

3.3.2 Channel Condition Assessment

Channel condition assessment (Level III) data were collected at all 12 sites in the UARP and two sites in the Reach Downstream of Chili Bar. The following data were collected:

- bed surface texture based on facies mapping (stratification and delineation of channel bed features based on surface particle sizes and organization);
- sediment deposition in pools using the V* method (USFS 1997, Lisle and Hilton 1992, Hilton and Lisle 1993), where possible and applicable;
- streambank and channel condition and stability;
- riparian vegetation condition and potential;
- depositional features, meander pattern, and debris jam condition; and
- large woody debris (LWD) loading and function.

Pool selection for the V* method is based on the process described by Hilton and Lisle (1992, 1993). Hilton and Lisle suggest that the usefulness of V* is limited to channels with:

- a wide range in particle size between armor layers and fine sediment in pools;
- a single thread;
- pool-riffle morphology;
- stable banks;
- bed gradient less than 5%;
- pools that can be waded; and
- where significant volumes of fine sediment can be deposited in pools.

Field measurements should be taken during low-flow periods, when identifying the residual pool is easier. Pools should have a depth of at least 0.3 meters and a volume of at least 0.3 m^3 . The size range of fine sediment varies by stream, but fine sediment typically consists of sand and small pebbles, but may include silt to medium pebbles. Fine sediments are distinguished from the coarser substrates in pools because fines are not armored, are distinctly finer than the rest of the bed, and easily penetrable with a metal rod (Lisle and Hilton 1993).

In practice, measurable fine sediment deposits were not observed in any pool for the sites in the UARP or the Reach Downstream of Chili Bar. In addition, several stream channels were planebedded, characterized by long stretches of relatively planar channel bed with a distinct lack of well-defined bedforms, and thus did not contain well-defined pools (as required for the V* method). As such, V* measurements were not taken at any site. Recognizing that the characterization of fine sediment accumulation in stream channels can be a useful guide in interpreting both geomorphic and biologic processes, field site visits were conducted with US Forest Service and SMUD personnel to determine an appropriate method to apply at response sites within the project areas. The effects of tributary inputs were discussed, yet it was determined that tributary influences were not easily identifiable at the channel surface, nor did an effective method exist to sufficiently address the balance between fine and coarse sediments in the main channel. Instead, it was proposed that surveys of riffle embeddedness would be performed at all but one response site, where a baseline quantification of fine sediment would be estimated. Embeddedness is the degree to which fine sediments surround coarse substrates on the surface of a streambed, and is often thought to indicate the level of substrate mobility as well as available habitat space for fish and macroinvertebrates. Embeddedness surveys require an appropriate method, as defined in the literature (Sylte and Fischenich 2002). Methods can include, but are not limited to, the following:

- 1. Visually estimate embeddedness to determine the percentage of surface area of the larger-sized particles covered by fine sediment.
- 2. A subset of relatively large particle sizes (site-specific) can be randomly selected and the percentage (to the nearest 10 percent) of each particle's height that is buried in the fine sediment can be noted by the extent of discoloration on the particle surface.
- 3. Fine sediment that is causing embeddedness can be characterized by visual estimation, or pebble count where possible.
- 4. Photographs of the substrate can be taken for further evaluation in the office.

The following methods are possible alternatives to V* in the UARP and the Reach Downstream of Chili Bar:

- embeddedness surveys at riffle locations at response sites Rubicon Dam Reach, Loon Lake Dam Reach Middle and Lower sites, Robbs Peak Dam Reach, Ice House Dam Reach Upper and Lower sites, and the Upper Coloma Site in the Reach Downstream of Chili Bar; and
- sediment depth probing with a long metal rod or auger could be used to characterize overall fine sediment accumulation at the Loon Lake Dam Reach Upper Site.

At the remaining sites (Gerle Creek Dam, Junction Dam Reach, Camino Dam Reach, SFAR Reach, and Slab Creek Dam Reach in the UARP; and the Upper Canyon, Lower Coloma, and Gorge sites in the Reach Downstream of Chili Bar), the very low volumes of fine sediment present make alternative measurements of fine sediment accumulation unnecessary. Additional detail on the rationale for additional fine sediment assessment in each reach is provided in the results section.

LWD was defined according to the USFS Region 5 Stream Condition Inventory (SCI) protocol as all pieces of wood lying within the bankfull width of the channel that measured one half bankfull width or longer, with a minimum diameter of 6 inches. Only dead or dying, downed wood, with a portion lying within the bankfull channel was considered LWD. This involved

dividing the LWD into size classes and tallying the total number of LWD pieces in each size class at each site. Key pieces of LWD were determined using the following criteria:

- 1. All pieces with length greater than 1.2 times the bankfull channel width; or
- 2. Pieces meeting criterion 1 and with diameters > 24 inches.

Because some LWD was suspended over the channel or was too small to alter bed morphology, the interaction between LWD and the bed was qualitatively assessed. A more detailed assessment of LWD is presented in the *Stream Habitat Mapping Technical Report*.

3.4 Channel Bed Mobility

A bed incipient motion analysis is presented for each geomorphology site, where applicable, using Shields equation (Shields 1936). The *EASI* (Enhanced Acronym Series with Interface) model, which implements the surface-based bedload equation of Parker (1990a, b), was used to evaluate normalized Shields stress and bedload transport based on cross-section, channel gradient, surface grain size distribution, and discharge input parameters. A more detailed description of the model and assumptions is included in Appendix M.

4.0 **RESULTS**

Maps with the geomorphic characterization (Level I) results are in Appendix B. Reach-scale longitudinal profiles with slope graphs are in Appendix C. In addition, each site was photo-documented and GPS coordinates were recorded for each cross-section and longitudinal profile. One representative photograph for each of the three cross-sections at every site can be found in Appendix E, and a table of GPS coordinates and a complete photographic record, including index, are included in Appendix F (on separate CD). For some sites, an alphanumeric channel type could not be designated based on every metric of the delineative criteria (e.g., entrenchment ratio, width/depth ratio, and sinuosity), as proposed by Rosgen (1996) (Appendix A). In these cases, an appropriate channel type was assigned based on the preponderance of data.

4.1 Results for the UARP

Morphological description (Level II) and channel condition assessment (Level III) data were collected for 12 sites in the UARP. Table 4.1-1 presents a summary of channel characteristics and data analysis results for the UARP. Appendix G includes longitudinal profile data, cross-section data, and pebble count tables for each site. Longitudinal profiles, cross-sections, and pebble count plots for each site are located in Appendix H. Level III data can be found in Appendix I. Facies maps for the UARP reaches can be found in Appendix O. All UARP geological setting descriptions are based on those previously presented in the Project Operation and Resource Utilization Section of the Initial Information Package, or IIP (SMUD 2001).

4.1.1 <u>Rubicon Dam Reach Site (Geomorphology Site RD-G1)</u>

<u>Setting</u>

The 4.1-mile-long Rubicon Dam Reach on Rubicon River extends from the base of Rubicon Dam (elevation 6,548 feet) downstream to the confluence with Miller Creek (elevation 6,030 feet), and has a mean gradient of approximately 0.019 (1.9 percent). There is a 1.5-mile, low-gradient meadow (at Rubicon Springs) at the lower end of the reach and another short, lower gradient section of river just upstream of the meadow. No major tributaries enter this reach.

The Rubicon River drains a glaciated watershed, much of which is designated as wilderness, and flows through many sections of exposed granite and steep, confined bedrock chutes. Approximately 75 percent of the watershed is underlain by Mesozoic granitic and dioritic rocks. The remainder consists of the Miocene Mehrten Formation, glacial moraine deposits, and minor outcrops of the Jurassic metasedimentary rocks of the Sailor Canyon Formation.

Morphological Description and Channel Condition Assessment

Morphological description (Level II) and channel condition assessment (Level III) data were collected along a 500-feet section of the Rubicon River located approximately 1.6 miles below Rubicon Reservoir at an approximate elevation of 6,140 feet (Figure 3.2-1). The site is located downstream of a narrow canyon, where the river enters a wide alluvial valley.

A mature conifer forest grows along the channel and on moderately steep (30-40 percent) valley slopes. The banks are well vegetated with thick grasses and deciduous understory. Survey measurements indicate that the channel at this site is an F4 channel type, with a moderate channel entrenchment (1.1-1.7), high width-to-depth ratio (41-125), local bed slope of 0.007 (0.7 percent), and a gravel-dominated substrate. This site is comprised of well vegetated, lateral and mid-channel gravel bars and has irregular meanders (S=1.12) with pool-riffle morphology. Raw banks of up to 12 inches were observed, but there was no evidence of recent sediment deposition or bar development. Woody debris was sparse in flood-prone areas. Key LWD pieces that span the channel were not observed at this site at the time of the survey.

V* measurements were not taken because fine sediment deposits were not observed in the pools at the site. Between the pools, cross-section pebble counts indicate that small gravel (<8 mm along the middle axis) accounts for an estimated 3-10% of the surface bed material, while sand and smaller portions (<2 mm along the middle axis) account for 12-15%. The frequency of dominant and subdominant substrates over the entire length of the Rubicon Dam Reach, as reported in the Stream Habitat Technical Report (July 2004), indicate a low-to-moderate presence of gravel, sand, and silt (2-17%). These data indicate at least a moderate presence of fine material, despite observations that fines have not accumulated in discrete patches on top of the channel bed in pools. Following site visits to selected locations with SMUD and USFS representatives, it was agreed that embeddedness surveys at riffle locations were a possible alternative to the V* method to better characterize the balance between fine and coarse sediment at this site.

Table 4.1	-1. 0	UARP g	eomor	phic d	ata su	mmar	y tabl	e.																							
		Channel Geometry										Partic	ele Size l	Distribu	tion (n	ım)			Channel	Гуре	Incipient Motion (cfs)										
Site	xs	Mean Local Slope	s	W _{bf} (feet)	W _{fp} (feet)	D _{bf} max (feet)	D _{bf} mean (feet)	D _{fp} (feet)	${f W_{bf}}/{f D_{bf}}$	E	D ₉₀	D ₈₄	D ₆₅	D ₅₀	D ₃₅	D ₁₆	D ₁₀	Level II	Morph- ology	Туре											
Rubicon	Upper			73	122*	2.8	1.8	5.6	41	1.7*	82	60	43	30	22	11	1				168										
Dam Reach	Middle	0.007	1.12	60	78	2.2	1.3	4.3	46	1.3	109	93	54	34	20	6	<1	F4	Pool- riffle	Response	189										
(RD-G1)	Lower			75	83	1.4	0.6	2.8	125	1.1	82	67	43	31	18	5	<1				184										
Upper	Upper		1.25	22	300*	3.4	2.2	6.9	10	14*				3.5							NA										
Loon Lake Dam	Middle	0.007		34	224*	4.9	3.9	9.8	9	6.6*				0.3				E5	Pool- riffle	Response											
Reach (LL-G1)	Lower			23	125*	3.7	2.9	7.4	8	5.4*				3.0																	
Middle	Upper			54	294*	2.6	1.6	5.2	34	5.4*	245	148	103	40	31	17	13				149										
Loon Lake Dam	Middle	0.013	1.05	38	350*	2.6	1.3	5.3	29	9.3*	270	172	104	74	44	14	8	C3	Plane- bed	Response	86										
Reach (LL-G2)	Lower			51	400*	2.1	1.1	4.2	46	7.8*	200	170	110	90	70	40	30				326										
Lower	Upper			97	280*	4.2	1.4	8.3	69	2.9*	110	95	70	50	35	10	1	C3 Pool- riffle		Response	940										
Loon Lake Dam	Middle	0.005	1.18	56	218. 0	3.1	1.6	6.1	35	3.9	170	135	85	68	49	10	1				1241										
Reach (LL-G3)	Lower			45	387*	3.5	2.2	6.9	20	8.5*	390	205	155	125	76	4	2				1057										
Gerle Creek	Upper	0.008												30	58*	4.3	1.2	8.6	25*	1.9	1310	1165	650	18	2.9	2.4	2.3	B2c	Bedrock/ Plane- bed		
Dam Reach	Middle		1.02	33	81	4.3	2.7	8.7	12	2.4	350	250	110	75	52	30	25	B3c	Bedrock/ Pool-	Transport	NA										
(GC-G1)	Lower			15	172*	3.0	1.9	6.0	8	12*	83	75	65	50	35	18	12	Вэс	riffle												
Robbs	Upper			28	115	2.2	1.6	4.4	18	4.1	96	79	57	39	24	1	1		Plane-		1568										
Peak Dam Reach	Middle	0.002	1.00	39	82	2.0	1.2	4.0	33	2.1	85	63	49	40	27	12	5	C4	bed/ Pool-	Response	917										
(RPD-G1)	Lower	1		39	94	3.4	2.4	6.7	16	2.4	143	78	41	28	16	1	1		riffle		1017										
Upper Ice	Upper	0.002	1.03	53	133	2.7	1.5	5.4	35	2.5	32	29	20	16	11	2	1	C4	Plane-	Response	393										

1

					Particle Size Distribution (mm)								Channel	Гуре	Incipient Motion (cfs)																				
Site	xs	Mean Local Slope	s	W _{bf} (feet)	W _{fp} (feet)	D _{bf} max (feet)	D _{bf} mean (feet)	D _{fp} (feet)	${f W_{bf}}/{f D_{bf}}$	Е	D ₉₀	D ₈₄	D ₆₅	D ₅₀	D ₃₅	D ₁₆	D ₁₀	Level II	Morph- ology	Туре															
House Dam	Middle			64	320*	3.9	1.7	7.7	38	5.0*	23	19	11	9	5	1	1		bed		320														
Reach (IH-G1)	Lower			51	177*	5.0	2.7	10	19	3.5*	33	25	16	10	3	1	1				185														
Lower Ice House	Upper			124	251*	6.6	3.3	13	38	2*	150	145	55	40	30	1	1				497														
Dam Reach	Middle	0.006	1.18	62	206	3.3	2.1	6.7	30	3.3	325	265	130	85	45	20	15	C3	Plane- bed	Response	775														
(IH-G2)	Lower			57	180	5.1	2.9	10	20	3.1	175	130	85	40	15	1	1				531														
Junction	Upper	_		75	92	3.5	1.8	6.9	42	1.2	350	210	125	100	80	52	46		Bedrock/																
Dam Reach	Middle	0.013	1.04	60	82	3.0	1.6	6.1	38	1.4	120	112	83	60	42	23	18	B3c	Plane bed	Transport	NA														
(JD-G1)	Lower			44	93	3.6	2.2	7.3	20	2.1	115	107	84	69	57	45	38		bea																
Camino	Upper			73	90	5.0	2.8	10	26	1.2	173	156	90	71	58	45	34		Bedrock/	Transport															
Dam Reach	Middle	0.016	1.03	89	120	7.8	4.1	16	22	1.3	159	140	113	81	64	46	38	B3c	Pool- riffle		NA														
(CD-G1)	Lower			77	120*	6.0	3.1	12	25	1.6*	207	181	92	72	54	38	25		inne																
SFAR	Upper																	80	148*	11	5.9	21	14	1.9*	300	280	163	128	10 4	59	23		Bedrock/		
Reach (SFAR-	Middle	0.009	1.02	95	117	8.6	5.4	17	18	1.2	300	270	135	104	85	47	37	B3c	Pool- riffle	Transport	NA														
G1)	Lower			110	132	12	4.3	24	26	1.2	291	225	145	117	85	53	35																		
Slab Creek	Upper			111	159	4.4	2.3	8.9	48	1.4	600	450	310	240	19 0	13 0	11 5		Bedrock/																
Dam Reach	Middle	0.028	1.03	71	162	5.6	2.9	11	24	2.3	410	370	240	179	15 0	10 0	85	В3	Plane	Transport	NA														
(SC-G1)	Lower	wer		62	106	4.8	2.9	9.7	21	1.7	460	395	220	190	14 5	90	80		bed		l														

XS = Cross-section S = Sinuosity

bf = refers to bankfull width and/or depth

4.1.2 Loon Lake Dam Reach Sites (Geomorphology Sites LL-G1, LL-G2, LL-G3)

<u>Setting</u>

The 8.9-mile Loon Lake Dam Reach on Gerle Creek extends downstream from the base of Loon Lake Dam (elevation 6,310 feet) to the normal high water line of Gerle Reservoir (elevation 5,231 feet), and has a mean gradient of approximately 0.023 (2.3 percent). Major tributaries along this reach include Jerrett, Barts, Dellar, and Rocky Basin creeks.

The Gerle Creek watershed is underlain by Mesozoic granitic and dioritic rocks, glacial moraine deposits, and minor outcrops of the Jurassic metasedimentary rocks of the Sailor Canyon Formation. Gerle Creek drains Loon Lake Reservoir and flows initially to the west through a wide and swampy Holocene alluvial valley (Neck Meadow and Gerle Meadow) that is surrounded by moderately sloping and glaciated hillsides. This upper subreach meandering across the alluvial valley is approximately five miles long. Between Johnny's Hill and Gerle Creek Reservoir (located at the confluence of Angel and Gerle creeks), the river flows along a lithologic contact between granitic rocks and glacial till deposits. This lower subreach is approximately three miles long.

Morphological Description and Channel Condition Assessment

Morphological description (Level II) and channel condition assessment (Level III) data were collected at three sites (Upper, Middle, and Lower) along Gerle Creek downstream of Loon Lake Dam. The 400-feet-long Upper Site is located about 0.5 miles downstream of Loon Lake Dam at an approximate elevation of 6,150 feet (Figure 3.2-1). The 700-feet-long Middle Site is located approximately 2.7 miles downstream of Loon Lake Dam at an elevation of 5,900 feet. Physical Habitat Simulation (PHABSIM) sites are located approximately 0.5 miles up and downstream of this site. The 600-feet-long Lower Site is located about 7.5 miles downstream from Loon Lake Dam at an elevation of approximately 5,340 feet. A PHABSIM site is located approximately 0.25 miles downstream from this site.

<u>Upper Site (Geomorphology Site LL-G1)</u>: At this site, the valley is wide and the creek flows within a densely vegetated mountain meadow. Young and mature conifers grow together on low-lying banks along the channel and into the surrounding meadow. The floodplain is characterized by vegetated point and lateral bars, regular meanders (S=1.25), and subtle pool-riffle morphology. Survey measurements indicate that the channel at this site is an E5 channel type with very little entrenchment (5.4-14) and a low width-to-depth ratio (8-10). The average local bed slope is 0.007 (0.7 percent) and bed material is primarily fine to coarse sand. Thin silt deposits (0.04-0.20 inches) were observed over the entire channel bed. Several larger silt deposits of unknown thickness were noted behind flow obstructions and along the channel margins. Abundant medium to large sized woody debris occupies up to 30 percent of the active cross-sectional area. Several key pieces of LWD span the channel and act as velocity refuge, creating lateral scour pools. An estimated 30-50 percent of the active channel cross-section has been influenced by deposition and scour at obstructions, constrictions, and bends.

Although extensive fine sediment deposits were observed at this site, V* is not an appropriate method to use at this site due to the lack of distinct pool-riffle control points and the contiguous nature of the fine sediments that make up the channel bed. Depth sounding via a long metal rod or auger to estimate and characterize overall fine sediment accumulation at this site is a possible alternative to V*. Such data could be considered a baseline for comparison to future measurements and promote a better understanding of the balance between sediment supply and transport capacity at this location.

<u>Middle Site (Geomorphology Site LL-G2)</u>: This site is located immediately downstream of the confluence with Jerrett Creek at the head of a densely vegetated mountain meadow (Gerle Meadow), downstream of a steeper reach. A largely mature conifer forest grows on low-lying banks along the channel and into the surrounding meadow. The floodplain is characterized by a wide, straight channel with few meanders (S=1.05) and numerous lateral bars. Banks are well vegetated and low lying. Survey measurements indicate a C3 channel type with little entrenchment (5.4-9.3); high width-to-depth ratio (29-46); average local bed slope of 0.013 (1.3 percent); and bed material primarily comprised of small cobble. This site is characterized by plane-bed morphology with little bedform definition. Abundant medium to large sized woody debris was observed as single pieces and in jams. Many key pieces of LWD spanned the channel, although only a small number of these influenced channel morphology. Local scour, incision, fine sediment deposition, and/or enlargement of the channel were not observed. Many side channels were noted, commonly vegetated with grasses and herbaceous plants.

V* measurements were not taken because fine sediment deposits were not observed in the pools at the site. Cross-section pebble counts indicate that fine gravel (<8 mm along the middle axis) accounts for an estimated 1-5% of the surface bed material, while sand and smaller portions (<2 mm along the middle axis) account for 1-5%. The frequency of dominant and subdominant substrates over the entire length of the Loon Lake Dam Reach, as reported in the Stream Habitat Technical Report (July 2004), indicate a moderate presence of gravel, sand, and silt (8-22%). These data indicate a at least a moderate presence of fine material, despite observations that fines are not located in discrete patches on top of the channel bed in pools. Following site visits to selected locations with SMUD and USFS representatives, it was agreed that embeddedness surveys at riffle locations were a possible alternative to the V* method to better characterize the balance between fine and coarse sediment at this site.

<u>Lower Site (Geomorphology Site LL-G3)</u>: This site is located in a shallow valley downstream of the Ice House (Wentworth Springs) Road Bridge. Valley slopes are moderately steep (30-40 percent) with no evidence of historical or recent mass wasting episodes. A mature conifer forest with a moderately dense understory occupies the valley floor and side slopes at the site. Dense riparian vegetation, from large trees to small brush, covers the banks. The channel is characterized by pool-riffle morphology with point bar formation resulting in regular meanders (S=1.18). Survey measurements indicate a C3 channel type. The channel is slightly entrenched (2.9-8.5) with a high width-to-depth ratio (20-69), average local bed slope of 0.005 (0.5 percent), and bed material comprised primarily of cobble and gravel. Several high-flow side channels and debris jams were observed above the bankfull elevation along the right bank. Medium to large

sized woody debris is present in the bankfull channel. One key piece of large woody debris (LWD) created a plunge pool with reduced flow velocity. Isolated areas of recent scour and deposition were observed at the time of the survey, indicating that the channel is geomorphically active.

V* measurements were not taken because fine sediment deposits were not observed in the pools at the site. Sand is present in low-velocity and less turbulent pockets along the channel margins. Cross-section pebble counts indicate that fine gravel (<8 mm along the middle axis) accounts for an estimated 0-4% of the surface bed material, while sand and smaller portions (<2 mm along the middle axis) account for 10-15%. The frequency of dominant and subdominant substrates over the entire length of the Loon Lake Dam Reach, as reported in the Stream Habitat Technical Report in July 2004, indicate a moderate presence of gravel, sand, and silt (8-22%). These data indicate a at least a moderate presence of fine material, despite observations that fines are not located in discrete patches on top of the channel bed in pools. Following site visits to selected locations with SMUD and USFS representatives, it was agreed that embeddedness surveys at riffle locations were a possible alternative to the V* method to better characterize the balance between fine and coarse sediment at this site.

4.1.3 <u>Gerle Creek Dam Reach Site (Geomorphology Site GC-G1)</u>

<u>Setting</u>

The 1.1-mile-long Gerle Creek Dam Reach on Gerle Creek extends from the base of Gerle Creek Dam (elevation 5,182 feet) to the confluence with the South Fork Rubicon River (SFRR) (elevation 4,980 feet), and has a mean gradient of approximately 0.035 (3.5 percent).

The Gerle Creek watershed is underlain by Mesozoic granitic and dioritic rocks, glacial moraine deposits, and minor outcrops of Jurassic metasedimentary rocks of the Sailor Canyon Formation. The creek is confined in a narrow canyon with vertical canyon walls near Gerle Creek Dam. The 0.5-mile section below Gerle Creek Dam is scoured to granitic bedrock and boulders. The channel in the lower portion of the reach is less confined and valley walls are less steep.

Morphological Description and Channel Condition Assessment

Morphological description (Level II) and channel condition assessment data (Level III) were collected along an 800-feet section of Gerle Creek, approximately 0.8 mile below Gerle Creek Reservoir at an elevation of 5,020 feet (Figure 3.2-1). A PHABSIM site is located approximately 0.1 mile upstream from this site.

At this site, valley slopes are gentle (<30 percent) and there is no evidence of active or historical mass wasting along the channel margins. High brush, grass, and annual forbs densely occupy the banks of the low-water flow channel. Survey measurements indicate a B2c channel type at the upper cross-section and B3c channel types at the lower two cross-sections. The channel is moderately to slightly entrenched (1.9-12), has a moderate to high width-to-depth ratio (8-25) and a mean local bed slope of 0.008 (0.8 percent). Substrate is dominated by boulders at the upper cross-section and cobble at the two lower cross-sections. Bedrock and boulders form a straight, narrow channel (S=1.02) with discontinuous plane-bed morphology. Woody debris was

sparse within the bankfull channel and flood-prone areas. Key LWD pieces that span the channel were not observed along at this site.

Most of the medium grained and finer sediment fractions are absent, although one fine sediment deposit was observed in the tail end of a large pool near the lower cross-section. No fine sediment was observed deposited on the channel bed, suggesting that these grain size fractions are scoured and that transport capacity exceeds fine sediment supply. As a result, V* measurements are not applicable at this site.

4.1.4 <u>Robbs Peak Dam Reach Site (Geomorphology Site RPD-G1)</u>

<u>Setting</u>

The 5.6-mile-long Robbs Peak Dam Reach on SFRR extends from the base of Robbs Peak Forebay (elevation 5,205 feet) downstream to the confluence with Rubicon River (3,540 feet), and has a mean gradient of approximately 0.055 (5.5 percent). Major tributaries to this reach include Gerle and South creeks.

The SFRR watershed is underlain by Mesozoic granitic rocks, glacial moraine deposits, minor outcrops of the Miocene Mehrten Formation, Jurassic metasedimentary rocks of the Sailor Canyon Formation, and Paleozoic metasedimentary rocks. Upstream of the Gerle Creek confluence, the river flows through a glaciated, low relief granitic landscape. Downstream of the Gerle Creek confluence, the river is characterized by progressive entrenchment within the surrounding canyon. For the first two miles, the river is confined by moderate granitic canyon slopes. A contact between granitic and Paleozoic metasedimentary rocks marks a transition from the moderate canyon to a deep gorge with 1,500-feet walls.

Morphological Description and Channel Condition Assessment

Morphological descriptions (Level II) and channel condition assessment data (Level III) were collected along a 900-foot section of the SFRR, approximately 0.5 mile below Robbs Peak Forebay at an elevation of 5,130 feet (Figure 3.2-1). In order to avoid effects from upstream project facilities on Gerle Creek, this site is located upstream of the SFRR/Gerle Creek confluence. A PHABSIM site is located approximately 0.1 mile downstream of the site.

At this site, valley slopes are gentle (<30 percent) with relatively high plant density and vigor, and there was evidence of infrequent mass wasting episodes. The floodplain is characterized by irregular meanders (S=1.00) with numerous mid-channel bars and overflow channels. The mid-channel cobble bars and streambanks are heavily vegetated with willows, and small conifers are growing on recently scoured surfaces. Survey measurements indicate a C4 channel type with slight entrenchment (2.1-4.1), high width-to-depth ratio (16-33), mean local bed slope of 0.002 (0.2 percent), and gravel-dominated substrate. Coarse sands also represent a moderate fraction of the surface grain size distribution. This site exhibits primarily plane-bed and pool-riffle morphology. Woody debris is absent from the low-flow channel, but medium to large sized woody debris (e.g., large limbs, branches, small logs, and/or portions of trees) occupied up to 10 to 30 percent of the active cross-sectional area above the low-flow wetted perimeter. Key LWD pieces that span the channel were not observed at this site.

V* measurements were not taken because fine sediment deposits were not observed in the pools at the site. Cross-section pebble counts indicate that fine gravel (<8 mm along the middle axis) accounts for an estimated 1-4% of the surface bed material, while sand and smaller portions (<2 mm along the middle axis) account for 8-25%. On the ground habitat mapping was not performed for the Robbs Peak Dam Reach, so reach-long estimates of substrate composition are not available. The pebble count data indicate at least a moderate presence of fine material, despite observations that fines are not located in discrete patches on top of the channel bed in pools. Following site visits to selected locations with SMUD and USFS representatives, it was agreed that embeddedness surveys at riffle locations were a possible alternative to the V* method to better characterize the balance between fine and coarse sediment at this site.

4.1.5 <u>Ice House Dam Reach Sites (Geomorphology Sites IH-G1, IH-G2)</u>

<u>Setting</u>

The 11.5-miles-long Ice House Dam Reach on South Fork Silver Creek (SFSC) extends from the base of Ice House Dam (elevation 5,300 feet) to the normal high water line of Junction Reservoir (elevation 4,460 feet), and has a mean gradient of approximately 0.014 (1.4 percent). The reach is characterized by moderate valley walls that confine the channel to a narrow floodplain. Peavine Creek, Winmiller Ravine, and Big Hill Canyon are the three major tributaries in this reach.

SFSC is located in the southeastern portion of the project area and is underlain by Mesozoic granitic rocks, Paleozoic metasedimentary rocks, glacial moraine deposits, and Miocene Mehrten Formation rocks. Downstream of Ice House Reservoir, SFSC flows through a steep, granitic canyon that transitions into a deep gorge as the lithology shifts to Paleozoic metasedimentary rocks near the Silver Creek Campground. In 1992, the Cleveland Fire burned approximately 75 percent of the watershed (24,000 acres) downstream of Ice House Reservoir (USDA 1993).

Morphological Description and Channel Condition Assessment

Morphological descriptions (Level II) and channel condition assessment data (Level II) were collected at two sites (Upper and Lower) along SFSC downstream of Ice House Reservoir. The 1,200-feet-long Upper Site is located approximately 1.5 miles downstream from the Ice House Reservoir at the Silver Creek Campground (Figure 3.2-1). PHABSIM studies were completed approximately 0.1 mile downstream of this site. The approximate elevation of the site is 5,190 feet. This site was not affected by the Cleveland Fire. The 1,300-feet-long Lower Site is located approximately 8.6 miles downstream of Ice House Reservoir at an elevation of approximately 4,665 feet. Again, a PHABSIM site is located approximately 0.1 mile downstream from this site. The Lower Site burned during the Cleveland Fire.

<u>Upper Site (Geomorphology Site IH-G1)</u>: At this site, valley slopes are gentle (<30 percent) with no evidence of recent major mass wasting episodes. The channel is characterized by planebed morphology, regular meander and point bar formation (S=1.03), banks stabilized by vegetation, and frequent terrace surfaces ranging from 10-16 feet above the estimated bankfull elevation. Survey measurements indicate a C4 channel type that is slightly entrenched (2.5-5) with high width-to-depth ratio (19-38) and an average local bed slope of 0.002 (0.2 percent). Bed material is primarily unconsolidated coarse sand and gravel that forms frequent bars along the channel margins. Local zones of bank scour and recent bar deposition suggest that sediment transport may occur regularly at moderate flows, and that the channel is likely sensitive to changes in discharge and sediment supply. Medium to small sized woody debris was present in moderate amounts, but has a limited effect on channel morphology. The lower section of this site contains several key LWD pieces that span the channel. These LWD pieces are firmly embedded, form backwater pools, act as instream cover, and effectively reduce flow velocity.

Fine sediment deposits were observed only on the floodplain surfaces, not in the base flow active channel. Residual pool filling measurements (V*) were not taken at this site because of the dominant plane-bed morphology, which lack distinct bedforms required by V*. Cross-section pebble counts indicate that fine gravel (<8 mm along the middle axis) accounts for an estimated 10-20% of the surface bed material, while sand and smaller portions (<2 mm along the middle axis) account for 15-27%. The frequency of dominant and subdominant substrates over the entire length of the Ice House Dam Reach, as reported in the Stream Habitat Technical Report in July 2004, indicate a low-to-moderate presence of gravel, sand, and silt (1-15%). These data indicate at least a moderate presence of fine material, despite observations that fines have not accumulated in discrete patches on top of the channel bed in well-defined pools. Following site visits to selected locations with SMUD and USFS representatives, it was agreed that embeddedness surveys at riffle locations were a possible alternative to the V* method to better characterize the balance between fine and coarse sediment at this site.

Lower Site (Geomorphology Site IH-G2): This site is within the burned section of Ice House Dam Reach. The historically dominant conifer forest is slowly recovering on valley hillslopes that are primarily covered with dead wood and litter from the recent fires. The channel banks, which have been re-colonized by willow and alder, exhibit small amounts of erosion. This site exhibits primarily plane-bed morphology (S=1.18). Survey measurements indicate a C3 channel type that is slightly entrenched (2-3.3) with a high width-to-depth ratio (20-38) and an average local bed slope of 0.006 (0.6 percent). Although two medium-sized log jams and many pieces of LWD were observed at this site, most of the wood is only touching the wetted channel and is perched up on boulders and channel banks. There were no key pieces observed at this site.

Grain size distributions indicate that coarse gravel and small cobble are the dominant size classes in the main channel, although field observations suggest that the channel is highly embedded. Recent sand deposits are present on floodplains and terraces, and moderate deposition of new gravel and coarse sand was apparent on old and new bars. Thin silt deposits were observed over the entire bed within the active channel. More extensive silt deposits of unknown thickness were noted behind flow obstructions and along the channel margins. No discrete deep deposits were observed. Residual pool filling measurements (V*) were not taken at this site because of the dominant plane-bed morphology, which lack distinct bedforms required by V*. Cross-section pebble counts indicate that fine gravel (<8 mm along the middle axis) accounts for an estimated 2-8% of the surface bed material, while sand and smaller portions (<2 mm along the middle axis) account for 0-25%. The frequency of dominant and subdominant substrates over the entire length of the Ice House Dam Reach, as reported in the Stream Habitat Technical Report in July 2004, indicate a low-to-moderate presence of gravel, sand, and silt (1-15%). These data indicate a moderate presence of fine material, despite observations that fines have not accumulated in discrete patches on top of the channel bed in well-defined pools. Following site visits to selected locations with SMUD and USFS representatives, it was agreed that embeddedness surveys at riffle locations were a possible alternative to the V* method to better characterize the balance between fine and coarse sediment at this site.

4.1.6 Junction Dam Reach Site (Geomorphology Site JD-G1)

<u>Setting</u>

The 8.3-miles-long Junction Dam Reach on Silver Creek extends from the base of Junction Dam (elevation 4,300 feet) to the normal high water line of Camino Reservoir (elevation 2,195 feet), and the mean gradient is approximately 0.032 (3.2 percent). Major tributaries to this reach include Gray House Creek, Bear Creek, Davis Creek, and Onion Creek.

The watershed in the Junction Dam Reach is underlain by Paleozoic metasedimentary rocks and rocks of the Mehrten Formation. Silver Creek enters Paleozoic metasedimentary rocks just above Junction Dam and flows through a steep and highly confined gorge for most its course prior to the confluence with the SFAR.

Morphological Description and Channel Condition Assessment

Morphological descriptions (Level II) and channel condition assessment data (Level III) were collected along an 820-feet section of Silver Creek about 1.5 miles downstream from the base of Junction Dam at an approximate elevation of 4,200 feet (Figure 3.2-1). PHABSIM studies were also completed at this site.

At this site, valley slopes are steep (>60 percent) with a mature conifer forest occupying steep bedrock banks. The valley lies perpendicular to the strike of a high-grade metamorphic complex, creating cascades and riffles where flow encounters more resistant bedrock layers (S=1.04). The riparian zone is relatively narrow, with a few alder saplings established on the low water shoreline and infrequent lateral bar deposits. Survey measurements indicate a B3c channel type, with moderate entrenchment (1.2-2.1), high width-to-depth ratio (20-42), mean local bed slope of 0.013 (1.3 percent), and a cobble-dominated substrate. This site is primarily bedrock controlled with discontinuous plane-bed morphology and little to no LWD in the active channel.

Gravel exists in the matrix beneath the cobble armor layer and pockets of gravel are deposited in the low velocity zones on the downstream sides of large flow obstructions and along the channel margins. No fine sediment (silt/sand) was observed deposited on the channel bed surface in the main flow paths or in pools, suggesting that these grain size fractions are scoured and that transport capacity exceeds fine sediment supply. As a result, V* measurements are not applicable at this site.

4.1.7 <u>Camino Dam Reach Site (Geomorphology Site CD-G1)</u>

<u>Setting</u>

The 6.2-miles-long Camino Dam Reach on Silver Creek extends from the base of Camino Dam (elevation 2,810 feet) to the confluence of Silver Creek and the SFAR (elevation 2,055 feet), and has a mean gradient is approximately 0.023 (2.3 percent). The primary tributary to this reach is Round Tent Canyon.

Below Camino Dam, Silver Creek enters Paleozoic metasedimentary rocks of the Mehrten Formation and flows through a steep and highly confined gorge for most its course prior to the confluence with the SFAR. Camino Reservoir is located in the gorge area between the Jaybird and Round Tent canyon tributaries.

Morphological Description and Channel Condition Assessment

Morphological descriptions (Level II) and channel condition assessment data (Level III) were collected along a 700-feet section of Silver Creek about 3.5 miles downstream of Camino Reservoir and 2.75 miles upstream from the confluence with the SFAR (near the Camino Tunnel Adit) (Figure 3.2-1). The approximate elevation of the site is 2,380 feet.

At this site, valley slopes are moderately steep (40-60 percent), show evidence of infrequent episodes of mass wasting in the past, and confine the flow to a relatively narrow channel with low sinuosity (S=1.03). General vegetative vigor and density is low, suggesting a shallow, discontinuous root mass. The riparian zone is narrow, with low plant diversity and density. Channel character and hydraulics are primarily controlled by large flow obstructions created by frequent bedrock outcrops and large boulders. Survey measurements indicate a B3c channel type with moderate entrenchment (1.2-1.6), high width-to-depth ratio (22-26), average local bed slope of 0.016 (1.6 percent), and cobble-dominated substrate. This site is primarily bedrock controlled with steep riffles and intermittent pools. This site has coarse substrate with little LWD present within the active channel.

Gravel exists in the matrix beneath the cobble armor layer and pockets of gravel are deposited in the low velocity zones on the downstream sides of large flow obstructions and along the channel margins. No fine sediment (silt/sand) was observed deposited on the channel bed surface in the main flow paths or in pools, suggesting that these grain size fractions are scoured and that transport capacity exceeds fine sediment supply. As a result, V* measurements are not applicable at this site.

4.1.8 <u>South Fork American River Reach Site (Geomorphology Site SFAR-G1)</u>

<u>Setting</u>

The 2.8-miles-long SFAR Reach on SFAR extends from the confluence with Silver Creek (elevation 2,040 feet) to the normal high water line of Slab Creek Reservoir (elevation 1,850 feet), and has a mean gradient of 0.012 (1.2 percent). Bedrock walls confine the river in this narrow canyon and there are a few locations with floodplains on both sides of the channel. There are no major tributaries to the river in this reach.

The SFAR is underlain by Mesozoic granitic rocks, Paleozoic metasedimentary rocks, rocks of the Miocene Mehrten Formation, and glacial moraine deposits. From its confluence with Silver Creek to Slab Creek Dam, the river flows through a deep canyon composed of Paleozoic metasedimentary rocks. Steep valley slopes and bedrock walls confine the channel from bank to bank in many sections of the river in this area.

Morphological Description and Channel Condition Assessment

Morphological descriptions (Level II) and channel condition assessment data (Level III) were collected along a 520-feet section of the SFAR located approximately 2.2 miles upstream from the normal high water line of Slab Creek Reservoir at an elevation of 1,980 feet (Figure 3.2-1). The upstream portion of the SFAR above the Silver Creek confluence is out of the project area.

At this site, valley slopes are moderately steep (40-60 percent) and sparsely vegetated. Evidence of frequent or large mass wasting episodes that annually deliver sediment to the channel was observed. Bedrock and boulders form a straight, narrow channel (S=1.02) with coarse boulder and cobble point bars. Riparian vegetation is poorly established due to the lack of fine sediment deposition and steep bedrock banks. Survey measurements indicate a B3c channel type with high to moderate entrenchment (1.2-1.9), high width-to-depth ratio (14-26), average local bed slope of 0.009 (0.9 percent), and cobble-dominated substrate. Although the pebble counts indicate a cobble channel bed, field observations suggest this is only a thin layer covering boulders and bedrock. This site is primarily bedrock controlled with steep riffles and intermittent pools. There is little evidence of bank erosion. Little to no LWD is present within the active channel.

Gravel exists in the matrix beneath the cobble armor layer and pockets of gravel are deposited in the low velocity zones on the downstream sides of large flow obstructions and along the channel margins. No fine sediment (silt/sand) was observed deposited on the channel bed surface in the main flow paths or in pools, suggesting that these grain size fractions are scoured and that transport capacity exceeds fine sediment supply. As a result, V* measurements are not applicable at this site.

4.1.9 <u>Slab Creek Dam Reach Site (Geomorphology Site SC-G1)</u>

<u>Setting</u>

The 8.0-miles-long Slab Creek Dam Reach on the SFAR extends from the base of Slab Creek Dam (elevation 1,620 feet) to the normal high water line of Chili Bar Reservoir (elevation 990 feet), and has a mean gradient of approximately 0.015 (1.5 percent). Bedrock walls confine the river in this narrow canyon and there are few locations with floodplains on both sides of the channel. The largest alluvial deposits of sediments are located on the inside of meander bends or in pools forming isolated breaks in the steep river gradient. Tributaries to the SFAR along this reach include Redbird Creek, Iowa Canyon, South Canyon, Mosquito Creek, Jaybird Creek, Rock Creek, and White Rock Creek.

Pacific Gas and Electric Company Chili Bar Project FERC Project No. 2155

The lithology of the SFAR includes Mesozoic granitic rocks, Paleozoic metasedimentary rocks, Miocene debris deposits, and Pleistocene glacial moraine deposits. Downstream of the Slab Creek Dam, the lithology changes from Paleozoic metasedimentary rocks to Mesozoic granitic rocks, with lithology changing back to metasedimentary rocks at the Rock Creek confluence.

Morphological Description and Channel Condition Assessment

Morphological descriptions (Level II) and channel condition assessment data (Level III) were collected along a 650-feet section of the SFAR between the confluences of Jaybird Creek and Rock Creek, nearly 4.6 miles below Slab Creek Dam. The approximate elevation at the site is 1,114 feet (Figure 3.2-1). The site is approximately 0.1 mile upstream from the lower Slab Creek fish survey and PHABSIM sites and approximately 1.75 miles downstream of the benthic macroinvertebrate site. At the Slab Creek fish survey sites, only the upper segment had considerable gravel (30 percent) and cobble (40 percent) bed material. Neither of the macroinvertebrate sampling sites had continuous alluvial deposits in the Slab Creek Dam Reach.

At this site, valley slopes are steep (>60 percent), sparsely vegetated, and show evidence of infrequent mass wasting episodes. Bedrock and boulders form a straight, narrow channel (S=1.03) with coarse boulder and cobble point bars. Riparian vegetation is poorly established due to the lack of fine sediment deposition and steep bedrock banks. Survey measurements indicate that the channel at this site is a B3 channel type, with moderate to slight entrenchment (1.4-2.3), a high width-to-depth ratio (21-48), an average local bed slope of 0.028 (2.8 percent), and a cobble dominated substrate. Although the pebble counts indicate a cobble channel bed, field observations suggest this is only a thin layer covering boulders and bedrock. Local channel morphology includes bedrock and plane-bed environments, with little to no LWD present within the active channel. There is little evidence of bank erosion.

Gravel exists in the matrix beneath the cobble armor layer and pockets of gravel are deposited in the low velocity zones on the downstream sides of large flow obstructions and along the channel margins. No fine sediment (silt/sand) was observed deposited on the channel bed surface in the main flow paths or in pools, suggesting that these grain size fractions are scoured and that transport capacity exceeds fine sediment supply. As a result, V* measurements are not applicable at this site.

4.2 Results for the Reach Downstream of Chili Bar

Morphological description (Level II) surveys were conducted for four sites in the Reach Downstream of Chili Bar. Of these, channel condition assessment (Level III) data were collected for the two sites in the Middle Subreach. Table 4.2-1 presents a summary of channel characteristics and data analysis results for the Reach Downstream of Chili Bar. Appendix J includes longitudinal profile data, cross-section data, and pebble count tables for each site. Longitudinal profiles, cross-sections, and pebble count plots for each site are located in Appendix K. Level III data can be found in Appendix L. Facies maps for the Reach Downstream of Chili Bar can be found in Appendix P.

<u>Setting</u>

The 19.1-miles-long Reach Downstream of Chili Bar extends from the base of Chili Bar Dam (elevation 964 feet) to the normal high water line of Folsom Reservoir (elevation 466 feet), and has a mean channel gradient of approximately 0.005 (0.5 percent). The main tributaries to the SFAR along this reach, in the downstream direction, include Dutch Creek, Granite Creek, Jacobs Creek, Greenwood Creek, Hastings Creek, Norton Ravine, and Weber Creek.

This reach can be broken down into three distinct subreaches: Upper Subreach (Upper Canyon site), Middle Subreach (Upper and Lower Coloma sites), and Lower Subreach (Gorge site). The Upper Subreach is characterized by a higher channel gradient, long rapids, steep canyon walls, and few noteworthy alluvial deposits. The Middle Subreach lies in a broad, gently sloping valley and the channel is comparatively wider, more sinuous, and has more developed floodplains. Sections of the Middle Subreach have been mined for gold using suction dredges, which removed the original channel bottom and deposited dredger tailings in piles on the banks of the river. Suction dredging altered the channel morphology by removing coarse sediment and leaving behind large boulders, resulting in an artificially deepened channel. Portions of the Middle Subreach were excluded from consideration for a site because gold dredging greatly altered channel morphology. In the Lower Subreach, the regional slope increases again and the river enters a confining canyon. Here, the majority of the channel is formed in bedrock or boulders and depositional zones are typically found in areas where the canyon bottom widens.

Table 4.2	-1. F	Reach Do	wnstrea	m of C	ີ hili Ba	ar geon	iorph	ic data	a sum	mary ta	able.																
			Channel Geometry										Parti	cle Size	e Distri	bution	(mm)		Incipient Motion (cfs)								
Site	Sub- reach	XS	Mean Local Slope	S	W _{bf} (feet)	W _{fp} (feet)	D _{bf} max (feet)	D _{bf} mean (feet)	D _{fp} (feet)	W _{bf} / D _{bf}	E	D ₉₀	D ₈₄	D ₆₅	D ₅₀	D ₃₅	D ₁₆	D ₁₀	Level II	Morph- ology	Туре						
Upper		Upper			268	340	9.2	5.3	19	51	1.3	300	230	134	89	60	34	25		Bedrock/							
Canyon	Upper	Middle	0.01	1.00	194	337	10	6.2	21	31	1.7	284	220	149	92	65	35	23	F3	Plane- bed	Transport	NA					
(CB-G1)		Lower			238	345*	12	8.0	23	30	1.4*	384	290	139	90	70	40	32									
Upper		Upper		0.007 1.20	265	377*	7.8	4.8	16	55	1.4*	290	243	135	104	79	51	42				4,317					
Coloma		Middle	0.007 1.2		1.20	205	415*	9.5	3.6	19	57	2*	295	246	158	122	103	71	62	C3	Pool- riffle	Response	1,703				
(CB-G2)		Lower			143	420	9.4	4.1	19	35	2.9	384	284	200	158	128	89	71				2,061					
Lower	Middle	Upper			217	378	5.9	4.4	12	49	1.7	192	169	113	84	56	7	1		Pool- riffle	Transport	NA					
Coloma		Middle	0.009	009 1.20	178	363	8.2	4.7	17	38	2.0	240	211	146	108	81	45	25	C3								
(CB-G3)		Lower			185	370*	9.7	5.2	19	36	2*	251	211	154	125	102	52	45									
		Upper							300	457*	9.8	3.7	20	81	1.5*	155	132	94	66	52	33	23					
Gorge (CB-G4)	Lower	Middle	0.006	1.00	309	396	6.6	5.5	13	56	1.3	168	150	110	90	67	52	42	F3	Pool- riffle	Transport	NA					
		Lower			245	356	8.8	4.8	18	51	1.5	259	175	119	88	74	56	50		inne							

XS = Cross-section S = Sinuosity W/D = width/depth ratioE = entrenchment ratio

fp = refers to floodprone width and/or depth bf = refers to bankfull width and/or depth D_{90} = bed particle size where 90 percent is finer

NA = Not Applicable (see text)

*Values based on estimated elevations (see text) Counts with <100 particles, or no counts performed (see text) The lithology of the SFAR from the confluence with Rock Creek (just upstream of Chili Bar Reservoir) to Folsom Lake includes Mesozoic granitic rocks and Paleozoic metasedimentary rocks. The lithology at the Rock Creek confluence is composed of late Silurian metasedimentary rocks of the Shoo Fly Complex. The lithology changes downstream to late-Permian to early-Triassic metasedimentary rocks of the Calaveras Complex. As the SFAR flows through the town of Coloma, it also passes through a Mesozoic granite inclusion from the Sierra Nevada batholith before changing back to the Calaveras Complex lithology. Downstream of Highway 50, the lithology changes to Jurassic metasedimentary rocks of the Western Jurassic terrane. Serpentine rock masses also occur where the SFAR enters into Folsom Lake (Alt and Hyndman 2000; Norris and Webb 1990).

Morphological Description and Channel Condition Assessment Analysis

Level II Analysis: Channel morphology was described at four sites in the Reach Downstream of Chili Bar. The Upper Canyon Site was chosen as the representative channel type for the Upper Subreach. The 1,000-feet-long site is located about 2.2 miles downstream from the base of Chili Bar Dam at an elevation of approximately 840 feet above sea level (Figure 3.2-1). The "Flume" Flow Fluctuation Study Site is co-located at this site. Two representative sites were chosen for the long Middle Subreach. The Upper Coloma Site is located in the alluvial transition zone between the steep, confined Upper Subreach and low-gradient, less confined Middle Subreach. This 650-feet-long site is located about 5.1 miles downstream from the base of Chili Bar Dam, and lies at an elevation of 764 feet. The Lower Coloma Site is located in a broad valley downstream of the historical gold dredging activities. This 700-feet-long site is located about 9.3 miles downstream from the base of Chili Bar Dam, and lies at an elevation of about 680 feet. The "Camp Lotus" Flow Fluctuation Study Site is co-located at this site. Lastly, the Gorge Site is located in the Lower Subreach, where steep canyon walls confine the river into a narrow channel, high-gradient channel. This 600-feet-long site is approximately 17.5 miles downstream from the base of Chili Bar Dam and lies at an elevation of about 502 feet. The "Weber Creek" Flow Fluctuation Study Site is located approximately one mile downstream from this site.

<u>Level III Analysis:</u> Results of the geomorphic characterization (Level I) indicate that the Upper and Lower Subreaches of the Reach Downstream of Chili Bar cannot be classified as response reaches, as defined in Section 3.0 of this report. Therefore channel condition assessment (Level III) data were only collected at the Upper and Lower Coloma Sites in the Middle Subreach of the Reach Downstream of Chili Bar.

4.2.1 <u>Upper Canyon Site (Geomorphology Site CB-G1)</u>

At this site, the channel is deeply incised within gently rolling terrain of the Sierran foothills. Valley slopes are steep (>60 percent) with numerous bedrock outcrops. Portions of the hillslopes are un-vegetated and observational evidence suggests that the hillslopes are susceptible to occasional landslides and mass wasting. A thin forest occupies the surrounding hillslopes, although much of the ground below the trees is barren. Moderately vegetated banks consist of cobble, gravel, and sand. Survey measurements indicate a F3 channel type with a moderately entrenched channel (1.3-1.7), high width-to-depth ratio (30-51), average local bed slope of 0.01 (1.0 percent), and cobble-dominated substrate. Although the pebble counts

indicate a cobble channel bed, field observations suggest this is only a thin layer covering boulders and bedrock. The relatively coarse substrate is covered with black algae. Higher flows have created an overflow channel and cobble bar on the right bank. The channel at this site exhibits an irregular meander pattern (S=1.00) with little to no LWD present within the flood-prone area. Local channel morphology includes bedrock and plane-bed environments. There is little evidence of bank erosion.

Gravel exists in the matrix beneath the cobble armor layer and pockets of gravel are deposited in the low velocity zones on the downstream sides of large flow obstructions and along the channel margins. No fine sediment (silt/sand) was observed deposited on the channel bed surface in the main flow paths or in pools, suggesting that these grain size fractions are scoured and that transport capacity exceeds fine sediment supply. As a result, V* measurements are not applicable at this site.

4.2.2 <u>Upper Coloma Site (Geomorphology Site CB-G2)</u>

At the Upper Coloma Site, valley slopes are moderately steep (40-60 percent) and exhibit evidence of episodic mass wasting. Vegetative vigor and density is largely controlled by aspect. The north facing slopes support greater floral density and diversity due to greater soil moisture retention during the summer and winter months. South facing slopes that are mostly dry throughout portions of the winter and the entire summer do not support a wide range or density of plant life. Survey measurements indicate a C3 channel type with a slightly entrenched channel (1.4-2.9), high width-to-depth ratio (35-57), average local bed slope of 0.007 (0.7 percent), and cobble-dominated substrate. This channel at this site is characterized by irregular meanders (S=1.20) and pool-riffle sequences with little signs of recent erosion or deposition. A vegetated, mid-channel bar divides the low flow into two channels at the upper end of the site. The channel bed, bar, and banks consist of cobble, boulders, gravel and sand (in order of dominance). Small bedrock outcrops occur along the banks at the upper and lower end of this site. The banks and tops of bars are moderately vegetated. The main channel lies as much as 7-10 feet below the level of surrounding alluvial fill at the downstream end of the site. All sizes of woody debris are essentially absent from within the bankfull channel and flood-prone areas.

A few small sand and silt deposits were observed in low-velocity, less turbulent pockets along the channel margins. No deposits were observed in the one pool evident at the site. Therefore, no V* measurements were taken. Cross-section pebble counts indicate that small gravel (<8 mm along the middle axis) accounts for an estimated 0-2% of the surface bed material, and sand and smaller portions (<2 mm along the middle axis) similarly account for 0-2%. On-the-ground habitat mapping was not performed for the Reach Downstream of Chili Bar, so reach-long estimates of substrate composition are not available. Although field observations and survey data indicate that very little fine sediment is deposited on the channel bed at this site, fines were observed in the matrix of the coarse substrate. An embeddedness survey across the riffle located at this site may improve our understanding of the balance between fine and coarse sediment and, ultimately, the balance between sediment supply and transport capacity at this location.

4.2.3 Lower Coloma Site (Geomorphology Site CB-G3)

At the Lower Coloma Site, valley slopes are gentle (<30 percent) and do not appear to supply sediment to the channel through mass wasting processes. Numerous private, residential lots are located close to the banks on either side of the main channel. Hillsides are moderately vegetated with grasses, shrubs, and trees where human development has not modified the natural vegetation patterns. Riparian vegetation was sparse to dense along the channel margins, ranging from low lying grasses and shrubs to overhead bushes and trees. A dense wall of bramble (i.e., blackberry bushes) occupied the alluvial bar along the river right bank, and several private lawns extended down to or near the bankfull elevation on the left bank. Survey measurements indicate a C3 channel type with a slight entrenchment (1.7-2.0), high width-to-depth ratio (36-49), average local bed slope of 0.009 (0.9 percent), and cobble-dominated substrate. Bedrock outcrops occur along the banks at the upper and lower end of this site, and sparse boulders occur in the main channel. The channel at this site is characterized by regular meanders (S=1.20), point bars, and pool-riffle sequences with little signs of recent erosion. Similar bedrock outcrops exist throughout the channel at this site. The main channel lies as much as 10-16 feet below the level of surrounding boulder banks and alluvial fill at the downstream end of the site. Small to medium pieces of woody debris occur within the bankfull channel.

Gravel exists in the matrix beneath the cobble armor layer and pockets of gravel are deposited in the low velocity zones on the downstream sides of large flow obstructions and along the channel margins. Anecdotal evidence suggests that a large sand bar has formed in a pool at the upstream end of the site over recent years. This pool is created by flow separation around a large bedrock outcrop projecting into the channel from the left bank. No other fine sediment (silt/sand) deposits were observed on the channel bed surface in the main flow paths or in pools, suggesting that these grain size fractions are scoured and that transport capacity exceeds fine sediment supply. As a result, V* measurements are not applicable at this site.

4.2.4 <u>Gorge Site (Geomorphology Site CB-G4)</u>

At this site, the channel is deeply incised within gently rolling terrain of the Sierra foothills. Valley slopes are moderately steep (40-60 percent) and exhibit evidence of mass wasting. This site is located in an alluvial depositional zone confined on the upstream and downstream ends by a narrow gorge (S=1.00). Hillslopes are moderately vegetated with grasses, shrubs, and trees. Willows, alders, and other riparian vegetation grow along the banks, but cobble bars surfaces are generally un-vegetated. Survey measurements indicate a F3 channel type with a moderate entrenchment (1.3-1.5), high width-to-depth ratio (51-81), average local bed slope of 0.006 (0.6 percent), and cobble-dominated substrate. A vegetated, mid-channel bar divides the low flow into two channels. The channel bed, bar, and banks consist of cobble, gravel, sand, and occasional boulders (in order of dominance). Sand beaches exist along the margins of the pools at the upper end of this site. Channel bed material is loosely packed and bright with little to no evidence of algal growth. The main channel lies as much as 10-16 feet below the level of surrounding alluvial fill at the downstream end of the site. All sizes of woody debris are essentially absent from within the bankfull channel and flood-prone areas. The Gorge Site is located in an alluvial section of the canyon, which is unusual for the Lower Subreach. Most of

the subreach is characterized by a bedrock gorge with large boulder riffles, small cascades, irregular meanders and pool-riffle morphology. Channel morphology and sediment dynamics within the gorge are very similar to the characteristics described for the Upper Canyon Site.

Gravel exists in the matrix beneath the cobble armor layer and pockets of gravel are deposited in the low velocity zones on the downstream sides of large flow obstructions and along the channel margins. No fine sediment (silt/sand) was observed deposited on the channel bed surface in the main flow paths or in pools, suggesting that these grain size fractions are scoured and that transport capacity exceeds fine sediment supply. As a result, V* measurements are not applicable at this site.

4.3 Channel Bed Mobility

Channel survey data were used to evaluate Shields stress and sediment transport capacities at the geomorphology sites. The *EASI* (Enhanced Acronym Series with Interface) model was used to evaluate normalized Shields stress and bedload transport based on cross-section, channel gradient, surface grain size distribution, and discharge input parameters. A more detailed description of the model is included in Appendix M.

The *EASI* model was created primarily to address gravel transport. Grain size distributions in the UARP and the Reach Downstream of Chili Bar indicate that many grain size classes exist, outside the gravel range. Thus, transport flows must be considered carefully and as rough estimations rather than absolute values.

Although bed mobility and sediment transport rate is a topic of great interest to land managers, methods to determine the critical elements of incipient motion are still being developed for the wide range of channel types that occur in the stream reaches. Unfortunately, bed mobility is still difficult or impossible to accurately predict for many channel types using existing numerical modeling approaches, including channels with:

- steep gradient;
- rough, confined, thin or nonexistent alluvial cover over bedrock; and
- highly variable sediment sources.

In general, shear stress in the transport reaches within the UARP and in the Reach Downstream of Chili Bar dissipates over hydraulic jumps as flow encounters large boulders and/or bedrock. Pockets of sediment may be protected by these large flow obstructions despite a transport capacity that exceeds sediment supply. The dominant source of energy for sediment entrainment in these settings originates from random turbulence associated with flow separation that varies widely over short spatial and temporal scales. Predictions are further complicated by large variations in particle shape, size, and packing over small spatial scales. These conditions preclude an accurate evaluation of incipient motion using Shields stress equations (or any other available predictive numerical method) because existing models do not adequately address the extreme variability in hydraulic conditions near the stream bed, the bed material characteristics, or the size and availability of sediment supply. Field observations indicate that many of the

Sacramento Municipal Utility District Upper American River Project FERC Project No. 2101

study sites in the study area are comprised of these channel types. Study sites in the UARP where morphology precludes an accurate assessment of Shields stress include:

- Gerle Creek Dam Reach Site;
- Junction Dam Reach Site;
- Camino Dam Reach Site;
- S.F. American River Reach Site; and
- Slab Creek Dam Reach Site.

Study sites in the Reach Downstream of Chili Bar where morphology precludes an accurate assessment of Shields stress include:

- Upper Canyon Site;
- Lower Coloma Site; and
- Gorge Site.

The Loon Lake Dam Reach Upper Site was also considered for the analysis, but dominant channel particle size was too small for the model, a stipulation of the underlying Parker equations.

Normalized Shields stress and a bedload transport rating curve were determined for six response sites in the UARP and one response site in the Reach Downstream of Chili Bar (Tables 4.1-1 and 4.2-1). The longitudinal profiles, cross-sections, and grain size distributions for these sites are shown in Appendices G, H, J, and K. *EASI* modeling results for Shields stress and bedload transport rating curves are provided in Appendix N. Incipient bed mobility corresponds to a normalized Shields stress equaling unity (1). The corresponding discharge is the flow at which particles on the channel bed, large or small, begin to mobilize based on the concept of equal mobility (Parker *et al.* 1982, Andrews 1983). Particles of different sizes mobilize at the same discharge because they are inter-locked, and smaller particles are protected by the hiding and protrusion effects of the larger ones.

4.4 Bankfull Flow Analysis

Channel morphology survey results indicate that field measurements of the bankfull elevation, a measurement upon which much of the Rosgen analysis depends, showed large variability between sites and between cross-sections within sites. As already discussed in Section 3.3.1, this may be due to the problems encountered while attempting to estimate bankfull discharge, especially in bedrock dominated environments like those of the UARP and in the Reach Downstream of Chili Bar. In order to better understand the significance of bankfull flows in the vicinity of the UARP and Reach Downstream of Chili Bar, historic flow data were used from the Technical Report on Hydrology (February 2004) to compare both pre- and post-regulation 1.5-year floods with bankfull discharges calculated using field data at the 8 designated response sites. These comparisons were not made for the 8 designated transport sites due to the large influence of structural controls and their non-alluvial nature.

Assumptions regarding recurrence interval relations were used to compare field estimates of bankfull discharge with the hydrologic record. Annual maximum instantaneous flood peaks from regulated and unregulated periods of record were used to calculate the 1.5-year flood discharge for the response sites (Appendix Q). Where data were not available, unregulated discharge records from nearby watersheds with similar drainage areas and characteristics were used to estimate unregulated accretions downstream of reservoirs and/or pre-regulation flows. The 1.5-year recurrence interval has been shown to correspond to bankfull discharge for many stable, alluvial streams (Leopold 1994). However, it should be noted that recurrence intervals for bankfull discharge can be intrinsically different between channels, and often do not fall within the 1-2.5-year range that is commonly considered bankfull (Copeland *et al.* 2000).

Bankfull discharges and mean bankfull elevations measured in the field were compared to those based on recurrence intervals for both regulated and unregulated hydrology at each site (Appendix Q). The Manning equation was used to calculate a representative bankfull discharge for each cross-section using field data, and also to solve for the mean bankfull depth of each cross-section based on recurrence interval discharge estimates from each response site (Knighton 1998). Roughness coefficients, "n", were estimated using the results of five empirical relations and one additive equation (Cowan 1956) commonly used for mountain rivers (Wohl 2000). Estimates generated using the five empirical relations were averaged and compared to the additive method, or Cowan's method. In most cases, the roughness "n" value selected for use in the Manning equation represents the mean of the results obtained using Cowan's method and the average obtained using empirical relations. At sites or cross-sections where the influence of large flow obstructions (e.g.; LWD or in-channel vegetation) was great, the value estimated with Cowan's method was used.

Results of the comparison at each site suggest that field estimations of bankfull may be classified into three distinct groups (Table 4.4-1). The first group (1) consists of those cross-sections at a site where field estimated bankfull elevations primarily correspond with the estimated 1.5-year flood under the regulated hydrology. The second (2) consists of cross-sections at a site where bankfull elevations estimated in the field primarily correspond with the estimated 1.5-year flood under the pre-regulated hydrology. And, the third group (3) consists of those cross-sections at a site where there is little or no correspondence between field estimations of bankfull and the regulated or unregulated flows with 1.5-year recurrence interval. An interpretation is presented for each site below.

Table 4.4-1.	Table 4.4-1.Results of bankfull discharge comparisons.1													
Response	VC	Group	Field Q _{bf}	Regulated	Pre-regulated	D _{bfmean (feet)}								
Site	XS	No. 1	(cfs)	Q _{1.5 (cfs)}	Q _{1.5 (cfs)}	Field	Regulated	Unregulated						
Rubicon	Upper	1	630			1.8	1.82	2.83						
Dam Reach	Middle	3	317	665	1,386	1.3	2.01	3.13						
(RD-G1)	Lower	3	124			0.6	1.73	2.69						
Upper Loon	Upper	2	219			2.2	0.77	2.07						
Lake Dam	Middle	3	620	40	208	3.9	0.73	1.97						

Response	NO	Group	Field Q _{bf}	Regulated	Pre-regulated	D _{bfmean (feet)}					
Site	XS	No. 1	(cfs)	Q _{1.5 (cfs)}	Q _{1.5 (cfs)}	Field	Regulated	Unregulated			
Reach (LL-G1)	Lower	2	228			2.9	0.95	2.57			
Middle	Upper	2	399			1.6	0.94	1.40			
Loon Lake	Middle	1	206	174	343	1.3	1.21	1.82			
Dam Reach (LL-G2)	Lower	3	259			1.1	0.92	1.38			
Lower	Upper	3	329			1.4	2.09	2.47			
Loon Lake Dam Reach (LL-G3)	Middle	3	326	510	678	1.6	2.11	2.50			
	Lower	1	409			2.2	2.48	2.94			
Robbs Peak	Upper	1	98			1.6	1.75	3.66			
Dam Reach	Middle	1	89	116	395	1.2	1.39	2.91			
(RPD-G1)	Lower	2	342			2.4	1.19	2.49			
Upper Ice	Upper	1	250			1.5	1.22	2.74			
House Dam	Middle	3	334	176	674	1.7	1.09	2.44			
Reach (IH-G1)	Lower	2	566			2.7	1.30	2.92			
Lower Ice	Upper	3	2,783			3.3	1.11	1.70			
House Dam	Middle	1	564	488	986	2.1	1.86	2.83			
Reach (IH-G2)	Lower	2	1125			2.9	2.11 2.48 1.75 1.39 1.19 1.22 1.09 1.30 1.11 1.86 1.74	2.66			
				Reach Downstr	eam of Chili Bar						
Upper	Upper	3	12,434			4.8	2.99	3.03			
Coloma	Middle	1,2	5,495	5,667	5,813	3.6	3.54	3.60			
(CB-G2)	Lower	1,2	5,069			4.1	4.40	4.46			

Group #3: Inconclusive

Group #2: Qbf corresponds with pre-regulated Q1.5

D_{bfmean} = average bankfull depth

 $Q_{\rm bf}$ = bankfull discharge based on field measurements

At the Rubicon Dam Reach Site, field estimated bankfull discharge and elevation for the upper cross-section (Group #1) corresponds well with the 1.5-year flood under the regulated hydrology. Field measurements at both the middle and lower cross-sections (Group #3) underestimate mean bankfull elevations, and consequently discharge, when compared to those calculated using the regulated and unregulated hydrology. This may indicate that bankfull indicators are not well defined or entirely absent at these cross-sections because of the difficulties associated with measuring bankfull in mountainous and primarily bedrock controlled systems, as previously discussed in Section 3.3.1. Cross-section plots and the field photographs of both the middle and lower cross-sections suggest several explanations for the observed differences. The plot for the middle cross-section shows another possible slope break on the left bank that is slightly higher than the slope break on the right bank selected as the top-of-bank indicator. This higher slope break may be the true top-of-bank indicator, which would account for the underestimation. The cross-section plot at the lower cross-section shows a bar surface on the right bank that is much lower than other bars used as the top-of-bank indicator shown on either the upper or middle cross-sections. It is possible that this lower surface was mistaken for the top-of-bank indicator at the lower cross-section, which resulted in a bankfull discharge calculation that was too low.

At the Loon Lake Dam Reach Upper Site, field estimated bankfull discharges and elevations for both the upper and lower cross-sections (Group #2) correspond well with the 1.5-year flood under the unregulated hydrology. Field measurements at the middle cross-section (Group #3) overestimate mean bankfull elevation, and consequently discharge, when compared to those calculated using the regulated and unregulated hydrology. This may indicate that bankfull indicators are not well defined or entirely absent at this cross-section because of the difficulties associated with measuring bankfull in mountainous and primarily bedrock controlled systems, as previously discussed in Section 3.3.1. Cross-section plots suggest that field estimations of bankfull elevation occur at similar surfaces at all cross-section locations. Photographs of the middle cross-section show that large flow obstructions, such as large woody debris and vegetation, may locally influence channel dimensions. Scour associated with flow hydraulics around these obstructions may have created a pool at this cross-section and resulted in larger cross-sectional area and lower local slope, both of which may contribute to an overestimation of discharge.

At the Loon Lake Dam Reach Middle Site, field estimated bankfull discharges and elevations for both the upper and middle cross-sections (Groups #2 and #1) correspond well with the 1.5-year flood under the unregulated and regulated hydrology, respectively. Field measurements of bankfull elevation at the lower cross-section (Group #3) are between both regulated and unregulated bankfull calculations. This may indicate that bankfull indicators are not well defined or entirely absent at this cross-section because of the difficulties associated with measuring bankfull in mountainous and primarily bedrock controlled systems, as previously discussed in Section 3.3.1. Cross-section plots and photographs indicate that the meadow surface is highly irregular at this location. As a result, it is evident that there are several top-of-bank surfaces to select from in the field. In addition, as unregulated accretions occur along Gerle Creek, the hydrologic impact of Loon Lake Dam decreases. Accretion estimates confirm the diminishing effect of the dam, as the regulated and unregulated periods are similar. Thus, the geomorphic effects of floods during the regulated and unregulated periods are difficult to differentiate. This may also account for a field estimate that lies between the regulated and unregulated discharge estimates.

At the Loon Lake Dam Reach Lower Site, field estimated bankfull discharge and elevation for the lower cross-section (Group #1) corresponds well with the 1.5-year flood under the regulated hydrology. Field measurements at the upper and middle cross-sections (Group #3) underestimate bankfull elevation, and consequently discharge, when compared to those calculated using the regulated and unregulated hydrology. This may indicate that bankfull indicators are not well defined or entirely absent at these cross-sections because of the difficulties associated with measuring bankfull in mountainous and primarily bedrock controlled systems, as previously discussed in Section 3.3.1. Cross-section plots and photographs indicate that the floodplain surface is highly irregular at this location. As a result, it is evident that there are several top-of-bank elevations to select from in the field. Also, the effect of the estimated accretion is the highest of all sites on Gerle Creek below Loon Lake Dam. Accretion estimates are based on unregulated hydrology in nearby basins, and thus the effect of any discrepancies

between the estimate and the true accretion increases with drainage area below Loon Lake Dam. As such, the accretion estimates become less reliable for the lower site, and may contribute to the differences in mean bankfull depth and discharge calculations.

At the Robbs Peak Dam Reach Site, field estimated bankfull discharges and elevations for both the upper and middle cross-sections (Group #1) correspond well with the 1.5-year flood under the regulated hydrology, while the lower cross-section (Group #2) corresponds well with the 1.5-year flood under the unregulated regime. Cross-section plots indicate that the top-of-bank surface is above the estimated bankfull elevations at all cross-section locations, suggesting that the channel may have incised historically, although there are no significant indications of continuing channel incision. Photographs indicate that vegetation is growing well within the historic floodplain at the upper and middle cross-sections, which may have been more active during the pre-regulated period.

At the Ice House Dam Reach Upper Site, field estimated bankfull discharges and elevations for both the upper and lower cross-sections (Groups #1 and #2) correspond well with the 1.5-year flood under the regulated and unregulated hydrology, respectively. Field measurements of bankfull elevation at the middle cross-section (Group #3) are between both regulated and unregulated bankfull calculations. This may indicate that bankfull indicators are not well defined or entirely absent at this cross-section because of the difficulties associated with measuring bankfull in mountainous and primarily bedrock controlled systems, as previously discussed in Section 3.3.1. Cross-section plots and the field photographs of the middle cross-section suggest bankfull elevation was estimated below a primary slope break on the left bank. There are no noticeable slope breaks on the right bank. This may contribute to the difficulty in determining the field indicators of the 1.5-year flood at this cross-section.

At the Ice House Dam Reach Lower Site, field estimated bankfull discharges and elevations for both the middle and lower cross-sections (Groups #1 and #2) correspond well with the 1.5-year flood under the regulated and unregulated hydrology, respectively. Field measurements at the upper cross-section (Group #3) overestimate mean bankfull elevation, and consequently discharge, when compared to those calculated using the regulated and unregulated hydrology. This may indicate that bankfull indicators are not well defined or entirely absent at this crosssection because of the difficulties associated with measuring bankfull in mountainous and primarily bedrock controlled systems, as previously discussed in Section 3.3.1. Cross-section plots indicate that the bankfull indicators found at the lower two cross-sections were not found at the upper cross-section. A higher bankfull indicator was selected at the upper cross-section, which yielded a higher mean depth and cross-sectional area. Photographs confirm that there are few indicators along the relatively steep banks of the upper cross-section. Thus, discharge was probably overestimated because indicators of the 1.5-year flood were not clear at the upper cross-section.

The Upper Coloma Site was the only response site in the Reach Below Chili Bar. Because the difference between the estimated 1.5-year flood pre- and post regulation is relatively small, field estimated bankfull discharge and elevations at the middle and lower cross-sections (Groups #1

and #2) may correspond with either the 1.5-year flood under the regulated or unregulated hydrology. Field measurements at the upper cross-section (Group #3) overestimate mean bankfull elevation, and consequently discharge, when compared to those calculated using the regulated and unregulated hydrology. This may indicate that bankfull indicators are not well defined or entirely absent at this cross-section because of the difficulties associated with measuring bankfull in mountainous and primarily bedrock controlled systems, as previously discussed in Section 3.3.1. The conditions here are similar to those at the lower site of the Upper Ice House Dam Reach. Cross-section plots indicate that the top-of-bank bankfull indicators found at the lower two cross-sections were not found at the upper cross-section. A higher bankfull indicator was selected at the upper cross-section, which yielded a higher mean depth and cross-sectional area. Photographs confirm that there are few indicators along the relatively steep banks of the upper cross-section. Thus, discharge was probably overestimated because indicators of the 1.5-year flood were not clear at the upper cross-section.

In conclusion, the variability in the results of the comparisons of both pre- and post- regulation 1.5-year floods with bankfull discharges estimated using field data at the eight designated response sites demonstrates that a single channel forming discharge is difficult to define in bedrock controlled, mountainous settings. Furthermore, it supports the argument that channel form in these channels may not only reflect present hydrology and sediment regimes, but are also almost certainly shaped by sweeping large-scale controls that exist in these settings (e.g.; structural controls, infrequent hydrologic events and sediment input, and/or discharges that occurred under different climatic regimes). Many of effects of these influences are previously discussed in Section 3.3.1 of this report. The key elements of these are summarized below:

- Response channels in the UARP and the Reach Downstream of Chili Bar may not be self-forming and alluvial, as commonly defined (i.e., stream channels with mobile boundaries entirely composed of alluvium, where sediment supply equals or exceeds available transport capacity). Frequently occurring discharges may have less effect on modern channel form than episodic sediment delivery from mass wasting, infrequenthigh magnitude events caused by rain-on-snow events, and the influences of underlying bedrock geology. Many of the response channels are bedrock channels with relatively thin cover of alluvial material. The cover is thick enough to be show limited bedrock outcropping at the channel surface, but is not free of the influences of the underlying structure.
- 2) Large-scale controls effect local variations in valley width, channel cross-sectional form, slope, substrate composition, and other roughness elements, such as the presence or absence of vegetation or woody debris, and contribute to the high variability of both velocity and channel dimensions at the sites in the UARP and the Reach Downstream of Chili Bar. These effects are not easily quantified by many widely accepted geomorphic methods and tools, most of which were developed along stable, alluvial channels in lowland environments and provide the foundation for downstream hydraulic geometry relationships, indirect discharge calculations, and sediment transport models.

- 3) Channels that are regulated, such as those found in the UARP and the Reach Downstream of Chili Bar, may often show evidence of multiple geomorphic regimes and may not be stable. Pre- and post-regulation geomorphic indicators may be hard to differentiate in regulated systems, as shown in this analysis. Furthermore, the reaches at these sites may still be adjusting towards a new equilibrium based on the historic changes in the supply of sediment and water. As discussed in Section 3.3.1, channels that are not stable may not be good candidates for reliable bankfull estimation.
- 4) Finally, as McBain and Trush have highlighted in their 2004 article in Stream Notes, Sierra Nevadan streams, such as those found within the UARP and the Reach Downstream of Chili Bar, are complex and highly dynamic systems that may require a new approach in consideration of the underlying controls.

5.0 DISCUSSION

In this section, sites are discussed in the context of channel morphology and type (Tables 4.1-1 and 4.2-1). In order to permit a process-based discussion of each alphanumeric channel type observed in this study, each site was further sub-divided according to dominant channel morphology and type using the Montgomery and Buffington (1993, 1997, and 1998) system. Stream channels within a watershed can be divided into several categories according to the transport processes that dominate; a given reach may primarily generate, transport, or temporarily store sediment as it moves downstream. Channel response to changes in sediment supply and transport varies greatly depending on the dominant processes within a given reach. Although adjustments to alteration to flow and/or sediment supply may be complex, certain channel morphologies (e.g., colluvial, bedrock, cascade, and step-pool) are generally resilient and insensitive to these changes. These reaches are generally classified as source or supplylimited transport channel types. Along the same continuum, some channel morphologies (e.g., pool-riffle and regime morphologies) exhibit a wide range of potential responses to these changes and are most affected. These reaches are generally classified as transport-limited response channel types. Channels with plane-bed morphology are transitional in the spectrum and may either be transport or response type reaches depending on site-specific slope, confinement, and sediment supply. Plane-bed channels are characterized by long stretches of relatively planar channel bed with occasional channel spanning rapids, and a distinct lack of well-defined bedforms.

In this study, all observed B channel types were categorized as transport sites because they all occur in reaches where bedrock outcrops control channel morphology. Most observed C and all observed E channel types were categorized as response sites because these channels primarily exhibited pool-riffle morphology. Observed F channel types were either response or transport sites depending on local slope, bedrock influence, floodplain development, and bedform. Below, each channel type is discussed according to its relative sensitivity to changes in discharge and/or sediment supply, as either transport or response (Montgomery and Buffington 1993, 1998).

5.1 Transport Sites of the UARP

5.1.1 <u>B Channel Type</u>

All the designated transport sites within the UARP are classified as B channel types. This includes the Gerle Creek Dam Reach (B2c/B3c), Junction Dam Reach (B3c), Camino Dam Reach (B3c), SFAR Reach (B3c), and Slab Creek Dam Reach (B3) sites. All are moderately entrenched systems confined in structurally controlled, steep valleys. In most cases, narrow valleys form a narrow bedrock-controlled channel. Although pebble counts indicate a cobble channel bed, field observations show that numerous boulders and/or bedrock outcrops exist at each of these sites. Field observations also suggest that most of the boulders do not appear to be fluvially derived; rather, they were probably delivered to the mainstem by local slope failures, glacial processes, or glacial outwash floods. These large boulders essentially act as bedrock, as they appear to be stable even during extreme flow events. The hydraulics associated with flow around and over the top of large flow obstructions may control sediment transport and particle entrainment in these streams, particularly for sand and gravel. In most cases, the cobble substrate forms a veneer on top of a bedrock bed with gravel and finer material accumulating only in low-velocity pockets behind large flow obstructions and along the channel margins. Very little sediment is deposited in the riffles or pools, and lateral bar development is poor to nonexistent. Occasional alluvial deposits do occur where gradient or valley confinement decreases, and the channel widens (e.g., lower Gerle Creek). LWD was observed at the Gerle Creek Dam Reach Site (79 pieces/mile) and the Camino Dam Reach Site (8 pieces/mile), but did not appear to influence channel dynamics. LWD likely had a limited influence on channel morphology at these sites, as it was easily transported through these relatively, deep and straight sections. Fine sediment supply may have increased along the SFAR due to increased hillslope erosion following the 1992 Cleveland Fire (USDA 1993). No evidence of increased sediment supply was observed at the downstream SFAR Reach Site.

5.2 Transport Sites of the Reach Downstream of Chili Bar

5.2.1 <u>F Channel Type</u>

In general, F channel types are described as "deeply entrenched" within "highly weathered bedrock or depositional soils involving a combination of river downcutting and uplift of valley walls" (Rosgen 1996). Survey data and photographs confirm that the Upper Canyon (F3) and Gorge (F3) Sites are incised in the rolling terrain of the Sierra foothills and are structurally controlled by underlying bedrock lithology.

<u>Upper Canyon Site:</u> At the Upper Canyon Site (F3), a veneer of predominantly coarse cobble on the channel bed is covered with abundant, black algal growth. The lack of bright surfaces in the bed material at this site indicates that regular entrainment of the dominant substrate grain sizes does not occur under the current discharge regime. No major gravel or sand deposits were noted within the bankfull channel, suggesting that either supply in this size range is extremely low, or

fine bed material is quickly transported downstream. The only considerable depositional feature at this site is a large lateral cobble bar and overflow channel on the right bank, suggesting that the river is capable of transporting coarse material during high flows. Structural controls (e.g., slope, and channel confinement) have likely prevented alluvial deposition and floodplain development at this site since the last glaciation. No LWD was observed at this site. Due to the relatively high flows and a large upstream drainage area of this site, it is not likely that LWD historically played a large role in channel dynamics.

Gorge Site: Like the river channel at the Upper Canyon Site, the Gorge Site (F3) is deeply incised within the surrounding bedrock. This site is located where a temporary alluvial deposit has formed at a slope break within a narrow gorge where tributaries enter from both sides and the valley has widened. Like the Upper Coloma Site, a vegetated mid-channel bar divides the low flow into two channels, creating a riffle. Two small bedrock outcrops are located along the margins of the channel, and constrict flow at the tail of the riffle. No signs of rapid erosion or deposition were observed in the channel or along the banks. Few sand and silt deposits were observed in the low-velocity zones at the tail end of pools, although a large sand bar is located just above this site on the left bank. Grain size distributions are coarse and highly sorted, indicating that the finer portions may be transported downstream, including most classes of gravel. Cobble is loosely packed and surfaces are bright, indicating that the bed is mobilized on a regular basis. Flows under the current discharge regime may be incising into the cobble fill at this site, with as much as 10-13 feet of separation between the active channel and former floodplain at the downstream end of the site. No LWD was observed at this site. Due to the relatively high flows and a large upstream drainage area at the site, it is not likely that LWD has historically played a large role in channel dynamics. Although the site was established on alluvial fill, it is strongly influenced by the steep bedrock valley, which is representative of most of the Lower Subreach of the SFAR. The Lower Subreach is primarily characterized by a bedrock gorge with large boulder riffles, small cascades, irregular meanders and pool-riffle morphology. Channel morphology and sediment dynamics within the gorge are very similar to the characteristics described for the Upper Canyon Site.

5.2.2 <u>C Channel Type</u>

Although C channel types are often found in response reaches, bedrock control limits the ability of some channels within this class to act as a response reach. The Lower Coloma Site (C3) was categorized as a transport site because of local bedrock influence. Although the channel bed at this site is predominantly alluvial cobble deposits, several large bedrock outcrops protrude into the main flow from the left bank, strongly influencing channel flow hydraulics. In addition, many large boulders, which may be locally derived from bedrock sources, are located in the channel and along the banks. No signs of rapid erosion or deposition were observed in the channel or along the banks. A few small sand and silt deposits were observed in the low-velocity zones at the tail end of pools. Grain size distributions are highly sorted and very coarse, indicating that the finer portions may be preferentially transported downstream, including most classes of gravel. Cobble in the channel bed is slightly embedded and surfaces are mostly dull, indicating that the bed is stable and rarely mobilized. Survey evidence indicates that rare, high flows appear to be incising into the cobble fill at this site, with as much as 10-13 feet of

separation between the active channel and former floodplain at the downstream end of the site. Small amounts of LWD were observed at this site (23 pieces/mile). Due to the relatively high flows and a large upstream drainage area at this site, it is not likely that LWD has played a large role in channel dynamics throughout recent history.

5.3 Response Sites of the UARP

5.3.1 <u>F Channel Typ</u>e

The stream channel at the Rubicon Dam Reach Site (F4) is deeply incised within the surrounding terrain. Currently, the channel at this site has a well-defined pool-riffle sequence with stable, vegetated depositional bars. Banks are well vegetated and relatively stable, with few signs of erosion. Channel substrate exhibits a mixture of dull and bright surfaces, indicating that sediment transport of the bed material may occur regularly at moderate flows. Thus, unlike the F3 channel type at the Upper Canyon and Gorge Sites downstream of Chili Bar, this site has been designated a response site and is likely transport limited. Although a small amount of LWD was observed at this high elevation site at the time of the survey (11 pieces/mile), it did not appear to greatly affect channel morphology.

5.3.2 <u>E Channel Type</u>

E channel types are considered to be "hydraulically efficient" channel forms, typically maintaining high sediment transport capacities with stable beds (Rosgen 1996). Extensive riparian vegetation usually stabilizes the banks with dense root masses. These characteristics appear to hold true for the only E channel type in this study, the upper site (E5) in the Loon Lake Dam Reach. This is the only site within the study area where dominant grain size was sand or finer. Fine sediment is likely supplied by incision into the wide meadow fill that the channel is formed in, and surface erosion from surrounding granitic hillslopes. In addition, this site has the highest sinuosity of all the project sites. This is probably because the site lies in a large, unconfined valley with relatively flat topography, allowing the channel to meander freely. Bedrock confinement at the downstream end of the valley likely exerts limits on valley and channel gradient. Evidence of scour and deposition were observed in the field and it was estimated that as much as 50 percent of the active channel area has been influenced by deposits and scour from obstructions, constrictions, and bends. In addition, silt deposits over sandy substrate and signs of overbank flooding were observed. Medium and large woody debris may be an important influence on channel morphology and bank stability at this site. Observations indicate that there is a large build up of LWD in the active channel (832 pieces/mile), which adds roughness and affects sediment storage. This is the highest LWD loading of all the project sites. Large key pieces of woody debris are embedded in the channel and create habitat for fish and other aquatic organisms.

5.3.3 <u>C Channel Type</u>

All C channel types within the UARP were formed from alluvial deposition and were categorized as response sites. These sites were located along stream sections that typically had

well developed floodplains and primarily exhibited pool-riffle configuration. Alluvial channels exhibit a wide range of responses to changes in upstream watershed conditions, flow, and sediment supply (Rosgen 1996). For this reason, each response C channel type is discussed separately, including the Loon Lake Dam Reach Middle and Lower Sites (C3); the Robbs Peak Dam Reach Site (C4); and the Ice House Dam Reach Upper (C4) and Lower (C3) Sites.

<u>Loon Lake Dam Reach Middle Site:</u> While both the Loon Lake Dam Reach Middle Site and the Loon Lake Dam Reach Upper Site are located in meadow environments, the two sites are very different. The gradient at the middle site is about double the upper site, and sinuosity is markedly lower than the upstream site. Numerous lateral bars with bright surface grains indicate that sediment transport may occur regularly at moderate flows. In addition, many side channels were noted in the field, suggesting regular overbank flow and migration, or avulsion, of the main channel. Several debris jams and numerous key pieces of LWD created areas of scour and deposition in the channel (264 pieces/mile), suggesting that wood may affect channel morphology at this site.

<u>Loon Lake Dam Reach Lower Site</u>: Unlike the Loon Lake Dam Reach Middle Site, the Loon Lake Dam Reach Lower Site is located within a narrower valley and has distinct pool-riffle sequences. Evidence of sediment transport was more notable at this site. Sand deposits were observed in low velocity zones behind larger obstructions and along channel margins. Incision was also noted, with raw banks up to 12 inches high. An estimated 30-50 percent of the channel area is believed to be influenced by erosion and deposition at obstructions, around bends, or at constrictions. These observations may indicate that LWD has a greater effect on channel morphology at this site, despite having lower frequency (79 pieces/mile) than the two upstream sites.

<u>Robbs Peak Dam Reach Site:</u> At the Robbs Peak Dam Reach Site, dense willows grow on numerous bars within the bankfull channel area. Several small conifers were also noted growing on recently scoured surfaces and mid-channel bars. Field observations indicate that vegetation encroachment may be causing the channel to avulse between side channels at high flows. Bank erosion up to two feet high with exposed root mats and active sloughing were observed. Sand and gravel surfaces in the channel beds are mostly dull, suggesting gravel transport occurs only during higher flows. Although several debris jams with evidence of lateral channel erosion were observed upstream from the site, only a few pieces of LWD were noted at this site (12 pieces/mile).

<u>Ice House Dam Reach Upper Site:</u> At this site, lateral gravel bars are prevalent but sparsely vegetated. Several observed raw banks and bar deposits indicate that sediment transport occurs regularly, yet moderate to high levels of sand and fine gravel in the bars, stream banks, and channel bed suggest that supply from the banks and upstream sources may exceed transport capacity. Despite this, there were no signs of excessive incision and/or aggradation at the time of the survey. Moderate amounts of LWD were present at this site (57 pieces/mile).

Pacific Gas and Electric Company Chili Bar Project FERC Project No. 2155

<u>Ice House Dam Reach Lower Site:</u> The Ice House Dam Reach Lower Site is within the burned area from the 1992 Cleveland Fire. High fine sediment loads were expected to enter the main channel from the surrounding valley slopes (USDA 1993). Riparian vegetation recovered well along the banks, acting as a buffer between the barren hillslopes and the stream channel. Channel sediments are highly embedded, with mostly dull surfaces. A layer of sand covers the bed, with larger deposits noted behind flow obstructions and in the lower gradient portions at the site. Abundant sand deposits were also noted on the floodplains and terrace surfaces. Regulated spill from the upstream dam may not be sufficient to transport the additional sediment added from the effects of the fire. A few raw cut banks of up to 1 foot in height were observed in association with woody debris present in the channel. Two log jams and a great amount of LWD were seen at this site (236 pieces/mile). Although some local scour (1-1.5 feet) and sand deposits were seen associated with the wood, this did not appear to strongly affect channel morphology.

5.4 Response Sites of the Reach Downstream of Chili Bar

5.4.1 <u>C Channel Type</u>

The only C channel type in the Reach Downstream of Chili Bar that is formed from alluvial deposition is the Upper Coloma Site (C3). The SFAR at this site flows over cobble and small boulder alluvial fill. Two very small bedrock outcrops are located along the margins of the channel, but do not appear to affect flow dynamics at this site. No major signs of ongoing erosion or deposition were observed in the channel or along the banks. Few sand and silt deposits were observed in the low-velocity zones at the tail end of pools. Grain size distributions are well sorted, indicating that the finer portions may be transported downstream, including most classes of gravel. The cobble channel bed is slightly embedded and surfaces are mostly dull. indicating a stable bed that is rarely mobilized. Survey evidence indicates, however, that rare high flows cause incision into the cobble fill, with as much as 7-10 feet of separation between the active channel and former floodplain at the downstream end of the site. Interviews with a riverside property owner at this site confirm that the SFAR occasionally flows "brown" with sediment during "large floods," and that mid-channel bars have changed position "several times" (Haney, pers. comm., 2003). No LWD was observed at this site. Due to the relatively high flows and a large upstream drainage area, it is not likely that LWD has played a large role in channel dynamics throughout recent history.

6.0 LITERATURE CITED

Alt, David, and Donald W. Hyndman 2000. Roadside Geology of Northern and Central California. Mountain Press Publishing Company, Missoula, Montana.

Andrews, E.D. 1980. Effective and bankfull discharges of streams in the Yampa River basin, Colorado and Wyoming. Journal of Hydrology 46, 311-330.

Andrews, E.D. 1983. Entrainment of gravel naturally sorted river-bed material. Bulletin of the Geological Society of America 94, 1225-1231.

Ashmore, P.E. and T.J. Day 1988. Effective discharge for suspended sediment transport in streams of the Saskatchewan River basin. Water Resources Research 24(6), 864-870.

Biedenharn, D.S., R.R. Copeland, C.R. Thorne, P.J. Soar, R.D. Hey, and C.C. Watson 2000. Effective Discharge Calculation: A Practical Guide. US Army Corps of Engineers Technical Report ERDC/CHL TR-00-15.

Copeland, R.R., D.S. Biedenharn, and J.C. Fischenich 2000. Channel-Forming Discharge. USACE publication. ERDC/CHL HETN-II-5, September 2000.

Cowan, W.L. 1956. Estimating hydraulic roughness coefficients. Agricultural Engineering 37, 473-475.

Doyle, M.W., K.F. Boyd, and P.E. Skidmore (In Review). Variability in dominant discharge estimations. *River Research and Applications*.

Emmett, W. W. 1975. The channels and waters of the upper Salmon River Area, Idaho. U.S. Geological Survey Professional Paper 870-A, p.1-116 and i-viii.

Haney, D. 17 November 2003. Personal communication with Shawn White and Chris Jaquette. Stillwater Sciences, Berkeley, California.

Harrelson, C., C. Rawlins, and J. Potyondy 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. General Technical Report RM-245. USDA Forest Service, Rocky Mountain Forest Range and Experiment Station.

Harrelson, C.C., Rawlins, C.L., and Potyondy, J.P., 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. U.S.D.A. Forest Service, General Technical Report RM-245.

Hilton, S., and T. E. Lisle 1993. Measuring the fraction of pool volume filled with fine sediment. Research Note PSW-RN-414. USDA Forest Service, Pacific Southwest Research Station, Berkeley, California.

Jenkins, O.P. 1932. Geologic map of northern Sierra Nevada showing tertiary river channels and Mother Lode belt. California State Division of Mines.

Knighton, D. 1998. Fluvial Forms and Processes. Oxford University Press, New York.

Leopold, L.B. 1994. A View of the River. Harvard University Press, Cambridge.

Leopold, L.B. and T. Maddock 1953. The hydraulic geometry of stream channels and some physiographic implications. United States Geological Survey Professional Paper 252.

Leopold, L.B., M.G. Wolman, and J.P. Miller 1992. Fluvial Processes in Geomorphology. Dover Publications, Inc., New York.

Lisle, T.E. and S. Hilton 1992. The volume of fine sediment in pools: an index of the supply of mobile sediment in stream channels. Water Resources Bulletin 28(2): 371-383.

McBain, S. and B. Trush 2004. Attributes of Bedrock Sierra Nevada River Ecosystems. USDA Forest Service, Stream Notes, Stream Systems Technology Ctr, Ft. Collins, CO, January 2004.

Montgomery, D. R., and J. M. Buffington 1997. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin 109(5): 596-611.

Montgomery, D. R., and J. M. Buffington 1998. Channel processes, classification, and response. Pages 13-42 in R. J. Naiman and R. E. Bilby, editors. River ecology and management. Springer-Verlag, New York.

Montgomery, D.R. and J.M. Buffington 1993. Channel classification, prediction of channel response, and assessment of channel condition. University of Washington, Seattle.

Nash, D.B. 1994. Effective sediment-transporting discharge from magnitude-frequency analysis. Journal of Geology 102, 79-95.

Nolan, K.M., T.E. Lisle and H.M. Kelsey 1987. Bankfull discharge and sediment transport in northwestern California. Erosion and Sedimentation in the Pacific Rim (Proceedings of the Corvallis Symposium). IAHS Publ. no. 165.

Norris, Robert M. and Robert W. Webb 1990. Geology of California. John Wiley & Sons, Inc., New York.

Parker, G., P.C. Klingeman, and D.L. McLean 1982. Bedload and size distribution in paved gravel-bed streams. Journal of Hydraulic Engineering 108, 544-571.

Parker, G. 1990a. Surface-based bedload transport relation for gravel rivers. Journal of Hydraulic Research 28: 417-436.

Parker, G. 1990b. The Acronym Series of PASCAL program for computing bedload transport in gravel rivers. External Memorandum M-200. St. Anthony Falls Laboratory, University of Minnesota.

Pickup, G. and R.F. Warner 1976. Effects of hydrologic regime on magnitude and frequency of dominant discharge. Journal of Hydrology 29, 51-75.

Richards, K.S. 1982. Rivers form and process in alluvial channels. Methuen and Company, New York.

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs.

Saucedo G.J. and D.L. Wagner 1992. Geologic map of the Chico Quadrangle, California. Division of Mines and Geology regional geologic map series, Map No. 7A, 1:250,000.

Schmidt, L.J. and Potyondy, J.P. 2004. Quantifying Channel Maintenance Instream Flows: An Approach for Gravel-Bed Streams in the Western United States. General Technical Report RMRS-GTR-128. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

Shields, A. 1936. Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitt. Preuss. Versuchsanst. Wasserbau Schiffbau 26(26). (English translation by W.P. Ott and J.C. van Uchelen 1936. U.S. Department of Agriculture Soil Conservation Service Cooperative Laboratory, California Institute of Technology, Pasadena.)

SMUD (Sacramento Municipal Utility District). 2001. Initial Information Package for Relicensing of the Upper American River Project (FERC Project No. 2101). Sacramento, CA.

Sylte, T. L. and J.C. Fischenich 2002. Techniques for measuring substrate embeddedness. EMRRP Technical Notes Collection (ERDC TN-EMRRP-SR-36). U.S. Army Engineer Research and Development Center, Vicksburg, MS.

USDA 1993. Cleveland Fire Area Recovery Project - final environmental impact statement. USDA, Forest Service, Pacific Southwest Region, CA.

USFS (U.S. Forest Service) 1997. A reconnaissance level indicator of pool fine sediment. Sierra National Forest, Kings River Ranger District. Unpublished report.

Wohl, E. (in review). The limits of downstream hydraulic geometry. Unpublished 2004 manuscript.

Wohl, E. 2000. Mountain Rivers. American Geophysical Union, Washington D.C.

Wohl, E., J.N. Kuzma, and N. Brown 2004. Reach-scale channel geometry of a mountain river. Earth Surface Processes and Landforms 29, 969-981.

Wolman, G. M. 1954. A method of sampling coarse river-bed material. Transactions of the American Geophysical Union 35: 951-956.

Pacific Gas and Electric Company Chili Bar Project FERC Project No. 2155

Wolman, M.G. and J.P. Miller 1960. Magnitude and frequency of forces in geomorphic processes. Journal of Geology 68: 54-74.

FIGURE

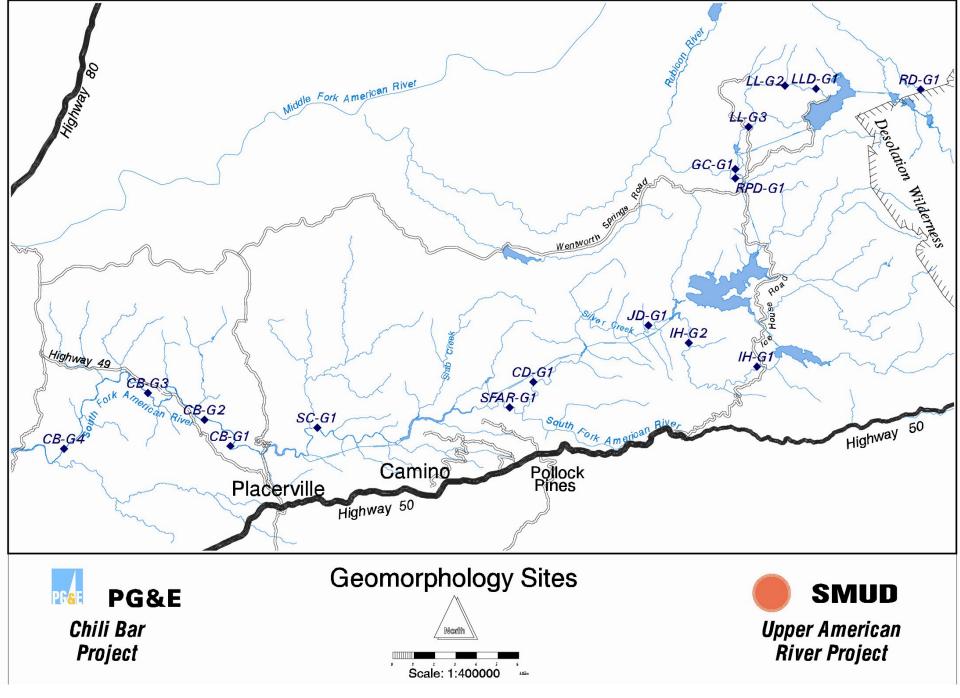
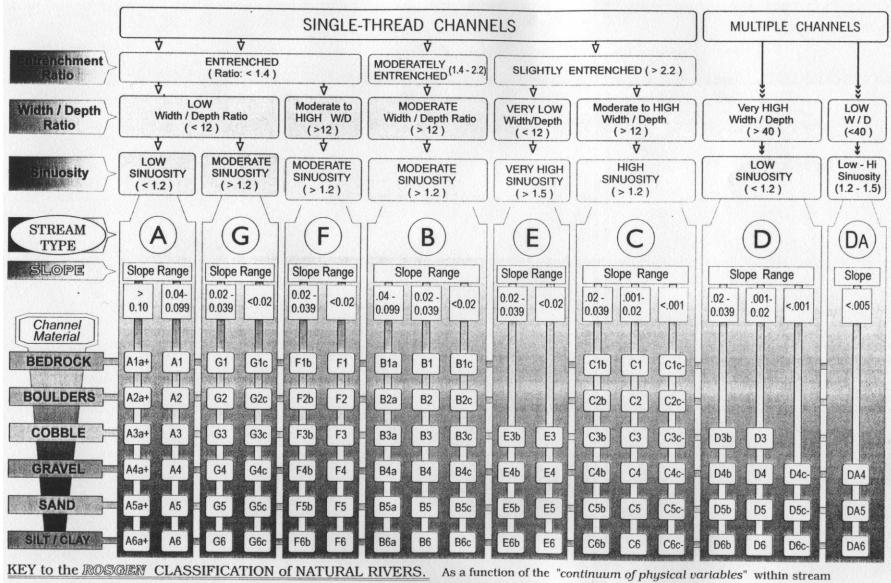



Figure 3.2-1. Summary map showing the locations of the geomorphology sites.

APPENDIX A

ROSGEN STREAM CLASSIFICATION SYSTEM

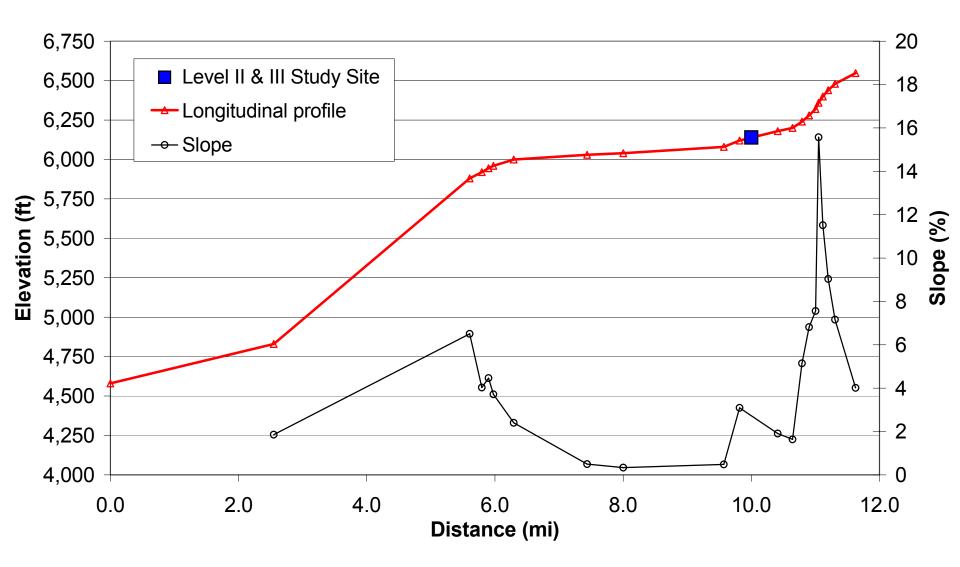
reaches, values of Entrenchment and Sinuosity ratios can vary by +/- 0.2 units; while values for Width / Depth ratios can vary by +/- 2.0 units.

(after Rosgen, 1996)

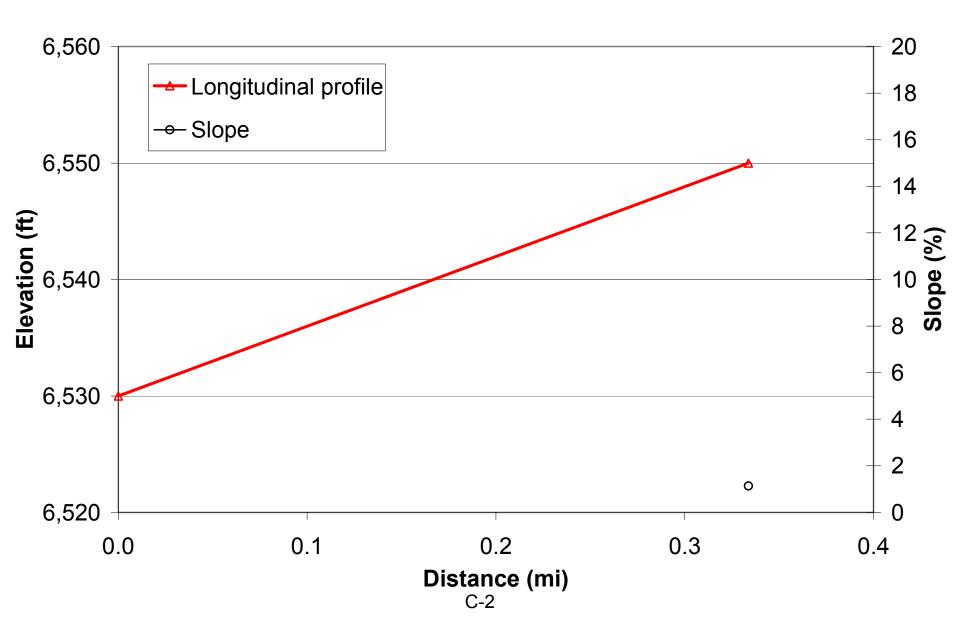
Stre	am	TY	PE, A	В	С	D	DA	E	F	G
	Bedrock	1								
rial	Boulder	2					1			
Bed Material	Cobble	3			Q				·····	
Dominate Be	Gravel	4					N-SPECCH	h(
Don	Sand	5				2	ter and the second]	
	Silt-Clay	6				<u></u>	الله المنظقة المناطقة المنطقة	·····	2	· · · · · · · · · · ·
Entr	chn	nnt.	< 1.4	1.4 - 2.2	> 2.2	n/a	> 4.0	> 2.2	< 1.4	< 1.4
W/D	Ra	atio	< 12	> 12	> 12	> 40	< 40	< 12	> 12	< 12
Sinu	uos	ity	1 - 1.2	> 1.2	> 1.2	n/a	variable	>1.5	> 1.2	>1.2
SI	ope	9	.04099	.02039	< .02	< .04	< .005	< .02	< .02	.02039

(after Rosgen, 1996)

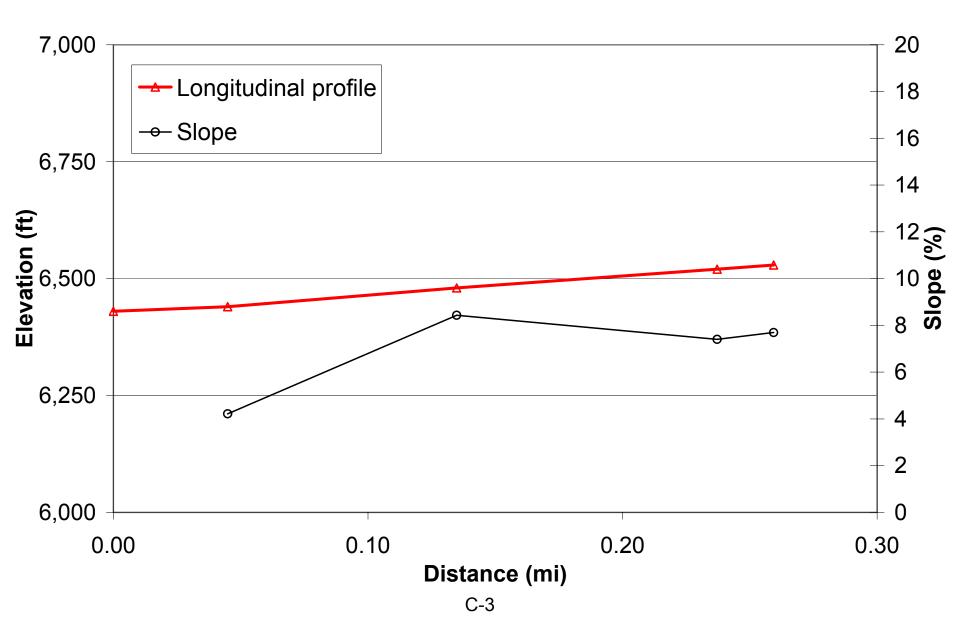
APPENDIX B

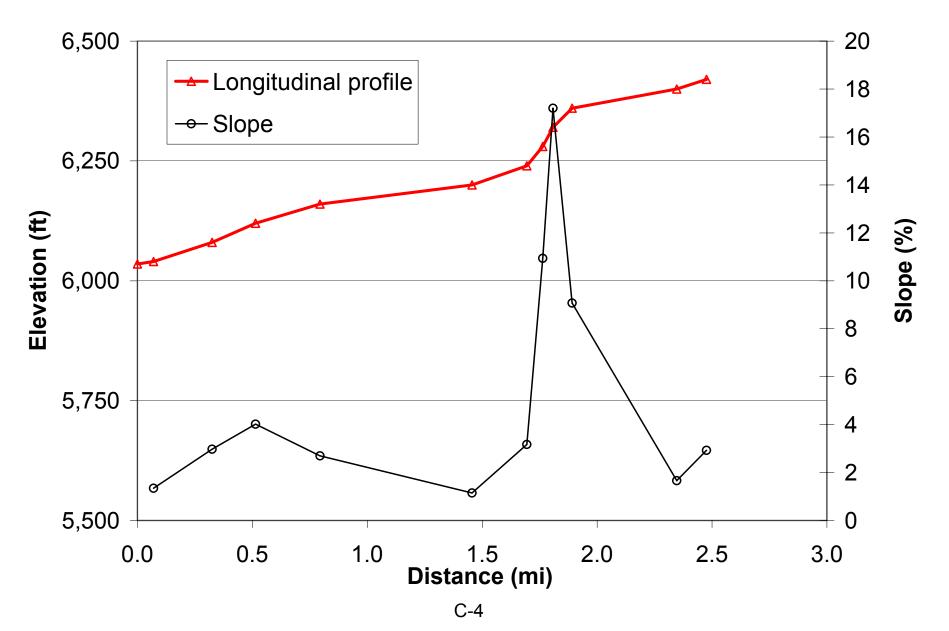

LEVEL II/III SITE MAPS WITH LEVEL I STREAM TYPE DELINEATION

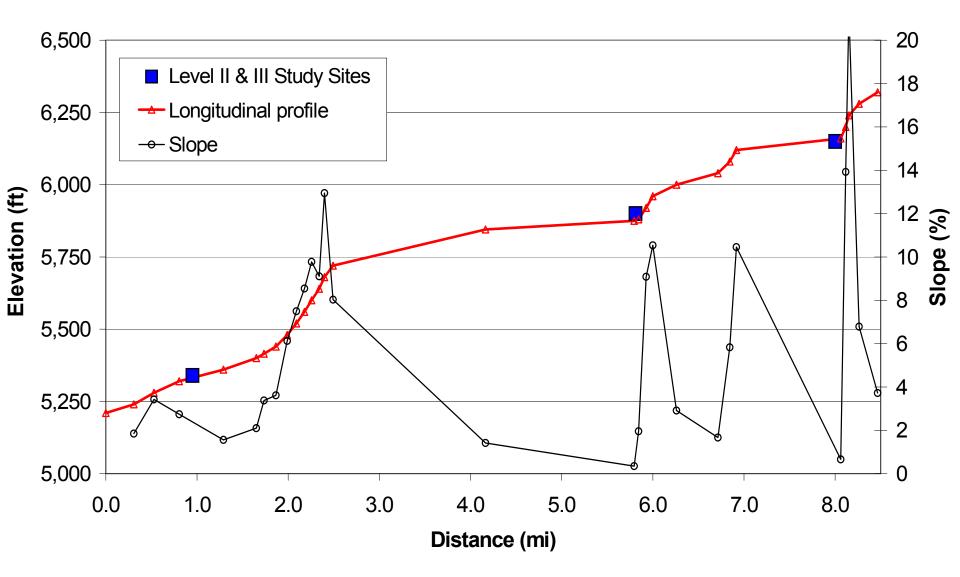
APPENDIX C

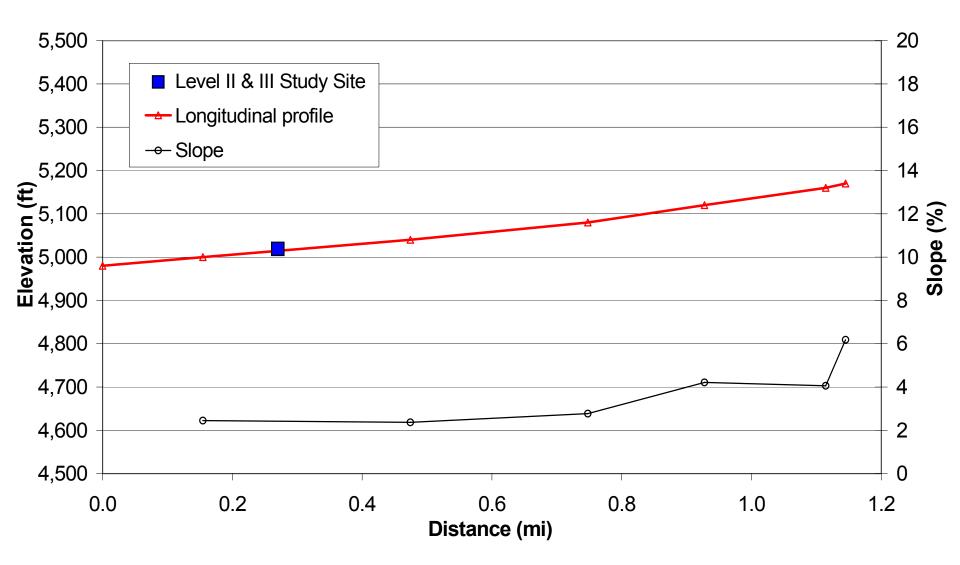

REACH-SCALE LONGITUDINAL PROFILE PLOTS FOR LEVEL II/III SITES

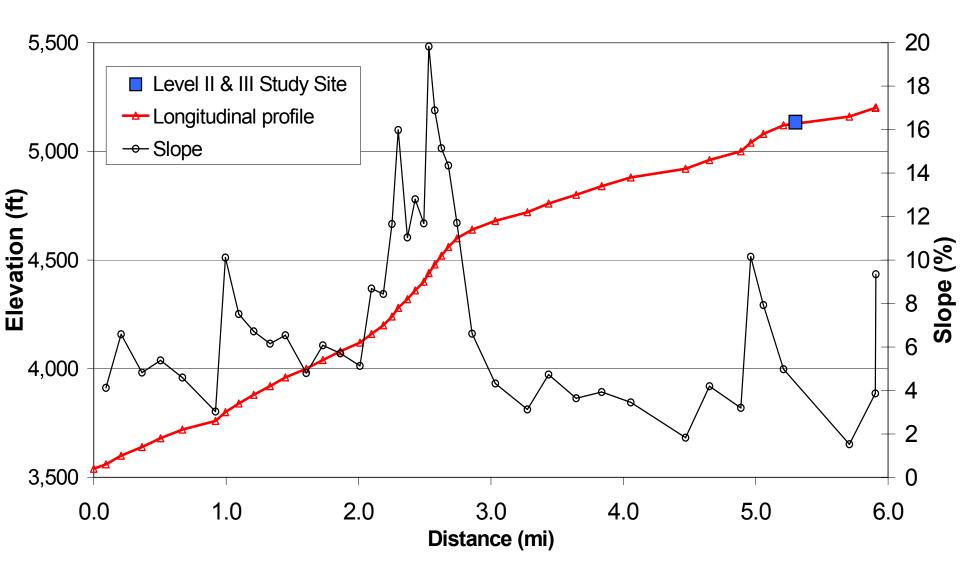
 Rubicon Tunnel Outlet Reach. Rockbound Dam Reach. Buck Island Dam Reach. Loon Lake Dam Reach. Gerle Creek Dam Reach. Robbs Peak Dam Reach. Ice House Dam Reach. Junction Dam Reach. Camino Dam Reach. S.F. American (SFAR) Reach. Brush Creek Dam Reach. Slab Creek Dam Reach. 	•	Rubicon Dam Reach	C-1
 Buck Island Dam Reach. Loon Lake Dam Reach Gerle Creek Dam Reach Robbs Peak Dam Reach. Ice House Dam Reach. Junction Dam Reach Camino Dam Reach S.F. American (SFAR) Reach. Brush Creek Dam Reach. 	•	Rubicon Tunnel Outlet Reach	C-2
 Loon Lake Dam Reach Gerle Creek Dam Reach Robbs Peak Dam Reach Ice House Dam Reach Junction Dam Reach Camino Dam Reach S.F. American (SFAR) Reach Brush Creek Dam Reach 	•	Rockbound Dam Reach	C-3
 Gerle Creek Dam Reach Robbs Peak Dam Reach Ice House Dam Reach Junction Dam Reach Camino Dam Reach S.F. American (SFAR) Reach Brush Creek Dam Reach 	•	Buck Island Dam Reach	C-4
 Robbs Peak Dam Reach	•	Loon Lake Dam Reach	C-5
 Ice House Dam Reach Junction Dam Reach	•	Gerle Creek Dam Reach	C-6
 Junction Dam Reach Camino Dam Reach S.F. American (SFAR) Reach Brush Creek Dam Reach 	•	Robbs Peak Dam Reach	C-7
 Camino Dam Reach	•	Ice House Dam Reach	C-8
 S.F. American (SFAR) Reach	•	Junction Dam Reach	C-9
 S.F. American (SFAR) Reach	•	Camino Dam Reach	C-10
Brush Creek Dam Reach			
• Slab Creek Dam Reach			
	•	Slab Creek Dam Reach	C-13
Reach Downstream of Chili Bar	•	Reach Downstream of Chili Bar	C-14

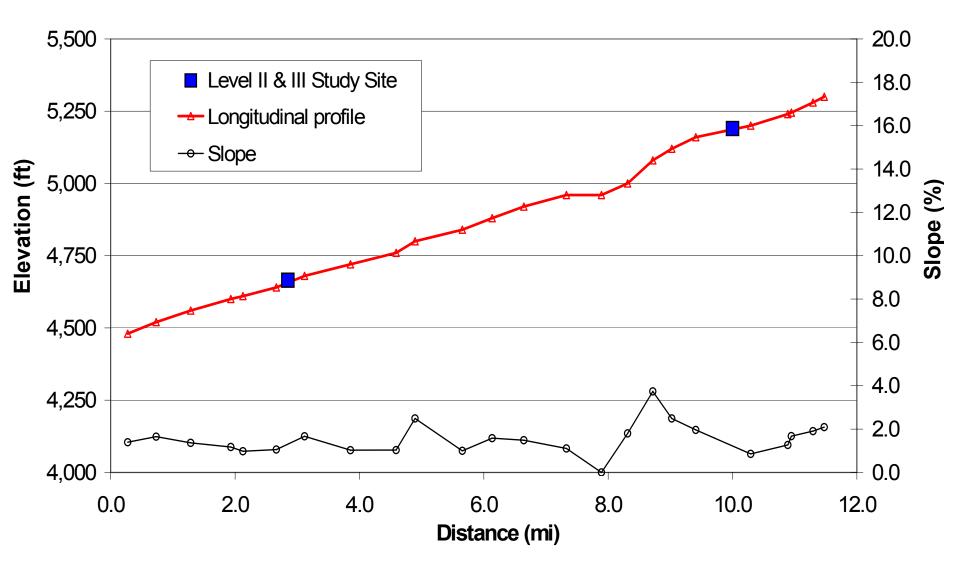

Rubicon Dam Reach

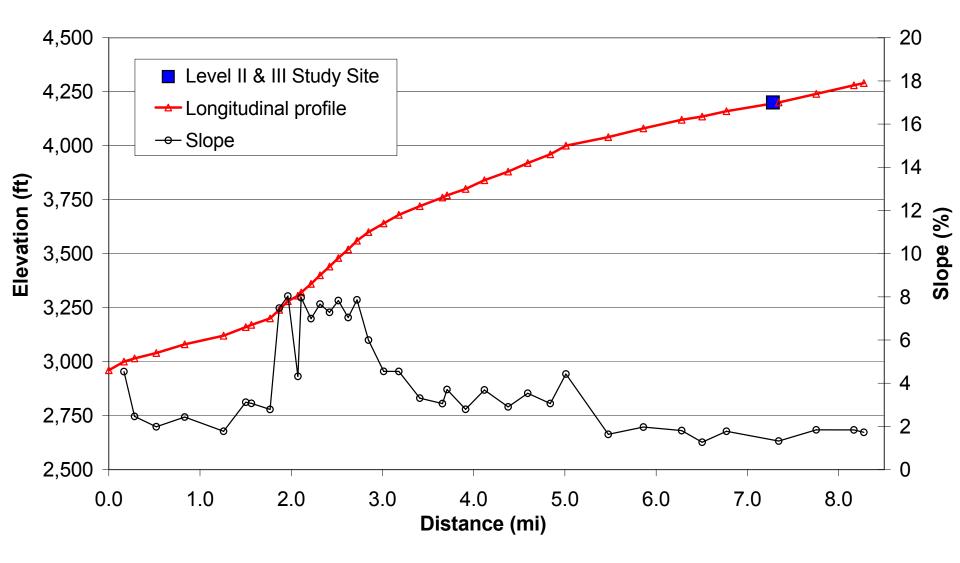

Rubicon Tunnel Outlet Reach

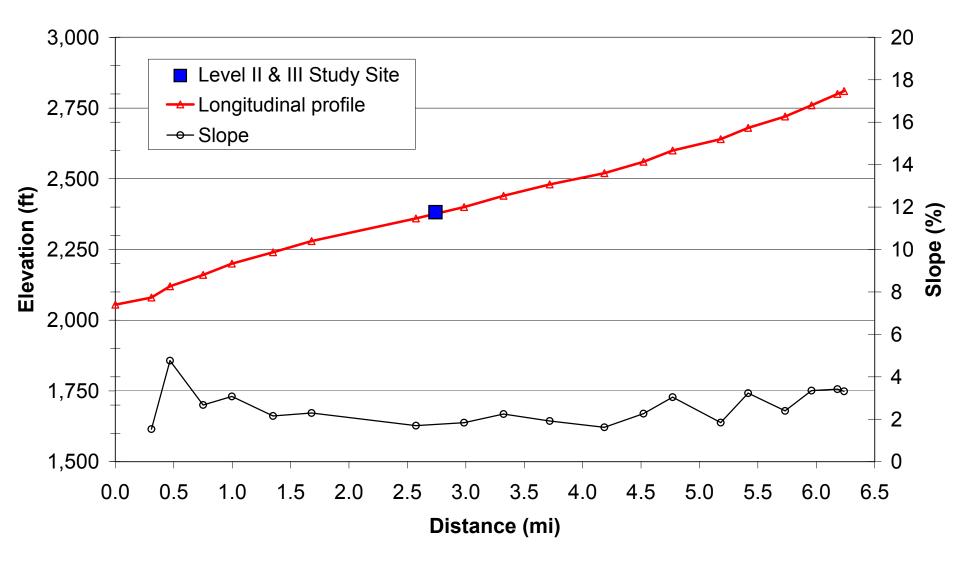

Rockbound Dam Reach

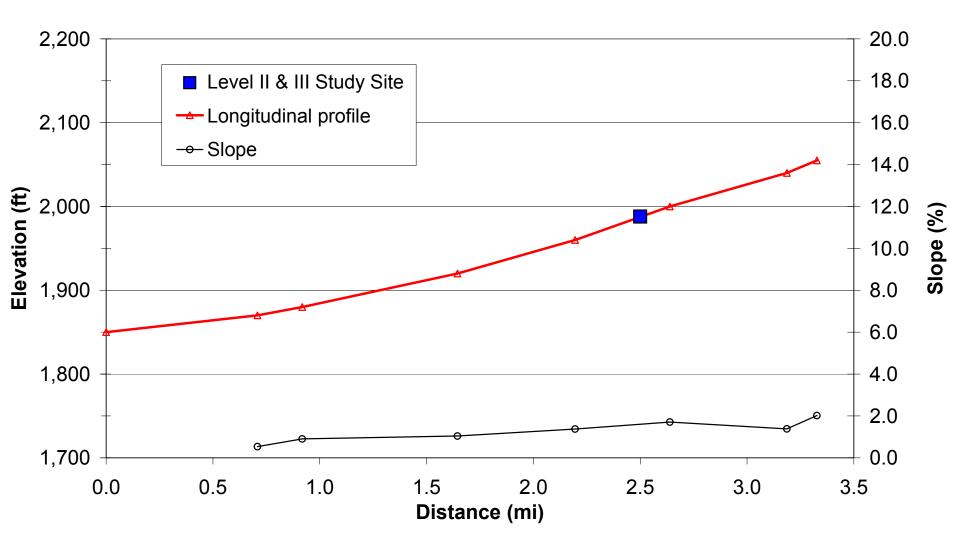

Buck Island Dam Reach

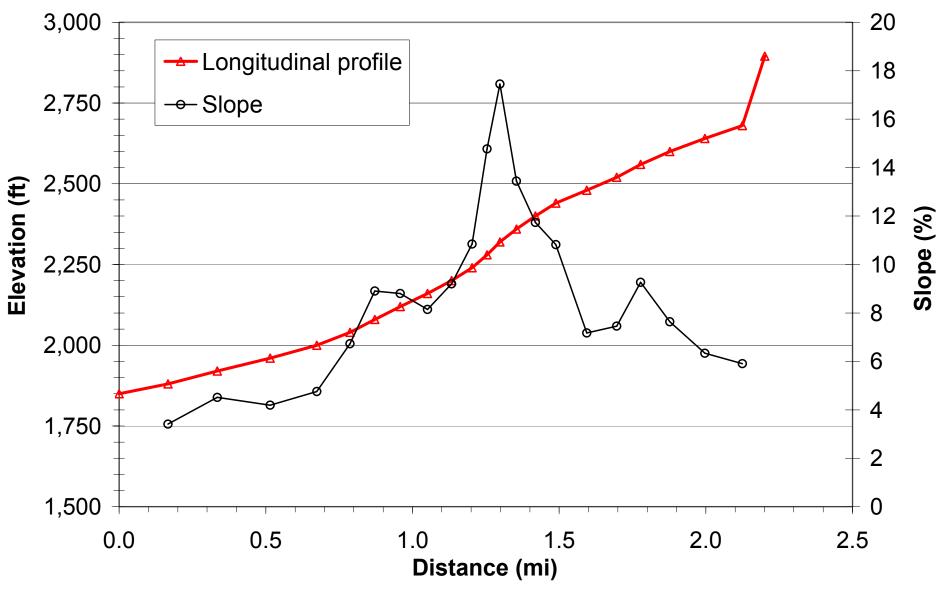

Loon Lake Dam Reach

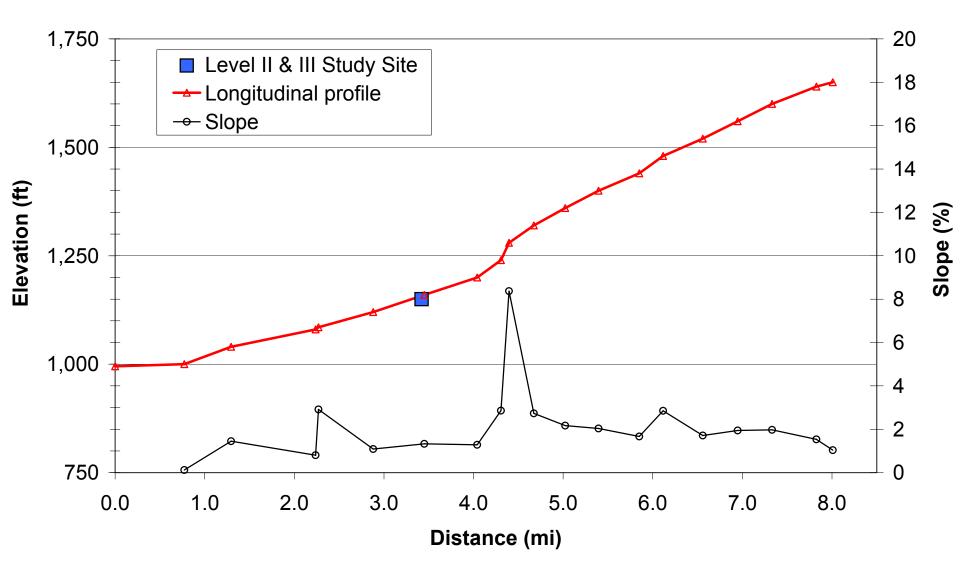

Gerle Creek Dam Reach

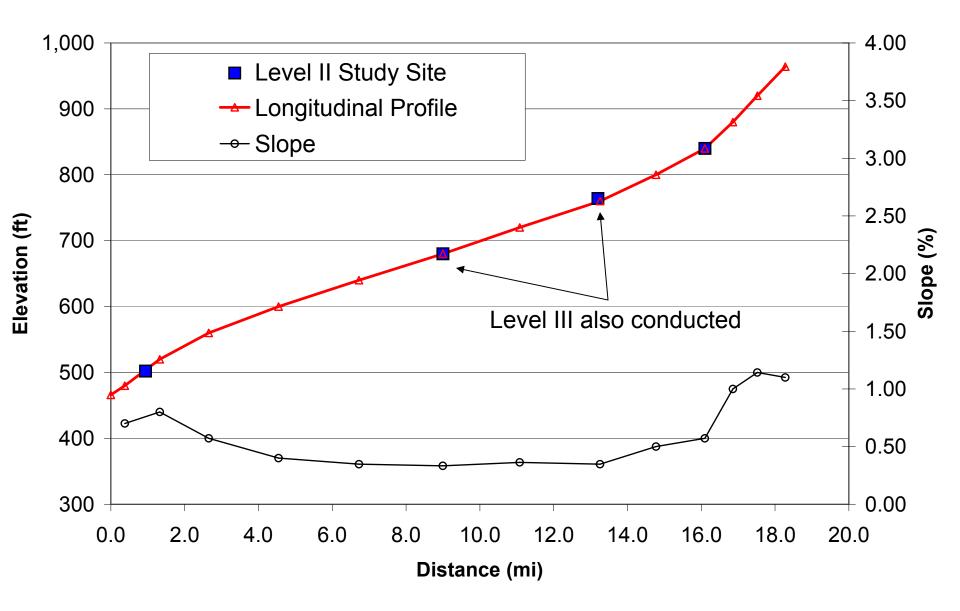

Robbs Peak Dam Reach


Ice House Dam Reach


Junction Dam Reach


Camino Dam Reach


SFAR Reach


Brush Creek Dam Reach

Slab Creek Dam Reach

Reach Downstream of Chili Bar

APPENDIX D

SAMPLE LEVEL II/III FIELD DATA SHEETS

Data	Sheet	t Che	cklist	PROJECT CODE: TASK CODE:	Page	of
Study	Reach	Name:		Crew Initials:		
Date:		/	/			
	month	day	year			

Checklist of data sheets required for each site

Longitudinal Profile
Upper Cross Section
Middle Cross Section
Lower Cross Section
Bank Erosion and Riparian Vegetation
Facies Map
LWD Frequency
LWD Key Pieces
Pebble Count
Pfankuch 1
Pfankuch 2
Photo Log
Rosgen Level III
V*

Add observations for each channel characteristic addressed in the data sheets in the notes section on each data sheet.

QA Check:_____

Phote			PROJECT CODE:	TASK CODE:	
1 1100	J LUg	1		TASK CODE: Page	of
Study 1	Reach N	lame:		Crew Initials:	
Date: _	/	/			
	month	day	year		
Film	Dol1	Digital Img. #	Notes		
Ехр. #	KUII	π			
	1				

Longitu	idinal Pro	ofile		PROJECT CODE	: TASK CODE:	
					Page	of
Study Rea	ch Name:				Crew Initials:	
					Units:	
GPS Read	ing Upstrear	n:		Down	stream:	
	//				Stop Time:	
	nth day			(24-hour clock)	(24-hour clock)	
HI	BS	FS	STA	Notes		

_

Cross S	ection			PROJECT CODE:	TASK CODE:
					Page of
					Crew Initials:
					x-sect. Units:
GPS Read	ing at LB End	lpin:		GPS Reading at RB	BEndpin:
Date:	//		Start Tin	ne: Stop T	ime:
	ith day	<i>v</i>		(24-hour clock)	(24-hour clock)
HI	BS	FS	STA	Notes	

Study reach Name: Crew Initials: Date: $_{(month)} / _{(day)} / _{(year)}$ Start time: End time: Pebble count location on long profile: Shape of pebbles: Angular Subangular Well Rounded Cross section: (eicle one) upper middle lower Width of intermediate axis in mm: Cobble Embeddedness: (eicle one) <= 35% >35% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Pebble count location on long profile: Shape of pebbles: Angular Subangular Well Rounded Cross section: (eicle one) upper middle lower (circle one) Pebble count location on long profile: Shape of pebbles: Angular Subangular Well Rounded Cross section: (eicle one) upper middle lower (circle one) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		PROJECT CODE: TASK CODE
Date: $\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Pebble Count Data Sheet	Page of
Pebble count location on long profile: Shape of pebbles: Angular Subangular Well Rounded (irde one) Width of intermediate axis in mm: Cobble Embeddedness: (irde one) <= 35% > 35% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Pebble count location on long profile: Shape of pebbles: Angular Subangular Well Rounded (irde one) Width of intermediate axis in mm: Cobble Embeddedness: (irde one) <= 35% > 35% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 9 8 9 10 11 12 13 14 15 16 17 18 19 20 1 9 8 9 10 11 12 13 14 15 16 17 18 19 20 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Study reach Name:	Crew Initials:
Cross section: (circle one) upper middle lower (circle one) Width of intermediate axis in mm: Cobble Embeddedness: (circle one) <= 35% >35% >35% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 1 1 1 1 1 1 14 15 16 17 18 19 20 1 1 1 1 1 14 15 16 17 18 19 20	Date: / / / Start time: E	nd time:
Width of intermediate axis in mm: Cobble Embeddedness: (arele one) <= 35% >35% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Notes:		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1	Cross section: (circle one) upper initiale lower	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Width of intermediate axis in mm: Cobb	le Embeddedness: (circle one) $\leq 35\%$ $>35\%$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 2 3 4 5 6 7 8 9 10 11 12 13 14 1	5 16 17 18 19 20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	Notes:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	
5	3	
Pebble count location on long profile: Shape of pebbles: Angular Subangular Well Rounded Cross section: (circle one) upper middle lower $(circle one)$ Width of intermediate axis in mm: Cobble Embeddedness: (circle one) <= 35% > 35% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Notes: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	4	
Cross section: (circle one) upper middle lower (circle one) Width of intermediate axis in mm: Cobble Embeddedness: (circle one) <= 35%	5	
2	Width of intermediate axis in mm: Cobb	le Embeddedness: (circle one) $\leq 35\%$ $>35\%$
3		Notes:
	2	
5	3	
	4	
Pebble count location on long profile: Shape of pebbles: Angular Subangular Well Rounded	5	
Cross section: (circle one) upper middle lower (circle one)	Cross section: (circle one) upper middle lower Width of intermediate axis in mm: Cobb	
1 Notes:	1 2 3 4 5 6 7 8 9 10 11 12 13 14 1	
2		5 16 17 18 19 20
3	1	5 16 17 18 19 20
	1	5 16 17 18 19 20
	1	5 16 17 18 19 20
4	1	5 16 17 18 19 20

<u> </u>		. 1	\л.		n -	ta (C1-	o							PRO	ЭJEC	CT C	ODI	E:				TAS	SK C	ODI	3	
ac	:1e	S 1	VI	ap 1	Da	ta	5n	eet													Pag	ge			of		
udy	y re	each	n N	ame	:														Cre	w Iı	nitia	ls:					
ite:	: (m	ont	/ h)	(day)	/	(year))	Sta	rt tii	me:		-	En	d tir	ne:				-								
																											T
																											Ι
-	_																										
	_	_																									
-	_																										-
+	+	_									 																-
-	_	_																									-
-	+																										-
┝	+	_									 																-
-	+																										-
┢	+	_						-			 	 															
┢	+	_																									
┢	+	_					-													_							
	+	_						-				 															
	+	_																		_							
+	+	-									 																
t							-							-													1
T																											
T																											1
																											1
				colun																							

		PROJE	ECT CODE:	TASK CODE
Rose	gen Level III Data Sheet		Page	of
Study 1	reach Name:		Crew Initials:	
Date:	month) (day) / (year) Start time:	End time:		
Depos	sitional Features (circle one)	Mean	nder Pattern (circle one	e)
B-1	point bars	M-1	regular meander	
B-2	pt. bars w/ few mid channel bars	M-2	tortuous meander	
B-3	many mid channel bars	M-3	irregular meander	
B-4	side bars	M-4	truncated meander	
B-5	diagonal bars	M-5	unconfined me. scrol	ls
B-6	main branching w/ many mid	M-6	confine me. scrolls	
	channel bars and islands	M-7	distorted me. loops	
B-7	mixed side bar and mid channel	M-8	irregular with oxbows	5
	bars exceeding 2-3X width	Descr	ription:	
B-8	delta bars			
Descri	ption:			

		STREAM CHANNEL DEBRIS/BLOCKAGES (circle one)
D	••• /=	Materials, which upon placement into the active channel or floodprone area may cause and adjustment in
Descr	iption/Extent	channel dimensions or conditions, due to influences on the existing flow regime
D-1	None	Minor amounts of small, floatable material
D-2	Infrequent	Debris consists of small, easily moved, floatable material; i.e. leaves, needles, small limbs, twigs, etc
D-3	Moderate	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.
D-4	Numerous	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.
D-5	Extensive	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.
D-6	Dominating	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull.
D-7	Beaver Dams - Few	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.
D-8	Beaver Dams - Frequent	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced.
D-9	Beaver Dams - Abandoned	channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.
D-10	Human Influences	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have influence on the existing flow regime, such that significant channel
Notes:		

Notes:

n	nonth	day year	(24-hour clock) (24-hour clock)				
		Category	(circle one for each of the four options for each category)				
Upper	1	Landform slope	Bank slope gradient <30%				
Banks		Bank slope gradient 30-40%					
During			Bank slope gradient 40-60%				
			Bank slope gradient 60+%				
2 Mass wasting			No evidence of past or future mass wasting				
			Infrequent. Most likely healed over. Low future potential				
			Frequent or large, causing sediment nearly year long				
			Frequent or large causing sediment nearly year long or imminent danger of same				
	3	Debris jam potential	Essentially absent from immediate channel area				
			Present, but mostly small twigs and limbs				
			Moderate to heavy amounts, mostly larger sizes				

	2	wasting	no evidence of past of future mass wasting	5
		_	Infrequent. Most likely healed over. Low future potential	6
			Frequent or large, causing sediment nearly year long	9
			Frequent or large causing sediment nearly year long or imminent danger of same	12
	3	Debris jam potential	Essentially absent from immediate channel area	2
			Present, but mostly small twigs and limbs	4
			Moderate to heavy amounts, mostly larger sizes	6
			Moderate to heavy amounts, predominately lager sizes	8
	4	Vegetative bank protection	90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	3
			70-90% density. Fewer species or less vigor suggest less dense or deep root mass	6
			<50-70% density. Lower vigor and fewer species from a shallow, discontinuous	9
			root mass	
			<50% density, fewer species and less vigor indicate poor, discontinuous and shallow	12
			root mass	
Lower	5	Channel capacity	Ample for present plus some increases. Peak flows contained. W/D ration <7	1
Banks			Adequate. Bank overflows rare. W/D ratio 8-15	2
			Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	3
			Inadequate. Overbank flows common. W/D ratio >25	4
	6	Bank rock content	65%+ with large angular boulders. 12"+ common.	2
			40-65%. Mostly small boulders to cobbles 6-12"	4
			20-40%. With most in the 3-6" diameter class	6
			20% rock fragments of gravel sizes, 1-3" or less	8
	7	Obstructions to flow	Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable	2
			Bed	
			Some present causing erosive cross currents and minor pool filling. Obstructions	4
			newer and less firm	
			Moderately frequent, unstable obstructions move with high flows causing bank	6
			cutting and pool filling	
			Sediment traps full, channel migration occurring	
	8	Cutting	Little or none. Infrequent raw banks less than 6"	4
			Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6
			Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12
			Almost continuous cuts, some over 24" high. Failure of overhangs frequent	16
	9	Deposition	Little or no enlargement of channel or point bars	4
			Some new bar increase, mostly from coarse gravel	8
			Moderate deposition of new gravel and course sand on old and some new bars	12
			Extensive deposits of predominately fine particles. Accelerated bar development	16

Study Reach Name: _____

Date: ____/___/____

Channel Stability (Pfankuch)

Start Time: _____

(24-hour clock)

PROJECT CODE: _____ TASK CODE:___

Page_ of

D-8

Crew Initials:

Stop Time: _

Chann	_1	Ctability (Dfam)	PROJECT CODE	: TASK CODE:						
Chann	lei	Stability (Pfank	lucity	Page c	of					
Study Re	ach	Name:		Crew Initials:						
Date:		//	Start Time:	Stop Time:						
m	onth	day year	(24-hour clock)	(24-hour clock)						
Bottom	10	Rock angularity	Sharp edges and corners. Plane surface	es rough.	1					
			Rounded corners and edges, surfaces s	smooth, flat	2					
			Corners and edges well rounded in tw	o dimensions	3					
			Well rounded in all dimensions, surface	ces smooth	4					
	11	Brightness	Surfaces dull, dark, or stained. General	lly not bright	1					
			Mostly dull, but may have <35% bright surfaces							
			Mixture dull and bright, ie 35-65% mixture range							
			Predominately bright, 65% exposed or		4					
	12	Consolidation of particles								
			Moderately packed with some overlap		4					
			Mostly loose assortment with no appar		6					
			easily moved	8						
	13	Bottom size distribution	0							
			Distribution shift light. Stable material		8					
			Moderate changes in sizes. Stable mate		1					
			Marked distribution change. Stable ma		1					
	14	Scouring and deposition	<5% of bottom affected by scour or de		6					
			5-30% affected. Scour at constrictions a pools	and where grades steepen. Some deposition in	1					
			30-50% affected. Deposits and scour at filling of pools	obstructions, constrictions, and bends. Some	1					
			More than 50% of the bottom in a state	e of flux or change nearly year long	2					
	15	Aquatic vegetation	Abundant growth moss-like, dark gree		1					
		. 0	Common. Algae forms in low velocity		2					
				er. Seasonal algae growth makes rocks slick	3					
				v-green, short term bloom may be present	4					

Notes:

Г

Diameter	Length Class										
Class	3-10 ft (0.9-3.0 m)	10-25 ft (3.1-7.6 m)	25-50 ft (7.7-15.2 m)	50-75 ft (15.3-22.9 m)	>75 ft (>23 m)						
6–12 in (10–30 cm)											
12-24 in (31-60 cm)											
24-36 in (61-90 cm)											

Tallv as "R" if rootwad attached

Study Reach Name:

LWD Frequency

>36 in (>90 cm)

Comments:

Date: ____/___/__ month

_____ day year

Start Time: _____ (24-hour clock)

Stop Time: _

(24-hour clock)

Page _ of

QA Check: _____

Crew Initials:

PROJECT CODE: _____ TASK CODE:_

LWD Key Pieces Information

Page

of

Perform for 100 m of stream or reach length, whichever is greater. **Criteria for Determining Key Pieces to be Measured** (circle which used): (1) all pieces with length > 1.2 times bankfull channel width OR (2) pieces meeting criteria 1 and having diameters > 2.14 (BFW) + 26.43 cm OR (3) pieces meeting criteria 1 and with diameters > 24 in

KEY PIECE ATTRIBUTE		KEY PIECE NUMBER										
		2	3	4	5	6	7	8	9	10	11	12
Location on longitudinal profile												
Diameter (cm)												
Length (m)												
rootwad attached												
LOCATION IN BANKFULL CHANNEL AREA												
< 25% of piece length in bankfull channel												
25-50% of piece length in bankfull channel												
50-75% of piece length in bankfull channel												
75-100% of piece length in bankfull channel												
ORIENTATION												
Perpendicular												
angled downstream												
angled upstream												
parallel or near parallel to channel												
FUNCTION IN CHANNEL												
located in bankfull channel, but not influencing channel mor associated with pool habitat												
associated with, but not creating pool habitat												
acting as complex instream cover (has attached rootwad or intact branches)												
acting as velocity refuge												
associated with LWD jam (3 or more key pieces)												
piece is acting as sediment storage site												
piece appears to be stable in stream channel*												
POOL FORMATION												
forming dammed pool												
forming plunge pool												
forming lateral scour pool												
forming backwater pool												
pool surface area (m^2) associated with piece(s) (L x W)												
ADDITIONAL INFORMATION (OPTIONAL)												
decay class (1 = sound, limbs present; 2 = bark loose or abse surface slightly rotted; 3 = surface extensively rotted, center												
tree species (C = conifer, D = deciduous, U = unknown)												
input mechanism (W=windthrow, B=bank undercutting, D=debris flow, L=landslide, M=tree mortality, U=unkn)												

*Rootwad present, piece stabilized at more than one point by banks or channel obstructions, end anchored by streambed or bank burial, pegged by standing trees, spanning

Bank Erosion a	ind Veg	getation	PRO	JECT COD	E: TASK CO	DE: Page of
Study Reach Name:					Crew Initia	
Date:/	_/	Star	t Time:		Stop Time:	
month day	year		(24	-hour clock)	(24-hour	clock)
(if banks are bedrock or		EROSION PC of boulders, de		this table)	BANK MATI	ERIAL: (circle one)
	Bank a	Bank b	Bank c	Bank d	Bedrock	Boulders
Bank height					– Cobble	Gravel w/o sand
Bankfull height					CODDIE	Graver w/ 0 sand
Root depth					Gravel w/mo	od. sand
Root density (%)						
Bank Angle (degrees)					Gravel w/h	igh sand
Surface Protection (%)					Sand	Silt/clay
% of total study reach					Sund	Shty chay
STRATIFICATION OF I IN THE BANKS (below	bankfull): c	ircle one	top of ba		middle of bank	bottom of bank
SEDIMENT SUPPLY: cit	rcle one	Extreme	Very Hi	gh High	Moderate	Low
VERTICAL STREAMBE	ED STABILI	TY: circle one	Aggradi	ng Degr	ading Stable	

BANK AND CHANNEL BED CONDITION NOTES:

	RIPARIAN VEGETATION						
	DENSIT	NSITY (circle all that apply)					
VEGETATION TYPE	LOW	MOD.	HIGH	NOTES			
Bare	1	1	1				
Forbs only	2a	2b					
Annual Grass w/ forbes	3a	3b	3c				
Perennial grass	4a	4b	4c				
Rhizomatous grasses (bluegrass,	5a	5b	5c				
Grass like plants, sedges, rushes)							
Low brush	6a	6b	6c				
High brush	7a	7b	7c				
Combination grass/brush	8a	8b	8c				
Deciduous overstory	9a	9b	9c				
Deciduous w/brush/grass understory	10a	10b	10c				
Perennial overstory	11a	11b	11c				
Wetland vegetation community	Bog	Fern	Marsh				

VEGETATION NOTES (composition, vigor, density, and potential):

V* Measurements

PROJECT	CODE:

Page _____ of

Study Read	che Crew In	itials:					_
Date:			_				
mon	th day year (24-hour clock)	(24-ho	k)				
	Pool Sketch (outline residual pool, fines, and location of depth measurements)	Reside poo units (depo ts (
pool head	U/Sflow→ D/S	L		а	b	с	d
location on long profile			L				
		W	W				
Riffle crest depth (ft)		Dmax	D1				
pool head	U/Sflow→ D/S	L		а	b	с	d
location on long profile			L				
01		W	W				
Riffle crest		Dmax	D1				
depth (ft)							
pool head location on	U/Sflow→ D/S	L		a	b	с	d
long profile			L				
		W	W				
Riffle crest depth (ft)		Dmax	D1				
uepui (it)							
		Ţ					
pool head location on	U/Sflow→ D/S	L	L	a	b	с	d
long profile		W	 W				
D:(()							
Riffle crest depth (ft)		Dmax	D1				
1 (/							

1. take 5 depth measurements

APPENDIX E

REPRESENTATIVE PHOTOGRAPHS

APPENDIX E REPRESENTATIVE PHOTOGRAPHS PHOTO INDEX

- Figure E-1. Rubicon Dam Reach Site (RD-G1): Upper cross-section (1), looking downstream
- FigureE-2. Rubicon Dam Reach Site (RD-G1): Middle cross-section (2), looking at river-left bank from river-right bank
- Figure E-3. Rubicon Dam Reach Site (RD-G1): Lower (3) cross-section, looking downstream
- Figure E-4. Loon Lake Dam Reach Upper Site (LL-G1): Upper cross-section (1), looking upstream
- Figure E-5. Loon Lake Dam Reach Upper Site (LL-G1): Middle (2) cross-section, looking upstream.
- Figure E-6. Loon Lake Dam Reach Upper Site (LL-G1): Lower cross-section (3), looking downstream
- Figure E-7. Loon Lake Dam Reach Middle Site (LL-G2): Approximately 40 feet upstream of upper cross-section (1) looking downstream
- Figure E-8. Loon Lake Dam Reach Middle Site (LL-G2): Middle cross-section (2), from 40 feet downstream of middle cross-section (2) looking upstream
- Figure E-9. Loon Lake Dam Reach Middle Site (LL-G2): Lower (3) cross-section, looking downstream; note transect tape.
- Figure E-10. Loon Lake Dam Reach Lower Site (LL-G3): Upper cross-section (1), looking upstream at cross-section tape
- Figure E-11. Loon Lake Dam Reach Lower Site (LL-G3): Middle cross-section (2), looking upstream from river-left bank
- Figure E-12. Loon Lake Dam Reach Lower Site (LL-G3): Lower (3) cross-section, looking upstream; note transect tape.
- Figure E-13. Gerle Creek Dam Reach Site (GC-G1): Upstream of upper cross-section (1) looking downstream with surveyor and stadia rod
- Figure E-14. Gerle Creek Dam Reach Site (GC-G1): Upstream of middle (2) crosssection, looking downstream with surveyor; note transect tape.
- Figure E-15. Gerle Creek Dam Reach Site (GC-G1): Lower cross-section (3), riverright bank looking at river-left bank with surveyor
- Figure E-16. Robbs Peak Dam Reach Site (RPD-G1): Upper cross-section (1), looking downstream at right edge
- Figure E-17. Robbs Peak Dam Reach Site (RPD-G1): Middle cross-section (2) looking downstream note upstream cross-section flagging
- Figure E-18. Robbs Peak Dam Reach Site (RPD-G1): Lower (3) cross-section, looking upstream with surveyor.

•	Figure E-19.	Ice House Dam Reach Upper Site (IH-G1): Upper cross-section (1)
•	Figure E-20.	looking downstream from mid-channel with surveyor and stadia rod Ice House Dam Reach Upper Site (IH-G1): Middle cross-section (2) looking downstream from mid-channel with surveyor and stadia rod
•	Figure E-21.	Ice House Dam Reach Upper Site (IH-G1): Lower (3) cross-section, looking downstream from river-right bank with surveyor; note transect tape.
•	Figure E-22.	Ice House Dam Reach Lower Site (IH-G2): Upper cross-section (1), looking upstream from river-left bank with surveyor and stadia rod
•	Figure E-23.	Ice House Dam Reach Lower Site (IH-G2): Middle (2) cross-section, looking downstream from river-left bank with surveyor; note transect tape.
•	Figure E-24.	Ice House Dam Reach Lower Site (IH-G2): Lower cross-section (3), looking upstream from river-right bank
•	Figure E-25.	Junction Dam Reach Site (JD-G1): Upper cross-section (1), looking downstream from river-left bank with surveyor for scale
•	Figure E-26.	Junction Dam Reach Site (JD-G1): Middle (2) cross-section, looking upstream at river-left bank from river-right bank with surveyor; note transect tape.
•	Figure E-27.	Junction Dam Reach Site (JD-G1): Lower cross-section (3), looking upstream from river-right bank with surveyor and stadia rod
•	Figure E-28.	Camino Dam Reach Site (CD-G1): Upper cross-section (1), looking from river left bank pin at river right bank pin with surveyor for scale
•	Figure E-29.	Camino Dam Reach Site (CD-G1): Middle (2) cross-section, looking downstream from river-left bank.
•	Figure E-30.	Camino Dam Reach Site (CD-G1): Lower cross-section (3) looking downstream from river-left bank
•	Figure E-31.	S. F. American Reach Site (SFAR-G1): Upper (1) cross-section, above riffle looking from center of river downstream; note transect tape.
•	Figure E-32.	S. F. American Reach Site (SFAR-G1): On river-right bank, looking downstream at lower cross-section
•	Figure E-33.	Slab Creek Dam Reach Site (SC-G1): Looking upstream at upper (1) cross-section toward river-left bank.
•	Figure E-34.	Slab Creek Dam Reach Site (SC-G1): Middle cross-section (2), looking upstream toward river-right bank
•	Figure E-35.	Slab Creek Dam Reach Site (SC-G1): Lower cross-section (3), looking at river-left bank pin from river-right bank pin
•	Figure E-36.	Reach Downstream of Chili Bar, Upper Canyon Site (CB-G1): Upper (1) cross-section, looking downstream from river-left bank.
•	Figure E-37.	Reach Downstream of Chili Bar, Upper Canyon Site (CB-G1): Middle cross-section (2), from river-left bank looking toward river-right bank
•	Figure E-38.	Reach Downstream of Chili Bar, Upper Canyon Site (CB-G1): Lower cross-section (3), downstream from a boulder in the channel, showing cross section tape

- Figure E-39. Reach Downstream of Chili Bar, Upper Coloma Site (CB-G2): Upper cross-section island, looking toward river-left bank pin island separates two channels of river
- Figure E-40. Reach Downstream of Chili Bar, Upper Coloma Site (CB-G2): Middle cross-section, from river-left bank looking upstream
- Figure E-41. Reach Downstream of Chili Bar, Upper Coloma Site (CB-G2): Lower (3) cross-section, looking downstream from river-right bank.
- Figure E-42. Reach Downstream of Chili Bar, Lower Coloma Site (CB-G3): Upper cross-section (1), looking downstream from river-right bank
- Figure E-43. Reach Downstream of Chili Bar, Lower Coloma Site (CB-G3): Middle cross-section (2), looking downstream from river-left bank
- Figure E-44. Reach Downstream of Chili Bar, Lower Coloma Site (CB-G3): Lower (3) cross-section, from river-right bank looking downstream with surveyor; note transect tape.
- Figure E-45. Reach Downstream of Chili Bar, Gorge Site (CB-G4): Upper (1) crosssection, from mid-channel bar looking downstream.
- Figure E-46. Reach Downstream of Chili Bar, Gorge Site (CB-G4): Middle crosssection, from mid-channel looking downstream
- Figure E-47. Reach Downstream of Chili Bar, Gorge Site (CB-G4): Downstream (lower) cross-section, looking toward river-right bank pin from river-left bank

APPENDIX F

SITE PHOTOGRAPHS (COMPLETE SET, BY REACH) AND GPS COORDINATES

(Provided on CD)

~ • ·	
Site:	
SHE	

UARP Rubicon Dam Reach Site (RD-G1)

Photo Number	Photo Description
650	Upper cross-section (1), looking downstream toward bottom of site
651	Middle cross-section (2), looking at river-left bank from river-right bank
652	Middle cross-section (2), looking at river-right bank from river-left bank
653	Middle cross-section (2), looking upstream
654	Middle cross-section (2), looking downstream
655	Lower cross-section (3), looking at river-left bank from river-right bank
656	Lower cross-section (3), looking at river-right bank from river-left bank
657	Lower cross-section (3), looking upstream
658	Lower cross-section (3), looking downstream
659	Upper cross-section (1), looking at river-left bank from river-right bank
660	Upper cross-section (1), looking at river-right bank from river-left bank
661	Upper cross-section (1), looking upstream
662	Upper cross-section (1), looking downstream
	Photo F-1

Site: UARP Loon Lake Dam Reach Upper Site (LL-G1)

Photo Number	Photo Description
1322	Lower cross-section (3), looking from river-left bank to river-right bank
1323	Lower cross-section (3), looking downstream
1326	Lower cross-section (3), looking from river-right bank to river-left bank
1327	Middle cross-section (2), looking from river-left bank to river-right bank
1328	Middle cross-section (2), looking upstream
1329	Middle cross-section (2), looking downstream
1330	Middle cross-section (2), looking from river-right bank to river-left bank
1331	Upper cross-section (1), looking upstream
1332	Upper cross-section (1), looking from river-left bank to river-right bank
1333	Upper cross-section (1), looking downstream
1334	Upper cross-section (1), looking from river-right bank to river-left bank
1335	Lower cross-section (3), looking upstream

Site: UARP Loon Lake Dam Reach Middle Site (LL-G2)

Photo Number	Photo Description
	Upper cross-section (1), looking from river-left bank head pin at river-right bank with
495	surveyor
496	Upper cross-section (1), looking from river-right bank turning point at river-left bank
497	Upper cross-section (1), looking from river-right bank edge of wetted channel at river-left bank with surveyor
498	Upper cross-section (1), looking from river-left bank head pin at river-right bank
499	Approximately 40 feet upstream of upper cross-section (1) looking downstream
501	Upper cross-section (1), looking from river-right bank turning point at river-left bank with surveyor
502	From 40 feet downstream of middle cross-section (2) looking upstream at upper cross- section (1) with surveyor
503	Middle cross-section (2), looking from river-left bank head pin at river-right bank
504	upstream
505	Middle cross-section (2), looking from river-right bank turning point at river-left bank
506	Middle cross-section (2), looking from river-right bank at 66 feet on tape looking at river-left bank with surveyor
507	Middle cross-section (2), Looking from 30 feet upstream of Cross-section 2 toward downstream
508	Surveyor drawing site at Upper cross-section (1)
509	Surveyor at auto level on mid channel bar/log jam - upstream of lower cross-section (3)
510	Surveyor with tape downstream of lower cross-section (3)
511	Looking upstream at mid channel bar below log jam with forced side channel with surveyor
512	Looking downstream at river-left bank forced side channel just upstream end of reach
513	Looking downstream at end of reach with log jam forcing side channels in background
514	Lower cross-section (3), looking at river-left bank pin (far away) from river-right bank
515	Lower cross-section (3), looking upstream at cross-section tape
516	Lower cross-section (3), looking at river-right bank pin (back by surveyor) from river-left bank
517	Lower cross-section (3), looking downstream at cross-section tape

Site: UARP Loon Lake Dam Reach Lower Site (LL-G3)

Photo Number	Photo Description
518	Upper cross-section (1), looking at river-right bank pin from river-left bank
519	Upper cross-section (1), looking upstream at cross-section tape
520	Upper cross-section (1), looking at river-left bank pin from river-right bank
521	Upper cross-section (1), looking downstream at cross-section tape from river-left bank
522	Top of reach looking upstream from river-left bank
523	Middle cross-section (2), looking at river-right bank pin from river-left bank
524	Middle cross-section (2), looking downstream from river-left bank - note level location
525	Bench mark 1
526	Middle cross-section (2), looking downstream from river-left bank
527	Middle cross-section (2), looking upstream from river-left bank
528	Middle cross-section (2), looking toward river-left bank from river-right bank - note rod in channel
529	Lower cross-section (3), river-left bank head pin (flagged)
530	Near bottom of long profile with surveyor and rod for scale
531	Lower cross-section (3), looking upstream at cross-section tape
532	Lower cross-section (3), looking downstream at cross-section tape
533	Lower cross-section (3), looking at river-left bank from river-right bank - note surveyor and level)
534	Lower cross-section (3), looking at river-right bank from river-left bank
535	Lower cross-section (3), looking at river-right bank from river-left bank
	Photo F-4

1		
	Site:	1

Photo Number	
81	Upper cross-section (1), river-right bank looking at river-left bank with surveyor and stadia
	rod
82	Upstream of upper cross-section (1) looking downstream with surveyor and stadia rod Upper cross-section (1), river-left bank looking at river-right bank with surveyor and stadia
83	rod
84	Downstream of Upper cross-section (1) looking upstream with surveyor and stadia rod
85	Surveyor with survey equipment
89	Middle cross-section (2), river-left bank looking at river-right bank
90	Upstream of middle cross-section (2) looking downstream with surveyor
91	Middle cross-section (2), river-right bank looking at river-left bank
92	Downstream of middle cross-section (2) looking upstream.
93	Close-up of river-right bank gravel cobble deposit
94	Close-up shot of river-right bank
95	Downstream of lower cross-section (3) looking upstream
96	Downstream of lower cross-section (3) looking upstream at right channel with surveyor
97	Upstream of lower cross-section (3) looking downstream at right channel with surveyor
98	Upstream of lower cross-section (3) looking downstream at right channel with surveyor
99	Lower cross-section (3), river-right bank looking toward river-left bank with surveyor
100	Lower cross-section (3), river-left bank looking at river-right bank with surveyor
102	Lower cross-section (3), river-right bank looking at river-left bank with surveyor
103	Surveyor taking notes

Site: UARP Robbs Peak Dam Reach Site (RPD-G1)

Photo Number	Photo Description
2	Looking upstream at upper cross-section (1)
3	Upper cross-section (1), looking toward river-left bank - note surveyor and level
4	Upper cross-section (1), looking downstream at right edge
5	Upper cross-section (1), looking downstream at left edge cross-section - note large bar
6	Upper cross-section (1), looking toward river-right bank from river-left bank end pin
7	Upper cross-section (1) looking at river-right bank from instrument
8	Middle cross-section (2) looking at river-right bank from behind surveyor and instrument
9	Middle cross-section (2) looking downstream
10	Middle cross-section (2) looking downstream - note upstream cross-section flagging
11	Middle cross-section (2) looking at river-left bank from intermediate river-right bank pin
12	Middle cross-section (2) looking at river-left bank from river-right bank end pin
13	Middle cross-section (2) looking upstream from river-left bank - note long profile tape with surveyor
14	Lower cross-section (3) looking at river-right bank from river-left bank end pin
15	Lower cross-section (3) looking downstream
16	Lower cross-section (3) looking downstream from long profile
17	Lower cross-section (3) looking at river-left bank from river-right bank end pin
18	Lower cross-section (3) looking upstream with surveyor for scale
	Photo F-6

Site: UARP Ice House Dam Reach Upper Site (IH-G1)

Photo	
Number	Photo Description
	Upper cross-section (1) looking from river-left bank to river-right bank with surveyor and
35	stadia rod
	Upper cross-section (1) looking from river-right bank to river-left bank with surveyor and
36	stadia rod
37	Upper cross-section (1) looking upstream from mid-channel with surveyor and stadia rod
• •	
38	Upper cross-section (1) looking downstream from mid-channel with surveyor and stadia rod
	Middle cross-section (2) looking from river-left bank to river-right bank with surveyor and
39	stadia rod
	Middle cross-section (2) looking from river-right bank to river-left bank with surveyor and
40	stadia rod
41	Middle cross-section (2) looking upstream from mid-channel with surveyor and stadia rod
42	Middle cross-section (2) looking downstream from mid-channel with surveyor and stadia rod
	Lower cross-section (3) looking from river-left bank to river-right bank with surveyor and
43	stadia rod
	Lower cross-section (3) looking from river-right bank to river-left bank with surveyor and
44	stadia rod
45	Lower cross-section (3) looking upstream from mid-channel with surveyor and stadia rod
	Lower cross-section (3) looking downstream from river-right bank with surveyor and stadia
46	rod

Site: UARP Ice House Dam Reach Lower Site (IH-G2)

Photo	
Number	Photo Description
	Upper cross-section (1), from river-left bank looking toward river-right bank with surveyor
49	and stadia rod
50	Upper cross-section (1), looking downstream
51	Upper cross-section (1), looking downstream from river-left bank
52	Upper cross-section (1), looking upstream from river-left bank with surveyor and stadia rod
53	Upper cross-section (1), looking upstream from river-left bank with surveyor and stadia rod
54	Upper cross-section (1), looking from river-right bank toward river-left bank with surveyor
56	Middle cross-section (2), looking toward river-right bank from river-left bank with surveyor and stadia rod
	Middle cross-section (2), looking downstream from river-left bank with surveyor and stadia
57	rod
	Middle cross-section (2), looking upstream from river-right bank with surveyor and stadia
58	rod
59	Middle cross-section (2), looking toward river-left bank from river-right bank with surveyor and stadia rod
62	Lower cross-section (3), looking upstream from river-right bank
63	Lower cross-section (3), looking toward river-right bank from river-left bank

Site: UARP Junction Dam Reach Site (JD-G1)

Photo	
Number	Photo Description
	Upper cross-section (1), looking at river-right bank from river-left bank with surveyor for
69	scale
70	Upper cross-section (1), looking downstream from river-left bank with surveyor for scale
	Upper cross-section (1), looking at river-left bank from river-left bank with surveyor for
71	scale
72	Upper cross-section (1), looking upstream from river-right bank with surveyor for scale
	Middle cross-section (2), looking downstream toward river-left bank from river-right bank
73	with surveyor and stadia rod
	Middle cross-section (2), looking toward river-left bank from river-right bank pin with
74	surveyor and stadia rod
7.5	Middle cross-section (2), looking upstream at river-left bank from river-right bank with
75	surveyor and stadia rod
76	Middle cross-section (2), looking at river-right bank from river-left bank pin with surveyor and stadia rod
70	Lower cross-section (3), looking downstream from river-right bank with surveyor and stadia
77	rod
	Lower cross-section (3), looking at river-left bank from river-right bank pin with surveyor
78	and stadia rod
79	Lower cross-section (3), looking upstream from river-right bank with surveyor and stadia rod
	Lower cross-section (3), looking at river-right bank from river-left bank pin with surveyor
80	and stadia rod

i.	
	G •4
	Sife:
	SILC.

UARP Camino Dam Reach Site (CD-G1)

Photo	
Number	Photo Description
570	Upper cross-section, looking from river right bank at river left bank pin, upper cross-section with surveyor
571	Cobble in upper cross-section with surveyor for scale
572	Upper cross-section, looking from channel at river left bank; note, bedrock wall
573	Upper cross-section, looking at river left bank pin below bedrock wall (note flagging)
574	Upper cross-section, looking from river left bank pin at river right bank pin with surveyor for scale
575	Upper cross-section, looking at river right bank pin from bank full indicator (note flagging)
576	Upper cross-section, looking at river right bank pin
577	Looking downstream from upstream end of longitudinal profile
578	Looking upstream from upstream end of longitudinal profile from river left bank
579	Looking upstream from upstream end of longitudinal profile from river right bank
580	Middle cross-section, looking at river-left bank pin
581	Middle cross-section, looking at river-right bank pin
582	Middle cross-section, looking downstream from river-left bank
583	Middle cross-section, looking upstream from river-left bank
584	Lower cross-section, looking at river-left bank pin
585	Lower cross-section, looking river-right bank pin with surveyor
586	Lower cross-section looking downstream from river-left bank
587	Lower cross-section, looking upstream from river-left bank
588	Pebble count at upper cross-section with surveyor for scale
589	Pebble count at middle cross-section with surveyor for scale
590	Pebble count at lower cross-section with surveyor for scale

Photo Number	Photo Description
942	Upper cross-section (1), above riffle looking from center of river to river-right bank and pin
943	Upper cross-section (1), above riffle looking from center of river to river-left bank and pin with surveyor for scale
944	Upper cross-section (1), above riffle looking from center of river upstream
945	Upper cross-section (1), above riffle looking from center of river downstream
946	From top of study reach looking downstream
947	From top of study reach looking upstream
989	On river-right bank, looking downstream at lower cross-section
990	On river-right bank, looking at lower cross-section at river-left bank pin with surveyor
991	On river-right bank, looking at lower cross-section at river-right bank pin
992	On river-right bank, looking upstream from lower cross-section
993	On river-right bank, looking downstream from lower cross-section
	Photo F-1

Site: UARP Slab Creek Dam Reach Site (SC-G1)

Roll-	Photo Description
1-19	Looking upstream at upper cross-section (1) toward river-right bank
1-20	Looking upstream at upper cross-section (1) toward river-left bank
1-21	Upper cross-section (1), looking downstream toward river-left bank
1-22	Upper cross-section (1), looking downstream toward river-right bank
1-23	Upper cross-section (1), looking at river-left bank pin from river-right bank
1-24	Upper cross-section (1), close-up of river-right bank pin
2-1	Upper cross-section (1), looking at river-right bank pin from river-left bank pin
2-2	Upper cross-section (1), close-up of river-left bank pin
2-3	Middle cross-section (2), looking at river-right bank pin from river-left bank
2-4	Middle cross-section (2), close-up of river-left bank pin (orange spray - painted nail)
2-5	Middle cross-section (2), looking downstream toward river-left bank
2-6	Middle cross-section (2), looking downstream toward river-right bank
2-7	Middle cross-section (2), looking upstream toward river-right bank
2-8	Middle cross-section (2), looking upstream toward river-left bank
2-9	Middle cross-section (2), looking at river-left bank pin from river-right bank pin
2-10	Middle cross-section (2), close-up of river-left bank pin (orange spray - painted nail)
2-11	Lower cross-section (3), looking at river-left bank pin from river-right bank pin
2-12	Lower cross-section (3), close-up of river-right bank pin (spray - painted rebar)
2-13	scale
2-14	Lower cross-section (3), looking upstream toward river-left bank pin
2-15	Lower cross-section (3), looking downstream toward river-left bank pin
2-16	Lower cross-section (3), looking upstream toward river-right bank pin
2-17	Lower cross-section (3), looking at river-right bank pin from river-left bank
2-18	Lower cross-section (3), close-up of river-left bank pin (spray - painted rebar)
2-19	Looking upstream at riffle just below middle cross-section 2

Site: Chili Bar Upper Canyon Site (CB-G1)

Photo Description Upper cross-section (1), looking toward river-right bank from river-left bank - note
pper cross-section (1), looking toward river-right bank from river-left bank - note
surveyor with stadia rod in channel
Upper cross-section (1), looking upstream from river-left bank
Upper cross-section (1), looking downstream from river-left bank
Middle cross-section (2), from river-right bank looking toward river-left bank with surveyor
Middle cross-section (2), close-up of river-right bank pin
Middle cross-section (2), close-up of river-left bank pin
Middle cross-section (2), from river-left bank looking toward river-right bank
Lower cross-section (3), downstream from a boulder in the channel, showing cross section tape
Lower cross-section (3), river-right bank from a boulder in the channel, showing cross section tape
Lower cross-section (3), upstream from a boulder in the channel
Lower cross-section (3), view of river-right bank from river-left bank water's edge along cross section tape with surveyor
Lower cross-section (3), view of river-left bank from near river-left bank water's edge - showing auto level location near branch pile at right mid-photo
surveyor at benchmark 1 on river-left bank
Middle cross-section (3), surveyor at auto level on river-left bank

Site: Chili Bar Upper Coloma Site (CB-G2)

Photo Number	Photo Description
CB-G2-211	Upper cross-section, early morning looking upstream
CB-G2-212	Lower cross-section, looking at river-right pin from approximately fifty feet away
CB-G2-213	Lower cross-section, from river-right bank riparian vegetation looking back toward river- right bank pin
CB-G2-214	Lower cross-section, looking upstream from river-right bank
CB-G2-215	Lower cross-section, looking downstream from river-right bank
CB-G2-216	Lower cross-section, from active channel bank looking toward river-left bank pin
CB-G2-217	Lower cross-section, from floodplain terrace looking toward river-left bank pin
CB-G2-218	Lower cross-section, from historic floodplain terrace toward river-left bank pin (close-up)
CB-G2-219	Upper cross-section, looking toward river-right bank from estimated bank-full
CB-G2-220	Upper cross-section, from river-right bank looking upstream
CB-G2-221	Upper cross-section, from river-right bank looking downstream
CB-G2-222	Upper cross-section island, looking toward river-left bank pin - island separates two channels of river
CB-G2-223	Upper cross-section, from river-left bank looking toward river-left bank pin
CB-G2-224	Upper cross-section, from river-left bank estimated bank-full looking toward river-left bank pin
CB-G2-225	Upper cross-section, looking at river-left bank pin
CB-G2-226	Upriver from upper cross-section, river-left bank
CB-G2-227	Downriver from upper cross-section, river-left bank
CB-G2-228	Middle cross-section from river-left bank looking toward river-left bank pin
CB-G2-254	Middle cross-section, from river-left bank terrace looking toward river-left bank pin
CB-G2-255	Middle cross-section river-left bank pin close-up
CB-G2-256	Middle cross-section, from river-left bank looking upstream
CB-G2-257	Middle cross-section, from river-left bank looking downstream
CB-G2-258	Middle cross-section, from river-right bank looking toward river-right bank pin
CB-G2-259	Middle cross-section, from near edge of active floodplain looking toward river-right bank pin
	Photo F-14

Site:

Chili Bar Lower Coloma Site (CB-G3)

	r Photo Description
CB-G3-229	Middle cross-section (2), river-right bank pin - close-up
CB-G3-230	Middle cross-section (2), river-right bank pin
CB-G3-231	Middle cross-section (2), looking from river-right bank toward river-left bank
	Middle cross-section (2), from river-left bank looking toward river-right bank with
CB-G3-232	surveyor holding stadia rod
CB-G3-233	Middle cross-section (2), looking at river-left bank pin from the river
CB-G3-234	Middle cross-section (2), looking downstream from river-left bank
CB-G3-235	Middle cross-section (2), looking upstream from river-left bank
CB-G3-236	Middle cross-section (2), close-up of river-left bank pin
CB-G3-237	Middle cross-section (2), close-up of river-left bank pin with boulder and tree
	Lower cross-section (3) looking at river-left bank from river-right bank with surveyor
CB-G3-238	in channel
CB-G3-239	Lower cross-section (3) with surveyor at tripod on river-right bank
	Lower cross-section (3), looking upstream from river-right bank - note flagging on
CB-G3-240	tape
CB-G3-241	Lower cross-section (3), river-right bank pin at base of cedar tree
	Lower cross-section (3), looking from river-right bank to river-left bank with level set-
CB-G3-242	up
CB-G3-243	Lower cross-section (3), from river-right bank looking downstream with surveyor
CB-G3-244	Lower cross-section (3), from river-left bank looking at river-left bank pin
CB-G3-245	Lower cross-section (3), looking at river-left bank pin from river
CB-G3-246	Lower cross-section (3) looking from river-left bank toward river-right bank
CB-G3-263	Upper cross-section (1), from river-right bank looking toward channel with surveyor
CB-G3-264	Upper cross-section (1), looking at river-right bank pin and level set-up
CB-G3-265	Bench mark 1 near upper cross-section (1) (to right of clipboard)
CB-G3-266	Bench Mark 1 close-up (metal pipe)
CB-G3-267	Upper cross-section (1), looking upstream at river-right bank side channel
CB-G3-268	Upper cross-section (1), looking from river-right bank to river-left bank
CB-G3-269	Upper cross-section (1), looking downstream from river-right bank
CB-G3-270	Upper cross-section (1), looking upstream from mid-channel
CB-G3-271	Upper cross-section (1), looking upstream from river-left bank
CB-G3-273	Upper cross-section (1), looking at river-left bank pin

Site: Chili Bar Lower Coloma Study Site (CB-G3) continued

Number	Photo Description
CB-G3-274	Upper cross-section (1), end of river-left bank survey with surveyor
	Upper cross-section (1), looking toward river-right bank from river-left bank
CB-G3-275	backwater

Site:

Chili Bar Gorge Site (CB-G4)

Photo Number	r Photo Description
948	Looking upstream from point bar
949	Looking toward river-right bank from point bar
950	Looking downstream from point bar with surveyor for scale
951	Top of long profile looking downstream from river-left bank
952	Upper cross-section, river-left bank looking toward river-right bank with surveyor holding stadia rod
953	Upper cross-section, river-left bank looking toward river-right bank with surveyor holding stadia rod
954	Upper cross-section, from mid-channel bar looking toward river-left bank
955	Upper cross-section, from mid-channel bar looking river-right bank with surveyor for scale
956	Upper cross-section, from mid-channel bar looking downstream
957	Middle cross-section, from mid-channel looking river-left bank
958	Middle cross-section, from mid-channel looking toward river-right bank
959	Middle cross-section, from mid-channel looking upstream
960	Middle cross-section, from mid-channel looking downstream
961	Middle cross-section, from mid-channel looking upstream at side channel
962	Middle cross-section, from mid-channel looking downstream at side channel
963	Pebble count by surveyor at upper cross-section
964	Pebble count at upper cross-section side channel by surveyor
965	Lower cross-section pebble count by surveyor
966	Lower cross-section pebble count by surveyor
967	Downstream cross-section, looking at river-left bank pin
968	Downstream cross-section, looking toward river-left bank pin from river-left stream bank
969	Downstream cross-section, looking toward river-right bank pin from river-left bank
970	Downstream Cross-section, looking upstream from river-left bank
971	Downstream cross-section, looking downstream from river-left bank
972	Lower cross-section, looking downstream with surveyor
973	Lower cross-section, looking toward river-right bank from river-left bank
974	Lower cross-section, looking toward river-left bank with surveyor and stadia rod

Site: Chili Bar Gorge Study Site (CB-G4) continued

Number	Photo Description
975	From river-right bank looking toward river-left bank with surveyor
976	From river-right bank looking toward river-left bank with surveyor
977	Lower cross-section, close-up of river-right bank pin

APPENDIX G

DATA SETS: LONGITUDINAL PROFILE DATA, CROSS-SECTION DATA, AND PEBBLE COUNT TABLES FOR THE UARP

UARP:

Rubicon Dam Reach Site (RD-G1) Loon Lake Dam Reach Upper Site (LL-G1) Loon Lake Dam Reach Middle Site (LL-G2) Loon Lake Dam Reach Lower Site (LL-G3) Gerle Creek Dam Reach Site (GC-G1) Robbs Peak Dam Reach Site (GC-G1) Ice House Dam Reach Upper Site (IH-G1) Ice House Dam Reach Lower Site (IH-G1) Junction Dam Reach Site (JD-G1) Camino Dam Reach Site (CD-G1) S. F. American Reach Site (SFAR-G1) Slab Creek Dam Reach Site (SC-G1)

Rubicon Dam Reach Site (RD-G1) long profile (p. 1 of 2)

н	BS	FS	STA	WSE	ELEV	Water depth (ft)	Bed material	Notes Root on tree. R.E.W. (arbitrary
105.22	5.22				100.00			elevation =100 ft)
	0	10.38	17.10	95.59	94.84	0.75	sand	mid-pool
		10.21	24.80	95.57	95.01	0.56	sand	
		10.02	32.00	95.55	95.20	0.35	cobble	
		9.99	39.70	95.48	95.23	0.25	cobble	head of riffle
		10.12	46.00	95.44	95.10	0.34	gravel	
		10.29	53.90	95.34	94.93	0.41	gravel	
		10.67	61.50	95.14	94.55	0.59	cobble	
		10.72	68.50	95.12	94.50	0.62	gravel	
		10.59	75.60	95.15	94.63	0.52	cobble	
		10.75	82.10	95.10	94.47	0.63	cobble	
		10.88	85.50	95.04	94.34	0.70	gravel	at upstream XS(#1)
	5.22							Root on tree. R.E.W.
		11.16	93.00	94.81	94.06	0.75	cobble	
		11.04	101.20		94.18	0.48	cobble	
			110.00		93.76	0.73	cobble	
			118.40		93.63	0.51	cobble	
		11.41	126.40		93.81	1.31	cobble	
			133.80		93.33	0.80	cobble	
		11.95	140.40		93.27	0.85	cobble	
		11.54	148.10		93.68	0.43	cobble	
		11.77	155.80		93.45	0.46	cobble	tail of riffle
			162.90		92.60	1.24	boulder	head of pool
			170.80		91.04	2.86	bedrock	
			178.40		91.18	2.72	bedrock	
		14.60	185.50		90.62	3.25	cobble	
		14.29	193.70		90.93	2.96	bedrock	
			205.00		91.83	2.05	boulder	
			213.00 220.30		91.37 92.10	2.54 1.78	cobble cobble	
			220.30		92.10 93.02	0.88		
			230.00		93.62 93.60	0.30	gravel gravel	
			243.00		93.60 93.57	0.30	•	head of riffle
			243.00		93.57 93.54	0.32	gravel sand	
			250.00		93.34 93.31	0.28		middle XS (#2)
		9.73	209.40	93.19	95.31 95.49	0.40	gravel	shot to rock in mid channel pool
		9.13			90.49			Shot to fock in this channel pool

Rubicon Dam Reach Site (RD-G1) long profile (p. 2 of 2)

HI New day 8/	BS /26/03	FS	STA	WSE	ELEV	Water depth (ft)	Bed material	Notes
101.53	6.04				95.49			rock in middle of stream (pool) from 8/25/03 survey *NB - Add these stations to last
								station on 8/25
		8.32	256.20	93.81	93.21	0.60	gravel	in riffle
		8.26	259.40		93.27	0.48	gravel	at XS 2 (middle XS)
		8.23	266.40		93.30	0.33	gravel	
		8.30	273.70		93.23	0.25	gravel	
		8.55	280.40		92.98	0.37	gravel	
		8.78	287.20		92.75	0.53	gravel	
		8.79	294.40		92.74	0.50	gravel	
		8.87	302.80	93.14	92.66	0.48	gravel	
		8.91	309.50	93.08	92.62	0.46	gravel	
		9.09	316.90	93.04	92.44	0.60	gravel	
		8.90	324.30	92.99	92.63	0.36	gravel	
		8.24			93.29		-	rock on REW
104.23	10.94							rock on REW
		11.69	330.60		92.54	0.42	gravel	
		11.69	338.40		92.54	0.40	gravel	
			346.30		92.18	0.71	gravel	
			352.20		92.39	0.53	gravel	
		11.71	359.30		92.52	0.34	gravel	
		11.68	362.80	92.82	92.55	0.27	gravel	at XS 3 (lower XS)
104.28	10.99							rock on REW
			369.60		92.30	0.37	gravel	
		12.01	376.60		92.27	0.36	gravel	
			383.80		91.93	0.70	sand	
		12.31	390.60		91.97	0.65	gravel	
			397.40		92.09	0.52	gravel	
			404.30		92.03	0.56	gravel	
			411.30		92.15	0.45	gravel	
			418.80		92.20	0.35	gravel	
			425.00		92.25	0.24	cobble	
			432.90		92.09	0.20	cobble	
			440.40		91.86	0.27	sand	
	40.00	12.60	447.90	91.98	91.68	0.30	sand	end of riffle
	10.99							rock on REW (reshoot)

Rubicon Dam Reach Site (RD-G1) upper cross-section

HI 105.22	BS 5.22	FS	STA	ELEV 100.00	WD	Bed material	Notes root on tree REW
	0.22	5.12		100.00			top of pin RB
		5.49	0.20	99.73			base of pin RB
		6.15	4.70	99.07		silt	top of terrace
		8.06	8.30	97.16			bankfull elevation RB
		10.23	13.10	94.99	0.00		REW
		10.22	15.00	95.00	0.01	bedrock	
		10.32	17.00	94.90	0.15	bedrock	
		10.89	19.20	94.33	0.68	cobble	
		10.45	21.50	94.77	0.15	cobble	
		10.62	24.00	94.60	0.19	cobble	
		10.28	26.40	94.94	0.04	gravel	
		10.30	28.80	94.92	0.11	gravel	
		10.26	30.70	94.96	0.05	gravel	
		10.17	31.30	95.05	0.00	gravel	LEW
		9.88	35.30	95.34		cobble bar	
		10.26	39.10	94.96	0.00		REW, high flow channel
		10.78	41.30	94.44		cobble/gravel	
		11.45	43.80	93.77		cobble	
		11.05	46.50	94.17		cobble	
		10.71	48.85	94.51		cobble	
		10.31	49.90	94.91	0.00		LEW high flow channel
		9.80	52.80	95.42		on gravel bar	
		9.33	60.00	95.89		gravel bar	
		9.19	67.00	96.03		gravel bar	
		8.45	74.10	96.77		gravel bar	
		8.08	81.40	97.14		gravel bar	
		8.57	88.10	96.65			edge of second high flow channel
		8.72	92.40	96.50			
		8.22	97.00	97.00			
		6.54	102.50	98.68			
		5.55	104.90	99.67			
		5.36	108.00	99.86			
		5.41	111.20	99.81			base of pin, LB
		5.08					top of pin, LB

Rubicon Dam Reach Site (RD-G1) middle cross-section

н	BS	FS	STA	ELEV	WD	Bed material	Notes
							rock in middle of stream (in pool) -
101.53	6.04	0.05		95.49			from 8/25 survey
		2.35	0.60	00.00			top of pin LB
		2.61	0.60	98.92			base of pin LB
		3.82	8.20	97.71		sand/silt	top of terrace
		4.69 5.56	12.00 16.00	96.84 95.97			
		6.01	20.70	95.97 95.52			bankfull alovation I R
			20.70	93.82 93.83	0.00		bankfull elevation, LB LEW
			25.50	93.59 93.59		cobble	
		8.10	27.00	93.43		gravel	
			29.10	93.41 93.41		gravel	
		8.26	31.10	93.27		gravel	
		8.27	33.20	93.26		gravel	
		8.29	35.20	93.24		gravel	
		8.18	36.90	93.35		cobble	
		7.99	39.10	93.54		gravel	
			41.30	93.64		gravel	
			43.70	93.71		gravel	
		7.90	45.60	93.63		gravel	
		7.90	47.00	93.63	0.23	cobble	
		8.08	48.90	93.45	0.40	cobble	
		8.03	51.30	93.50	0.35	cobble	
		7.92	53.20	93.61	0.22	cobble	
		7.97	55.50	93.56	0.26	cobble	
		7.81	57.60	93.72			REW
			64.20	94.85		gravel bar	on gravel bar
		6.31	71.80	95.22			
			78.00	95.31			
		6.23	80.50	95.30			bankfull elevation
		4.06	85.20	97.47			
		3.69	88.50	97.84			top of terrace, RB
		2.14	94.60	99.39			base of pin, RB
		1.86					top of pin, RB

Rubicon Dam Reach Site (RD-G1) lower cross-section

HI 104.28	BS 10.99	FS	STA	ELEV 93.29	WD	Bed material	Notes rock on REW
104.20	10.99	3.60	5.30	95.29			top of pin LB
		3.82	5.30	100.46			base of pin LB
		4.34	9.30	99.94		silt/sand	top of left terrace
		5.98	14.10	98.30		310 3010	on slope
		9.95	18.90	94.33			bankfull elevation LB
		11.50	24.10	92.78	0.00		LEW
		12.01	27.10	92.27		gravel	
		12.01	29.20	92.27		gravel	
		11.89	31.30	92.39		gravel	
		11.78	33.30	92.50		gravel	
		11.72	35.00	92.56		gravel	
		11.65	37.00	92.63		gravel	
		11.69	39.00	92.59		gravel	
		11.76	41.00	92.52		gravel	
		11.77	43.20	92.51		gravel	
		11.75	45.30	92.53		gravel	
		11.73	47.70	92.55	0.36	sand	
		11.69	50.40	92.59	0.35	sand	
		11.63	53.00	92.65	0.26	sand	
		11.49	55.10	92.79	0.11	sand	
		11.50	57.10	92.78	0.15	cobble	
		11.24	59.50	93.04	0.00		REW
		10.79	66.00	93.49		gravel bar	on gravel bar
		10.97	73.60	93.31			
		9.91	80.00	94.37			
		9.26	84.30	95.02			
		10.15	89.90	94.13			
		9.77	93.50	94.51			bankfull elevation
		9.19	99.90	95.09			
		7.83	102.70	96.45			
		6.15	107.30	98.13			
		4.81	111.00	99.47			
		4.61	115.20	99.67			base of pin RB
		4.34					top of pin RB

Rubicon Dam Reach Site (RD-G1) pebble count summary

	Upper Class Boundary	Rosgen Particle						
Particle Description	(mm)	Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	13	16	15	44	15%	15%
Very coarse sand (measured)	2	5	0	0	0	0	0%	15%
Very Fine Gravel	4		2	0	1	3	1%	16%
Fine Gravel	8		1	4	7	12	4%	20%
Medium Gravel	16	4	10	10	7	27	9%	29%
Coarse Gravel	32		28	19	21	68	23%	51%
Very Coarse Gravel	64		31	22	31	84	28%	79%
Small Cobble	128	- 3	13	24	17	54	18%	97%
Large Cobble	256	5	2	5	1	8	3%	100%
Small Boulder	512		0	0	0	0	0%	100%
Medium Boulder	1024	2	0	0	0	0	0%	100%
Large Boulder	2048	2	0	0	0	0	0%	100%
Very Large Boulder	4096		0	0	0	0	0%	100%
Bedrock	>4096	1	0	0	0	0	0%	100%
		Total	100	100	100	300	100%	

Modified Wolman Pebble Count (mm), Rubicon Reach

Loon Lake Dam Reach Upper Site (LL-G1) long profile

HI 100.50	BS 0.50	FS	STA BM	Water depth (ft)	Elev 100.00	WSE	Notes Assumed elevation BM = 100'
		14.45	0.00	2.37	86.05	88.42	d/s of multi-thread channels thru meadow
		13.89	25.00	1.80	86.61	88.41	
		16.25	50.00	4.13	84.25	88.38	
		14.36	75.00	2.24	86.14	88.38	
		14.38	125.00	2.23	86.12	88.35	Skipped 100' - no visibility
		14.19	150.00	2.03	86.31	88.34	
		16.00	175.00	3.02	84.50	87.52	
		15.49	200.00	3.31	85.01	88.32	
101.25	1.25	0.50					TP 1 on BM
							no vis 225-300
		16.93	300.00	4.00	84.32	88.32	maybe backwater at STA 300
							325 upstr end of outcrop
		17.40	325.00	4.49	83.85	88.34	
		16.34	350.00	3.40	84.91	88.31	TW on bedrock
		17.05	375.00	4.13	84.20	88.33	
		18.05	400.00	5.07	83.20	88.27	
		1.25	BM				BM close

Loon Lake Dam Reach Upper Site (LL-G1) upper cross-section

н	BS	FS	STA	ELEV	Notes Meadow surface is heavily vegetated w/
					stand of even-aged lodgepoles. No elev.
105.00	F 00				change from 75' out from river (to base of
105.99	5.99	16.30	BM 1 0.00		BR slope) Top of RB EP
		16.40	0.00	89.59	Base of RB EP
		16.44	2.50	89.55	
		16.68	5.00	89.31	
		10.00	0.00	00.01	right edge of water - (backwater stagnant
		17.37	7.00	88.62	pool)
		18.21	9.60	87.78	(depth = 0.9)
		18.40	11.00	87.59	
		17.43	13.40	88.56	left edge water (backwater pool)
		16.83	17.20	89.16	
		16.19	20.50	89.80	
		15.95	22.50	90.04	
		15.91	25.00	90.08	
		16.18	25.90	89.81	
		16.77	26.00	89.22	RB bankfull
		17.25	26.10	88.74	
		17.71	26.50	88.28	REW
		18.70	27.50	87.29	
		19.44	29.70	86.55	
		20.38	30.40	85.61	
		20.57	32.50	85.42	
		20.35	35.00	85.64	
		20.03	37.00	85.96	
		19.81	38.00	86.18	
		19.79	39.70	86.20	
		19.74	41.00	86.25	
		19.35	42.30	86.64	
		18.00	43.80	87.99	$(1 \Box) M = A \Box \Box$
		17.95	44.20		(LEW = 45.5)
		17.58	45.80	88.41	
		17.40	47.00	88.59	upper BF estimate (LB)
		16.91 16.54	48.50 49.80	89.08 89.45	
		16.78	49.80 52.00	89.45 89.21	
		16.82	52.00 53.00	89.17	
		16.63	55.00	89.36	
		16.05	57.00	89.94	
		15.93	58.80	90.06	LB Top of pin
		16.04	58.80	90.00 89.95	LB Bottom of pin
		5.99	BM 1	03.30	(Loop closed)
103.00	3.00	0.00	BM 1		moved instrument
					Meadow surface continues to the left at
					same slope. Valley wall is hundreds of feet
					away.

Loon Lake Dam Reach Upper Site (LL-G1) middle cross-section

н	BS	FS	STA	ELEV	Notes
103.00		12.48	0.00		top of RB EP
		12.68	0.00	90.32	bottom of RB EP
		12.89	-10.00	90.11	
		13.30	-17.00	89.70	foot (toe) of BR valley wall
		10.16	-22.00	92.84	BR (BR continues at same slope to the right)
		12.84	3.00	90.16	
		13.15	3.50	89.85	
		14.14	4.00	88.86	RB bankfull
		14.80	4.20	88.20	REW / overhang over rootball of conifer - 6')
		16.05	4.50	86.95	
		18.30	7.00	84.70	
		18.65	10.20	84.35	
		18.55	13.00	84.45	
		18.44	16.00	84.56	
		18.16	19.00	84.84	
		18.09	21.00	84.91	
		18.69	23.00	84.31	
		18.95	25.00	84.05	
		18.97	27.00	84.03	
		18.71	29.00	84.29	
		18.40	31.00	84.60	
		17.10	33.00	85.90	
		16.29	35.00	86.71	
		15.45	37.00	87.55	
		14.75	37.40	88.25	LEW
		14.33	37.50	88.67	
		14.01	38.10	88.99	LB BF est.
		13.54	39.10	89.46	
		13.30	39.90	89.70	LB base of pin
		13.09	39.90		LB top of pin
		12.74	44.00	90.26	at elevation of meadow (approximately)

Loon Lake Dam Reach Upper Site (LL-G1) lower cross-section

н	BS	FS	STA	ELEV	Notes
103.00		12.98	0.00	90.02	Top of RB EP
		13.28	0.00	89.72	RB EP (bottom)
		13.13	-6.00	89.87	
		13.22	-10.00	89.78	
		13.47	-16.00	89.53	
		13.00	-20.00	90.00	toe of BR valley wall
		7.43	-30.00	95.57	BR; slope continues to the right)
		13.73	3.00	89.27	
		14.10	5.50	88.90	
		13.93	7.50	89.07	
		13.69	9.50	89.31	
		13.60	11.00	89.40	
		13.80	12.00	89.20	
		14.41	13.00	88.59	RB BF est.
		14.81	14.00	88.19	REW
		15.93	14.50	87.07	
		16.68	15.50	86.32	
		17.43	17.00	85.57	
		17.89	19.00	85.11	
		17.82	20.00	85.18	
		17.67	21.00	85.33	
		17.56	22.00	85.44	
		17.40	23.00	85.60	
		17.18	24.00	85.82	
		17.22	25.00	85.78	
		17.46	26.00	85.54	
		17.46	27.00	85.54	
		17.51	28.00	85.49	
		17.76	30.00	85.24	
		17.46	31.00	85.54	
		17.91	32.00	85.09	
		17.00	33.00	86.00	
		16.28	34.00	86.72	
		15.60	35.00	87.40	
		15.12	36.00	87.88	
		14.75	36.40	88.25	LEW (undercut)
		13.99	36.20	89.01	LB BF (outer edge of overhang)
		13.40	37.00	89.60	
		12.93	38.50	90.07	
		12.80	39.50	90.20	
103.00		12.75	40.50	90.25	
		12.81	41.60	90.19	LB bottom of pin
				00.10	LB top of pin - at elevation of meadow -
		12.71	41.60	90.29	continues for 50' to the left.
	3.00	12.11	BM 1	30.23	LOOP CLOSED
	5.00				

Loon Lake Dam Reach Middle Site (LL-G2) long profile (p. 1 of 2)

HI 107.76	BS 7.76	FS	STA BM1	ELEV 100.00	Water depth (ft)	WSE	Notes pin in base of tree near XS 2
		8.89	0.00	98.87	1.90	100.77	
		8.45	15.00	99.31	1.20	100.51	top of LGR
		9.34	30.00	98.42	1.60	100.02	
		9.56	45.00	98.20	1.85	100.05	
		10.03	60.00	97.73	1.60	99.33	
		10.11	75.00	97.65	1.50	99.15	XS1@STA 78
		10.75	90.00	97.01	1.50	98.51	
		11.14	97.00	96.62	2.45	99.07	
		10.46	110.00	97.30	1.00	98.30	
		10.93	125.00	96.83	1.00	97.83	
		11.72	140.00	96.04	1.20	97.24	
		12.14	155.00	95.62	1.40	97.02	
		12.21	170.00	95.55	1.50	97.05	
		7.76	BM1				
103.32	3.32		BM1(turn)	100.00			
		4.76	BM2	98.56			pin in base of tree D/S of XS2
		7.71	173.00	95.61	1.30	96.91	XS2
		8.15	190.00	95.17	1.60	96.77	
		8.35	205.00	94.97	1.50	96.47	
		4.76	BM2	98.56			
	3.32		BM1				
101.43		2.87	BM2(turn)				
		6.82	220.00	94.61	1.65	96.26	
		7.10	235.00	94.33	1.52	95.85	
		7.23	250.00	94.20	1.62	95.82	
		7.40	265.00	94.03	1.75	95.78	
		7.25	276.00	94.18	1.46	95.64	
		7.20	291.00	94.23	1.30	95.53	
		7.67	306.00	93.76	1.56	95.32	
		8.51	321.00	92.92	2.29	95.21	
		8.66	336.00	92.77	2.51	95.28	
		8.18	351.00	93.25	2.02	95.27	
		8.14	355.00	93.29	1.80	95.09	edge of log jam
		2.44	356.00	98.99	2.00	100.99	top of log
		8.29	357.00	93.14			
		4.04	358.50	97.39	can't read		top of log
		8.31	360.00	93.12	1.85	94.97	
		3.69	362.00	97.74			top of log
		8.32	362.00	93.11	1.83	94.94	
		3.44	366.00	97.99			top of tree
		8.29	367.00	93.14	1.45	94.59	end of log jam

Loon Lake Dam Reach Middle Site (LL-G2) long profile (p. 2 of 2)

HI 101.43	BS	FS 8.25	STA 376.00	ELEV 93.18	Water depth (ft) 1.21	WSE 94.39	Notes
101110		0.20	010100	00110		0 1100	pin in base of large snag, on LB D/S of
		5.70	BM3	95.73			woodjam
		2.88	BM2				
100.35	4.62		BM3(turn)	95.73			
		7.74	391.00	92.61	1.22	93.83	
		9.14	406.00	91.21	2.17	93.38	
		9.99	421.00	90.36	3.04	93.40	
							LWD jam w/small mid-channel bar & side
		9.63	436.00	90.72	2.65	93.37	channel
		8.52	451.00	91.83	1.54	93.37	
		7.92	466.00	92.43	0.88	93.31	
		8.66	481.00	91.69	1.48	93.17	
		9.95	496.00	90.40	2.34	92.74	~ end of bar
		9.76	511.00	90.59	2.16	92.75	
		9.04	526.00	91.31	1.36	92.67	
		9.47	541.00	90.88	1.52	92.40	
		9.41	556.00	90.94	1.35	92.29	
		9.88	571.00	90.47	1.76	92.23	~ XS 3 location
		9.76	581.00	90.59	1.62	92.21	
		10.06	596.00	90.29	1.85	92.14	
		10.10	611.00	90.25	1.90	92.15	
		9.92	626.00	90.43	1.73	92.16	
		9.67	641.00	90.68	1.45	92.13	
		9.63	656.00	90.72	1.40	92.12	
							side channel starts on LB beginning of
		9.94	671.00	90.41	1.73	92.14	meadow
		9.97	686.00	90.38	1.75	92.13	
		10.38	701.00	89.97	2.17	92.14	
		10.51	704.00	89.84	2.30	92.14	spanner LWD - can see on air photo
		6.08	BM4	94.27			
		4.62	BM3	95.73			
101.35	5.62		BM3(turn)	95.73			
		2.79	BM2	98.56			
103.66	5.10		BM2(turn)	98.56			
	-	3.67	BM1	99.99			Loop Closed: error of 0.01

Loon Lake Dam Reach Middle Site (LL-G2) upper cross-section

HI BS 107.76	FS 3.31 4.24 5.31 5.71 5.18 6.69 10.90 8.41 8.65 8.14 9.55 10.17 9.72 9.83 9.25 9.43 9.82 9.23	STA LB HP 0.00 9.00 17.00 20.60 22.00 22.60 21.00 28.00 30.00 31.00 33.00 35.00 37.00 39.00 41.00 43.00	WD	103.52 102.45 102.05 102.58	top of LB HP base of LB HP in snowmelt runoff channel edge of LWD jam top of log, LWD jam (undercut) upper BF est, 3' off XS tape lower BF est, 3' off XS tape next to LWD jam, undercut LEW
	9.75 9.99 9.84 9.53 8.77 8.26 8.85 9.26 8.85 9.26 8.77 7.90 8.85 8.72 8.60 8.08 8.87 7.98 7.28 8.10 7.49 8.05 8.75 8.21 7.09 3.31 7.76	47.00 49.00 51.00 52.50 53.60 54.00 55.20 56.30 59.00 60.20 63.40 68.00 68.50 69.00 74.00 77.00 81.00 83.00 83.00 87.00 92.00 97.00 RB EP LB HP BM1	0.00	99.66 100.27 99.71 99.01 99.55 100.67 104.45	lower BF estimate top of log, upper BF estimate

Loon Lake Dam Reach Middle Site (LL-G2) middle cross-section

-						
HI	BS	FS	STA	WD	ELEV	Notes
103.32		4.18	LB HP		99.14	top of LB HP
		4.58	0.00		98.74	base of LB HP
		4.55	10.00		98.77	
		4.98	20.00		98.34	
		4.97	27.00			upper BF estimate
		5.74	29.60		97.58	lower BF estimate
		6.43	32.60	0.00	96.89	LEW
		7.31	35.00		96.01	
		6.92	37.00		96.40	on small BLD
		7.47	39.00		95.85	
		7.71	41.00		95.61	
		7.64	43.00		95.68	
		7.94	45.30		95.38	edge of BLD
		6.24	47.00		97.08	•
		7.23	48.50		96.09	edge of BLD
		7.21	50.50		96.11	
		6.97	52.50		96.35 97.17	top of BLD
		6.15 6.75	54.50 56.50		97.17 96.57	
		6.37		0.00	96.95 96.95	PEW
		5.47		0.00		lower BF estimate
		5.03	69.00			upper BF estimate
		4.75	74.00		98.57	upper bi estimate
		4.87			98.45	base of RB EP
		4.55			98.77	
		4.76	BM2		98.56	
		3.32	BM1		100.00	
		4.01	-5.00		99.31	past LB HP
		4.16	-10.00		99.16	
		3.16	-15.00		100.16	
		3.89	-19.50		99.43	
		3.60	-25.00		99.72	
		3.64	-30.00		99.68	
		3.85	-34.50		99.47	
		1.10	-36.00			top of log
		4.19	-37.00		99.13	edge of log, in large rootwad hole
		4.40	-43.00		98.92	base of 9-ft. diameter rootwad
		4.18	LB HP		99.14	
		4.55	RB EP		98.77	•
		4.91	80.60		98.41	bottom of RB EP
		4.93	85.00		98.39	past RB EP
		4.82			98.50	past RB EP
		5.13	95.00	0.00	98.19 07.57	adap of atagapant water
		5.75	98.50	0.00	97.57	edge of stagnant water
		6.28 5.58	100.00 104.00		97.04 97.74	
		5.56 6.25	104.00		97.74 97.07	
		6.00	110.00		97.07 97.32	
		6.00	111.00	0 00		edge of stagnant water
		3.32	BM1	0.00	01.02	
		4.76	BM2			
			2.112			

Loon Lake Dam Reach Middle Site (LL-G2) lower cross-section

HI	BS	FS	STA	ELEV	WD	Notes
98.03	3.76		BM4	94.27		
		4.13	0.00	93.90		LTOP
		4.52 4.79	0.00 10.00	93.51 93.24		LBOP
		5.60	16.00	92.43	0.00	Edge of sm backwater
		7.22	18.00	90.81	0.00	
		7.18	21.00	90.85		
		6.09	23.50	91.94	0.00	Edge of water
		5.42	24.80	92.61		Next to log
		3.62	25.60	94.41		Top of log
		4.89	31.00	93.14		
		4.94	41.00	93.09		
		5.49 5.75	45.00 50.00	92.54 92.28		
		5.43	55.00	92.60		
		5.19	60.00	92.84		
		5.27	62.00	92.76		
		5.03	64.00	93.00		Upper BF estimate
		5.02	66.00	93.01		
		5.17	68.00	92.86		Lower BF estimate
		5.20 5.76	70.20 73.20	92.83	0.00	
		5.76 6.55	73.20	92.27 91.48	0.00	LEW
		6.55	76.00	91.48		
		6.48	78.00	91.55		
		6.23	80.00	91.80		
		5.94	82.00	92.09		On vegetated island, just under water; possible bar
		5.79	84.00	92.24		On vegetated island, just under water; possible bar
		6.22	86.00	91.81		
		6.55	88.00	91.48		
		6.56 6.81	90.00 92.00	91.47 91.22		
		6.87	92.00 94.00	91.22		
		7.07	96.00	90.96		
		6.94	98.00	91.09		
		6.83	100.00	91.20		
		6.87	102.00	91.16		
		6.80	104.00	91.23		
		6.39	106.00	91.64	0.00	DEW
		5.96 3.35	106.60 108.00	92.07 94.68	0.00	REW top of log
		5.14	109.00	92.89		Next to log
		4.78	111.00	93.25		
		4.91	113.00	93.12		Lower BF estimate
		4.82	115.00	93.21		
		4.93	117.00	93.10		
		4.79	119.00	93.24		Lippor BE optimate
		4.73 4.69	121.00 125.00	93.30 93.34		Upper BF estimate
		4.69 4.76	125.00	93.34 93.27		
		4.45	135.00	93.58		
		4.53	140.00	93.50		
		4.48	145.00	93.55		
		4.37	150.00	93.66		
		4.29	155.00	93.74		
		4.45	160.00	93.58		
		4.39 5.17	170.00 180.00	93.64 92.86		
		5.14	190.00	92.80 92.89		
		5.68	195.70	92.35	0.00	Edge of stagnant water
		5.92	198.50	92.11		
		5.68	201.50	92.35	0.00	Edge of stagnant water
		4.84	203.80	93.19		Base of RB pin
		4.45	203.80	93.58		RTOP
		4.13 3.76	0.00 BM4	93.90 94.27		LTOP
		5.70	DIVI4	J4.21		

Loon Lake Dam Reach Middle Site (LL-G2) pebble count summary

Modified Wolman Pebble Count (mm), Middle Loon Lake

	Upper Class	Rosgen						
	Boundary	Particle						
Particle Description	(mm)	Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	2	4	3	9	3%	3%
Very coarse sand (measured)	2	5	0	0	0	0	0%	3%
Very Fine Gravel	4		0	3	0	3	1%	4%
Fine Gravel	8	-	3	4	0	7	2%	6%
Medium Gravel	16	4	11	7	0	18	6%	12%
Coarse Gravel	32	-	12	12	10	34	11%	24%
Very Coarse Gravel	64	-	21	17	19	57	19%	43%
Small Cobble	128	3	30	27	37	94	31%	74%
Large Cobble	256		14	16	27	57	19%	93%
Small Boulder	512		6	9	4	19	6%	99%
Medium Boulder	1024	2	1	1	0	2	1%	100%
Large Boulder	2048		0	0	0	0	0%	100%
Very Large Boulder	4096]	0	0	0	0	0%	100%
Bedrock	>4096	1	0	0	0	0	0%	100%
		Total	100	100	100	300	100%	

Loon Lake Dam Reach Lower Site (LL-G3) long profile

ні	BS	FS	STA	WSE	ELEV	- Water depth (ft)	Notes
106.03	6.03		BM1		100.00		pin on LB between XS1 and XS2 pins
		17.69	0.00	92.70	88.34	4.36	
		16.67	10.00	92.71	89.36	3.35	
		16.39	20.00	92.70	89.64	3.06	beginning of pool tailout
		17.45	30.00	92.71	88.58	4.13	undercut bank area-deeper
		17.37	40.00	92.69	88.66	4.03	undercut bank area-deeper
		16.98	50.00	92.69	89.05	3.64	near beginning of debris jam
		16.55	60.00	92.67	89.48	3.19	at beginning of debris jam
		16.32	68.00	92.67	89.71	2.96	next to log
		10.75	68.50	00.00	95.28	2.00	top of log
		16.44	70.10	92.68	89.59	3.09	next to log
		12.20 16.12	70.50 73.00	02.67	93.83 89.91	2.76	top of log
		12.90	73.00	92.67	93.13	2.76	next to log top of log
		15.75	80.00	93.66	90.28	3.38	top of log
		16.65	95.00	92.64	89.38	3.26	
		16.16	101.00	92.79	89.87	2.92	XS1
		15.04	113.00	92.63	90.99	1.64	top of boulder stream crossing
		15.22	125.00	91.74	90.81	0.93	
	6.03		BM1				
104.87	4.87		BM1				
		14.95	137.00	92.23	91.08	1.15	bottom of riffle
		15.43	147.00	92.10	90.60	1.50	
		15.34	171.00	92.09	90.69	1.40	
		14.90	180.00	92.13	91.13	1.00	top of small riffle
		15.85	193.00	91.48	90.18	1.30	bottom of riffle
		16.61	208.00	91.42	89.42	2.00	
		17.52	221.00	91.36	88.51	2.85	
		16.23	236.00	91.40	89.80	1.60	
		15.80	251.00	91.38	90.23	1.15	top of small riffle
		40.00	258.00	04.00	00.00	4.05	XS2
		16.00	266.00	91.28	90.03	1.25	
		16.58	281.00	90.95	89.45	1.50	
		17.23 17.36	296.00	91.00 90.97	88.80 88.67	2.20 2.30	
		16.83	311.00 326.00	91.00	89.20	1.80	
		17.39	341.00	90.94	88.64	2.30	top of boulder cascade
		16.54	349.00	90.89	89.49	1.40	top of bounder cascade
		18.08	366.00	89.65	87.95	1.70	bottom of boulder cascade
		19.16	381.00	89.57	86.87	2.70	
		19.62	396.00	89.51	86.41	3.10	
	4.87		BM1				
		7.76	BM2		97.11		
98.74	1.63		BM2		97.11		
		12.39	411.00	88.35	86.35	2.00	
		12.12	426.00	88.27	86.62	1.65	
		11.88	441.00	88.21	86.86	1.35	
		11.53	456.00	88.16	87.21	0.95	
		12.41	471.00	87.93	86.33	1.60	
		12.53	486.00	87.61	86.21	1.40	X00
		40.40	487.80	0.00	05.04	0.00	XS3
		13.13	501.00	87.61 87.56	85.61	2.00	
		12.03 12.57	516.00	87.56 87.47	86.71	0.85	
		12.57	531.00 546.00	87.47 87.33	86.17 86.18	1.30 1.15	
		12.50	540.00 561.00	87.61	86.21	1.15	
		12.33	576.00	87.92	86.42	1.50	
		13.13	591.00	87.11	85.61	1.50	top of boulder cascade
		13.61	606.00	U 111	85.13		
	1.63		BM2				

Loon Lake Dam Reach Lower Site (LL-G3) upper cross-section (p. 1 of 2)

HI 106.03	BS 6.03	FS	STA BM1	ELEV	Notes
100.00	0.00	0.48	LB HP	105.55	top of LB HP
		0.67	0.00	105.36	
		3.55	10.00	102.48	
		7.72	20.00	98.31	
		10.98	30.00	95.05	
		11.92	40.00	94.11	upper bankfull estimate
		12.44	42.00	93.59	
		12.68	44.00	93.35	
		12.50	46.00	93.53	
		12.67	48.00	93.36	
		12.68	50.00	93.35	
		12.72	52.00	93.31	
		12.28	55.00	93.75	
		12.08	60.00	93.95	
		11.90	65.00	94.13	
		11.71	70.00	94.32	
		11.94	75.00	94.09	
		12.10	80.00	93.93	
		11.53	85.00	94.50	
		11.44	90.00	94.59	
		11.53	95.00	94.50	
		12.00	100.00	94.03	
		12.08	102.00	93.95	lower bankfull estimate
		12.22	104.00	93.81	on root
		12.02	106.00	94.01	
		12.48	108.00	93.55	
		13.09	110.00	92.94	
		13.06	112.00	92.97	
		13.27	114.00	92.76	
		13.32	116.00	92.71	LB edge of water
		13.52	118.00	92.51	
		13.79	120.00	92.24	
		13.88	122.00	92.15	
		14.07	124.00	91.96	
		14.08	126.00	91.95	
		14.28	127.80	91.75	next to log
		11.32	128.20	94.71	top of log
		15.07	130.00	90.96	next to log

Loon Lake Dam Reach Lower Site (LL-G3) upper cross-section (p. 2 of 2)

н	BS	FS	STA	ELEV	Notes
106.03		15.39	132.00	90.64	
		15.97	134.00	90.06	
		15.94	136.00	90.09	
		16.14	138.00	89.89	
		16.04	140.00	89.99	
		15.93	142.00	90.10	
		15.97	144.00	90.06	
		15.56	146.00	90.47	
		15.59	148.00	90.44	
		15.80	150.00	90.23	
		15.74	152.00	90.29	
		13.26	154.00	92.77	top of BLDR
		13.49	156.30	92.54	REW
		12.30	159.30	93.73	lower BF estimate
		12.38	160.00	93.65	
		11.51	162.00	94.52	
		12.33	164.00	93.70	
		11.22	166.00	94.81	
		11.16	168.00	94.87	upper BF estimate
		11.18	170.00	94.85	
		11.87	175.00	94.16	
		10.94	180.00	95.09	
		10.17	185.00	95.86	
		9.71	RB EP	96.32	top of RB EP
		9.93	186.60	96.10	bottom of RB EP
		0.45	LB HP	105.58	
		6.00	BM1	100.03	
		0.48	LB HP	105.55	
		6.03	BM1	100.00	

Loon Lake Dam Reach Lower Site (LL-G3) middle cross-section (p. 1 of 2)

						-
HI	BS	FS	STA	ELEV	Bed material	Notes
104.87	4.87		BM1			
		3.47	0.00	101.40		t.o. LB pin
		3.93	0.00	100.94		b.o. LB pin
		7.36	10.00	97.51		
		9.63	20.00	95.24		
		10.84	30.00	94.03		
		12.64	36.80	92.23	edge of LB cobble bar	
		12.52	46.00	92.35	cobble bar	
		12.35	50.00	92.52	cobble bar	
		12.33	60.00	92.54	cobble bar	
		12.59	70.00	92.28	cobble bar	
		12.87	74.00	92.00		upper bankfull estimate
		13.61	80.00	91.26		
		14.16	83.40	90.71		lower bankfull estimate
		13.94	85.00	90.93		
		14.09	87.00	90.78		
		14.08	89.00	90.79		
		14.39	91.00	90.48		
		14.57	92.80	90.30		left edge of water
		14.89	94.00	89.98		
		15.05	96.00	89.82		
		15.29	98.00	89.58		
		15.54	100.00	89.33		
		15.39	102.00	89.48		
		15.38	104.00	89.49		
		15.59	106.00	89.28		
		15.54	108.00	89.33		
		15.96	110.00	88.91		
		16.15	112.00	88.72		
		16.29	114.00	88.58		
		16.40	116.00	88.47		thalweg edge of muddy/silty overflow
		16.20	117.40	88.67		channel

Loon Lake Dam Reach Lower Site (LL-G3) middle cross-section (p. 2 of 2)

		Η	I
4	^		0

					N	
HI	BS	FS	STA	ELEV	Bed material	Notes
104.87		15.44	119.00	89.43		
		15.37	121.00	89.50		
		15.43	123.00	89.44		
		15.76	125.00	89.11		
		14.86	127.50	90.01		right edge of water
		14.52	129.00	90.35		
		13.92	131.00	90.95		lower bankfull estimate
		13.59	133.00	91.28		
		13.25	135.00	91.62		
		12.69	137.00	92.18		
		12.09	139.00	92.78		upper bankfull estimate
		12.10	145.00	92.77		
		11.99	152.70	92.88		edge of debris jam 1
		8.50	163.00	96.37		t.o. debris jam 1
		11.36	172.50	93.51		backside of debris jam 1
		11.06	177.00	93.81		
		11.44	181.00	93.43		edge of GR mound
		10.96	184.00	93.91		t.o. GR mound
						back edge of GR mound/front of
		11.21	186.00	93.66		debris jam 2
		9.56	190.20	95.31		t.o. debris jam 2
		12.24	197.00	92.63		back of debris jam 2
		12.99	206.50	91.88		edge of debris jam 3
		10.25	211.50	94.62		t.o. debris jam 3
		12.34	214.30	92.53		back of debris jam 3
		12.19	220.00	92.68		
		11.96	230.00	92.91		
		10.85	240.00	94.02		
		9.56	241.80	95.31		t.o. RB pin
		10.43	241.80	94.44		b.o. RB pin
	3.47		0.00			t.o. LB pin
	4.87		BM1			close XS loop

Loon Lake Dam Reach Lower Site (LL-G3) lower cross-section

100.37 1.63 BM2 0.29 0.00 100.08 LTOP 0.49 0.00 99.88 LBOP 4.29 6.00 96.08 LBOP	
0.49 0.00 99.88 LBOP	
4 29 6 00 96 08	
5.78 10.00 94.59	
5.22 13.00 95.15 Top of lg. boulder 1	. 1
8.45 14.00 91.92 Bottom of Ig. boulde	er 1
9.43 18.00 90.94 Edge of boulder 2	
8.88 19.50 91.49 Top of boulder 2	an havidar)
8.83 16.00 91.54 upper BF estimate (
9.43 20.30 90.94 lower BF estimate (10.36 20.50 90.01 Edge of boulder 2	on boulder)
10.3620.5090.01Edge of boulder 211.1522.0089.22LEW	
11.77 24.00 88.60	
10.57 26.00 89.80 Top of boulder 3	
12.33 29.00 88.04 Edge of boulder 3	
12.32 30.00 88.05	
12.57 32.00 87.80 between two boulde	rs
12.54 34.00 87.83	
12.68 36.00 87.69	
12.65 38.00 87.72	
12.33 40.00 88.04	
11.75 42.00 88.62	
11.43 44.00 88.94	
11.51 46.00 88.86	
11.61 48.00 88.76	
11.62 50.00 88.75	
11.37 52.00 89.00	
10.83 54.00 89.54 top of sm. Veg. san	d mound
10.96 56.00 89.41	
10.94 58.00 89.43 REW	
9.97 60.00 90.40 lower BF est.; sand	and gravel
8.93 65.00 91.44 sand and gravel	
8.93 66.50 91.44 upper BF estimate	
7.93 70.00 92.44	
7.46 78.50 92.91 on sand	
7.53 80.00 92.84 on sand	
8.13 86.00 92.24 sand	
7.89 90.00 92.48	
6.66 100.00 93.71 sand and organics	
7.64 110.00 92.73 cobble/gravel 6.63 120.00 93.74 sand	
6.05 130.00 94.32	
7.63 140.00 92.74 on cobble	
7.73 150.00 92.64 sand and cobble	
8.96 155.00 91.41 edge of overflow ch	annel
8.73 160.00 91.64	
9.21 165.00 91.16	
9.15 170.00 91.22	
8.76 175.00 91.61	
8.22 180.00 92.15	
7.67 189.90 92.70 RBOP	
7.40 189.90 92.97 RTOP	
0.28 0.00 100.09 LTOP (error of 0.01)
1.63 BM2	

Loon Lake Dam Reach Lower Site (LL-G3) pebble count summary

Modified Wolman Pebble Count (Upper Class	Rosgen						
Particle Description	Boundary (mm)	Particle Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	15	12	0	27	9%	9%
Very coarse sand (measured)	2	5	0	4	11	15	5%	14%
Very Fine Gravel	4		1	0	7	8	3%	17%
Fine Gravel	8		0	0	2	2	1%	17%
Medium Gravel	16	4	6	2	3	11	4%	21%
Coarse Gravel	32		12	4	6	22	7%	28%
Very Coarse Gravel	64		26	27	4	57	19%	47%
Small Cobble	128	3	33	34	19	86	29%	76%
Large Cobble	256	3	7	13	34	54	18%	94%
Small Boulder	512		0	2	10	12	4%	98%
Medium Boulder	1024	2	0	2	4	6	2%	100%
Large Boulder	2048		0	0	0	0	0%	100%
Very Large Boulder	4096	1	0	0	0	0	0%	100%
Bedrock	>4096	1	0	0	0	0	0%	100%
		Total	100	100	100	300	100%	

Modified Wolman Pebble Count (mm), Loon Lake Lower

Gerle Creek Dam Reach Site (GC-G1) long profile

н	100	BS 7.31	FS		STA	Elevation	WSE		/ater depth
	100 107.31	7.51		0 67	14	09.64	102 16		ark: Orange X on boulder crest. Midchannel top of pool
	107.51			8.67 10.55	14 21		103.16		
				5.04	23		103.07		
				6.86	23 27		103.07		
				5.04	35		102.93		
				7.8	50		103.81		
				6.65	61		102.54		
				7.25	76		103.36		
				6.81	99		102.24		
				0.01	101	100.0			Cross sect. #1 at station 101
	117	17		15.83	117	101.17	102.27	7 1.1	Changed location. Shoot back to bench mark.
				15.64	131		102.31		
				19.4	144		101.06		
				18.81	156		101.17		
				19.6	176		101.03		
				18.22	195	98.78			
				17.91	207		100.98		
				16.93	221	100.07	100.94		
				19.48	239		100.37		
				17.38	258	99.62	100.26	0.64	
				20.89	276	96.11	97.33	3 1.22	
				22.14	298	94.86	96.7	7 1.84	
	110.43	10.43							moved equip: benchmark rock at about 300 on long profile.
				16.73	309	93.7	96.64	2.94	
				16.87	322	93.56	96.79		where x-sec 2 intersects long profile
				15.56	329	94.87	96.68	8 1.81	
				19.24	344	91.19			
				17.82		92.61			
				16.31	380	94.12			
				17.3	405	93.13			
				17	436	93.43			
				17.83	453	92.6			
				18.79	474	91.64			
				17.02		93.41			
				14.24	515	96.19			
				15	528	95.43			
				15.77	546	94.66			where x-sec 3 (lower) intersects long profile
				15.3	559	95.13			
				15.64	573	94.79			
				15.77	587 600	94.66			
				16.17	600	94.26			
				16.19	611 625	94.24			
				16.46	625	93.97			
				17.88 18.35	640 652	92.55 92.08			
				18.35	652 681	92.08 91.39			
				19.04	716	91.39			
				16.94	745	92.22 93.49			
				17.92	745	93.49			
				18.2	783	92.23			End of long profile
				10.2	100	52.25	55.15	, 0.9	

Gerle Creek Dam Reach Site (GC-G1) upper cross-section

н	BS	FS	STA		ELEV	Notes Benchmark: Orange "x" on crest of boulder mid-channel. Top of
10 107.3		31				large pool.
107.3	I			0		Cross-section #1 QA Benchmark = 7.30, moved equipment. Rod leaning slightly
11	7	10.7	5	0	106.25	towards me on top of pin
		11.		0	105.9	Off pin, on ground
		11.2			105.78	
		11.5			105.43	
		11.8	7 6	5.7	105.13	
		13.0	4	7	103.96	
		13.8	5	9	103.15	
		14.2	2 .	10	102.78	Upper bankfull estimate
		14.3	6 [.]	11	102.64	Lower bankfull estimate
		14.7	2	12	102.28	Right edge of water
		15.	1	13	101.9	
		15.	9 .	15	101.1	
		15.3	7	17	101.63	
		16.3		19	100.67	
		15.2		21	101.74	
		15.0		23	101.93	
		14.6			102.31	
		16.8			100.17	
		15.3		29	101.64	
		15.4		31	101.52	Cross section occurs at 103 along long profile
		15.0		33	101.99	
		18.8		35	98.15	
		16.1		37	100.82	
		16.0		39	100.92	
		14.5		41	102.47	
		14.8			102.17	
		14.8			102.16	Left edge of water
		14.4			102.55	
		14.3		47	102.68	
		13.7		49 54	103.27	
		12.0		51	104.97	
		10.9		53	106.03	
		9.9		55	107.07	Dettern of left nin
		9.5		57	107.44	Bottom of left pin.
		9.4	9	57	107.51	Top of left bank pin. No bankful indicators on LB

Gerle Creek Dam Reach Site (GC-G1) middle cross-section

н	BS	FS	S	ТА		ELEV	Notes
	100	9.26					Same benchmark as 5/20/03.
	109.26		8.42		0	100.84	LB top of pin.
			9.14		0		Bottom of LB pin.
			7.78	-1	0	101.48	
			5.9	-16	6	103.36	
			7.81	-20	4	101.45	
			5.01	-3	0	104.25	
			9.03	1.	7	100.23	
			10.75		2	98.51	Upper bankfull estimate.
			11.8	3.	2	97.46	Lower bankfull estimate.
			12.35		5	96.91	
			12.55		6	96.71	Left edge of water.
			13.26	7.	9	96	
			13.77	9.	7	95.49	
			14.25	12	9	95.01	
			14.74	16	6	94.52	
			14.5	21	9	94.76	
			15.31	23.	4	93.95	
			15.59	24	9	93.67	
			15.48	25		93.78	
			14.95	26		94.31	
			14.73	28		94.53	
			14.75	30		94.51	
			12.8		3	96.46	
			12.54	33.			Right edge of water.
			11.44		5	97.82	Lower bankfull estimate.
			11.08	36			Upper bankfull estimate.
			10.55	38.		98.71	
			10.77	39.		98.49	
			10.73	40		98.53	
			8.93	41		100.33	
			9.68	43			Left edge of cobble gravel deposit
			9.79	46		99.47	
			9.3	49		99.96	
			9.54	52		99.72	
			9.34	54			Right edge of gravel cobble deposit
			8.92	56		100.34	
			8.39		8	100.87	
			8.12	60			Base of RB pin
			7.72	60			Top of RB pin.
			6.95	68		102.31	
			5.39	76	4	103.87	

Ger	e Cree	ek Dar	n Reac	h Site	(GC-G1) lower cross-section
HI	BS	FS	STA	ELEV	Notes
					Pin is at 0.2 ft. 1.9 ft above elevation of station 3.8.
					Elevation of top of pin is 0.1 above elevation of large
	100	10	0.		root where bottom of pin is located.
	110		1.74 3.		
			0.09 -1.		
				9 100.07	
			2.06 6.		
					Fine organic flotsam (flood debris) on bank
			12.3 11. 2.26 13.		Upper bankfull.
			2.20 13. 2.88 15.		Lower bankfull.
			3.09 15.		Top of exposed roots.
			4.01 15.		Left edge of water. Little overhang.
			4.63 16.		
			5.15 18.		
			15.3 20.		
			5.08 22.		
					Top of boulder
			4.18 26.		Top of boulder
			4.02 26.		Right edge of water
			2.83 22.		
					Upper bankfull estimate. Cobble gravel aluvial deposit
		1:	2.28 29.	4 97.72	at pool tailout, since RB edge of water
		1:	2.86 3	2 97.14	
			13.3 34.	3 96.7	
		1:	3.67 36.	5 96.33	High flow channel across this deposit.
		1:	3.13 38.	9 96.87	
		1:	2.65 41.	4 97.35	
			2.37 45.		
				9 97.63	
			2.19 53.		
			2.88 56.		
			3.56 58.		
			3.97 59.		Left edge of water.
			4.24 60.		
			4.04 60.		Right edge of water.
			3.31 62.		
			3.32 64.		
			3.56 65. 3.81 65.		Left edge of water.
			3.81 65. 3.59 69.		
			3.59 09. 3.55 72.		
			3.45 77.		
		1.	0.70 77.	00.00	Right edge of water. Flow is pouring from RB to LB
		1:	3.34 8	1 96.66	diagonally on side (right) channel
				4 97.03	
			2.43 86.		
			2.36 88.		Upper bankfull estimate. Left base of large log.
			8.99 89.		Top of large log.
			0.09 90.		Small woody debris pile on right side of large log.
			9.35 92.		Top of RB pin.
					Ground surface below RB pin. Right base of small LWD jam pile. Right base of small pine tree where RB
		1	1.64 93.	2 98.36	pin is nailed.
			1.88 103.		
			1.07 124.		
			0.02 13		END

Gerle Creek Dam Reach Site (GC-G1) pebble count summary

Modified Wolman Pebble Count (mm), Gerle Creek Dam Reach

	Upper Class Boundary	Rosgen Particle						
Particle Description	(mm)	Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	0	0	0	0	0%	0%
Very coarse sand (measured)	2	5	1	1	3	5	2%	2%
Very Fine Gravel	4		21	1	2	24	8%	10%
Fine Gravel	8		1	0	1	2	1%	10%
Medium Gravel	16	4	0	4	9	13	4%	15%
Coarse Gravel	32		6	11	18	35	12%	26%
Very Coarse Gravel	64	-	1	23	27	51	17%	43%
Small Cobble	128	3	0	29	36	65	22%	65%
Large Cobble	256	3	0	17	4	21	7%	72%
Small Boulder	512		3	8	0	11	4%	76%
Medium Boulder	1024	2	11	5	0	16	5%	81%
Large Boulder	2048] 2	10	1	0	11	4%	85%
Very Large Boulder	4096		0	0	0	0	0%	85%
Bedrock	>4096	1	46	0	0	46	15%	100%

Robbs Peak Dam Reach Site (RPD-G1) long profile (p. 1 of 2)

н	BS	FS	STA	Water depth (ft)	ELEV	WSE	Notes
106.65		9.81	8.60	4.65	96.84	101.49	
		10.16	22.90	2.87	96.49	99.36	
		9.69	40.80	2.37	96.96	99.33	
	6.65		BM 1			0.00	QC check
		9.15	60.30	1.87	97.50	99.37	
		8.84	71.70	1.56	97.81	99.37	
		8.17	78.30	0.80	98.48	99.28	
		7.86	82.40	0.50	98.79	99.29	top of riffle (channel split)
		7.89	86.60	0.54	98.76	99.30	
		8.27	109.50	0.57	98.38	98.95	
		8.51	120.60	0.67	98.14	98.81	
		9.04	135.90	0.91	97.61	98.52	
		9.22	147.30		97.43	98.48	just above confluence w/ side channel
		9.24	158.30		97.41	98.44	
		9.87	169.10		96.78	98.39	•
		9.00	185.40		97.65	98.35	riffle-like unit
		9.47	195.50		97.18	98.27	at XS1 (PHABSIM XS5)
		9.25	216.50	0.78	97.40	98.18	
		10.64	232.70		96.01	98.19	at PHABSIM XS4
		10.05	265.60		96.60	98.20	
		10.03	281.40		96.62	98.14	
		10.05	289.00	1.56	96.60	98.16	
		5.41	BM3		101.24	101.24	BM - pin in LB gravel bar (flagged)
		7.02	BM2		99.63	99.63	BM - pin in LB gravel bar (flagged)
		7.02	BM2		99.63	99.63	QC check - Elevation of BM2 = 99.63
		5.41	BM3		101.24		QC check - Elevation of BM3 = 101.24
		6.65	BM1		100.00	100.00	QC Check
	3.49		BM3				moved station
	5.07		BM2				moved station
	3.49		BM3				QC Check
	5.07		BM2				QC Check
104.73		8.00	304.00	1.46	96.73	98.19	
		6.95	322.00	0.37	97.78	98.15	
		7.67	332.90	1.09	97.06	98.15	
		7.16	345.70	0.54	97.57	98.11	top of riffle
		8.23	366.30	1.13	96.50	97.63	
		8.37	380.90	1.26	96.36	97.62	
		9.15	404.00	2.02	95.58	97.60	
		10.24	417.20	3.13	94.49	97.62	
		8.46	437.70	1.35	96.27	97.62	
		7.85	456.20		96.88	98.58	top of riffle
		8.22	468.10		96.51	97.08	PHABSIM XS1
		9.25	491.00		95.48	96.63	
		10.45	506.50		94.28	96.52	
		10.43	521.80		94.30	96.60	
		9.35	539.00	1.09	95.38	96.47	
		10.56	557.10		94.17	96.35	
		11.57	574.90	3.36	93.16	96.52	
		3.49				0.00	BM 3 - QC Check
		5.07				0.00	BM 2 - QC Check

Robbs Peak Dam Reach Site (RPD-G1) long profile (p. 2 of 2)

HI BS 9.02 9.02 108.68 7.44 7.44 9.02	2 2 4 4	STA BM2 BM2 BM3 BM3 BM2	Water depth (ft)	ELEV	WSE 0.00 0.00 0.00 0.00 0.00 0.00	Notes Moved level; Elev. BM 2 = 99.63 Moved level Moved level; Elev. BM 3 = 101.24 Moved level Moved level Note: backsights to BMs result in 0.03 error.
108.68	14.97 14.41 9.03 9.02 9.04 7.44 9.04	589.00 600.00 BM 2 BM 2 BM 2 BM 3 BM2	2.47 2.13	93.71 94.27	0.00 96.18 96.40 0.00 0.00 0.00 0.00 0.00	* Using BM 3 as our TP, again QC Check (rod was tilted) QC Check QC Check QC Check QC Check QC Check (same reading as before) QC Check
	9.04 14.17 13.92 13.52 13.44 13.45 12.80 14.28 14.47 13.88	615.00 630.00 650.00 670.00 690.00 700.40 720.00 740.00 760.00	1.89 1.66 1.27 1.18 1.18 0.41 1.35 1.54 0.96	94.51 94.76 95.16 95.24 95.23 95.88 94.40 94.21 94.80	96.40 96.42 96.43 96.42 96.41 96.29 95.75 95.75 95.75	debris caught on tree at 8' on rod (hi flow? evidence) top of riffle
10.9 11.4 9.1 7.6 107.51 6.2	19 7 2	780.00 800.00 820.00 840.00 880.00 906.00 BM 2 BM 3 BM 5 BM 4 BM 2 BM 3 BM 3	1.20 1.13 1.39 1.21 2.09 2.42 0.40	94.49 94.58 94.20 94.35 93.51 93.18 95.14	95.69 95.71 95.59 95.56 95.60 95.60 95.60 95.54 0.00 0.00	scour next to BLDR top of riffle QA Check QA Check Moved level - closing out level loop

Robbs Peak Dam Reach Site (RPD-G1) upper cross-section

ні	BS	FS	STA	ELEV	Notes
	6.65	15	JIA		BM 1=nail in left bank u/s of XS1 (flagged)
106.65	6.65				BM 1
		1.52	0.80		Top of LB EP
		1.52	0.80		Top of LB EP
		1.91	0.80	104.74	Bottom of LB EP
		2.87	7.60	103.78	
		3.51	15.50	103.14	
		5.04	19.70	101.61	
		5.41	24.50	101.24	
		3.35	31.20	103.30	
		4.19	36.50	102.46	
		4.11	39.70	102.54	adra of aida abannal
		5.03 5.55	43.20	101.62	edge of side channel
		5.55 5.85	53.10	101.10	
		5.69	63.20 64.80	100.80 100.96	
		6.22	68.10	100.30	
		5.61	72.70	100.40	
		6.48	79.30	101.04	
		5.83	83.70	100.82	
		6.26	88.90	100.39	
		6.57	95.70	100.08	
		7.23	100.10	99.42	
		7.44	104.20	99.21	Top of ledge
		8.18	105.10	98.47	left edge of water (side channel)
		8.82	107.90	97.83	
		9.49	111.70	97.16	
		9.70	116.10	96.95	
		8.75	118.70	97.90	right edge of side channel (undercut bank, not WSEL)
		7.15	119.40	99.50	Top of ledge
		5.85	123.20	100.80	
		6.40	125.60	100.25	high bankfull estimate
		7.78	128.10	98.87	
		7.29	127.00	99.36	lower bankfull estimate *use this BF elevation
		8.33	130.60	98.32	edge of water - left bank (main channel)
		8.68	133.30	97.97	
		8.95	135.80	97.70	
		9.17	140.00	97.48	
		9.41 9.21	144.60 149.90	97.24 97.44	
		9.21	149.90	97.44	right edge of channel (undercut bank, not WSEL); Note:
		8.66	154.10	97.99	XS is not perpendicular to low flow
		7.61	154.30	99.04	bankfull? Undercut bank
		6.41	154.90	100.24	Top of ledge
		5.18	156.90	101.47	
		4.55	159.80	102.10	
		3.99	164.30	102.66	
		3.06	169.60	103.59	bottom of RB EP
		2.69	169.60		top of RB EP
		1.52	0.80		top of LB EP (QC Check)

Robbs Peak Dam Reach Site (RPD-G1) middle cross-section

	S FS	STA	ELEV	Notes
108.68	4.49	0.30		top of LB EP
	4.89	0.30	103.79	base of LB EP
	6.43	10.00	102.25	
	7.17	20.00	101.51	
	7.56	30.60	101.12	
	8.29	37.50	100.39	
	8.53 8.86	45.00 54.00	100.15 99.82	
	9.72	54.00 58.00	99.82 98.96	
	10.76		90.90 97.92	bankfull (?)
	11.71		96.97	left edge of water
	12.37		96.31	left edge of water
	12.09		96.59	
	12.05		96.63	
	11.97		96.71	
	11.97		96.71	
	11.73	78.80	96.95	right edge water
	11.04	81.50	97.64	
	11.39	82.60	97.29	
	11.43	85.70	97.25	
	11.04		97.64	
	10.65		98.03	
	10.55		98.13	
	9.89	100.30	98.79	bankfull (?)
	10.08		98.60	
	8.86	109.40	99.82	
	8.56	112.70	100.12	
	9.15	113.70	99.53	
	9.53	115.10	99.15	haplefull (2)
	8.80 7.62	117.20 120.50	99.88 101.06	bankfull (?)
	6.51	120.00	101.00	
	5.86	124.00	102.17	bottom of RB pin
	5.53	128.80	102.02	top of RB pin
	5.53	128.80	103.15	QC Check
	4.49	0.30	104.19	top of LB EP - QC Check
9.	02	BM 2	108.68	QC Check
	02	BM 2	108.68	QC Check
	5.53	128.80	103.15	top of RB pin
	6.07	139.00	102.61	
	10.65	147.20	98.03	
	11.30	153.90	97.38	
	10.41	163.00	98.27	
	8.81	176.10	99.87	
	9.39	190.00	99.29	
	9.10	210.00	99.58	
	8.07	251.00	100.61	
	7.04	274.20	101.64	base of RB EP
	6.89	274.20		top of pin (RB EP)
	4.49	0.30		top of LB EP - QC Check

Robbs Peak Dam Reach Site (RPD-G1) lower cross-section

F	41	BS	FS	STA	ELEV	Notes
	3.68		10.79	BM 5		pin in RB near XS 3; Elev BM 5 = 108.68-10.79=97.89
			11.29	BM 4		pin in RB near STA 600 on LP. FS Probably wrong(?)
			11.29			QC Check; Elev BM 4 = 108.68-11.29=97.39. FS Probably wrong(?)
			9.03	BM 2		QC Check
			7.44	BM 3		QC Check
		8.47		BM 4		
		8.47		BM 4		
		7.97		BM 5		
		7.97		BM 5		Using BM 5 as TP (BM 4 was obscured)
106	6.86		0.49	0.50		top of LB EP
			0.76	0.50	106.10	base of LB EP
			1.70	3.00		top of boulder
			2.32	5.70		boulder
			4.50	7.90		bottom of boulder
			5.21	12.60	101.65	
			6.43	15.90		top of ledge
			7.73	16.90	99.13	bottom of root mass (bankfull?)
			8.62	18.10	98.24	
			9.46	19.10	97.40	left edge of water
			9.67 10.42	19.20 22.00	97.19 96.44	
			10.42		96.09	
			10.95		95.91	thalweg (?)
			10.45		96.41	
			10.34		96.52	
			10.67		96.19	
			10.77		96.09	
				44.90		edge of boulder
			9.53	45.80		top of boulder
			11.46	46.90	95.40	scour around boulder
			11.42	50.00	95.44	scour around boulder
			10.19	53.00	96.67	
			9.75	54.10	97.11	
			9.45	54.40	97.41	right edge water
			8.61	55.00	98.25	
			8.00	56.20		bottom of boulder
			6.63	57.00		top of boulder
			6.03 8.46	58.30 55.80	100.83 98.40	bankfull (more confident than LB BF)
			8.46 5.74	55.80 64.50	98.40 101.12	
			5.74	72.90	101.12	
			6.26	80.10	100.60	
			6.19	86.10		edge of log jam
			4.85			back edge of log jam
			4.33	109.20		
			5.86	116.10		
			5.97	123.70		
			4.19			base of pin (RB EP)
			3.94	126.50		top of pin (RB EP)
			0.49	0.50		top of LB EP (QC Check)
			7.98	BM 5		QC Check
			8.47	BM 4		QC Check, Close of Survey

Robbs Peak Dam Reach Site (RPD-G1) pebble count summary

Modified Wolman Pebble Count (mm), Robbs Peak Dam Reach

	Upper Class Boundary	Rosgen Particle						
Particle Description	(mm)	Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	12	9	26	47	16%	16%
Very coarse sand (measured)	2	5	15	0	0	15	5%	
Very Fine Gravel	4		1	1	0	2	1%	21%
Fine Gravel	8		2	2	1	5	2%	23%
Medium Gravel	16	4	2	8	10	20	7%	30%
Coarse Gravel	32		17	25	20	62	21%	50%
Very Coarse Gravel	64		25	39	23	87	29%	79%
Small Cobble	128	3	24	13	8	45	15%	94%
Large Cobble	256	3	2	3	10	15	5%	99%
Small Boulder	512		0	0	1	1	0%	100%
Medium Boulder	1024	2	0	0	1	1	0%	100%
Large Boulder	2048		0	0	0	0	0%	100%
Very Large Boulder	4096		0	0	0	0	0%	100%
Bedrock	>4096	1	0	0	0	0	0%	100%
		Total	100	100	100	300	100%	

Ice House Dam Reach Upper Site (IH-G1) long profile

HI 102.61	BS 2.61	FS	STA	Water depth (ft)	Revised Station	Water Surface Elevation	Bed Elevation	Notes Bench M. 100.00 FT (top of boulder RB
102.01	2.01	9.27	0.00	2.59	0.00	95.93	93.34	Start of pool
		9.26	34.00	2.64	34.00	95.99	93.35	
		10.41	59.00	3.81	59.00	96.01	92.20	uniform bed, widely spaced interval
		10.97	90.00	5.42	90.00	97.06	91.64	*Max P.D.
		10.55	150.00	4.76	150.00	96.82	92.06	
		9.50	180.00	2.88	180.00	95.99	93.11	
		8.11	219.00	1.96	219.00	96.46	94.50	start of RIF (crest)
		7.53	255.00	1.22	255.00	96.30	95.08	
		8.41	278.00	1.83	278.00	96.03	94.20	
		8.15	299.00	1.10	299.00	95.56	94.46	
		8.68	3+29	1.62	329.00	95.55	93.93	XS 1 location
		8.42	3+60	1.34	360.00	95.53	94.19	
		9.76	3+80	2.70	380.00	95.55	92.85	
		8.34	3+98	1.20	398.00	95.47	94.27	Head of Mchannel bar, tape goes RR
		8.55	3+120	1.38	420.00	95.44	94.06	
		9.25	3+136	2.04	436.00	95.40	93.36	
		9.10	3+151	1.84	451.00	95.35	93.51	
		8.40	3+178	1.10	478.00	95.31	94.21	D/D and a (MOLL have
		8.65	3+200	1.24	500.00	95.20	93.96	D/S end of MCH bar
		9.36	3+230	1.83	530.00	95.08	93.25	
		9.04	3+259	1.42	559.00	94.99	93.57	
		10.29	3+279	2.60	579.00	94.92	92.32	XS2 logation
		10.09	3+285	2.40	585.00	94.92	92.52	XS2 location
	TP1A, 4.72	9.64	3+300	2.20	600.00	95.17	92.97	
	TP1A, 4.72 TP1B, 4.92	4.72 4.92					97.89 97.69	TP 1A TP 1B
100.71	3.02	4.92					97.09	TP 1B
100.71	2.81							TP 1A
100.70	2.01	7.54	6+10	1.80	610.00	94.96	93.16	IF IA
100.70		7.29	6+34	1.60	634.00	95.01	93.41	
		7.78	6+65	2.02	665.00	94.94	92.92	
		6.85	6+131	1.08	731.00	94.93	93.85	
		7.18	6+166	1.30	766.00	94.82	93.52	
		8.29	6+204	2.31	804.00	94.72	92.41	
		9.31	6+233	3.20	833.00	94.59	91.39	
		8.30	6+253	1.96	853.00	94.36	92.40	
		9.43	6+271	3.05	871.00	94.32	91.27	
		9.10	6+289.5	2.70	889.50	94.30	91.60	
100.70		(TP2A) 3.21					97.49	TP2A
		(TP2B) 4.49)				96.21	TP2B
102.67	5.18 (TP2A)							
102.67	6.46 (TP2B)							Tied off at 287 so 9 starts at 6+287
102.67		10.74	9+18	2.28	905.00	94.21	91.93	
		10.43	9+31	1.91	918.00	94.15	92.24	
		9.75	9+63	1.05	950.00	93.97	92.92	
		10.69	9+87	2.00	974.00	93.98	91.98	
		12.09	9+100	3.33	987.00	93.91	90.58	
		11.20	9+112	2.43	999.00	93.90	91.47	
		10.22	9+124	1.35	1011.00	93.80	92.45	
		11.08	9+150	2.20	1037.00	93.79	91.59	
		11.50	9+172	2.40	1059.00	93.57	91.17	
		10.58	9+197	1.43	1084.00	93.52	92.09	
		12.32	9+206	3.00	1093.00	93.35	90.35	
		12.44	9+214	3.10	1101.00	93.33	90.23	
		11.30	9+227	2.03	1114.00	93.40	91.37	
		10.85	9+233	1.56	1120.00	93.38	91.82	
		11.20	9+259	1.89	1146.00	93.36	91.47	
		11.00	9+278	1.64	1165.00	93.31	91.67	
100.07		11.57	9+300	1.55	1187.00	92.65	91.10	TDO
102.67		TP 3 (7.53)					95.14	TP3
102.00 102.00	6.86 (TP 3)	2 27 /014						TP3 $Closing order = 0.27$
102 00	BM	2.37 (BM)						Closing error = 0.37

Ice House Dam Reach Upper Site (IH-G1) upper cross-section

	Н	
1	02	61

н	BS	FS	STA	Elevation	Notes
102.61	20	1.41	213.00	101.20	TOPi, RB
		1.69	213.00	100.92	BOPin
		1.78	210.00	100.83	
		3.43	205.00	99.18	
		3.84	200.00	98.77	
		3.95	195.00	98.66	
		4.40	190.00	98.21	
		4.64	186.00	97.97	
		4.22	180.00	98.39	
		4.74	175.00	97.87	
		5.00	171.70	97.61	
		5.78	167.50	96.83	Upper bankfull estimate
		6.43	164.50	96.18	Lower bankfull estimate
		7.10	161.80	95.51	R edge of water
		7.44	159.50	95.17	emergent veg
		8.39	157.70	94.22	sand
		8.72	155.00	93.89	Thalweg?
		8.52	153.10	94.09	R base of root wad
		6.94	152.40	95.67	top of root wad
		8.43	150.90	94.18	Left base of root wad
		8.25	146.00	94.36	
		8.14	141.00	94.47	
		7.92	135.00	94.69	
		7.65	131.00	94.96	emergent veg
		7.13	125.50	95.48	left edge of water
		6.89	122.20	95.72	
		6.52	118.50	96.09	Lower bankfull estimate (gravel bar medium starting of water edge left)
		5.90	112.50	96.71	
		5.31	107.00	97.30	Upper bankfull estimate
		4.88	97.40	97.73	
		4.81	85.50	97.80	
		4.66	82.50	97.95	gravel sand transition
		4.09	77.20	98.52	
		3.19	72.20	99.42	
		3.22	59.00	99.39	
		2.62	51.00	99.99	
		1.81	37.00	100.80	
		1.73	19.00	100.88	at left bettern nin
		1.65	0.00	100.96	at left bottom pin
102.61		1.37	0.00		at left top of pin
102.61		1.89	-14.00	100.72	
		2.19	-43.00	100.42	P odgo of water (old channel?)
		1.88 3.09	-77.00	100.73 99.52	R edge of water (old channel?)
		3.09 2.69	-93.00 -115.00	99.52 99.92	L. edge of water
		2.69 1.58	-115.00	99.92 101.03	L. CUYE OF WALE
		4.08	-120.00	98.53	slope continues indefinitely
		00	-101.40	30.00	siope continues indefinitely

Ice House Dam Reach Upper Site (IH-G1) middle cross-section

HI	BS	FS	STA	Elevation	Notes
100.70		1.06	0.00	00.44	1 15 holow have of LD nin (DOD)
		1.26 0.51	0.00 0.00	99.44	1.15 below base of LB pin (BOP)
		1.28	20.50	99.42	0.51 is height of pin at 0 (TOP)
		2.22	20.50 30.00	99.42 98.48	
		2.22	30.00 35.00	98.48 97.94	
		4.19	40.30	97.94 96.51	
		4.19	40.30 44.40	96.24	Upper bankfull estimate
		4.40	44.40 50.00	90.24 96.03	Opper banklull estimate
		4.07	53.50	90.03 95.77	Lower bankfull estimate
		5.05	59.50	95.65	
		5.05	66.00	95.55	
		5.76	67.70	95.55 94.94	Left edge of water
		6.75	70.40	93.95	Left edge of water
		6.67	72.00	94.03	
		6.24	77.30	94.46	
		5.99	84.70	94.71	
		6.41	90.90	94.29	
		7.53	95.00	93.17	
		8.31	100.00	92.39	Thalweg
		8.32	101.00	92.38	Left base of BLDR
		5.48	103.40	95.22	Crest of BLDR
		7.80	105.00	92.90	Right base of BLDR/Left edge of 2nd BLDR
		6.02	106.10	94.68	Crest of BLDR
		5.69	110.80	95.01	Right edge of water
		4.67	112.00	96.03	Lower bankfull estimate
		3.72	114.70	96.98	Upper bankfull estimate
		2.48	118.00	98.22	
		1.60	124.00	99.10	
		0.83	131.50	99.87	Base of RB pin
		0.49	131.50		Top of RB pin

Ice House Dam Reach Upper Site (IH-G1) lower cross-section

н	BS	FS	STA	Elevation	Notes
102.67			6+287 6+290		XS 3 is at 290
102.07		2.02	0.00		Top of pin, LB (most of LB covered w/ snow, try to reach dirt)
		2.02	0.00	100.28	Bottom LB pin (most of LB covered w/ snow, try to reach dirt)
		2.39 3.84	10.30	98.83	bottom EB pin (most of EB covered w/ show, ity to reach dirt)
		4.23	21.20	98.44	
		5.56	33.30	97.11	
		5.65	45.00	97.02	Top of LB - high bankfull
		6.23	45.90	96.44	Low bankfull
		7.53	46.40	95.14	Bottom LB
		8.13	48.20	94.54	
		8.11	49.80	94.56	Left edge of water in small BKW
		9.34	53.30	93.33	
		9.57	57.00	93.10	
		9.57	59.70	93.10	
		8.47	60.00	94.20	Right edge of water in BKW/alcove
		7.88	60.90	94.79	root mass
		8.78	62.40	93.89	In main channel
		9.52	65.60	93.15	
		10.26	67.40	92.41	
		10.58	69.30	92.09	
		11.20	73.20	91.47	Thalweg
		10.85	76.40	91.82	
		9.87	78.50	92.80	
		9.31	79.60	93.36	
		8.55	81.80	94.12	right edge of water
		7.82	85.00	94.85	
		7.51	88.00	95.16	
		7.24	92.20	95.43	Lower bookfull estimate
		6.89 5.89	94.60 98.00	95.78 96.78	Lower bankfull estimate Upper bankfull estimate
		5.78	98.00 103.10	96.89	Opper banklun estimate
		6.75	108.80	95.92	
		6.60	112.00	96.07	
		6.11	114.40	96.56	
		6.53	123.40	96.14	
		7.38	131.20	95.29	
		7.54	135.70	95.13	
		7.16	142.00	95.51	
		6.29	147.00	96.38	
		4.67	153.00	98.00	
		2.31	159.80	100.36	
		1.90	162.50	100.77	RB bottom of pin
		1.58	162.50		RB top of pin

Ice House Dam Reach Upper Site (IH-G1) pebble count summary

	Upper Class Boundary	Rosgen Particle						
Particle Description	(mm)	Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	14	19	24	57	19%	19%
Very coarse sand (measured)	2	5	3	6	4	13	4%	23%
Very Fine Gravel	4		3	9	12	24	8%	31%
Fine Gravel	8		8	13	7	28	9%	41%
Medium Gravel	16	4	25	34	18	77	26%	66%
Coarse Gravel	32		38	15	24	77	26%	92%
Very Coarse Gravel	64		8	0	11	19	6%	98%
Small Cobble	128	3	1	0	0	1	0%	99%
Large Cobble	256	3	0	0	0	0	0%	99%
Small Boulder	512		0	2	0	2	1%	99%
Medium Boulder	1024	2	0	2	0	2	1%	100%
Large Boulder	2048	2	0	0	0	0	0%	100%
Very Large Boulder	4096]	0	0	0	0	0%	100%
Bedrock	>4096	1	0	0	0	0	0%	100%
		Total	100	100	100	300	100%	

Ice House Dam Reach Lower Site (IH-G2) long profile

102.83 Lot (137) B4.24 Top of LB pin for X51 ht of TP1=84.24 BS to TP1 89.49 5.25 5.00 5.00 78.84 77.14 1.70 13.05 45.00 78.97 77.30 2.47 1.31 13.05 45.00 78.77 77.80 2.47 13.05 45.00 78.77 77.80 2.44 13.05 45.00 78.77 77.80 2.24 13.06 66.00 66.00 78.23 75.99 2.24 13.08 190.00 78.72 77.80 2.29 1.33 12.92 215.00 215.00 78.66 75.57 2.00 13.05 28.00 78.40 78.41 2.50 1.50 13.05 28.00 78.40 75.77 76.37 1.20 XS 2 (PHABSIM XS 6) 12.95 34.14 0.34.00 77.57 76.37 1.20 XS 2 (PHABSIM XS 4) 11.18 368.00 77.57 75.9 1.58 1.49 <th>н</th> <th>BS 2.83</th> <th>FS</th> <th>STA BM (100)</th> <th>NEW STA</th> <th>WSE</th> <th>ELEV</th> <th>Water depth (ft)</th> <th>Notes See back of data sheet</th>	н	BS 2.83	FS	STA BM (100)	NEW STA	WSE	ELEV	Water depth (ft)	Notes See back of data sheet
89.49 5.25 BS to TP1 12.35 5.00 78.47 77.14 1.70 13.19 25.00 78.77 76.30 2.47 13.05 45.00 78.77 76.30 2.47 13.05 45.00 78.77 76.30 2.47 13.05 45.00 15.00 78.72 78.80 2.24 13.06 45.00 12.00 78.72 78.80 2.24 13.08 190.00 78.72 78.64 2.08 78.64 2.08 13.05 24.00 78.66 76.75 2.00 2.44 77.64 1.00 13.05 24.00 78.40 78.45 7.65 2.00 2.44 12.25 24.10 78.10 78.42 7.64 1.00 11.18 80.00 386.00 77.57 7.63 1.20 2.43 11.18 40.00 49.00 77.57 7.63 1.60 47.00 11.24 <td< td=""><td>102.83</td><td></td><td></td><td>2()</td><td></td><td></td><td></td><td></td><td></td></td<>	102.83			2()					
13.19 25.00 75.77 76.30 2.47 13.50 65.00 75.79 75.44 2.35 13.60 165.00 165.00 75.79 2.24 13.64 131.00 78.72 78.80 2.22 13.04 131.00 78.72 76.44 2.08 12.85 162.00 162.00 76.41 2.08 13.30 25.00 25.20 75.54 2.00 13.30 25.00 25.20 75.54 2.00 13.30 25.00 25.00 75.54 1.00 12.25 341.00 77.39 76.54 1.00 12.85 363.50 365.50 77.57 76.37 1.20 13.11 340.00 77.27 76.41 1.59 12.11 32.00 32.00 77.27 76.42 1.48 11.18 368.00 77.07 77.64 1.69 1.121 11.21 50.00 76.07 77.44		5.25	18.59	TP1			84.24		
13.65 45.00 76.07 76.44 2.55 13.60 105.00 78.27 75.99 2.24 13.64 105.00 176.77 76.45 2.31 12.85 162.00 162.00 76.72 76.64 2.08 13.04 13.00 13.00 75.07 2.09 75.41 XS 1 (PHABSIM XS 6) 12.82 215.00 252.00 76.84 7.64 2.05 76.41 2.05 13.04 30.00 300.00 78.45 76.44 2.05 76.41 2.05 13.05 28.40 28.40.00 77.57 76.37 1.20 XS 2 (PHABSIM XS 4) 11.81 306.00 336.00 77.37 76.47 1.30 76.47 1.90 11.83 49.00 47.00 76.7 77.59 1.20 XS 2 (PHABSIM XS 4) 11.81 49.00 47.00 77.17 75.91 1.20 XS 2 (PHABSIM XS 4) 11.81 49.00 76.00 77.57									
13.60 66.00 78.23 75.99 2.24 13.64 13.00 13.100 77.78 2.92 13.64 13.00 17.76 76.64 2.31 12.65 162.00 162.00 76.20 76.64 2.09 13.39 252.00 252.00 78.56 76.57 2.09 13.30 30.00 30.00 76.41 2.06 12.02 13.30 252.00 252.00 78.56 76.10 2.48 13.30 30.00 30.00 77.45 76.45 2.00 12.25 341.00 77.89 75.47 1.30 1.00 11.18 368.00 365.00 77.57 75.41 1.59 1.12 11.18 368.00 37.00 77.44 1.80 1.83 1.81 11.21 526.00 529.00 75.92 75.41 1.59 1.12 11.21 526.00 65.00 77.02 77.44 1.82 1.60<									
13.64 105.00 105.00 78.72 75.80 2.92 13.04 13.00 13.00 78.72 76.44 2.08 13.08 199.00 199.00 78.67 76.41 2.48 13.08 252.00 252.00 78.56 76.57 2.09 13.08 240.0 284.00 78.40 78.40 78.41 13.04 300.00 300.00 78.45 76.41 2.65 13.04 300.00 305.00 77.57 76.37 1.20 12.95 31.00 31.00 77.10 75.47 1.50 11.18 366.00 77.27 75.47 1.50 1.58 11.18 366.00 77.00 77.43 1.69 1.66 11.21 507.00 571.00 75.77 1.42 1.82 11.22 520.00 520.00 76.22 1.82 4.43 12.12 520.00 750.27 75.43 1.49 1.63									
13.04 131.00 131.00 187.6 76.44 2.08 12.85 162.00 162.00 76.27 2.09 13.08 199.00 76.41 2.08 13.08 199.00 215.00 76.56 2.09 13.08 226.00 76.50 76.10 2.44 13.08 200.00 30.00 76.45 2.00 12.95 341.00 77.89 76.45 2.00 12.95 341.00 77.77 75.47 1.30 11.18 368.00 363.50 77.57 75.47 1.90 11.18 308.00 76.67 77.44 1.90 1.41 11.18 308.00 76.67 77.44 1.90 1.41 11.12 507.00 570.00 76.44 1.46 1.91 11.22 520.00 520.00 76.27 74.54 1.39 6.80 17.2 74.54 1.48 1.48 11.22 52.00									
12.85 162.00 162.00 78.72 76.41 XS XS 1 (PHABSIM XS 6) 13.90 19.90 19.00 78.66 76.57 2.09 XS 1 (PHABSIM XS 6) 13.05 242.00 245.00 78.66 76.57 2.09 XS 1 (PHABSIM XS 6) 12.95 341.00 341.00 77.89 76.54 2.00 XS 1 (PHABSIM XS 6) 12.95 341.00 341.00 77.89 76.54 1.35 height of TP1=84.24 XS 2 (PHABSIM XS 4) 11.81 366.00 77.27 75.47 1.90 XS 2 (PHABSIM XS 4) XS 2 (PHABSIM XS 4) 11.21 507.00 707.00 77.00 76.41 1.59 1.121 50.00 76.92 76.43 1.49 11.21 507.00 570.00 76.13 74.65 1.48 1.68 1.00 1.00 1.00 1.00 1.01 6.80 1.00 1.00 77.00 76.13 74.65 1.48 1.62 1.62									
13.08 199.00 76.41 XS 1 (PHABSIM XS 6) 12.92 251.00 256.00 78.65 76.17 2.48 13.05 284.00 284.00 78.49 76.44 2.06 13.04 300.00 77.89 76.44 2.06 1.364 30.00 12.95 341.00 77.89 76.45 2.00 1.36 4.06 12.95 341.00 77.79 76.47 1.30 height of TP1=84.24 11.81 306.00 467.00 77.17 75.47 1.90 1.00 11.81 306.00 467.00 77.17 75.91 1.58 1.00 11.21 507.00 507.00 76.67 74.74 1.90 1.11.81 11.21 507.00 570.00 76.67 74.74 1.90 1.90 1.92 11.22 526.00 75.60 73.60 1.20 1.82 1.60 1.60 1.90 6.80 F4.90 72.66 1.40									
12.92 215.00 215.00 78.66 76.57 2.09 13.39 282.00 252.00 78.58 76.10 2.48 13.04 300.00 300.00 78.45 76.44 2.05 12.95 341.00 73.45 76.45 2.00 12.95 341.00 78.40 76.45 2.00 12.95 341.00 77.89 75.57 1.00 11.83 340.00 408.00 77.57 76.37 1.00 11.83 340.00 408.00 77.25 74.54 2.68 11.01 467.00 77.00 75.44 2.68 11.01 467.00 76.00 77.17 75.59 1.58 11.21 526.00 507.00 76.41 74.62 1.82 82.80 2.95 75.43 1.49 1.66 1.63 10.74 683.00 643.00 75.61 7.61 1.48 82.80 13.19 62.00 62.						10.12		2.00	XS 1 (PHABSIM XS 6)
13.05 284.00 78.49 76.44 2.05 13.04 300.00 301.00 77.89 76.54 2.00 12.95 341.00 363.50 75.77 76.37 1.20 National State height of TP1=84.24 10.28 363.50 75.77 75.77 1.90 National State height of TP1=84.24 11.13 386.00 77.22 74.54 2.88 1.10 S2 (PHABSIM XS 4) 11.21 432.00 432.00 77.22 74.54 2.88 1.10 11.21 507.00 70.70 77.33 75.44 1.89 1.90 11.21 507.00 76.00 76.67 74.74 1.93 1.90 6.80 TP 3 79.85 Top of LB pin HT TP 3 = 79.85 Top of LB pin HT TP 3 = 79.85 82.80 2.95 818 570.00 75.00 75.00 73.66 1.83 10.14 68.00 74.29 72.66 1.63 1.63 10.75 683.00						78.66		2.09	- ()
13.04 300.00 300.00 78.45 76.54 2.00 12.95 341.00 341.00 77.89 76.54 1.35 86.65 2.41 TP 1 Neight of TP1=34.24 XS 2 (PHABSIM XS 4) 11.18 386.00 77.37 75.47 1.90 XS 2 (PHABSIM XS 4) 11.18 386.00 76.50 7.59 1.58 XS 2 (PHABSIM XS 4) 12.11 432.00 472.00 77.22 74.54 2.68 11.18 340.00 567.00 77.03 75.44 1.59 11.22 526.00 526.00 76.57 74.74 1.93 6.80 TP 3 - 79.85 Top of LB pin HT TP 3 = 79.85 82.80 2.95 - - 70.77 75.77 76.67 74.74 1.93 10.75 68.00 76.00 77.00 73.44 1.45 1.46 1.465 1.48 82.80 11.20 67.00 72.00 73.44 1.20 near			13.39	252.00	252.00	78.58	76.10	2.48	
12.95 341.00 74.80 76.54 1.35 86.65 2.41 TP 1 XS 2 (PHABSIM XS 4) 10.28 363.50 363.50 77.57 76.37 1.90 11.18 386.00 386.00 77.57 75.47 1.90 11.83 408.00 408.00 77.25 74.82 2.43 11.18 408.00 432.00 77.25 74.82 2.63 11.12 507.00 507.00 77.03 75.44 1.59 11.22 526.00 526.00 76.92 75.43 1.49 11.21 507.00 570.00 76.44 74.62 1.82 82.80 2.95 8.18 570.00 570.00 73.64 1.46 8.23 617.00 75.17 74.57 1.14 near small LB trib (access to site) 10.14 668.00 645.00 72.49 72.66 1.63 10.57 683.00 683.00 73.26 1.70 11			13.05	284.00	284.00	78.49	76.44	2.05	
86.65 2.41 TP 1 height of TP1=84.24 10.28 363.50 37.57 76.37 1.20 11.18 386.00 386.00 77.37 75.47 1.90 11.18 386.00 386.00 77.37 75.47 1.90 11.18 408.00 408.00 77.25 74.82 2.43 11.11 452.00 75.00 77.37 75.44 1.59 11.21 507.00 507.00 76.47 74.74 1.93 6.80 TP 3 79.55 1.68 1.62 1.62 82.80 2.95 8.18 570.00 570.00 76.44 74.62 1.82 82.80 6.80 TP 3 72.05 1.70 1.14 9.00 645.00 75.00 73.64 1.82 near small LB trib (access to site) 10.14 668.00 74.29 72.66 1.63 1.32 1.72 11.94 780.00 780.00 72.70 70.90									
10.28 363.50 363.50 77.57 76.37 1.20 XS ² (PHABSIM XS 4) 11.18 366.00 77.25 74.82 2.43 XS ² (PHABSIM XS 4) 12.11 432.00 432.00 77.25 74.82 2.63 11.16 467.00 467.00 77.17 75.59 1.58 11.12 507.00 507.00 76.44 1.59 11.21 507.00 570.07 76.44 1.89 11.91 547.00 560.07 76.47 1.93 6.80 TP 3 79.85 Top of LB pin HT TP 3 = 79.85 82.80 2.95 77.00 57.00 76.41 74.62 1.82 8.18 570.00 570.00 76.13 74.65 1.48 near small LB trib (access to site) 10.14 668.00 645.00 72.07 73.04 71.28 1.76 11.52 727.00 73.04 71.28 1.76 1.30 826.00 82.14 69.13 2.90 <			12.95		341.00	77.89	76.54	1.35	
11.18 386.00 366.00 77.37 75.47 1.90 11.83 408.00 408.00 77.22 74.52 2.43 12.11 432.00 77.27 75.59 1.58 11.21 507.00 507.00 77.03 75.44 1.59 11.21 507.00 57.00 76.67 74.74 1.93 6.80 TP 3 79.85 Top of LB pin HT TP 3 = 79.85 82.80 2.95 8 570.00 76.47 74.55 1.48 9.00 645.00 645.00 76.13 74.65 1.48 9.00 645.00 76.00 77.26 1.63 10.14 668.00 76.42 71.28 1.76 11.94 780.00 780.00 72.26 1.63 11.94 780.00 72.05 70.35 1.70 11.94 780.00 72.05 70.35 1.70 11.94 780.00 72.05 70.35 1.70	86.65	2.41	10.00		000 50		70.07	1.00	•
11.83 408.00 408.00 77.25 74.82 2.43 11.06 467.00 77.03 75.59 1.58 11.21 507.00 507.00 77.03 75.44 1.59 11.22 526.00 562.00 76.67 74.74 1.93 11.91 547.00 570.00 76.67 74.74 1.93 82.80 2.95 Top of LB pin HT TP 3 = 79.85 Top of LB pin HT TP 3 = 79.85 82.80 2.95 Top of LB pin HT TP 3 = 79.85 near small LB trib (access to site) 10.14 668.00 76.07 73.80 1.20 near small LB trib (access to site) 11.19 727.00 73.04 71.28 1.76 1.44 9.00 645.00 76.07 70.76 1.64 1.64 11.04 668.00 74.29 72.66 1.63 1.66 1.77 11.52 727.00 73.04 71.28 1.76 1.71 1.45 1.76 11.52 727.00 73.04 71.28 1.76 1.32 1.30 847.00 70.06 3.2									XS 2 (PHABSIM XS 4)
12.11 432.00 452.00 77.22 74.54 2.68 11.06 467.00 507.00 77.17 75.59 1.59 11.21 507.00 507.00 77.02 75.44 1.99 11.21 526.00 526.00 76.72 77.47 1.93 6.80 TP 3 79.85 Top of LB pin HT TP 3 = 79.85 82.80 2.95 8.15 594.00 76.14 74.62 1.82 8.15 594.00 594.00 76.13 74.65 1.48 8.23 617.00 617.00 77.26 1.14 9.00 645.00 772.00 73.75 72.65 1.70 11.52 727.00 727.00 73.75 72.05 1.70 11.52 727.00 72.00 73.47 1.20 near small LB trib (access to site) 11.52 727.00 72.65 1.70 1.77 1.152 727.00 72.67 7.09 1.77 11.94 780.00 870.00 72.03 69.13 2.90 1.36 87.70 87.30									
11.06 467.00 477.00 77.17 75.59 1.58 11.21 507.00 507.00 77.03 75.43 1.49 11.91 547.00 547.00 76.92 75.43 1.49 6.80 T9 79.85 Top of LB pin HT TP 3 = 79.85 82.80 2.95 8.18 570.00 570.00 76.47 1.82 8.15 594.00 547.00 75.17 74.65 1.48 8.23 617.00 617.00 75.71 74.57 1.14 9.00 645.00 70.00 73.80 1.20 near small LB trib (access to site) 10.14 668.00 73.75 72.05 1.70 1.152 727.00 73.00 73.64 1.28 11.52 727.00 73.00 73.04 71.28 1.76 1.36 11.90 749.00 87.00 72.00 69.13 2.90 1.36 870.00 870.00 72.04 69.54 2.42 13.00									
11.21 507.00 507.00 77.03 75.44 1.59 11.22 526.00 547.00 576.77 77.43 1.49 11.91 547.00 570.00 76.67 74.74 1.93 82.80 2.95									
11.22 526.00 547.00 76.92 75.43 1.49 6.80 TP 3 76.67 74.74 1.93 82.80 2.95 Top of LB pin HT TP 3 = 79.85 Top of LB pin HT TP 3 = 79.85 82.80 2.95 594.00 76.44 74.62 1.82 8.18 570.00 570.00 75.11 74.65 1.48 8.23 617.00 675.00 73.80 1.20 near small LB trib (access to site) 10.14 668.00 663.00 73.26 70.76 2.50 11.52 727.00 72.00 73.04 71.28 1.76 11.90 749.00 749.00 72.65 1.32 1.32 12.04 703.00 76.00 70.35 1.70 11.93 749.00 72.00 72.05 1.32 12.45 807.00 807.00 72.05 1.32 13.09 847.00 87.00 87.22 2.50 13.67 870.00 870.00									
6.80 TP 3 79.85 Top of LB pin HT TP 3 = 79.85 82.80 2.95									
82.80 2.95 8.18 570.00 570.00 76.44 74.62 1.82 8.15 594.00 617.00 75.71 74.57 1.14 9.00 645.00 645.00 75.00 73.80 1.20 10.14 668.00 645.00 75.00 73.80 1.20 10.75 683.00 683.00 73.75 72.05 1.70 11.52 727.00 73.00 71.28 1.76 11.52 727.00 72.00 1.77 11.90 749.00 72.67 70.90 1.77 11.94 780.00 780.00 72.05 1.70 12.45 807.00 82.80 13.19 826.00 826.00 72.18 70.86 1.32 13.60 847.00 78.00 72.05 9.13 2.90 13.26 900.00 71.96 2.90 13.67 870.00 71.98 69.72 2.26 14.30 900+300 120.00			11.91	547.00	547.00	76.67	74.74	1.93	
8.18 570.00 570.00 76.44 74.62 1.82 8.15 594.00 594.00 76.13 74.65 1.48 9.00 645.00 645.00 75.00 73.80 1.20 10.14 668.00 74.29 72.66 1.63 10.75 683.00 673.75 72.05 1.70 12.04 703.00 73.00 73.26 1.76 11.52 727.00 72.07 72.67 70.90 1.77 11.94 780.00 760.00 72.18 70.86 1.32 12.45 807.00 807.00 72.05 70.35 1.70 13.00 847.00 847.00 70.00 72.03 5.21 13.00 847.00 870.00 78.20 78.21 Spray paint on RB 83.48 5.27 900-262 1162.00 71.96 69.72 2.26 14.30 900+300 120.00 71.93 69.42 2.81 XS 3 (PHABSIM XS 1)			6.80	TP 3			79.85		Top of LB pin HT TP 3 = 79.85
8.15 594.00 76.13 74.65 1.48 8.23 617.00 645.00 75.71 74.57 1.14 9.00 645.00 645.00 75.00 73.80 1.20 10.14 668.00 74.29 72.66 1.63 10.75 683.00 683.00 73.75 72.05 1.70 11.52 727.00 727.00 72.04 71.28 1.76 11.52 727.00 72.04 71.20 73.00 72.67 1.152 11.52 727.00 72.04 70.30 72.57 1.32 1.76 11.90 749.00 749.00 72.67 70.90 1.77 1.32 11.94 780.00 780.00 72.05 1.32 1.32 1.32 12.45 807.00 870.00 72.03 69.13 2.90 1.32 13.00 847.00 71.98 69.72 2.26 1.43 90.90 71.93 69.40 2.53	82.80	2.95						4.00	
8.23 617.00 617.00 75.71 74.57 1.14 9.00 645.00 645.00 75.00 73.80 1.20 10.14 668.00 668.00 74.29 72.66 1.63 10.75 683.00 683.00 73.75 72.05 1.70 12.04 703.00 73.00 73.04 71.28 1.76 11.90 749.00 749.00 72.67 70.90 1.77 11.94 780.00 780.00 72.05 70.35 1.70 11.94 780.00 780.00 72.05 70.35 1.70 13.19 826.00 821.00 72.00 73.04 2.53 13.00 847.00 847.00 72.00 69.54 2.42 4.59 TP 4 78.21 Spray paint on RB height of TP 4 = 78.21 XS 3 (PHABSIM XS 1) 13.76 900+262 1162.00 71.98 69.72 2.26 14.30 900+300 1200.00 71.93 69.40									
9.00 645.00 645.00 75.00 73.80 1.20 near small LB trib (access to site) 10.14 668.00 73.75 72.66 1.63 16.75 683.00 683.00 73.75 72.05 1.70 12.04 703.00 703.00 73.26 70.76 2.50 1.70 11.90 749.00 749.00 72.67 70.90 1.77 11.94 780.00 780.00 72.05 1.70 1.77 11.94 780.00 780.00 72.05 70.35 1.70 82.80 13.19 826.00 827.00 72.05 70.35 1.70 83.48 5.27 900.00 900.00 71.96 69.54 2.42 2.45 900.4262 1162.00 71.98 69.72 2.26 2.42 XS 3 (PHABSIM XS 1) 13.76 900.425 1225.00 71.80 69.38 2.42 3.85 1200.47 1247.00 71.80 69.38 2.42 3.85 1200									
10.14 668.00 74.29 72.66 1.63 10.75 683.00 73.75 72.05 1.70 12.04 703.00 703.00 73.26 70.76 2.50 11.52 727.00 727.00 72.04 71.28 1.76 11.90 749.00 749.00 72.67 70.90 1.77 11.94 780.00 780.00 72.18 70.86 1.32 12.45 807.00 807.00 72.03 69.13 2.90 13.00 847.00 847.00 72.03 69.13 2.90 13.26 900.00 900.00 71.96 69.54 2.42 4.59 TP 4 78.21 Spray paint on RB height of TP 4 = 78.21 XS 3 (PHABSIM XS 1) XS 3 (PHABSIM XS 1) 13.76 900+282 1162.00 71.98 69.72 2.26 14.30 900+282 1122.00 71.93 69.40 2.53 14.10 1200+25 1225.00 71.93 69.63 2.10 13.79 1200+73 1273.00									near small I B trib (access to site)
10.75 683.00 73.75 72.05 1.70 12.04 703.00 703.00 73.26 70.76 2.50 11.52 727.00 727.00 73.06 71.28 1.76 11.90 749.00 724.00 72.67 70.90 1.77 11.94 780.00 780.00 72.18 70.86 1.32 12.45 807.00 807.00 72.00 69.80 2.20 13.67 870.00 870.00 72.00 69.80 2.20 13.67 870.00 870.00 71.98 2.90 13.26 900.00 900.00 71.96 69.54 2.42 4.59 TP 4 78.21 Spray paint on RB height of TP 4 = 78.21 XS 3 (PHABSIM XS 1) XS 3 (PHABSIM XS 1) 13.76 900+262 1162.00 71.98 69.40 2.53 14.00 900+201 120.00 71.98 69.40 2.53 14.10 1200+47 1247.00 71.80 69.38 2.42 13.85 1200+73 1273.00									
12.04 703.00 703.00 73.26 70.76 2.50 11.52 727.00 727.00 73.04 71.28 1.76 11.90 749.00 72.67 70.90 1.77 11.94 780.00 72.00 72.18 70.36 1.32 12.45 807.00 807.00 72.00 69.80 2.20 13.00 847.00 826.00 72.14 69.61 2.53 13.00 847.00 800.00 72.03 69.13 2.90 13.67 870.00 870.00 71.96 2.45 4.59 TP 4 78.21 Spray paint on RB height of TP 4 = 78.21 XS 3 (PHABSIM XS 1) XS 3 (PHABSIM XS 1) 13.76 900+262 1162.00 71.98 69.72 2.26 14.30 900+300 1200.00 71.98 69.38 2.42 13.85 1200+47 1247.00 71.80 69.38 2.42 13.85 120+73 1273.00 71.73 69.63 2.10 13.79 1200+109 1309.00									
11.90 749.00 72.67 70.90 1.77 11.94 780.00 72.07 70.86 1.32 12.45 807.00 807.00 72.05 70.35 1.70 82.80 13.19 826.00 826.00 72.14 69.61 2.53 13.00 847.00 870.00 72.03 69.80 2.20 13.67 870.00 870.00 72.03 69.13 2.90 13.26 900.00 900.00 71.96 69.54 2.42 4.59 TP 4 78.21 Spray paint on RB 83.48 5.27 900+262 1162.00 71.98 69.72 2.26 14.30 900+300 1200.00 71.99 69.18 2.81 XS 3 (PHABSIM XS 1) 13.76 900+252 1225.00 71.93 69.69 1.85 14.10 1200+47 1247.00 71.80 69.38 2.42 13.85 1200+73 1273.00 71.73 69.63 2.10 13.79 1200+109 1309.00 71.54 69.69 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
11.94 780.00 72.18 70.86 1.32 12.45 807.00 807.00 72.05 70.35 1.70 82.80 13.19 826.00 826.00 72.14 69.61 2.53 13.00 847.00 847.00 72.00 69.80 2.20 13.67 870.00 870.00 72.03 69.13 2.90 13.26 900.00 900.00 71.96 69.54 2.42 4.59 TP 4 78.21 Spray paint on RB 83.48 5.27 900+262 1162.00 71.98 69.72 2.26 14.30 900+300 1200.00 71.99 69.18 2.81 XS 3 (PHABSIM XS 1) 13.76 900+262 1182.00 71.88 69.40 2.53 14.10 1200+25 1225.00 71.83 69.63 2.10 13.79 1200+109 1309.00 71.54 69.69 1.85 Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and turns to the right. 13.79 1200+109 1309.00			11.52	727.00	727.00	73.04	71.28	1.76	
82.80 12.45 807.00 807.00 72.05 70.35 1.70 82.80 13.19 826.00 826.00 72.14 69.61 2.53 13.00 847.00 847.00 72.03 69.13 2.90 13.67 870.00 870.00 72.03 69.13 2.90 13.26 900.00 900.00 71.96 69.54 2.42 4.59 TP 4 78.21 Spray paint on RB 83.48 5.27 900+262 1162.00 XS 3 (PHABSIM XS 1) 13.76 900+282 1182.00 71.98 69.72 2.26 14.30 900+300 1200.00 71.98 69.13 2.81 14.08 1200+25 1225.00 71.93 69.40 2.53 14.10 1200+473 1273.00 71.73 69.63 2.10 13.79 120+109 1309.00 71.54 69.69 1.85 Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and turns to the right. Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and			11.90	749.00	749.00	72.67	70.90	1.77	
82.80 13.19 826.00 826.00 72.14 69.61 2.53 13.00 847.00 847.00 72.00 69.80 2.20 13.67 870.00 870.00 72.03 69.13 2.90 13.26 900.00 900.00 71.96 69.54 2.42 4.59 TP 4 78.21 Spray paint on RB 83.48 5.27 900+262 1162.00 XS 3 (PHABSIM XS 1) 13.76 900+262 1182.00 71.98 69.72 2.26 14.30 900+300 1200.00 71.93 69.40 2.53 14.08 1200+25 1225.00 71.80 69.38 2.42 13.85 1200+73 1273.00 71.73 69.63 2.10 13.79 1200+109 1309.00 71.54 69.69 1.85 Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and turns to the right. 13.79 1200+109 1309.00 71.54 69.69 1.85 100.17 20.61 TP 5 TP 5 TP 5 (o									
13.00 847.00 847.00 72.00 69.80 2.20 13.67 870.00 870.00 72.03 69.13 2.90 13.26 900.00 900.00 71.96 69.54 2.42 83.48 5.27	~~ ~~								
13.67 870.00 870.00 72.03 69.13 2.90 13.26 900.00 900.00 71.96 69.54 2.42 4.59 TP 4 78.21 Spray paint on RB height of TP 4 = 78.21 83.48 5.27 900+262 1162.00 XS 3 (PHABSIM XS 1) 13.76 900+282 1182.00 71.98 69.72 2.26 14.30 900+300 1200.00 71.99 69.18 2.81 14.08 1200+25 1225.00 71.93 69.40 2.53 14.10 1200+47 1247.00 71.80 69.38 2.42 13.85 1200+73 1273.00 71.73 69.63 2.10 13.79 1200+109 1309.00 71.54 69.69 1.85 Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and turns to the right. 13.92 TP 5 TP 5 TP 5 (on LB) Ht of TP 5=79.56 100.17 20.61 TP 5 TP 5 TP 5 (on LB) Ht of TP 5=79.56	82.80								
13.26 900.00 71.96 69.54 2.42 83.48 5.27 78.21 Spray paint on RB height of TP 4 = 78.21 900+262 1162.00 XS 3 (PHABSIM XS 1) 13.76 900+282 1182.00 71.98 69.72 2.26 14.30 900+300 1200.00 71.93 69.40 2.53 14.08 120+25 1225.00 71.80 69.38 2.42 13.85 1200+73 1273.00 71.73 69.63 2.10 13.79 1200+109 1309.00 71.54 69.69 1.85 Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and turns to the right. 3.92 TP 5 TP 5 TP 5 TP 5 (on LB) Ht of TP 5=79.56 100.17 20.61 TP 5 TP 5 TP 5 (on LB) Ht of TP 5=79.56									
4.59 TP 4 78.21 Spray paint on RB height of TP 4 = 78.21 XS 3 (PHABSIM XS 1) 83.48 5.27 900+262 1162.00 XS 3 (PHABSIM XS 1) 13.76 900+282 1182.00 71.98 69.72 2.26 14.30 900+300 1200.00 71.99 69.18 2.81 14.08 120+25 1225.00 71.93 69.40 2.53 14.10 1200+47 1247.00 71.80 69.38 2.42 13.85 1200+73 1273.00 71.73 69.63 2.10 13.79 1200+109 1309.00 71.54 69.69 1.85 Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and turns to the right. TP 5 (on LB) Ht of TP 5=79.56 100.17 20.61 TP 5 TP 5 TP 5 (on LB) Ht of TP 5=79.56									
83.48 5.27 height of TP 4 = 78.21 XS 3 (PHABSIM XS 1) 13.76 900+282 1182.00 71.98 69.72 2.26 14.30 900+300 1200.00 71.99 69.18 2.81 14.08 1200+25 1225.00 71.93 69.40 2.53 14.10 1200+47 1247.00 71.80 69.38 2.42 13.85 1200+73 1273.00 71.73 69.63 2.10 13.79 1200+109 1309.00 71.54 69.69 1.85 Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and turns to the right. TP 5 (on LB) Ht of TP 5=79.56 100.17 20.61 TP 5 TP 5 TP 5 (on LB) Ht of TP 5=79.56					500.00	71.50		2.72	Spray paint on RB
900+262 1162.00 XS 3 (PHABSIM XS 1) 13.76 900+282 1182.00 71.98 69.72 2.26 14.30 900+300 1200.00 71.99 69.18 2.81 14.08 1200+25 1225.00 71.93 69.40 2.53 14.10 1200+47 1247.00 71.80 69.38 2.42 13.85 1200+73 1273.00 71.73 69.63 2.10 13.79 1200+109 1309.00 71.54 69.69 1.85 Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and turns to the right. TP 5 (on LB) Ht of TP 5=79.56 TP 5 (on LB) Ht of TP 5=79.56 100.17 20.61 TP 5 TP 5 (on LB) Ht of TP 5=79.56	83.48	5.27							
14.30 900+300 1200.00 71.99 69.18 2.81 14.08 120+25 1225.00 71.93 69.40 2.53 14.10 120+47 1247.00 71.80 69.38 2.42 13.85 1200+73 1273.00 71.73 69.63 2.10 13.79 1200+109 1309.00 71.54 69.69 1.85 Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and turns to the right. TP 5 (on LB) Ht of TP 5=79.56 100.17 20.61 TP 5 TP 5 TP 5 (on LB) Ht of TP 5=79.56				900+262	1162.00				0
14.08 120+25 1225.00 71.93 69.40 2.53 14.10 120+47 1247.00 71.80 69.38 2.42 13.85 120+73 1273.00 71.73 69.63 2.10 13.79 1200+109 1309.00 71.54 69.69 1.85 Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and turns to the right. 3.92 TP 5 TP 5 TP 5 (on LB) Ht of TP 5=79.56 100.17 20.61 TP 5 TP 5 (on LB) Ht of TP 5=79.56			13.76	900+282	1182.00	71.98	69.72	2.26	
14.10 1200+47 1247.00 71.80 69.38 2.42 13.85 1200+73 1273.00 71.73 69.63 2.10 13.79 1200+109 1309.00 71.54 69.69 1.85 Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and turns to the right. 3.92 TP 5 TP 5 (on LB) Ht of TP 5=79.56 100.17 20.61 TP 5 TP 5 (on LB) Ht of TP 5=79.56									
13.85 1200+73 1273.00 71.73 69.63 2.10 13.79 1200+109 1309.00 71.54 69.69 1.85 Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and turns to the right. 3.92 TP 5 TP 5 (on LB) Ht of TP 5=79.56 100.17 20.61 TP 5 TP 5 (on LB) Ht of TP 5=79.56									
13.79 1200+109 1309.00 71.54 69.69 1.85 Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and turns to the right. 3.92 TP 5 100.17 20.61 TP 5 TP 5 TP 5 (on LB) Ht of TP 5=79.56									
Slope decreases slightly for 150 ft downstream, then steepens, as the river impinges on the left bank, and turns to the right. 3.92 TP 5 100.17 20.61 TP 5 TP 5 (on LB) Ht of TP 5=79.56 TP 5 (on LB) Ht of TP 5=79.56									
downstream, then steepens, as the river impinges on the left bank, and turns to the right.3.92TP 5100.1720.61TP 5TP 5TP 5TP 5 (on LB) Ht of TP 5=79.56TP 5 (on LB) Ht of TP 5=79.56			13.79	1200+109	1309.00	71.54	09.09	C0.1	Slope decreases slightly for 150 ft
impinges on the left bank, and turns to the right. 3.92 TP 5 100.17 20.61 TP 5 TP 5 (on LB) Ht of TP 5=79.56 TP 5 (on LB) Ht of TP 5=79.56									1 0 9
3.92 TP 5 TP 5 (on LB) Ht of TP 5=79.56 100.17 20.61 TP 5 TP 5 (on LB) Ht of TP 5=79.56									impinges on the left bank, and turns to
100.17 20.61 TP 5 TP 5 (on LB) Ht of TP 5=79.56			3 02	TP 5					
	100 17	20 61	J.9Z						
			0.18						

Ice House Dam Reach Lower Site (IH-G2) upper cross-section (p. 1 of 2)

89.49 3.96 -10.00 85.53 2.34 -20.00 87.15 1.14 -30.00 88.35 Slope continues at same rate above these points 5.25 0.00 88.35 Base of pin (LB EP) 6.59 8.00 82.00 Channel (hi-flow) 6.80 13.40 82.69 6.00 17.00 83.49 bar 6.44 28.50 83.61 5.93 58.00 83.62 5.93 58.00 83.62 5.93 58.00 83.62 6.41 64.00 83.06 6.99 76.00 82.50 7.28 83.00 82.21 7.31 91.00 82.18 7.99 99.00 82.40 7.36 106.00 82.13 7.73 112.00 81.78 8.46 120.70 81.24 7.99 90.00 82.40 7.36 106.00 82.13 7.73 112.00 80.47 9.22 129.00 80.27	ні	BS	FS	STA	ELEV	Notes
1.14-30.00 88.35 Slope continues at same rate above these points 5.25 0.00 84.24 Top of LB EP 5.74 0.00 83.75 Base of pin (LB EP) 6.59 8.00 82.90 Channel (h-flow) 6.80 13.40 82.69 bar (h-flow) 6.80 17.00 83.49 bar (h-flow) 5.88 29.20 83.61 bar 6.44 28.50 83.05 ft 6.17 39.40 83.32 5.80 49.00 83.68 6.19 73.00 83.30 6.99 76.00 82.50 7.28 83.00 82.21 7.31 91.00 82.13 7.73 112.00 81.76 8.31 117.00 81.78 8.61 123.00 80.88 8.70 125.00 80.79 9.02 127.00 80.47 9.22 129.00 80.27 9.27 131.00 80.28 10.09 135.00 79.40 $8LDR$ $8LDR$ 10.75 135.10 78.40 78.62 11.50 137.00 77.99 12.33 139.00 77.16 12.30 141.00 76.36 12.98 145.00 76.36	89.49		3.96	-10.00	85.53	
5.25 0.00 84.24 Top of LB EP 5.74 0.00 83.75 Base of pin (LB EP) 6.59 8.00 82.90 Channel (h-flow) 6.80 13.40 82.69 bar (hi-flow) 5.88 29.20 83.61 bar 6.44 28.50 83.05 bar 6.17 39.40 83.32 5.80 49.00 83.66 6.41 64.00 83.66 6.41 64.00 83.66 6.19 73.00 83.30 6.99 76.00 82.20 7.28 83.00 82.21 7.31 91.00 82.13 7.09 99.00 82.40 7.36 106.00 82.13 7.73 112.00 81.76 8.31 117.00 81.78 8.61 123.00 80.87 9.22 127.00 80.27 9.27 131.00 80.27 9.22 129.00 80.27 9.27 135.00 77.40 10.91 135.00 78.42 10.75 135.40 78.62 10.75 135.40 78.62 12.33 139.00 77.16 12.33 139.00 77.16 12.34 145.00 76.51			2.34	-20.00	87.15	
5.74 0.00 83.75 Base of pin (LB EP) Channel (hi-flow) 6.80 13.40 82.69 6.00 17.00 83.49 bar (hi-flow) 5.88 29.20 83.61 bar 6.44 28.50 83.05 6.17 39.40 83.32 5.80 49.00 83.69 5.80 49.00 83.69 6.41 64.00 83.08 6.41 64.00 83.08 6.41 64.00 83.08 6.99 76.00 82.50 7.28 83.00 82.13 7.73 19.00 82.13 7.73 112.00 81.76 8.31 117.00 81.28 8.46 120.70 81.24 709 99.00 80.27 9.02 127.00 80.47 9.02 127.00 80.47 9.27 131.00 80.28 8.70 125.00 80.27 9.27 131.00 80.28 10.09 135.00 79						
6.59 8.00 82.90 $Channel (hi-flow)$ 6.80 13.40 82.69 6.00 17.00 83.49 bar (hi-flow) 5.88 29.20 83.61 bar 6.44 28.50 83.05 6.17 39.40 83.32 5.80 49.00 83.69 5.93 58.00 83.56 6.41 64.00 83.08 6.19 73.00 83.30 6.99 76.00 82.50 7.28 83.00 82.21 7.31 91.00 82.18 7.09 99.00 82.40 7.36 106.00 82.13 7.73 112.00 81.76 8.31 117.00 81.18 8.46 120.70 81.03 8.25 120.70 81.24 70.9 9.02 127.00 80.47 9.22 129.00 80.27 9.27 9.27 131.00 80.27 9.22 9.43 133.00 80.66 $BLDR$ 10.99 135.00 79.40 $BLDR$ 10.87 135.40 78.62 11.50 137.00 77.99 12.33 139.00 77.16 13.20 141.00 76.29 13.13 145.00 76.51				0.00		•
6.8013.40 82.69 6.00 17.00 83.49 bar (hi-flow) 5.88 29.20 83.61 bar 6.44 28.50 83.05 6.17 39.40 83.32 5.80 49.00 83.69 5.93 58.00 83.56 6.41 64.00 83.08 6.19 73.00 83.30 6.99 76.00 82.50 7.28 83.00 82.21 7.31 91.00 82.18 7.09 99.00 82.40 7.36 106.00 82.13 7.73 112.00 81.76 8.31 117.00 81.38 8.46 120.70 81.24 7.92 122.00 80.27 9.22 127.00 80.47 9.22 129.00 80.27 9.21 133.00 79.40 $8LDR$ 10.09 135.00 79.40 $8LDR$ 10.75 135.10 78.42 10.87 135.00 79.40 $8LDR$ 10.87 13.30 77.16 13.20 141.00 76.36 12.98 145.00 76.51						
			6.59	8.00	82.90	Channel (hi-flow)
5.88 29.20 83.61 bar 6.44 28.50 83.05 6.17 39.40 83.32 5.80 49.00 83.69 5.93 58.00 83.56 6.41 64.00 83.08 6.19 73.00 83.30 6.99 76.00 82.50 7.28 83.00 82.21 7.31 91.00 82.18 7.09 99.00 82.40 7.36 106.00 82.13 7.73 112.00 81.76 8.31 117.00 81.18 8.46 120.70 81.24 709 9.02 125.00 80.79 9.02 125.00 9.02 127.00 80.47 9.22 129.00 80.27 9.27 131.00 80.22 9.43 133.00 80.06 10.09 135.00 79.40 10.87 135.40 78.62 10.87 135.40 76.51 11.50 137.00 77.99 12.33 139.00 77.16 13.13 143.00 76.36						
6.44 28.50 83.05 6.17 39.40 83.32 5.80 49.00 83.69 5.93 58.00 83.56 6.41 64.00 83.08 6.19 73.00 83.30 6.99 76.00 82.50 7.28 83.00 82.21 7.31 91.00 82.13 7.73 112.00 81.76 8.31 117.00 81.18 8.46 120.70 81.24 Top of LB pin 8.25 120.70 8.61 123.00 80.88 8.70 125.00 80.47 9.22 127.00 80.47 9.22 129.00 80.27 9.27 131.00 80.22 9.43 133.00 80.06 BLDR 10.75 135.10 10.87 135.40 78.62 11.50 137.00 77.99 12.33 139.00 77.16 13.13 143.00 76.36 12.98 145.00 7						
						bar
5.80 49.00 83.69 5.93 58.00 83.56 6.41 64.00 83.08 6.19 73.00 83.30 6.99 76.00 82.50 7.28 83.00 82.21 7.31 91.00 82.18 7.09 99.00 82.40 7.36 106.00 82.13 7.73 112.00 81.76 8.31 117.00 81.18 8.46 120.70 81.24 709 92.00 80.88 8.70 125.00 80.79 9.02 127.00 80.47 9.22 129.00 80.27 9.27 131.00 80.22 9.43 133.00 80.66 10.09 135.10 78.42 10.75 135.10 78.74 10.87 135.40 78.62 11.50 137.00 77.99 12.33 139.00 77.16 13.13 143.00 76.36 12.98 145.00 76.51						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
6.41 64.00 83.08 6.19 73.00 83.30 6.99 76.00 82.50 7.28 83.00 82.21 7.31 91.00 82.18 7.09 99.00 82.40 7.36 106.00 82.13 7.73 112.00 81.76 8.31 117.00 81.18 8.46 120.70 81.24 $70 ext{ of LB pin}$ 8.25 8.70 125.00 80.88 8.70 125.00 80.47 9.22 129.00 80.27 9.27 131.00 80.22 9.43 133.00 80.06 10.09 135.00 79.40 10.75 135.10 78.74 10.87 137.00 77.99 12.33 139.00 77.16 13.13 143.00 76.36 12.98 145.00 76.51				49.00	83.69	
6.19 73.00 83.30 6.99 76.00 82.50 7.28 83.00 82.21 7.31 91.00 82.18 7.09 99.00 82.40 7.36 106.00 82.13 7.73 112.00 81.76 8.31 117.00 81.18 8.46 120.70 81.03 8.25 120.70 81.24 700 125.00 80.88 8.70 125.00 80.79 9.02 127.00 80.47 9.22 129.00 80.27 9.77 131.00 80.22 9.43 133.00 80.66 10.09 135.00 79.40 10.75 135.10 78.74 10.87 135.40 78.62 11.50 137.00 77.16 13.13 143.00 76.36 12.98 145.00 76.51				58.00		
				64.00		
7.28 83.00 82.21 7.31 91.00 82.18 7.09 99.00 82.40 7.36 106.00 82.13 7.73 112.00 81.76 8.31 117.00 81.18 8.46 120.70 81.03 8.25 120.70 81.24 $70p$ of LB pin 8.61 123.00 80.88 8.70 125.00 80.79 9.02 127.00 80.47 9.22 129.00 80.27 9.27 131.00 80.28 10.09 135.00 79.40 $8LDR$ 10.75 135.10 78.74 $base of BLDR$ 10.87 135.40 77.99 12.33 139.00 77.16 13.20 141.00 76.36 12.98 145.00 76.51				73.00	83.30	
7.31 91.00 82.18 7.09 99.00 82.40 7.36 106.00 82.13 7.73 112.00 81.76 8.31 117.00 81.18 8.46 120.70 81.03 Base of LB pin 8.25 120.70 81.24 Top of LB pin 8.61 123.00 80.88 8.70 125.00 80.79 9.02 127.00 80.47 9.22 129.00 80.27 9.43 133.00 80.66 10.09 135.00 79.40 10.75 135.10 78.74 10.87 135.40 78.62 10.87 137.00 77.99 12.33 139.00 77.16 13.13 143.00 76.36 12.98 145.00 76.51						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			7.28	83.00	82.21	
7.36 106.00 82.13 7.73 112.00 81.76 8.31 117.00 81.18 8.46 120.70 81.03 8.25 120.70 81.24 $70 of LB pin$ 8.61 123.00 80.88 8.70 125.00 80.79 9.02 127.00 80.47 9.22 129.00 80.27 9.27 131.00 80.22 9.43 133.00 80.66 10.9 10.75 135.10 78.74 $base of BLDR$ 10.87 135.40 77.99 12.33 139.00 77.16 13.20 141.00 76.36 12.98 145.00 76.51			7.31	91.00	82.18	
7.73 112.00 81.76 8.31 117.00 81.18 8.46 120.70 81.03 Base of LB pin 8.25 120.70 81.24 Top of LB pin 8.61 123.00 80.88 8.70 125.00 80.79 9.02 127.00 80.47 9.22 129.00 80.27 9.27 131.00 80.22 9.43 133.00 80.06 10.09 135.00 79.40 10.75 135.10 78.74 10.87 135.40 78.62 11.50 137.00 77.99 12.33 139.00 77.16 13.20 141.00 76.36 12.98 145.00 76.51			7.09	99.00	82.40	
8.31 117.00 81.18 8.46 120.70 81.03 Base of LB pin 8.25 120.70 81.24 Top of LB pin 8.61 123.00 80.88 8.70 125.00 80.79 9.02 127.00 80.47 9.22 129.00 80.27 9.27 131.00 80.22 9.43 133.00 80.66 9.43 135.00 79.40 9.43 135.00 79.40 9.109 135.00 79.40 9.109 135.00 79.40 9.109 135.00 79.40 9.109 135.00 79.40 9.109 135.00 79.40 9.109 135.00 77.40 9.109 135.10 78.62 9.11 137.00 77.99 12.33 139.00 77.16 13.20 141.00 76.29 13.13 143.00 76.36 12.98 145.00 76.51			7.36	106.00	82.13	
8.46 120.70 81.03 Base of LB pin 8.25 120.70 81.24 Top of LB pin 8.61 123.00 80.88 8.70 125.00 80.79 9.02 127.00 80.47 9.22 129.00 80.27 9.27 131.00 80.22 Boulder 9.43 133.00 80.06 BLDR 10.09 135.00 79.40 BLDR 10.75 135.10 78.74 base of BLDR 10.87 135.40 78.62 left edge water 11.50 137.00 77.99 12.33 139.00 77.16 13.20 141.00 76.29 13.13 143.00 76.36 12.98 145.00 76.51 145.00 165.1 <th></th> <th></th> <th>7.73</th> <th>112.00</th> <th>81.76</th> <th></th>			7.73	112.00	81.76	
8.25 120.70 81.24 Top of LB pin 8.61 123.00 80.88 8.70 125.00 80.79 9.02 127.00 80.47 9.22 129.00 80.27 9.27 131.00 80.22 9.43 133.00 80.06 8LDR 10.09 135.00 10.75 135.10 78.74 9.86 137.00 77.99 12.33 139.00 77.16 13.20 141.00 76.29 13.13 143.00 76.36 12.98 145.00 76.51			8.31	117.00	81.18	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			8.46	120.70	81.03	Base of LB pin
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			8.25	120.70	81.24	Top of LB pin
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			8.61	123.00	80.88	
9.22 129.00 80.27 9.27 131.00 80.22 Boulder 9.43 133.00 80.06 BLDR 10.09 135.00 79.40 BLDR 10.75 135.10 78.74 base of BLDR 10.87 135.40 78.62 left edge water 11.50 137.00 77.99 12.33 139.00 77.16 13.13 143.00 76.36 12.98 145.00 76.51			8.70	125.00	80.79	
9.27 131.00 80.22 Boulder 9.43 133.00 80.06 BLDR 10.09 135.00 79.40 BLDR 10.75 135.10 78.74 base of BLDR 10.87 135.40 78.62 left edge water 11.50 137.00 77.99 12.33 139.00 77.16 13.13 143.00 76.36 12.98 145.00 76.51				127.00	80.47	
9.43 133.00 80.06 BLDR 10.09 135.00 79.40 BLDR 10.75 135.10 78.74 base of BLDR 10.87 135.40 78.62 left edge water 11.50 137.00 77.99 12.33 139.00 77.16 13.13 143.00 76.36 12.98 145.00 76.51				129.00	80.27	
10.09135.0079.40BLDR10.75135.1078.74base of BLDR10.87135.4078.62left edge water11.50137.0077.9912.33139.0077.1613.20141.0076.2913.13143.0076.3612.98145.0076.51			9.27	131.00	80.22	Boulder
10.75135.1078.74base of BLDR10.87135.4078.62left edge water11.50137.0077.9912.33139.0077.1613.20141.0076.2913.13143.0076.3612.98145.0076.51			9.43	133.00	80.06	BLDR
10.87135.4078.62left edge water11.50137.0077.9912.33139.0077.1613.20141.0076.2913.13143.0076.3612.98145.0076.51			10.09	135.00	79.40	BLDR
11.50 137.00 77.99 12.33 139.00 77.16 13.20 141.00 76.29 13.13 143.00 76.36 12.98 145.00 76.51			10.75	135.10	78.74	base of BLDR
12.33139.0077.1613.20141.0076.2913.13143.0076.3612.98145.0076.51			10.87	135.40	78.62	left edge water
13.20141.0076.2913.13143.0076.3612.98145.0076.51			11.50	137.00	77.99	
13.13 143.00 76.36 12.98 145.00 76.51			12.33	139.00	77.16	
12.98 145.00 76.51			13.20	141.00	76.29	
			13.13	143.00	76.36	
12.95 147.00 76.54			12.98	145.00	76.51	
			12.95	147.00	76.54	

Ice House Dam Reach Lower Site (IH-G2) upper cross-section (p.2 of 2)

HI
89.49

ні	BS	FS	STA	ELEV	Notes
9.49		12.78	149.00	76.71	
		12.81	151.00	76.68	
		12.64	153.00	76.85	
		12.43	155.00	77.06	
		12.40	157.00	77.09	
		12.50	159.00	76.99	
		12.80	161.00	76.69	
		12.82	163.00	76.67	
		13.05	165.00	76.44	
		12.91	167.00	76.58	
		12.40	169.00	77.09	
		12.25	171.00	77.24	
		12.46	173.00	77.03	
		12.05	175.00	77.44	
		12.20	177.00	77.29	
		12.33	179.00	77.16	
		12.62	181.00	76.87	
		12.41	183.00	77.08	
		12.40	185.00	77.09	
		12.01	187.00	77.48	
		11.56	188.70	77.93	
		10.85	188.80	78.64	Right edge of water
		9.53	189.00	79.96	top RB
		8.19	191.00	81.30	
		7.85	192.60	81.64	bottom of RB pin
		7.66	192.60	81.83	top of RB pin
		7.21	197.00	82.28	
		6.71	199.00	82.78	
		5.29	203.40	84.20	
		3.65	206.20	85.84	
		2.33	208.60	87.16	

Ice House Dam Reach Lower Site (IH-G2) middle cross-section (p. 1 of 2)

HI	BS	FS	STA	ELEV	Notes
86.65		0.41	0.00	86.24	LB top of endpin
		0.54	0.00	86.11	LB bottom (base) of EP
		2.09	10.00	84.56	
		3.50	18.00	83.15	
		4.21	23.00	82.44	
		4.17	32.00	82.48	
		5.25	39.00	81.40	
		5.80	44.00	80.85	channel (hi-flow)
		5.95	49.00	80.70	other side of channel
		5.14	53.30	81.51	
		5.30	67.00	81.35	
		5.92	70.00	80.73	hi-flow channel
		5.73	75.70	80.92	
		4.98	80.50	81.67	
		4.03	95.50	82.62	
		6.00	114.00	80.65	
		6.35	122.00	80.30	
		6.33	139.00	80.32	
		4.38	146.60	82.27	top of LB pin (in tree stump)
		4.55	146.60	82.10	base of LB pin (in tree stump)
		6.71	148.00	79.94	base of tree stump
		6.96	150.00	79.69	
		7.90	152.00	78.75	outer edge of large rootwad
		7.89	154.00	78.76	
		6.99	156.00	79.66	
		6.66	158.00	79.99	
		6.78	160.00	79.87	
		7.12	162.00	79.53	
		7.00	164.00	79.65	
		7.21	166.00	79.44	
		7.29	168.00	79.36	upper bankfull (LB)
		7.94	170.00	78.71	lower bankfull
		8.30	172.00	78.35	
		8.40	174.00	78.25	
		8.63	176.00	78.02	
		8.75	176.50	77.90	left edge water
		9.37	178.00	77.28	
		9.74	180.00	76.91	
		9.50	182.00	77.15	
		9.45	184.00	77.20	
		9.55	186.00	77.10	
		9.81	188.00	76.84	

Ice House Dam Reach Lower Site (IH-G2) middle cross-section (p. 2 of 2)

н	BS	FS	STA	ELEV	Notes
86.65		9.86	190.00	76.79	
		10.06	192.00	76.59	
		8.81	194.00	77.84	sub-aerial BLDR
		10.19	194.50	76.46	Right edge BLDR
		9.82	192.50	76.83	Left edge BLDR
		10.20	196.00	76.45	
		10.22	198.00	76.43	
		10.11	200.00	76.54	
		10.21	202.00	76.44	
		10.24	204.00	76.41	
		10.47	206.00	76.18	
		10.34	208.00	76.31	
		10.15	210.00	76.50	
		10.39	212.00	76.26	
		10.52	214.00	76.13	
		10.56	216.00	76.09	
		10.52	218.00	76.13	
		11.02	220.00	75.63	
		9.94	222.00	76.71	
		9.75	224.00	76.90	
		9.33	226.00	77.32	
		9.08	228.00	77.57	
		8.75	229.50	77.90	right edge water
		7.75	231.00	78.90	bankfull (estimated)
		7.60	232.00	79.05	
		6.77	234.00	79.88	
		5.24	236.00	81.41	
		4.53	238.00	82.12	
		4.19	238.80	82.46	RB, base of pin
		4.10	238.80	82.55	RB, top of pin
		4.01	240.50	82.64	
		1.72	244.00	84.93	

Ice House Dam Reach Lower Site (IH-G2) lower cross-section (p. 1 of 2)

83.48 5.75 0.00 77.37 Top of LB EP 5.94 0.00 77.54 Bottom of LB EP 0.25 -10.00 83.23 9.23 4.70 74.25 9.59 6.20 73.69 10.23 7.10 73.25 upper bankfull estimate 10.79 8.60 72.61 idwer bankfull estimate 10.97 9.00 72.51 idwer bankfull estimate 11.41 11.00 72.07 idex estimate 11.43 12.30 71.03 idex estimate 12.97 13.00 71.47 idex estimate 12.68 19.00 70.60 idex estimate 12.97 23.00 70.51 idex estimate 14.39 25.00 69.09 idex estimate 13.90 35.00 69.54 idex estimate 13.91 3.90 69.54 idex estimate 13.92 47.00 70.41 idex estimate 13.90 35.00 69.54 idex estimate 13.91 3.90 70.30 id	н	BS	FS	STA	ELEV	Notes
0.25 -10.00 83.23 Slope continues at that steepness, up LB 7.63 4.00 78.85 9.23 4.70 74.25 9.59 6.20 73.89 10.23 7.10 73.25 10.97 9.00 72.51 11.41 11.00 72.07 11.43 12.30 77.13 12.01 15.00 71.47 12.39 17.00 71.09 12.68 19.00 70.60 12.97 23.00 70.51 14.83 27.00 68.65 15.00 29.00 68.48 14.76 31.00 68.74 13.74 33.00 69.54 13.90 35.00 69.58 13.94 39.00 69.54 13.16 41.00 70.32 13.34 47.00 70.14 12.95 49.00 70.53 12.31 51.00 71.37 13.64 41.00 71.32 13.64 41.00 70.32 <td< th=""><td>83.48</td><th></th><td>5.75</td><td>0.00</td><td>77.73</td><td>Top of LB EP</td></td<>	83.48		5.75	0.00	77.73	Top of LB EP
7.63 4.00 75.85 9.23 4.70 74.25 9.59 6.20 73.89 10.23 7.10 73.25 upper bankfull estimate 10.79 8.60 72.69 lower bankfull estimate 10.97 9.00 72.51 left edge water 11.41 11.00 72.07 left edge water 11.75 13.00 71.73 left edge water 12.01 15.00 71.47 left edge water 12.88 21.00 70.60 left edge water 12.97 23.00 70.51 left edge water 14.39 25.00 69.09 left edge water 14.39 25.00 69.09 left edge water 13.90 35.00 69.58 left edge water 13.91 39.00 69.54 left edge water 13.92 45.00 70.32 left edge water 13.94 39.00 69.54 left edge water 13.95 45.00 70.33 left edge water 12.25 55.00 70.38 left			5.94	0.00	77.54	Bottom of LB EP
9.23 4.70 74.25 9.59 6.20 73.89 10.23 7.10 73.25 upper bankfull estimate 10.97 9.00 72.51 11.41 11.00 72.07 11.43 12.30 71.73 12.01 15.00 71.47 12.39 17.00 70.80 12.88 21.00 70.60 12.97 23.00 70.51 14.83 25.00 68.65 15.00 29.00 68.48 14.76 31.00 69.54 13.90 35.00 69.54 13.99 37.00 70.32 13.07 43.00 70.32 13.07 43.00 70.41 13.25 45.00 70.23 13.34 47.00 70.53 12.31 51.00 71.47 12.25 49.00 70.53 13.64 70.07 70.41 13.25 45.00 70.38 12.95 49.00 70.53 12.31			0.25	-10.00	83.23	Slope continues at that steepness, up LB
9.59 6.20 73.89 10.23 7.10 73.25 upper bankfull estimate 10.79 8.60 72.69 lower bankfull estimate 10.97 9.00 72.51 left edge water 11.41 11.00 72.07 left edge water 11.43 12.30 71.73 left edge water 12.01 15.00 71.47 12.39 17.00 71.09 12.68 19.00 70.60 12.97 23.00 70.51 14.39 25.00 68.65 15.00 29.00 68.48 14.76 31.00 69.74 13.90 35.00 69.58 13.99 37.00 69.49 13.94 39.00 70.32 13.307 43.00 70.14 12.25 45.00 70.23 13.34 47.00 70.14 12.25 55.00 70.98 12.31 51.00 71.17 12.54 59.00 70.53 12.55 55.00 70			7.63	4.00	75.85	
10.23 7.10 73.25 upper bankfull estimate 10.79 8.60 72.69 lower bankfull estimate 10.97 9.00 72.61 lower bankfull estimate 10.97 9.00 72.61 left edge water 11.41 11.00 72.07 left edge water 11.75 13.00 71.73 12.01 15.00 71.47 12.88 19.00 70.80 12.88 21.00 70.60 12.97 23.00 69.09 14.83 27.00 68.65 15.00 29.00 68.48 13.74 33.00 69.74 13.99 37.00 69.54 13.16 41.00 70.32 13.07 43.00 70.41 13.25 45.00 70.53 12.31 51.00 71.17 12.17 53.00 70.94 12.95 49.00 70.53 12.31 51.00 71.17 12.54 59.00 70.94 12.55 50.00			9.23	4.70	74.25	
10.79 8.60 72.69 lower bankfull estimate 10.97 9.00 72.51 itel edge water 11.43 12.30 72.05 left edge water 11.75 13.00 71.73 ielf edge water 11.75 13.00 71.73 ielf edge water 12.89 17.00 71.09 ielf edge water 12.88 21.00 70.60 ielf edge water 14.39 25.00 69.09 ielf edge water 14.83 27.00 68.65 ielf edge water 13.90 35.00 69.54 ielf edge water 13.94 39.00 69.54 ielf edge water 13.94 39.00 69.54 ielf edge water 13.95 41.00 70.32 ielf edge water 13.95 49.00 70.53 ielf edge water 12.95 49.00 70.53 ielf edge water 12.95 49.00 70.98 ielf edge water 12.54 59.00 70.94 iright edge			9.59	6.20	73.89	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			10.23	7.10	73.25	upper bankfull estimate
11.4111.0072.0711.4312.3072.0511.7513.0071.7312.0115.0071.4712.3917.0071.0912.6819.0070.8012.9723.0070.5114.3925.0069.0914.8327.0068.6515.0029.0068.4814.7631.0069.7413.9035.0069.5813.9937.0069.4913.9439.0069.5413.3447.0070.4113.2545.0070.2313.3447.0070.1412.9555.0070.9812.5459.0070.9411.5461.0071.3112.5459.0070.9411.5461.0071.94right edge water11.0062.6074.4810.1363.0073.35lower bankfull (RB)9.099.0965.0074.398.8266.0074.66upper BF (bankfull)8.2267.0075.26			10.79	8.60	72.69	lower bankfull estimate
11.43 12.30 72.05 left edge water 11.75 13.00 71.73 12.01 15.00 71.47 12.39 17.00 71.09 12.68 19.00 70.80 12.88 21.00 70.60 12.97 23.00 70.51 14.39 25.00 69.09 14.83 27.00 68.65 15.00 29.00 68.48 14.76 31.00 69.74 13.90 35.00 69.58 13.99 37.00 69.49 13.94 39.00 69.54 13.16 41.00 70.32 13.07 43.00 70.41 13.25 45.00 70.23 13.34 47.00 70.14 12.50 55.00 70.98 12.67 57.00 71.31 12.54 59.00 70.94 15.4 61.00 71.94 15.4 61.00 71.94 15.4 63.00 73.35 Jower bankfull (RB)			10.97	9.00	72.51	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			11.41	11.00	72.07	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			11.43	12.30	72.05	left edge water
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			11.75	13.00	71.73	
12.68 19.00 70.80 12.88 21.00 70.60 12.97 23.00 70.51 14.39 25.00 69.09 14.83 27.00 68.65 15.00 29.00 68.48 14.76 31.00 68.72 13.74 33.00 69.74 13.90 35.00 69.58 13.99 37.00 69.49 13.94 39.00 69.54 13.16 41.00 70.23 13.07 43.00 70.41 12.25 49.00 70.53 12.31 51.00 71.17 12.50 55.00 70.98 12.67 57.00 70.81 12.54 59.00 70.94 11.54 61.00 71.94 11.00 62.60 72.48 10.13 63.00 73.35 9.09 65.00 74.39 8.82 66.00 74.66 9.09 65.00 74.99 8.82 66.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66			12.01	15.00	71.47	
12.88 21.00 70.60 12.97 23.00 70.51 14.39 25.00 69.09 14.83 27.00 68.65 15.00 29.00 68.48 14.76 31.00 68.72 13.74 33.00 69.74 13.90 35.00 69.58 13.90 37.00 69.49 13.94 39.00 69.54 13.16 41.00 70.32 13.07 43.00 70.41 13.25 45.00 70.23 13.34 47.00 70.14 12.95 49.00 70.53 12.31 51.00 71.31 12.50 55.00 70.98 12.67 57.00 70.81 12.54 59.00 70.94 11.54 61.00 71.94 11.00 62.60 72.48 10.13 63.00 73.35 8.82 66.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66 9.09 65.00 74.66			12.39	17.00	71.09	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			12.68	19.00	70.80	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			12.88	21.00	70.60	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			12.97	23.00	70.51	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			14.39	25.00	69.09	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			14.83	27.00	68.65	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			15.00	29.00	68.48	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			14.76		68.72	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			13.74	33.00	69.74	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			13.90	35.00	69.58	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			13.99	37.00	69.49	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			13.94	39.00	69.54	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
13.34 47.00 70.14 12.95 49.00 70.53 12.31 51.00 71.17 12.17 53.00 71.31 12.50 55.00 70.98 12.67 57.00 70.81 12.54 59.00 70.94 11.54 61.00 71.94 right edge water 11.00 62.60 72.48 10.13 63.00 73.35 lower bankfull (RB) 9.09 65.00 74.39 8.82 66.00 74.66 upper BF (bankfull) 8.22 67.00 75.26						
12.95 49.00 70.53 12.31 51.00 71.17 12.17 53.00 71.31 12.50 55.00 70.98 12.67 57.00 70.81 12.54 59.00 70.94 11.54 61.00 71.94 right edge water 11.00 62.60 72.48 10.13 63.00 73.35 lower bankfull (RB) 9.09 65.00 74.39 8.82 66.00 74.66 upper BF (bankfull) 8.22 67.00 75.26						
12.31 51.00 71.17 12.17 53.00 71.31 12.50 55.00 70.98 12.67 57.00 70.81 12.54 59.00 70.94 11.54 61.00 71.94 right edge water 11.00 62.60 72.48 10.13 63.00 73.35 lower bankfull (RB) 9.09 65.00 74.39 8.82 66.00 74.66 upper BF (bankfull) 8.22 67.00 75.26						
12.17 53.00 71.31 12.50 55.00 70.98 12.67 57.00 70.81 12.54 59.00 70.94 11.54 61.00 71.94 right edge water 11.00 62.60 72.48 10.13 63.00 73.35 lower bankfull (RB) 9.09 65.00 74.39 8.82 66.00 74.66 upper BF (bankfull) 8.22 67.00 75.26						
12.50 55.00 70.98 12.67 57.00 70.81 12.54 59.00 70.94 11.54 61.00 71.94 right edge water 11.00 62.60 72.48 10.13 63.00 73.35 lower bankfull (RB) 9.09 65.00 74.39 8.82 66.00 74.66 upper BF (bankfull) 8.22 67.00 75.26						
12.67 57.00 70.81 12.54 59.00 70.94 11.54 61.00 71.94 right edge water 11.00 62.60 72.48 10.13 63.00 73.35 lower bankfull (RB) 9.09 65.00 74.39 8.82 66.00 74.66 upper BF (bankfull) 8.22 67.00 75.26						
12.54 59.00 70.94 11.54 61.00 71.94 right edge water 11.00 62.60 72.48 10.13 63.00 73.35 lower bankfull (RB) 9.09 65.00 74.39 8.82 66.00 74.66 upper BF (bankfull) 8.22 67.00 75.26				55.00		
11.5461.0071.94right edge water11.0062.6072.4810.1363.0073.35lower bankfull (RB)9.0965.0074.398.8266.0074.66upper BF (bankfull)8.2267.0075.26				57.00		
11.00 62.60 72.48 10.13 63.00 73.35 lower bankfull (RB) 9.09 65.00 74.39 8.82 66.00 74.66 upper BF (bankfull) 8.22 67.00 75.26						
10.1363.0073.35lower bankfull (RB)9.0965.0074.398.8266.0074.66upper BF (bankfull)8.2267.0075.26				61.00		right edge water
9.0965.0074.398.8266.0074.66upper BF (bankfull)8.2267.0075.26				62.60		
8.8266.0074.66upper BF (bankfull)8.2267.0075.26						lower bankfull (RB)
8.22 67.00 75.26						
						upper BF (bankfull)
7.66 69.00 75.82						
			7.66	69.00	75.82	

Ice House Dam Reach Lower Site (IH-G2) lower cross-section (p. 2 of 2)

HI 83.48

BS	FS	STA	ELEV	Notes
	7.02	71.00	76.46	
	6.29	73.00	77.19	
	5.73	75.00	77.75	
	4.78	76.40	78.70	top of RB pin (in snag)
	5.54	76.40	77.94	base of snag ground sfc at base of snag
	5.00	81.00	78.48	high terrace (w/ manzanita) - w/ lots of duff
	5.07	88.60	78.41	
	5.36	100.30	78.12	sandy ground surface (recent deposits - hi water mark)
	6.48	104.80	77.00	
	7.52	108.30	75.96	high flow channel
	8.20	117.50	75.28	
	7.93	128.00	75.55	
	7.52	139.00	75.96	
	7.35	145.30	76.13	
	6.40	152.80	77.08	(right edge of side channel - CO/GR)
	5.74	157.00	77.74	sand
	5.26	166.50	78.22	sand
	5.15	173.00	78.33	sand
	4.70	180.30	78.78	
	0.41	200.00	83.07	

Ice House Dam Reach Lower Site (IH-G2) pebble count summary

	Upper Class Boundary	Rosgen Particle						
Particle Description	(mm)	Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	16	0	6	22	7%	7%
Very coarse sand (measured)	2	5	1	1	18	20	7%	14%
Very Fine Gravel	4		0	3	0	3	1%	15%
Fine Gravel	8		1	3	1	5	2%	17%
Medium Gravel	16	4	4	5	5	14	5%	21%
Coarse Gravel	32		11	10	12	33	11%	32%
Very Coarse Gravel	64		30	17	9	56	19%	51%
Small Cobble	128	- 3	9	20	20	49	16%	67%
Large Cobble	256	3	10	18	8	36	12%	79%
Small Boulder	512		4	15	5	24	8%	87%
Medium Boulder	1024	2	2	0	0	2	1%	88%
Large Boulder	2048	2	0	1	0	1	0%	88%
Very Large Boulder	4096]	0	0	0	0	0%	88%
Bedrock	>4096	1	12	7	16	35	12%	100%
		Total	100	100	100	300	100%	

Modified Wolman Pebble Count (mm), Lower Ice House Dam Reach

Junction Dam Reach Site (JD-G1) long profile data (p.1 of 2)

н	BS	FS STA	Water depth (ft)	WSEL (ft)	Bed Elevation (ft)	Notes
						Benchmark: spray
						paint on bedrock just
	8.27	BM1				u/s of XS1; 5/18
108.27		12.75 5.00	2.40	97.92	95.52	
		12.48 30.00		97.89	95.79	
		12.04 50.00		97.98	96.23	
		11.58 81.00		97.80	96.69	
		13.00 96.00		97.77	95.27	
		12.84 114.0		97.53	95.43	
		12.70 126.0		97.19	95.57	
		12.24 141.0		97.41	96.03	
		12.14 151.0		97.87	96.13	
		14.19 161.0		96.65	94.08	
		12.63 181.0		97.04	95.64	XS @ STA 195
		13.24 201.0		96.23	95.03	
		16.23 216.0		95.37	92.04	
		14.88 230.00		95.44	93.39	
		14.10 260.00		95.29	94.17	
		15.75 276.0		94.32	92.52	
		16.19 289.00		93.93	92.08	
		15.77 300.00	0 1.10	93.60	92.50	
101.74	1.74	BM1				19-May
		9.62 317.0		93.16	92.12	
		11.63 336.0		92.31	90.11	
		12.06 355.00		91.64	89.68	
		12.71 368.0		91.65	89.03	
		12.40 390.00		91.62	89.34	
		11.02 418.3	0.86	91.58	90.72	XS 2 location
		8.70				turning point 1

Junction Dam Reach Site (JD-G1) long profile data (p. 2 of 2)

н	BS	FS STA	Water depth (ft)	WSEL (ft)	Bed Elevation (ft)	Notes TP1; autolevel in new
98.41	5.37	0.00 400.00	4.70	04.40	00.40	position DS
		8.98 430.00		91.19	89.43	
		8.85 451.00		91.24	89.56	
		8.38 466.00		90.95	90.03	
		9.94 477.00		90.85	88.47	
		10.08 484.00		90.74	88.33	
		10.76 498.00		90.74	87.65	
		9.87 513.00		90.75	88.54	
		8.78 521.00		90.60	89.63	
		11.48 526.00		89.43	86.93	
		12.23 540.00		89.54	86.18	
		13.33 560.00		89.52	85.08	
		12.51 571.00		89.54	85.90	
		11.87 578.00		89.52	86.54	
		13.09 593.00		89.57	85.32	
		9.95 613.00		89.46	88.46	
		11.32 636.00		88.65	87.09	
		11.82 651.00 9.53	2.10	88.69	86.59	XS 3 location TP 2
97.43	8.55					TP 2, auto level @ new position DS
•••••	0.00	10.49 670.00	1.75	88.69	86.94	
		9.71 701.00		88.46	87.72	
		11.76 708.00		88.10	85.67	
		12.33 716.00		88.10	85.10	
		10.72 725.00		87.78	86.71	
		11.01 736.00		87.84	86.42	
		11.24 756.00		87.61	86.19	
		12.21 764.00		87.26	85.22	
		13.13 780.00		87.25	84.30	
		12.11 797.00		86.98	85.32	
		12.33 805.00		87.05	85.10	
		12.00 000.00	1.00	01100	00110	end of site and long
		12.63 828.00	2.45	87.25	84.80	profile
	4.39	12.00 020.00	2.10	07.20	01.00	TP1 - close out
	1.00					TP1 - close out
101.93	8.89					gun@ new position
.01.00	1.94					BM 1 - close out
99.99	1.04					CLOSED OUT

Junction Dam Reach Site (JD-G1) upper cross-section

н	BS	FS	STA	Elevation	Notes top of LB endpin - nail
					pounded into u/s side of
108.27		2.04	0.40		cedar
		6.23	1.00	102.04	base of cedar
		7.01	4.70	101.26	
		7.73	8.00	100.54	
		9.75	11.00	98.52	
		9.85	13.30	98.42	
		10.96	15.80	97.31	upper bankfull estimate
		10.73	18.50	97.54	lower bankfull estimate
		11.57	21.00	96.70	left edge of water
		12.02	24.60	96.25	
		12.41	28.80	95.86	
		12.56	33.10	95.71	
		12.66	36.70	95.61	
		13.39	39.00	94.88	
		12.97	42.50	95.30	left edge of boulder
		9.73	45.00	98.54	top of boulder
		12.50	45.80	95.77	right edge of boulder
		13.04	49.50	95.23	
		13.84	51.00	94.43	
		14.26	52.30	94.01	
		13.78	53.30	94.49	left edge boulder
		11.40	54.10	96.87	top of boulder
		10.97	57.30	97.30	top of boulder
		13.73	60.70	94.54	
		13.53	64.70	94.74	
		13.27	70.00	95.00	
		12.88	74.00	95.39	
		12.88	78.20	95.39	
		12.92	83.00	95.35	
		12.10	89.20	96.17	right edge water
		11.20	90.50	97.07	lower bankfull estimate
		10.35	92.80	97.92	upper bankfull estimate
		8.77	94.10	99.50	
		7.93	97.50	100.34	
		6.10	99.70	102.17	
		4.54	103.10	103.73	
		1.88	107.90	106.39	LB top of pin
		2.10	107.90	106.17	LB bottom of pin

Junction Dam Reach Site (JD-G1) middle cross-section

ні	BS	FS	STA	Elevation	
98.41		0.65	0.30		t.o. [top of] LB pin, BR vertical for 15' @ pin
90.41		2.45	0.30	95.96	b.o. [bottom of] LB pin
		2.43 5.48	3.30	93.90 92.93	BR - bankfull
		0.40	0.00	02.00	Brt Banklan
		4.97	7.10	93.44	Crest of GR deposit - bankfull
		5.72	10.50	92.69	Lower bankfull estimate; GR deposit
		6.79	15.20	92.03 91.62	Left edge of water
		7.76	18.60	90.65	Left edge of BO
		6.79	20.70	91.62	t.o. BO
		8.38	22.80	90.03	right edge of BO
		8.31	23.60	90.00	left edge of BO
		0.01	20.00	30.10	left edge of DO
		7.19	25.00	91.22	t.o. BO/ right edge of next BO
		4.20	25.50	94.21	t.o. BO
		4.03	27.50	94.38	t.o. BO
		8.48	32.10	89.93	CO/GR
		8.43	35.00	89.98	CO/GR
		8.11	38.40	90.30	BR
		7.95	39.70	90.46	BR
		7.59	42.10	90.82	GR over BR
		7.75	45.50	90.66	BR
		7.75	49.60	90.66	CO/GR
		7.11	53.90	91.30	CO/GR
		6.73	58.60	91.68	Right edge of water
		6.20	61.10	92.21	GR bar
		5.98	63.40	92.43	GR bar
		5.89	66.00	92.52	GR bar lower bankfull estimate
		5.13	68.70	93.28	GR bar upper bankfull estimate
		3.93	71.60	94.48	GR bar
		3.23	74.20	95.18	GR bar
		3.37	77.00	95.04	GR bar
		3.13	79.60	95.28	GR bar
		3.36	81.60	95.05	Left edge of BR
		2.17	83.10	96.24	BR
		1.05	88.00	97.36	BR
					b.o. pin; BR on right bank
		1.26	89.60	97.15	vertical for 5' @ pin
		1.55	89.60		t.o. pin

Junction Dam Reach Site (JD-G1) lower cross-section

ні	BS	FS	STA	ELEVATION	
97.43		2.41	0.00		t.o. LB pin BR-vertical bank
		3.04	-0.50	94.39	b.o. LB pin BR-vertical bank
		8.09	1.80	89.34	BR
		8.60	5.40	88.83	GR deposit
		8.06	8.60	89.37	GR deposit
		7.46	12.60	89.97	GR deposit bankfull estimate
		7.95	15.60	89.48	GR deposit
		8.75	18.00	88.68	right edge of GR/ left edge of water
		9.52	20.60	87.91	BR
		8.89	26.60	88.54	BR
		8.65	31.00	88.78	BR
			32.40	86.83	CO/GR
		11.01	36.30	86.42	CO/GR
			40.30	87.18	CO/GR
		10.06	46.00	87.37	CO/GR
		9.73	48.90	87.70	CO/GR
		8.72	52.40	88.71	right edge of water; GR bar dep. GR right bank bar; lower bankfull
		7.67	55.20	89.76	estimate
					upper bankfull estimate; GR bar
		6.89	58.40	90.54	deposits
		6.73	62.00	90.70	GR bar deposit
					contact between CO and GR
		7.28	65.60	90.15	deposits
		7.43	69.30	90.00	CO bar deposit
		6.79	73.70	90.64	CO bar deposit
		5.81	76.30	91.62	CO bar deposit
		5.21	85.00	92.22	SA
		4.71	89.40	92.72	SA
		4.44	91.30	92.99	SA
		3.58	93.30	93.85	BO colluvium
		1.30	95.50	96.13	BO colluvium
		1.60	97.30	95.83	b.o. RB pin t.o. RB pin; BO slope above pin @
		0.54	96.80	96.89	45 degrees.

Junction Dam Reach Site (JD-G1) pebble count summary

Modified Wolman Pebble Count (<i>,</i> ,		1					
		Rosgen						
	Boundary	Particle						
Particle Description	(mm)	Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	0	0	0	0	0%	0%
Very coarse sand (measured)	2	5	0	0	0	0	0%	0%
Very Fine Gravel	4		0	0	0	0	0%	0%
Fine Gravel	8		0	0	0	0	0%	0%
Medium Gravel	16	4	0	8	0	8	3%	3%
Coarse Gravel	32		5	18	6	29	10%	12%
Very Coarse Gravel	64		18	24	34	76	25%	38%
Small Cobble	128	3	36	38	46	120	40%	78%
Large Cobble	256	5	20	4	4	28	9%	87%
Small Boulder	512		6	3	0	9	3%	90%
Medium Boulder	1024	2	5	2	0	7	2%	92%
Large Boulder	2048	2	1	0	0	1	0%	93%
Very Large Boulder	4096		0	0	0	0	0%	93%
Bedrock	>4096	1	9	3	10	22	7%	100%
		Total	100	100	100	300	100%	

Modified Wolman Pebble Count (mm), Junction Dam Reach

Camino Dam Reach Site (CD-G1) long profile

н	BS	FS	STA	Water depth (ft)	WSE	Elev	Notes
							Benchmark arbitrary elevation = 100.00 (Same
	5.86						as BM#1?)
105.86							,
		13.79	0.00	1.80			Head of pool, boulder
		17.11	20.00	5.15	93.90		cobble
		16.44	27.00	4.44	93.86		cobble
		15.19	40.00	3.22	93.89		
		20.80		8.81	93.87		gravel on bedrock
		20.51		8.50	93.85		bedrock
			115.00	4.45	93.86		bedrock
			128.00	4.23			cobble
		13.52	142.90	1.62	93.96	92.34	upper XS (tailpool), cobble
	5.86	14.40				01.40	Turning point 1
		14.40	140.00	0.75	02.00		Turning point 1
			149.00 172.00	0.75 2.40	93.88 92.57		top of step/run, bedrock bedrock
			172.00	0.76	92.57 92.13		bedrock
			237.00	5.23	92.13 90.57		boulder
		20.52	237.00	5.25	90.57	05.54	head of pool/below
		20 / 3	269.00	4.43	89.86	85 13	cascade, bedrock
			293.00	2.63	89.85		in pool, boulder
		10.04	200.00	2.00	00.00	07.22	
8/13/2003 -	Long prof	ile Day 2	2 (new O.	S.)			
HI	BS	FS	STA	Water depth (ft)	WSE	Elev	Notes
	5.80						Turning point 1
97.26		11.14	316.00	3.64	89.76	86.12	in pool, bedrock
				4.0=	~~		tail of pool/top cascade,
		8.86	341.00	1.37	89.77		boulder
			368.00	2.38	87.55		tail of cascade, cobble
			397.00	3.13			pool, gravel
			413.00	0.82			tail of pool, bedrock
			428.00	5.71			pool, bedrock
							• •
		11.78		0.70	86.18	85.48	
			530.00				middle XS location
		14.22	538.00	2.20	85.24	83.04	bottom of cascade, bedrock
			583.00	3.04	85.25		in run, bedrock
			623.00	2.08	84.86		lower XS riffle, boulder
			653.00	1.69	83.91		bottom of riffle, cobble
		15.84	668.00	2.54	83.96	81.42	pool, bedrock
	5.80						turning point #1 (check)
		14.32 11.78	494.00 518.00 530.00	3.35 0.70 2.20	86.29 86.18	82.94 85.48	tail of pool, cobble top of cascade, bedrock middle XS location bottom of cascade, bedrock
	5.80			-		_	•
							,

Camino Dam Reach Site (CD-G1) upper cross-section

н	BS	FS	STA	WD	ELEV	Bed material	Notes estimated about 25 ft to top of bedrock terrace from
		-15.50	-6.00		121.31	bedrock	base of pin
							base of pin cobble
		9.50	0.00		96.31	cobble	(approx. bankfull indicator)
		8.61	0.00		97.20	cobble	top of pin
		10.37	5.00		95.44	cobble	
		11.42	10.00		94.39	cobble	
		12.16	13.30	0.00	93.65	cobble	L.E.W.
		13.22	16.20	1.25	92.59	gravel	
		13.86	20.50	1.83	91.95	cobble	
		13.37	26.60	1.40	92.44	bedrock	
		12.79	30.00	0.81	93.02	bedrock	
		14.43	34.00	2.41	91.38	cobble	
		13.78	39.00	1.76	92.03	cobble	
		13.87	43.00	1.89	91.94	cobble	
		13.87	47.00	1.93	91.94	bedrock	
		12.81	49.00	0.81	93.00	bedrock	
		9.61	51.70		96.20	boulder	
		12.99	54.00	0.62	92.82	bedrock	
		12.35	58.00	0.00	93.46	bedrock	R.E.W.
		10.86	62.20		94.95	bedrock	
		10.14	67.70		95.67	bedrock	
							in vegetation, approx.
		9.27	73.00		96.54	bedrock	bankfull indicator
		7.41	78.00		98.40	boulder	in vegetation
		5.27	85.00		100.54	boulder	
		3.79	90.70		102.02	boulder	
		1.96	94.90		103.85	boulder	base of pin
		1.28	94.90		104.53	boulder	top of pin
105.81	5.81				100.00		B.M.#1

Camino Dam Reach Site (CD-G1) middle cross-section

HI 107.16	BS 12.80	FS	STA	WD	ELEV 94.36	Bed material	Notes Turning point #1 estimated +10 ft from base
		-2.79	-6.00		109.95	bedrock	of pin ~ top of bedrock ledge
		5.85	0.00		101.31		top of pin LB
		7.21	0.00		99.95		base of pin LB
		9.14	4.50		98.02	bedrock	
		14.41	8.50		92.75	bedrock	
		12.39	9.70		94.77	bedrock	
		12.83	12.00		94.33	gravel	approx. bankfull indicator
		15.28	26.00		91.88	gravel	
		16.38	33.20		90.78	bedrock	
		18.10	42.50		89.06	gravel	
		17.24	43.00		89.92	bedrock	
		18.66	51.50	0.37	88.50	bedrock	L.E.W.
		18.85	56.40	0.63	88.31	boulder	
		18.50	60.60	0.28	88.66	cobble	
		17.23	63.20		89.93	bedrock	
		17.99	69.50		89.17	bedrock	
		20.43	71.60	1.60	86.73	bedrock	
		20.52	73.80	1.98	86.64	boulder	
		19.61	77.00	1.19	87.55	bedrock	
		17.26	77.60	0.00	89.90	bedrock	R.E.W.
		16.01	93.40		91.15	bedrock	
		12.53	101.40		94.63	cobble	
		7.30	114.00		99.86	cobble	
		3.83	121.80		103.33		base of pin RB
		3.09	121.80		104.07		top of pin
	12.80						tuning point #1 (check)

Camino Dam Reach Site (CD-G1) lower cross-section

HI 101.41	BS 7.05	FS	STA	WD	ELEV 94.36	Bed material	Notes turning point #1
		1.14	0.00		100.27		top of pin L.B.
		2.09	0.00		99.32		bottom of pin L.B.
		4.28	7.50		97.13	bedrock	
		7.40	13.20		94.01	gravel	
		9.35	25.50		92.06	gravel	
		10.97	35.00		90.44	gravel	
		10.77	40.80		90.64	bedrock	
		12.13	47.50		89.28	bedrock	
		15.16	48.30	0.37	86.25	bedrock	L.E.W.
		14.79	54.00	1.05	86.62	bedrock	
		14.32	58.20	0.67	87.09	gravel	
		12.98	60.90		88.43	bedrock	
		15.44	65.50	1.73	85.97	boulder	
		15.51	67.80	1.77	85.90	cobble	
		14.92	70.20	1.13	86.49	cobble	
		13.93	73.30	0.31	87.48	cobble	
		13.89	76.10	0.15	87.52	cobble	R.E.W.
		12.68	78.40		88.73	boulder	
		13.02	84.50		88.39	cobble	
		12.68	91.20		88.73	cobble	
		10.87	94.40		90.54	bedrock	
		9.61	102.40		91.80	bedrock	approx. bankfull indicator
		8.86	109.50		92.55	bedrock	
		5.41	115.30		96.00		base of pin R.B.
	7.05	4.32			97.09		top of pin R.B. turning point #1 (check)

Camino Dam Reach Site (CD-G1) pebble count summary

	Upper Class	Rosgen						
	Boundary	Particle						
Particle Description	(mm)	Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	0	0	0	0	0%	0%
Very coarse sand (measured)	2	5	0	0	0	0	0%	0%
Very Fine Gravel	4		1	0	0	1	0%	0%
Fine Gravel	8		1	0	0	1	0%	1%
Medium Gravel	16	4	0	0	5	5	2%	2%
Coarse Gravel	32	-	6	6	8	20	7%	9%
Very Coarse Gravel	64	-	37	29	31	97	32%	41%
Small Cobble	128	3	36	41	29	106	35%	77%
Large Cobble	256		19	18	19	56	19%	95%
Small Boulder	512		0	3	4	7	2%	98%
Medium Boulder	1024	2	0	0	2	2	1%	98%
Large Boulder	2048		0	0	0	0	0%	98%
Very Large Boulder	4096]	0	0	0	0	0%	98%
Bedrock	>4096	1	0	3	2	5	2%	100%
		Total	100	100	100	300	100%	

Modified Wolman Pebble Count (mm), Camino Reach

S. F. American Reach Site (SFAR-G1) long profile (p. 1 of 2)

HI 104.32	BS 4.32	FS	Water depth (ft)	STA	WSE	ELEV	Bed material	Notes B.M. #1 (from O.S. #2)
		9.76	3.52	7.00	98.08	94.56	sand, boulder	mid pool
		9.46	3.23	14.00	98.09	94.86		
		9.61	3.38	24.00	98.09	94.71		
		10.23	4.00	34.00	98.09	94.09		
							sand, large cobble,	
		10.15	3.91	44.00	98.08	94.17	small boulder	
		10.41	4.18	54.00	98.09	93.91		
		10.28	4.05	64.00	98.09	94.04		
		10.28	4.05	74.00	98.09	94.04		
		10.14	3.90	84.00	98.08	94.18	sand	
		10.30	4.08	94.00	98.10	94.02		
							sand/boulder/large	
		10.13	3.90	104.00		94.19	cobble	
		10.10	3.87	114.00		94.22		
		9.79	3.55	124.00		94.53		
		9.70	3.45	134.00		94.62		
		9.21	2.96	144.00		95.11		
		9.21	2.95	154.00		95.11		
		8.99	2.76	164.00		95.33		tail of pool/head of riffle
		9.29	3.02	174.00		95.03		
		9.21	2.96	184.00		95.11		
		8.93	2.66	197.00	98.05	95.39	<i>.</i>	at upper XS(#1)
		0.74	0.40	007.00	~~~~	05.04	cobble/small	
		8.71	2.46	207.30		95.61	boulder	
		8.63	2.38	217.00		95.69		
		8.68	2.40	227.00		95.64		
		8.32	1.96	237.00		96.00		
		8.31	1.88	247.00		96.01		middle VS (#2)
		8.34	1.82	254.40		95.98	bouldor	middle XS (#2)
		9.02	1.90	264.40		95.30	boulder	
		8.77 9.06	1.50 1.48	274.00 284.30		95.55 95.26		
		9.06 9.71	1.40	284.30		95.20 94.61		
		9.71 10.11	1.40	294.00 300.00		94.01 94.21		
		10.11	1.00	300.00	90.01	94.ZI		

S. F. American Reach Site (SFAR-G1) long profile (p. 2 of 2)

NEW DA	Y 10/23	3/03, con	tinuation from 10/10	/03 surve	×۷	. •		
HI	BS	FS	Water depth (ft)			ELEV	Bed material	Notes
								B.M.#3 (outcrop on RB D/S
106.02	4.06					101.96		lower XS#3)
		9.78	1.68	254.40	97.92	96.24		Middle XS(#2)
		10.03	1.76	261.40	97.75	95.99	boulder/bedrock	
		10.51	2.13	267.90		95.51		top of step
		10.53	1.81	276.90		95.49		
		10.59	1.48	286.40		95.43		
		11.40	1.80	296.40		94.62		bottom of step
		12.01	2.60	308.40		94.01		in run
		12.94	3.36	316.40		93.08		
		13.06	3.45	326.40	96.41	92.96		
							boulder/sand/cobb	
		12.33	2.60	334.40		93.69	е	
		13.20	3.40	345.40		92.82		
		13.79	4.00	353.40		92.23		Lower XS(#3)
		13.85	3.98	362.40		92.17		
		14.92	4.85	372.40		91.10		
		15.08	5.14	382.40		90.94		
		14.88	4.96	392.40	96.10	91.14		top of boulder drop
								bottom ofdrop/start of boulder
		15.86	5.70	402.40		90.16		run
		16.20	5.80	411.40		89.82		
		14.15	3.84	422.40		91.87		
		13.36	3.00	432.40		92.66		
		15.99	5.15	442.40		90.03		
		14.20	3.20	452.40		91.82		
		13.48	2.20	459.40		92.54		
		14.14	2.70	469.40		91.88		
		15.82	4.10	479.40		90.20		
		16.30	4.14	492.40		89.72		
		17.30	5.50	502.40		88.72		
		16.62	4.70	512.40		89.40		
		16.16	4.30	522.40	94.16	89.86		
		4.06				101.96		B.M.#3

S. F. American Reach Site (SFAR-G1) upper cross-section

н	BS	FS	STA	WD	ELEV	Bed material	Notes B.M.#1 (rock outcrop on
110.00	10.00						LB near start of thalweg
119.63	19.63	2.71	152.90		116.92		survey) top of pin LB bottom of pin LB
		3.57	152.90		116.06		(floodprone elevation)
		4.41	148.00		115.22	bedrock	(,
		11.97	140.00		107.66	bedrock	
							estimated bankfull
		14.10	135.00		105.53	bedrock	elevation
		18.67	127.00		100.96		
		20.50	122.00		99.13		
		21.62	121.10	0.00	98.01		L.E.W.
						small boulder, large	
		23.56	116.00		96.07	cobble	
		24.07	110.00		95.56		
		24.18	106.00		95.45		
		24.30	102.00		95.33		
		24.34	99.00		95.29		
		24.36	93.00		95.27		
		24.56	88.00		95.07		
		23.73	84.00		95.90		
		22.68	79.00		96.95		
		23.22	74.00		96.41		
		21.79	69.00	0.00	97.84		
		21.59	68.30	0.00	98.04	a a wal ha w	R.E.W.
		20.34	63.00		99.29	sand bar	on veg. sand bar
		20.02	56.00		99.61		active stad bankfull
		13.71	54.90		105.92	bedrock	estimated bankfull elevation
		11.13	54.90 49.00		105.92	Deulock	elevation
		9.42	49.00 41.00		108.50		
		9.42 7.87	34.00		111.76		
		7.05	25.00		112.58		
		5.20	16.00		114.43		bottom of pin RB
		4.16	16.00		115.47		top of pin RB
		19.64			99.99		B.M.#1

S. F. American Reach Site (SFAR-G1) middle cross-section

HI	BS	FS	STA	WD	ELEV	Bed material	Notes
120.27	17.92				102.35		B.M. #2 (from O.S. #3)
		0.59	147.30		119.68	bedrock	t.o.p. LB
		2.06	147.30		118.21		b.o.p. LB
		8.36	138.00		111.91		
							estimated bankfull
			128.00		104.12		elevation
		19.10	118.00		101.17		
		22.21	109.20	0.00	98.06		LEW
		23.97	102.00		96.30	large cobble	
		24.22	95.00		96.05		
							B.M. #2 (from O.S.#3) (knocked station? Set
120.24	17.89						new HI)
		24.23	88.00		96.01		
		24.20	84.00		96.04		
		22.56	81.10	0.00	97.68		REW
		21.89	73.00		98.35	bedrock	
		21.11	63.00		99.13		
		20.54	53.00		99.70		
		18.91	43.70		101.33		
		15.24	33.00		105.00		bankfull?
		8.56	26.00		111.68		
		5.92	20.00		114.32		
		4.37	15.40		115.87		b.o.p. RB
		3.71			116.53		t.o.p. RB
		17.89			102.35		B.M. #2 (from O.S. #3)

S. F. American Reach Site (SFAR-G1) lower cross-section

HI 120.20	BS 3.28	FS	STA	WD	ELEV 116.92	Bed material	Notes t.o.p. LB Upper XS
120.20	0.20	0.15	1.20		120.05		t.o.p. RB
		0.77	1.20		119.43		b.o.p. RB
		1.54	6.00		118.66	bedrock slope	5.6.p. 1 (2
		5.22	11.00		114.98		
		7.79	15.00		112.41		
		9.75	20.00		110.45		
		0.110	20.00		110.10		bankfull estimate (sand deposit
		14.00	25.00		106.20		on bedrock)
		15.04	30.00		105.16		
		15.26	35.00		104.94		
		16.75	40.00		103.45	bedrock/boulder	
		18.62	45.00		101.58		
		18.93	50.00		101.27		
		14.28	55.00		105.92	on boulder	
		12.90	60.00		107.30	on bedrock outcrop	
		13.97	65.00		106.23		
		15.62	70.00		104.58		
		16.92	75.00		103.28		
		18.75	80.00		101.45		
		23.05	85.00		97.15		
		24.03	86.10	0.00	96.17		R.E.W. (11:18AM)
		18.24			101.96		B.M.#3 (on RB outcrop D/S of lower XS)
106.00	4.04	10.24			101.00		B.M.#3 (from new O.S.)
100.00	4.04	11.84	88.20		94.16		
		13.49	93.00	2.62	92.51	sand/bedrock/boulder	
		13.78	98.00	2.02	92.22		
		12.15	103.00		93.85		
		11.26	108.00		94.74		
		10.50	112.00		95.50		
		9.81	115.80	0.00	96.19		L.E.W. (11:42AM)
		9.07	118.00		96.93		, ,
		7.57	123.00		98.43	boulder/cobble bar	
		5.91	128.00		100.09		
		4.82	132.00		101.18		
		3.89	135.00		102.11		bankfull estimate
							B.M.#4 (on LB outcrop U/S of
		3.96			102.04		lower XS)
120.18	18.14						B.M.#4 (from new O.S.)
		12.27	137.00		107.91		-
		4.22	141.30		115.96		b.o.p. LB
		3.11			117.07		t.o.p. LB
		18.14			102.04		B.M. #4
		18.23			101.95		B.M. #3
		0.14			120.04		t.o.p. RB

S. F. American Reach Site (SFAR-G1) pebble count summary

	Upper Class	Rosgen						
	Boundary	Particle						
Particle Description	(mm)	Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	4	0	3	7	2%	2%
Very coarse sand (measured)	2	5	2	0	1	3	1%	3%
Very Fine Gravel	4		0	1	0	1	0%	4%
Fine Gravel	8		1	1	1	3	1%	5%
Medium Gravel	16	4	0	0	1	1	0%	5%
Coarse Gravel	32		5	6	4	15	5%	10%
Very Coarse Gravel	64		7	20	15	42	14%	24%
Small Cobble	128	- 3	32	33	35	100	33%	57%
Large Cobble	256	5	32	22	29	83	28%	85%
Small Boulder	512		17	17	11	45	15%	100%
Medium Boulder	1024	2	0	0	0	0	0%	100%
Large Boulder	2048		0	0	0	0	0%	100%
Very Large Boulder	4096		0	0	0	0	0%	100%
Bedrock	>4096	1	0	0	0	0	0%	100%
		Total	100	100	100	300	100%	

Slab Creek Dam Reach Site (SC-G1) long profile

HI 112.56	BS 12.56	FS	STA	Water depth (ft)	Notes BM1 - spray paint on rock
		12.96	0.00	2.10	t.o. riffle
		14.54	25.00	2.85	
		14.43	52.00	2.60	
		15.05	69.00	3.07	
		14.98 15.59	85.00	2.80	XS 1 just d.s. at STA 92.5 t.o. riffle
		15.68	109.00 123.00	2.50 1.70	t.o. nine
		16.39	141.00	1.73	
		16.52	152.00	1.30	
		18.20	165.00	2.20	
		18.45	182.00	2.95	b.o. riffle
		22.53	202.00	5.76	t.o. pool
		19.86	222.00	3.15	
		19.18 19.33	242.00 262.00	2.18 1.75	
		20.82	280.00	1.95	XS 2 just d.s. at STA 300
	12.56	_0.0_			BM 1 - very top of rock - close out long profile
	12.56				BM 1 - BS to move instrument
		17.56			BM 2 - shot to move instrument
	9.42				BM 1 - gun in new location
	14.38				BM 2 - gun in new location
109.42	14.39 9.42				BM 2 - gun in new location BM 1 - gun in new location
105.22	5.22				BM 1 - to start 2nd long. Section 5/23; 5/23; +300 ft
100.22	10.16				BM 2 - to start 2nd long. Section 5/23; 5/23; +300 ft
		13.49	317.00	1.60	t.o.riffle
		13.92	329.00	1.30	
		15.44	349.00	1.80	
		15.68 16.84	368.00 390.00	1.50	
		18.10	406.00	1.60 2.50	b.o. riffle
		18.51	427.00	2.72	5.5. 1116
		18.76	447.00	3.00	
		19.45	467.00	3.59	
		19.84	488.00	4.05	
		18.53	508.00 530.00	2.70	VC 2 just u.s. at E20
		17.90 18.40	550.00 551.00	1.90 2.30	XS 3 just u.s. at 520
		19.49	564.00	3.35	
		17.91	588.00	1.70	t.o. riffle
		11.80			BM 3
	5.22				BM 1 - to close out 2nd long section
105.22	10.17				BM 2 - to close out 2nd long section
	11.79	11.36			BM 3 - to start 3rd long section BM 4 - to move gun
	4.48	11.00			BM 4 - gun in new location
	4.93				BM 3 - gun in new location
98.34		14.31	600.00	3.79	(+600 ft)
		13.37	620.00	1.90	
		13.77	630.00	2.50	t.o. step
		16.63	643.00	3.70	b.o. step
	4.40				long, deep pool after STA 643.0. Pool is ~300 ft long until next small riffle
105.25	4.48 11.39				BM 4 - to close out 3rd long section BM 4 - to close out long profile
100.20	5.25				BM 4 - to close out long profile
	-				

Slab Creek Dam Reach Site (SC-G1) upper cross-section

1.86 2.90 spray paint at edge of rock BR 4.54 9.10 BR 7.16 10.00 BR 10.95 13.00 CO/BO 10.91 23.00 CO/BO 11.89 34.50 CO/BO 12.13 44.50 in low water among BO's 12.20 50.00 in low water among BO's 12.00 66.00 i.83 11.81 47.30 edge of BO 12.20 50.00 in low water among BO's 12.20 50.00 in low water among BO's 12.20 50.00 in low water among BO's 12.21 66.00 i.80 12.22 75.30 i.227 12.25 86.60 i.353 13.20 84.20 i.232 12.85 45.70 13.66 89.60 13.53 94.00 14.28 96.00 13.53 94.00 14.43 103.30 edge of BO 1	HI 112.56	BS 12.56	FS	STA	Notes BM 1
4 54 9.10 BR 7.16 10.00 BR 9.19 12.50 BR 10.95 13.00 CO/BO 10.83 31.00 CO/BO 11.89 34.50 12.13 44.50 11.61 47.30 12.20 50.00 11.85 61.30 9.89 63.10 12.21 44.50 11.85 61.30 9.89 63.10 12.20 50.60 11.85 61.30 edge of BO 12.21 75.30 12.22 75.30 12.23 75.30 13.66 89.60 13.353 94.00 14.28 96.60 13.66 89.60 13.53 94.00 14.28 96.60 13.86 14.28 12.25 12.60 13.81 14.70 14.21 10.30	112.50	12.50	1 86	2 90	
7.16 10.00 BR 9.19 12.50 BR 10.95 13.00 CO/BO 10.83 31.00 CO/BO; upper bankfull estimate? 11.89 34.50 12.13 44.50 11.81 11.61 47.30 11.82 50.00 in low water among BO's 12.00 50.00 in low water among BO's 12.01 66.00 edge of BO 9.89 63.10 t. BO 12.14 67.40 edge of BO 12.27 80.60 left edge of water 13.20 84.20 12.86 13.20 84.20 13.66 13.53 94.00 14.28 13.66 89.60 14.43 13.86 110.30 edge of BO 14.43 108.30 edge of BO 14.44 110.30 edge of BO 14.451 12.80 t.o. BO					
9.19 12.50 BR 10.95 13.00 CO/BO 10.83 31.00 CO/BO 11.89 34.50 12.13 44.50 11.61 47.30 12.20 50.00 11.85 61.30 9.89 63.10 to. BO 11.85 61.30 edge of BO 12.21 66.00 12.14 12.85 65.00 to. BO 11.85 61.30 edge of BO 12.21 75.30 12.27 12.27 80.60 left edge of water 13.20 84.20 12.25 13.66 89.60 13.53 13.65 99.10 edge of BO 14.28 96.00 14.28 12.25 112.60 to.BO 14.43 100.50 edge of BO 14.43 102.30 to.BO 14.43 102.30 to.BO 14.43 108.20 to.BO					
10.95 13.00 CO/BO 10.83 31.00 CO/BO; 11.89 34.50 12.13 44.50 11.81 44.50 11.82 50.00 12.00 56.00 11.85 61.30 9.89 63.10 to. BO 10.01 65.80 to. BO 12.27 80.60 left edge of BO 12.28 85.70 la.66 13.20 84.20 la.85 13.66 89.60 left edge of BO 13.63 99.10 edge of BO 13.64 89.60 la.85 13.66 89.60 la.86 13.66 89.60 la.86 14.29 lo.00 la.86 14.21 10.30 edge of BO 11.65 102.30 lo. BO 14.43 108.50 la.86 14.21 110.30 la.27 12.25 112.60 lo. BO 14.81					
10.91 23.00 CO/BO 10.83 31.00 CO/BO; upper bankfull estimate? 11.89 34.50 12.13 44.50 11.61 47.30 12.20 56.00 11.85 61.30 9.89 63.10 to. BO 10.01 65.80 to. BO 12.27 80.60 left edge of water 13.20 56.00 inter edge of BO 12.32 75.30 left edge of water 13.20 84.20 left edge of BO 13.65 99.10 edge of BO 13.66 89.60 left edge of BO 13.63 99.10 edge of BO 14.28 96.00 lass 13.85 14.70 logg of BO 14.43 108.50 logg of BO 14.43 108.50 logg of BO 14.43 108.50 logg of BO 14.41 110.30 logg of BO 12.25 112.60 loso BO					
10.83 31.00 CO/BO; upper bankfull estimate? 11.89 34.50 12.13 44.50 11.61 47.30 12.00 56.00 11.85 61.30 9.89 63.10 12.14 67.40 9.89 63.10 12.14 67.40 12.27 80.60 12.32 75.30 12.27 80.60 12.32 75.30 12.85 85.70 13.86 89.60 13.86 89.60 13.85 99.10 edge of BO 14.28 96.00 14.28 96.00 14.28 96.00 14.21 110.30 12.25 112.60 14.43 108.50 14.21 110.30 12.25 112.60 14.61 12.30 edge of BO 14.61 12.00 scour hole 15.19					
11.89 34.50 12.13 44.50 11.61 47.30 12.20 50.00 11.85 61.30 9.89 63.10 10.01 65.80 12.22 75.30 12.23 75.30 12.24 67.40 12.25 80.60 12.32 75.30 12.27 80.60 13.28 85.70 13.66 89.60 13.53 94.00 14.42 96.00 13.54 99.10 edge of BO 13.55 99.10 edge of BO 11.65 102.30 12.25 112.00 13.88 114.70 14.43 108.50 14.41 110.30 12.25 112.60 13.88 114.70 44.61 123.00 edge of BO 14.43 108.50 12.78 113.60					
12.13 44.50 11.61 47.30 12.20 50.00 11.85 61.30 edge of BO 9.89 63.10 to. BO 12.14 67.40 edge of BO 12.27 80.60 left edge of water 13.20 84.20 12.85 85.70 13.66 89.60 13.53 94.00 14.42 96.00 13.96 99.10 edge of BO 14.43 108.50 14.43 108.50 14.43 108.50 14.43 108.50 14.43 108.50 14.43 108.50 14.43 108.50 14.43 108.50 14.43 108.50 14.45 110.30 12.25 112.56 14.61 123.00 edge of BO 15.19 136.00 12.78 119.40 13.70 138.00 <t< td=""><td></td><td></td><td></td><td></td><td>and the second second</td></t<>					and the second
11.61 47.30 12.20 50.00 12.80 56.00 11.85 61.30 edge of BO 9.89 63.10 to. BO 10.01 65.80 to. BO 12.27 80.60 left edge of BO 12.32 75.30 left edge of water 13.20 84.20 left edge of BO 13.66 89.60 left edge of BO 13.53 94.00 left edge of BO 14.28 96.00 left edge of BO 13.96 99.10 edge of BO 14.43 108.50 left edge of BO 14.41 103.00 left edge of BO 14.61 123.00 edge of BO 15.19 136.00 left edge if water, on BO					
12.00 56.00 11.85 61.30 edge of BO 9.89 63.10 to. BO 10.01 65.80 to. BO 12.14 67.40 edge of BO 12.32 75.30 12.27 80.60 12.35 85.70 13.20 84.20 12.85 13.63 94.00 14.28 13.53 94.00 14.28 13.53 94.00 14.28 13.54 99.10 edge of BO 11.65 102.30 to. BO 14.21 110.30 edge of BO 14.43 108.50 14.41 14.43 108.50 14.21 12.25 112.60 to. BO 14.43 108.50 14.61 12.78 119.40 to. BO 14.61 123.00 edge of BO 15.19 130.20 14.75 14.75 134.50 15.19 13.70 188.00 12.18 12.18 139.30 Right edge if water, on BO 10.68<					
12.00 56.00 11.85 61.30 edge of BO 9.89 63.10 to. BO 10.01 65.80 to. BO 12.14 67.40 edge of BO 12.32 75.30 12.27 80.60 12.35 85.70 13.20 84.20 12.85 13.63 94.00 14.28 13.53 94.00 14.28 13.53 94.00 14.28 13.54 99.10 edge of BO 11.65 102.30 to. BO 14.21 110.30 edge of BO 14.43 108.50 14.41 14.43 108.50 14.21 12.25 112.60 to. BO 14.43 108.50 14.61 12.78 119.40 to. BO 14.61 123.00 edge of BO 15.19 130.20 14.75 14.75 134.50 15.19 13.70 188.00 12.18 12.18 139.30 Right edge if water, on BO 10.68<					in low water among BO's
9.89 63.10 to BO 10.01 65.80 to BO 12.14 67.40 edge of BO 12.32 75.30 12.27 80.60 left edge of water 13.20 84.20 12.85 85.70 13.66 89.60 13.53 94.00 14.28 96.00 13.96 99.10 edge of BO 14.28 96.00 14.28 90.01 14.28 102.30 to BO 14.43 103.30 edge of BO 14.43 103.30 edge of BO 14.43 103.30 edge of BO 14.43 103.00 12.25 112.60 to BO 13.88 114.70 edge of BO 14.68 117.90 thalweg 12.78 119.40 to BO 14.61 123.00 edge of BO 15.19 130.20 14.75 134.50 13.70 138.00 12.18 139.30 Right edge if water, on BO 14.61 41.60 to BO 11.16 to BO 11.16 149.60 11.16 149.60 11.16 149.60 11.16 152.00 bo BO 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 149.60 11.16 152.00 bo BO 10.64 155.20 bo BO 10.64 155.20 bo BO 10.64 155.20 bo BO 10.64 155.20 bo BO 10.64 156.50 bo BO 10.64 166.50 bo BO 10.45 166.50 bo BO 10			12.00	56.00	-
10.01 65.80 t.o. BO 12.14 67.40 edge of BO 12.32 75.30 ieft edge of water 13.20 84.20 ieft edge of water 13.20 84.20 ieft edge of BO 13.66 89.60 ieft edge of BO 13.53 94.00 ieft edge of BO 13.54 96.00 iedge of BO 14.28 96.00 iedge of BO 14.21 102.30 to. BO 14.42 96.00 iedge of BO 14.43 108.50 iedge of BO 14.43 108.50 iedge of BO 14.43 108.50 iedge of BO 14.25 112.00 to. BO 14.61 123.00 edge of BO 14.63 117.90 thalweg 12.78 119.40 to. BO 15.19 126.00 scour hole 15.19 126.00 scour hole 15.19 130.20 iedge of BO 14.75 134.50 iedge of BO 11.47 144.20 Bankfull estimate, hard t			11.85	61.30	edge of BO
12.14 67.40 edge of BO 12.32 75.30 12.27 80.60 13.20 84.20 12.85 85.70 13.66 89.60 13.53 94.00 14.28 96.00 13.96 99.10 edge of BO 11.65 102.30 t.o. BO 14.43 108.50 14.21 110.30 12.25 112.60 t.o. BO 14.21 110.30 12.25 112.60 t.o. BO 14.41 108.50 14.21 110.30 12.25 112.60 t.o. BO 14.61 123.00 edge of BO 14.63 117.90 thalweg 12.78 119.40 t.o. BO 14.61 123.00 edge of BO 15.19 130.20 scour hole 15.19 130.20 14.75 14.61 153.00 scour hole 15.19 130.20 10.68 112.56 11.16 149.60			9.89	63.10	t.o. BO
12.32 75.30 12.27 80.60 13.20 84.20 13.26 85.70 13.66 89.60 13.53 94.00 14.28 96.00 13.66 99.10 edge of BO 11.65 102.30 14.23 108.50 14.43 108.50 14.43 108.50 14.43 108.50 14.43 108.50 14.21 110.30 12.25 112.60 14.43 108.50 14.41 110.30 12.25 112.60 14.66 117.90 14.66 117.90 14.61 123.00 edge of BO 15.19 130.20 14.75 134.50 13.70 138.00 12.18 139.30 12.18 139.30 112.56 11.16 149.60 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 111.47 144.20 Bankfull estimate, hard			10.01	65.80	t.o. BO
12.27 80.60 left edge of water 13.20 84.20 12.85 85.70 13.66 89.60 13.53 94.00 14.28 96.00 13.96 99.10 edge of BO 11.65 102.30 to. BO 14.37 103.30 edge of BO 14.43 108.50 14.41 110.30 12.25 112.60 to. BO 13.88 114.70 edge of BO 14.61 123.00 edge of BO 14.63 117.90 thalweg 12.78 119.40 to. BO 14.61 123.00 edge of BO 14.61 123.00 scour hole 15.19 136.00 scour hole 15.19 138.00 scour hole 15.19 138.00 scour hole 15.19 132.00 scour hole 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 114.7 144.20 Bankfull estimate, hard to distinguish b/c of Bos 11.6 1			12.14	67.40	edge of BO
13.20 84.20 12.85 85.70 13.66 89.60 13.53 94.00 14.28 96.00 13.96 99.10 edge of BO 11.65 102.30 to. BO 14.43 108.50 14.43 108.50 14.41 110.30 12.25 112.60 to. BO 13.88 114.70 edge of BO 14.68 117.90 thalweg 12.78 119.40 to. BO 14.61 123.00 edge of BO 14.61 123.00 edge of BO 14.61 123.00 edge of BO 15.19 130.20 scour hole 14.75 134.50 scour hole 11.47 144.960 scour hole 11.47 th49.60 <td< td=""><td></td><td></td><td>12.32</td><td>75.30</td><td></td></td<>			12.32	75.30	
12.85 85.70 13.66 89.60 13.53 94.00 14.28 96.00 13.96 99.10 edge of BO 11.65 102.30 to. BO 14.37 103.30 edge of BO 14.37 103.30 edge of BO 14.43 108.50 14.21 110.30 12.25 112.60 to. BO 13.88 114.70 edge of BO 14.61 123.00 edge of BO 14.61 123.00 edge of BO 14.61 123.00 edge of BO 15.19 126.00 scour hole 15.19 126.00 scour hole 15.19 130.20 14.75 13.70 138.00 12.18 13.70 138.00 12.18 112.56 11.16 149.60 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 114.61 152.60 9.33 154.00 11.46 152.60 9.33 154.00 11.46 <t< td=""><td></td><td></td><td>12.27</td><td>80.60</td><td>left edge of water</td></t<>			12.27	80.60	left edge of water
13.66 89.60 13.53 94.00 14.28 96.00 13.96 99.10 edge of BO 11.65 102.30 t.o. BO 14.37 103.30 edge of BO 14.43 108.50 14.43 108.50 14.21 110.30 12.25 112.60 t.o. BO 13.88 114.70 edge of BO 14.68 117.90 thalweg 12.78 119.40 t.o. BO 14.61 123.00 edge of BO 15.19 126.00 scour hole 15.19 120.00 scour hole 15.19 130.20 14.75 14.75 134.50 13.70 13.70 138.00 12.18 12.18 139.30 Right edge if water, on BO 10.68 141.60 t.o. BO 112.56 11.16 149.60 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 149.60 11.47 144.20 Ban			13.20	84.20	
13.53 94.00 14.28 96.00 13.96 99.10 edge of BO 11.65 102.30 t.o. BO 14.37 103.30 edge of BO 14.43 108.50 14.43 14.21 110.30 12.25 14.25 112.60 t.o. BO 13.88 114.70 edge of BO 14.61 122.00 to. BO 14.68 117.90 thaweg 12.78 119.40 t.o. BO 14.61 123.00 edge of BO 14.61 123.00 edge of BO 14.61 123.00 edge of BO 15.19 126.00 scour hole 15.19 130.20 14.75 14.75 134.50 137.01 13.80 12.18 139.30 12.18 139.30 Right edge if water, on BO 10.68 141.60 t.o. BO 10.68 141.60 t.o. BO 112.56 11.16 149.60 11.16 152.00 b.o. BO			12.85	85.70	
14.28 96.00 13.96 99.10 edge of BO 11.65 102.30 to. BO 14.37 103.30 edge of BO 14.43 108.50 14.43 108.50 14.21 110.30 12.25 112.60 to. BO 13.88 114.70 edge of BO 14.68 117.90 thalweg 12.78 119.40 to. BO 14.61 123.00 edge of BO 14.61 123.00 edge of BO 15.19 126.00 scour hole 15.19 130.20 14.75 14.75 134.50 13.70 13.70 138.00 12.18 12.18 139.30 Right edge if water, on BO 10.68 14.160 to. BO 114.77 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 149.60 11.47 144.20 Bon 10.64 155.20 b.o. BO 10.81 159.40 7.56 7.56 <td></td> <td></td> <td></td> <td></td> <td></td>					
13.96 99.10 edge of BO 11.65 102.30 t.o. BO 14.37 103.30 edge of BO 14.43 108.50 14.21 110.30 12.25 112.60 t.o. BO 13.88 114.70 edge of BO 14.81 108.50 14.21 110.30 12.25 112.60 t.o. BO 13.88 114.70 edge of BO 14.61 123.00 edge of BO 14.61 123.00 edge of BO 15.19 126.00 scour hole 15.19 126.00 scour hole 15.19 130.20 scour hole 14.75 134.50 scour hole 13.70 138.00 scour hole 112.18 139.30 Right edge if water, on BO 10.68 141.60 t.o. BO 112.56 11.16 149.60 111.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 152.60 9.33 154.00 t.o. BO					
11.65 102.30 t.o. BO 14.37 103.30 edge of BO 14.43 108.50 14.21 110.30 12.25 112.60 t.o. BO 13.88 114.70 edge of BO 14.68 117.90 thalweg 12.78 119.40 t.o. BO 14.61 123.00 edge of BO 14.61 123.00 edge of BO 15.19 126.00 scour hole 15.19 130.20 scour hole 14.75 134.50 scour hole 13.70 138.00 scour hole 12.18 139.30 Right edge if water, on BO 10.68 141.60 t.o. BO 112.56 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 11.47 112.56 11.6 152.60 9.33 154.00 t.o. BO 10.64 155.20 b.o. BO 10.45 166.50 b.o. BO 10.45 166.50 b.o. BO 10.45 166.50 b.o.					
14.37 103.30 edge of BO 14.43 108.50 14.21 110.30 12.25 112.60 t.o. BO 13.88 114.70 edge of BO 14.68 117.90 thalweg 12.78 119.40 t.o. BO 14.61 123.00 edge of BO 14.61 123.00 edge of BO 15.19 126.00 scour hole 15.19 130.20 14.75 13.70 138.00 12.18 12.18 139.30 Right edge if water, on BO 10.68 141.60 t.o. BO 112.56 11.16 149.60 112.56 11.16 149.60 112.56 11.16 152.60 9.33 154.00 t.o. BO 10.64 155.20 b.o. BO 10.81 159.40 t.o. BO 10.81 159.40 t.o. BO 10.81 159.40 t.o. BO 10.45 166.50 b.o. BO 10.45 166.50 b.o. BO					-
14.43 108.50 14.21 110.30 12.25 112.60 t.o. BO 13.88 114.70 edge of BO 14.68 117.90 thalweg 12.78 119.40 t.o. BO 14.61 123.00 edge of BO 14.61 123.00 edge of BO 15.19 126.00 scour hole 15.19 130.20 14.75 14.75 134.50 13.70 13.70 138.00 12.18 12.18 139.30 Right edge if water, on BO 10.68 141.60 t.o. BO 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 149.60 11.16 152.60 9.33 9.33 154.00 t.o. BO 10.64 155.20 b.o. BO 10.81 159.40 7.56 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of					
14.21 110.30 12.25 112.60 t.o. BO 13.88 114.70 edge of BO 14.68 117.90 thalweg 12.78 119.40 t.o. BO 14.61 123.00 edge of BO 14.61 123.00 edge of BO 15.19 126.00 scour hole 15.19 130.20 14.75 134.50 13.70 138.00 12.18 139.30 Right edge if water, on BO 10.68 141.60 112.76 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 149.60 11.16 152.60 9.33 9.33 154.00 t.o. BO 10.64 155.20 b.o. BO 10.41 159.40 7.56 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 ri					edge of BO
12.25 112.60 t.o. BO 13.88 114.70 edge of BO 14.68 117.90 thalweg 12.78 119.40 t.o. BO 14.61 123.00 edge of BO 15.19 126.00 scour hole 15.19 130.20 14.75 134.50 13.70 138.00 12.18 139.30 Right edge if water, on BO 10.68 141.60 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 14.960 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 149.60 10.64 15.20 b.o. BO 10.64 155.20 9.33 154.00 10.64 155.20 10.64 155.20 10.45 166.50 10.45 166.50 10.45 166.50 8.70 168.70 t.o. BO 5.06 169.50					
13.88 114.70 edge of BO 14.68 117.90 thalweg 12.78 119.40 t.o. BO 14.61 123.00 edge of BO 15.19 126.00 scour hole 15.19 130.20 14.75 13.70 138.00 12.18 13.70 138.00 12.18 12.18 139.30 Right edge if water, on BO 10.68 141.60 t.o. BO 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 149.60 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 152.60 9.33 154.00 t.o. BO 10.64 155.20 b.o. BO 10.81 159.40 7.56 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 <					
14.68 117.90 thalweg 12.78 119.40 t.o. BO 14.61 123.00 edge of BO 15.19 126.00 scour hole 15.19 130.20 14.75 134.50 13.70 138.00 12.18 139.30 Right edge if water, on BO 10.68 141.60 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 14.75 15.20 b.o. BO 10.64 155.20 b.o. BO 10.64 155.20 b.o. BO 10.45 166.50 b.o. BO 10.45 166.50 b.o. BO 10.45 166.50 10.45 166.50 b.o. BO 8.70 168.70 10.45 166.50 10.45 166.50 b.o. BO 5.06 10.45 166.50 10.45 168.50 edge of large BO					
12.78 119.40 t.o. BO 14.61 123.00 edge of BO 15.19 126.00 scour hole 15.19 130.20 14.75 134.50 13.70 138.00 12.18 139.30 Right edge if water, on BO 10.68 141.60 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 14.75 15.20 9.33 154.00 10.64 155.20 b.o. BO 10.64 10.64 155.20 b.o. BO 10.45 10.45 166.50 b.o. BO 10.45 10.45 166.50 b.o. BO 10.45 10.45 166.50 b.o. BO 5.06 10.45 166.50 b.o. BO 5.06 10.45 166.50 b.o. BO 5.06 10.45 168.70 t.o. BO 5.06 10.40 170.80					-
14.61 123.00 edge of BO 15.19 126.00 scour hole 15.19 130.20 14.75 134.50 13.70 138.00 12.18 139.30 Right edge if water, on BO 10.68 141.60 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 14.75 160.0 10.64 152.60 9.33 154.00 10.64 155.20 b.o. BO 10.64 155.20 b.o. BO 10.81 159.40 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					
15.19 126.00 scour hole 15.19 130.20 14.75 134.50 13.70 138.00 12.18 139.30 Right edge if water, on BO 10.68 141.60 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 14.75 152.60 9.33 154.00 10.64 155.20 9.33 154.00 10.81 159.40 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					
15.19 130.20 14.75 134.50 13.70 138.00 12.18 139.30 Right edge if water, on BO 10.68 141.60 t.o. BO 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 149.60 11.16 152.60 9.33 9.33 154.00 t.o. BO 10.64 155.20 b.o. BO 10.81 159.40 7.56 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 8.70 168.70 t.o. BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					-
14.75 134.50 13.70 138.00 12.18 139.30 Right edge if water, on BO 10.68 141.60 t.o. BO 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 149.60 11.16 152.60 9.33 9.33 154.00 t.o. BO 10.64 155.20 b.o. BO 10.81 159.40 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 8.70 168.70 t.o. BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					scoul hole
13.70 138.00 12.18 139.30 Right edge if water, on BO 10.68 141.60 t.o. BO 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 149.60 11.16 152.60 9.33 9.33 154.00 t.o. BO 10.64 155.20 b.o. BO 10.81 159.40 7.56 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					
12.18 139.30 Right edge if water, on BO 10.68 141.60 t.o. BO 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 149.60 11.16 152.60 9.33 154.00 t.o. BO 10.64 155.20 b.o. BO 10.81 159.40 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					
10.68 141.60 t.o. BO 11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 149.60 11.16 152.60 9.33 9.33 154.00 t.o. BO 10.64 155.20 b.o. BO 10.81 159.40 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					Right edge if water on BO
11.47 144.20 Bankfull estimate, hard to distinguish b/c of Bos 112.56 11.16 149.60 11.16 152.60 9.33 154.00 t.o. BO 10.64 155.20 b.o. BO 10.81 159.40 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 10.45 166.50 b.o. BO 5.06 169.50 edge of large BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					
112.56 11.16 149.60 11.16 152.60 9.33 154.00 t.o. BO 10.64 155.20 b.o. BO 10.81 159.40 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					
11.16 152.60 9.33 154.00 t.o. BO 10.64 155.20 b.o. BO 10.81 159.40 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)	112.56				
9.33 154.00 t.o. BO 10.64 155.20 b.o. BO 10.81 159.40 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					
10.64 155.20 b.o. BO 10.81 159.40 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					t.o. BO
10.81 159.40 7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					
7.56 161.00 t.o. BO 10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					
10.45 166.50 b.o. BO 8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					t.o. BO
8.70 168.70 t.o. BO 5.06 169.50 edge of large BO 4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					
5.06169.50edge of large BO4.01170.80right bank pin = spray painted dot1.862.90close out (check-marked)					
4.01 170.80 right bank pin = spray painted dot 1.86 2.90 close out (check-marked)					
			4.01	170.80	
		1.86		2.90	
12.56 BM 1 close out (check-marked)		12.56			BM 1 close out (check-marked)

Slab Creek Dam Reach Site (SC-G1) middle cross-section

3.26 0.60 next to pin - LB; BR 5.94 7.70 BR 7.44 10.70 edge of BR 8.20 20.00 CO 9.59 30.20 CO 10.60 33.00 CO 11.31 40.70 CO 11.32 49.50 11.35 12.05 64.00 12.80 12.05 64.00 14.78 14.78 77.50 Left edge of water 16.84 82.50 17.75 17.75 84.30 17.75 17.74 95.50 edge of BO 16.71 94.00 to. BO 16.73 90.00 16.71 17.74 95.50 edge of BO 16.71 94.00 to. BO 17.74 95.50 edge of BO 17.75 112.00 to. BO 17.74 95.50 edge of Water: undercut bank) 14.95 112.00 11.43 17.90 115.40 (can't give right edge of water: undercut bank) 14.95 122.20 <th>HI 109.42</th> <th>BS</th> <th>FS 3.05</th> <th></th> <th>Notes t.o. pin - LB</th>	HI 109.42	BS	FS 3.05		Notes t.o. pin - LB
7.44 10.70 edge of BR 8.20 20.00 CO 9.59 30.20 CO 11.60 33.00 CO 11.71 40.70 CO 11.72 49.50 11.75 11.72 49.50 11.75 12.05 64.00 12.80 12.80 67.80 Bankfull estimate 14.24 70.90 14.78 14.78 76.40 15.78 15.78 77.50 Left edge of water 16.84 82.50 17.25 17.25 84.30 17.75 17.75 Bedge of BO 16.58 16.71 94.00 to. BO 17.73 100.00 17.74 17.75 104.00 18.36 18.36 108.00 thalweg 17.85 116.00 BO 11.43 12.00 11.43 12.00 11.43 12.00 11.43 12.00 11.34 13.06 12.30 14.05 13.95					•
8.20 20.00 CO 9.59 30.20 CO 10.60 33.00 CO 11.31 40.70 CO 11.35 53.50 11.35 12.05 64.00 12.80 12.80 67.80 Bankfull estimate 14.24 70.90 14.78 76.40 15.78 77.50 17.25 84.30 17.55 17.25 84.30 17.55 17.25 84.30 17.73 17.74 95.50 edge of BO 16.71 94.00 to. BO 17.73 100.00 17.79 17.80 112.00 108.00 17.80 112.00 115.40 (can't give right edge of water: undercut bank) 14.95 116.00 BO 11.43 17.49 95.00 next to BO 11.43 17.80 122.00 not BO 14.05 122.20 13.95 13.18 130.60 next to BO 12.30			5.94	7.70	BR
9.59 30.20 CO 10.60 33.00 CO 11.31 40.70 CO 11.35 53.50 12.05 64.00 12.80 67.80 Bankfull estimate 14.24 70.90 14.78 76.40 15.78 77.50 Left edge of water 16.84 82.50 17.25 84.30 17.55 89.00 17.25 84.30 17.55 89.00 16.58 92.00 to. BO 16.58 92.00 to. BO 16.71 94.00 to. BO 17.73 100.00 17.95 104.00 18.36 108.00 thalweg 17.80 112.00 17.95 104.00 18.36 108.00 thalweg 17.80 112.00 17.95 104.00 EO 11.43 121.00 EO 11.43 121.00 EO 11.43 121.00 to. BO 14.05 122.20 13.95 128.00 next to BO 14.05 122.20 13.95 128.00 next to BO 14.23 127.00 to. BO 14.24 129.50 to. BO 14.25 128.00 next to BO 14.24 129.50 to. BO 14.25 128.00 next to BO 12.30 140.30 9.26 142.00 BO 6.21 147.60 to. BO 12.30 140.30 9.26 142.00 BO 6.21 147.60 to. BO 12.31 155.00 BO 7.43 155.00 BO 7			7.44	10.70	edge of BR
10.60 33.00 CO 11.31 40.70 CO 11.72 49.50 11.35 53.50 12.05 64.00 12.80 67.80 Bankfull estimate 14.24 70.90 14.78 76.40 15.78 77.50 Left edge of water 16.84 82.50 17.25 89.00 17.39 90.60 edge of BO 16.58 92.00 to. BO 16.58 92.00 to. BO 16.71 94.00 to. BO 17.73 100.00 17.73 17.95 104.00 to.BO 17.70 115.40 (can't give right edge of water: undercut bank) 14.95 114.00 BO 11.43 121.00 to.BO 11.43 121.00 to.BO 11.43 121.00 to.BO 11.43 121.00 to.BO 11.44 129.00 to.BO 11.43 121.00 to.BO 11.44 129.00			8.20		
11.31 40.70 CO 11.72 49.50 11.35 53.50 12.80 67.80 Bankfull estimate 14.24 70.90 14.78 76.40 15.78 77.50 Left edge of water 16.84 82.50 17.25 84.30 17.55 89.00 17.73 90.60 16.71 94.00 16.73 90.60 16.74 95.50 17.75 100.00 17.74 95.50 17.80 112.00 17.73 100.00 17.80 112.00 17.80 112.00 17.80 112.00 17.43 120.00 next to BO 11.43 121.00 to. BO 11.43 121.00 to. BO 11.43 120.00 next to BO 11.43 120.00 next to BO 13.18 130.60 next to BO 13.18 130.60 next to BO 12.30 140.30 9.26 142.00 BO 6.21					
11.72 49.50 11.35 53.50 12.05 64.00 12.80 67.80 Bankfull estimate 14.24 70.90 14.78 76.40 15.78 77.50 Left edge of water 16.84 82.50 17.25 84.30 17.55 89.00 17.55 89.00 16.71 94.00 16.73 100.00 17.74 95.50 17.75 104.00 17.76 112.00 17.78 112.00 17.85 104.00 18.36 108.00 thalweg 17.70 115.40 (can't give right edge of water: undercut bank) 14.95 116.00 BO 11.43 121.00 to. BO 11.43 121.00 to. BO 11.24 129.50 to. BO 13.18 130.60 next to BO 13.12 12.30 13.23 137.80 12.30 140.30 9.26 142.00 BO 6.21 147.60 to. BO 9.					
11.35 53.50 12.05 64.00 12.80 67.80 Bankfull estimate 14.24 70.90 14.78 76.40 15.78 77.50 Left edge of water 16.84 82.50 17.25 84.30 17.55 89.00 17.39 90.60 edge of BO 16.71 94.00 to. BO 17.73 100.00 17.73 17.74 95.50 edge of BO 17.74 95.00 edge of BO 17.73 100.00 17.73 17.74 95.50 edge of BO 17.73 100.00 17.74 17.80 112.00 11.43 17.00 115.40 (can't give right edge of water: undercut bank) 14.95 116.00 BO 11.43 121.00 to. BO 11.43 121.00 to. BO 11.43 121.00 to. BO 11.43 121.00 to. BO 12.30 140.30 g.26 9.26					CO
12.05 64.00 12.80 67.80 Bankfull estimate 14.24 70.90 14.78 76.40 15.78 77.50 Left edge of water 16.84 82.50 17.25 84.30 17.55 89.00 17.55 89.00 16.58 92.00 to. BO 16.71 94.00 to. BO 17.73 100.00 17.74 95.50 edge of BO 17.75 104.00 17.80 112.00 17.80 112.00 17.80 112.00 17.80 112.00 17.81 121.00 11.43 121.00 11.43 121.00 11.43 121.00 13.81 130.60 next to BO 11.24 129.50 12.30 140.30 9.26 142.00 13.18 130.60 next to BO 14.95 124.00 12.30 140.30 9.26 142.00 9.23					
12.80 67.80 Bankfull estimate 14.24 70.90 14.78 76.40 15.78 77.50 Left edge of water 16.84 82.50 17.25 84.30 17.55 89.00 17.39 90.60 edge of BO 16.58 92.00 to. BO 16.71 94.00 to. BO 16.77 95.50 edge of BO 17.74 95.50 edge of BO 17.75 104.00 17.76 17.80 112.00 17.80 17.80 112.00 11.43 17.80 112.00 11.43 14.05 122.20 13.95 13.95 128.00 next to BO 11.43 121.00 to. BO 13.18 130.60 next to BO 11.43 121.00 to. BO 14.05 122.20 13.95 13.18 130.60 next to BO 14.05 122.20 13.16 13.18 130.60 next to BO					
14.24 70.90 14.78 76.40 15.78 77.50 Left edge of water 16.84 82.50 17.25 84.30 17.55 89.00 17.39 90.60 edge of BO 16.71 94.00 t.o. BO 16.71 94.00 t.o. BO 17.73 100.00 17.73 17.74 95.50 edge of BO 17.73 100.00 17.95 17.74 95.50 edge of BO 17.73 100.00 17.95 17.74 95.50 edge of BO 17.73 100.00 17.85 17.80 112.00 18.36 17.80 112.00 11.43 14.95 116.00 BO 11.43 121.00 t.o. BO 14.45 122.00 13.95 13.95 128.00 next to BO 11.24 129.50 t.o. BO 12.30 140.30 9.26 9.26 142.00 BO 6.21 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
14.78 76.40 15.78 77.50 Left edge of water 16.84 82.50 17.25 84.30 17.55 89.00 17.39 90.60 edge of BO 16.88 92.00 to. BO 16.71 94.00 to. BO 17.74 95.50 edge of BO 17.75 100.00 17.73 17.95 104.00 18.36 17.80 112.00 17.70 17.00 115.40 (can't give right edge of water: undercut bank) 14.95 116.00 BO 11.43 121.00 to. BO 11.24 129.50 to. BO 13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 12.30 140.30 9.26 9.23					Bankfull estimate
15.78 77.50 Left edge of water 16.84 82.50 17.25 84.30 17.55 89.00 17.39 90.60 edge of BO 16.58 92.00 t.o. BO 16.71 94.00 to. BO 16.71 94.00 to. BO 17.74 95.50 edge of BO 17.73 100.00 17.74 95.50 edge of BO 17.73 100.00 17.74 95.50 edge of BO 17.73 100.00 17.80 112.00 17.80 112.00 17.80 112.00 14.95 116.00 11.43 121.00 14.95 12.00 11.43 121.00 11.24 129.50 13.95 128.00 13.18 130.60 13.20 140.30 9.26 142.00 9.26 142.00 9.26 142.00 9.23 156.90 7.81 166.40 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
16.84 82.50 17.25 84.30 17.55 89.00 17.39 90.60 edge of BO 16.71 94.00 to. BO 16.71 94.00 to. BO 17.74 95.50 edge of BO 17.73 100.00 17.73 17.75 104.00 18.36 17.75 104.00 18.36 17.79 104.00 18.36 17.79 104.00 18.36 17.80 112.00 17.00 17.00 115.40 (can't give right edge of water: undercut bank) 14.95 116.00 BO 11.43 121.00 to. BO 13.18 130.60 next to BO 13.18 130.60 next to BO 6.21 147.60 to. BO 6.21 147.60 to.BO 9.23 156.90 </td <td></td> <td></td> <td></td> <td></td> <td>Laft adda of water</td>					Laft adda of water
17.25 84.30 17.55 89.00 17.39 90.60 edge of BO 16.58 92.00 t.o. BO 16.71 94.00 t.o. BO 17.74 95.50 edge of BO 17.73 100.00 17.74 17.75 104.00 18.36 17.80 112.00 115.40 17.80 112.00 17.60 17.45 116.00 BO 17.45 116.00 BO 11.43 121.00 t.o. BO 13.35 128.00 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 140.30 9.26 142.00 9.26 142.00 BO 6.21 147.60 t.o. BO 9.23					
17.55 89.00 17.39 90.60 edge of BO 16.58 92.00 t.o. BO 16.71 94.00 t.o. BO 17.74 95.50 edge of BO 17.73 100.00 17.74 95.50 edge of BO 17.75 104.00 18.36 108.00 thalweg 17.80 112.00 17.00 115.40 (can't give right edge of water: undercut bank) 14.95 116.00 BO 11.43 121.00 t.o. BO 11.43 121.00 t.o. BO 11.43 121.00 t.o. BO 11.43 121.00 t.o. BO 11.24 129.50 t.o. BO 13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 12.30 140.30 9.26 9.26 142.00 BO 6.21 147.60 t.o. BO 9.23 156.90 7.81 7.81 166.40 109.42 7.45					
17.39 90.60 edge of BO 16.58 92.00 t.o. BO 16.71 94.00 t.o. BO 17.74 95.50 edge of BO 17.73 100.00 17.95 104.00 18.36 108.00 thalweg 17.80 112.00 17.00 115.40 (can't give right edge of water: undercut bank) 14.95 116.00 BO 11.43 121.00 t.o. BO 11.43 122.00 inext to BO 11.43 122.00 inext to BO 11.43 122.00 inext to BO 11.43 121.00 t.o. BO 11.43 121.00 inext to BO 11.24 129.50 t.o. BO 11.23 140.30 inext to BO 9.26 142.00 BO 6.21 147.60 t.o. BO 9.74 149.00 next to BO 9.74 149.00 next to BO 9.74 149.00 next to BO 9.74 166.40 inext to BO					
16.58 92.00 t.o. BO 16.71 94.00 t.o. BO 17.74 95.50 edge of BO 17.73 100.00 17.95 104.00 18.36 108.00 thalweg 17.80 112.00 17.00 115.40 (can't give right edge of water: undercut bank) 14.95 116.00 BO 11.43 121.00 t.o. BO 14.05 122.20 13.95 128.00 next to BO 11.24 129.50 t.o. BO 13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 140.30 9.26 142.00 BO 6.21 147.60 t.o. BO 9.74 149.00 next to BO 9.74 149.00 next to BO 12.31 155.00 BO 7.43 155.00 BO 7.41 166.40 109.42 7.45 171.40 4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)					edge of BO
16.71 94.00 t.o. BO 17.74 95.50 edge of BO 17.73 100.00 17.95 104.00 18.36 108.00 thalweg 17.80 112.00 17.00 115.40 (can't give right edge of water: undercut bank) 14.95 116.00 BO 11.43 121.00 t.o. BO 14.05 122.20 13.95 13.95 128.00 next to BO 11.24 129.50 t.o. BO 13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 9.26 9.26 142.00 BO 6.21 147.60 t.o. BO 9.23 156.90 7.43 7.43 155.00 BO 7.81 166.40 109.42 7.45 171.40 4.05 4.05 185.00 1.63 1.63 193.20 0.18 0.18 197.30 0.18-2.33 0.18-2.33 203.00 t.o. RB pin <td< td=""><td></td><td></td><td></td><td></td><td>•</td></td<>					•
17.74 95.50 edge of BO 17.73 100.00 17.95 104.00 18.36 108.00 thalweg 17.80 112.00 17.00 115.40 (can't give right edge of water: undercut bank) 14.95 116.00 BO 11.43 121.00 to. BO 11.43 122.20 13.95 13.95 128.00 next to BO 11.24 129.50 to. BO 13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 140.30 9.26 142.00 9.26 142.00 9.26 142.00 9.26 142.00 9.26 142.00 9.23 156.90 7.43 155.00 7.81 166.40 109.42 7.45 7.45 171.40 4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 to. RB pin <					
17.73 100.00 17.95 104.00 18.36 108.00 thalweg 17.80 112.00 17.00 115.40 (can't give right edge of water: undercut bank) 14.95 116.00 BO 11.43 121.00 t.o. BO 14.05 122.20 13.95 13.95 128.00 next to BO 11.24 129.50 t.o. BO 13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 140.30 9.26 142.00 9.26 142.00 9.26 142.00 9.26 142.00 9.23 156.90 7.43 155.00 9.23 156.90 7.81 166.40 109.42 7.45 7.45 171.40 4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 to. RB pin 3.05 0.60 Close out (check-marked)					
18.36 108.00 thalweg 17.80 112.00 17.00 115.40 (can't give right edge of water: undercut bank) 14.95 116.00 BO 11.43 121.00 t.o. BO 14.05 122.20 13.95 128.00 next to BO 11.24 129.50 t.o. BO 11.24 129.50 t.o. BO 13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 140.30 9.26 142.00 9.26 142.00 9.26 142.00 9.26 142.00 9.23 156.90 7.43 155.00 9.23 156.90 7.81 166.40 109.42 7.45 171.40 4.05 185.00 1.63 1.63 193.20 0.18 0.18 197.30 0.18-2.33 0.50 0.60 Close out (check-marked)					
17.80 112.00 17.00 115.40 (can't give right edge of water: undercut bank) 14.95 116.00 BO 11.43 121.00 t.o. BO 14.05 122.20 13.95 128.00 next to BO 11.24 129.50 t.o. BO 13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 140.30 9.26 142.00 9.26 142.00 9.26 142.00 9.26 142.00 9.26 142.00 9.23 156.90 7.43 155.00 9.23 156.90 7.81 166.40 109.42 7.45 1.63 193.20 0.18 197.30 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)			17.95	104.00	
17.00 115.40 (can't give right edge of water: undercut bank) 14.95 116.00 BO 11.43 121.00 t.o. BO 14.05 122.20 13.95 128.00 next to BO 11.24 129.50 t.o. BO 13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 140.30 9.26 142.00 9.26 142.00 9.26 142.00 9.26 142.00 9.26 142.00 9.21 147.60 9.23 156.90 7.43 155.00 9.23 156.90 7.81 166.40 109.42 7.45 163 193.20 0.18 197.30 0.18 197.30 0.18 197.30 0.60 Close out (check-marked)			18.36	108.00	thalweg
14.95 116.00 BO 11.43 121.00 t.o. BO 14.05 122.20 13.95 128.00 next to BO 11.24 129.50 t.o. BO 13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 140.30 9.26 142.00 BO 6.21 147.60 t.o. BO 9.74 149.00 next to BO 9.23 156.90 7.43 155.00 BO 7.81 166.40 109.42 7.45 1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60			17.80	112.00	
11.43 121.00 t.o. BO 14.05 122.20 13.95 128.00 next to BO 11.24 129.50 t.o. BO 13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 140.30 9.26 142.00 BO 6.21 147.60 t.o. BO 9.74 149.00 next to BO 6.21 147.60 t.o. BO 9.74 149.00 next to BO 6.21 147.60 t.o. BO 9.73 156.90 7.43 155.00 BO 7.81 166.40 109.42 7.45 7.45 171.40 4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)			17.00		
14.05 122.20 13.95 128.00 next to BO 11.24 129.50 t.o. BO 13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 140.30 9.26 142.00 BO 6.21 147.60 t.o. BO 9.74 149.00 next to BO 9.74 149.00 next to BO 9.23 156.90 7.43 155.00 BO 7.81 166.40 109.42 7.45 1.63 193.20 0.18 197.30 0.18 197.30 0.60 Close out (check-marked)					
13.95 128.00 next to BO 11.24 129.50 t.o. BO 13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 140.30 9.26 142.00 BO 6.21 147.60 t.o. BO 9.74 149.00 next to BO 9.23 156.90 7.43 155.00 BO 7.81 166.40 109.42 7.45 1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)					t.o. BO
11.24 129.50 t.o. BO 13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 140.30 9.26 142.00 BO 6.21 147.60 t.o. BO 9.74 149.00 next to BO 9.23 156.90 7.43 155.00 BO 7.81 166.40 109.42 7.45 1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)					
13.18 130.60 next to BO (can't determine RB bankfull) 13.33 137.80 12.30 140.30 9.26 142.00 6.21 147.60 149.00 next to BO 6.21 147.60 9.74 149.00 9.73 156.90 7.43 155.00 7.81 166.40 7.81 166.40 109.42 7.45 171.40 4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 to. RB pin 3.05 0.60 Close out (check-marked)					
13.33 137.80 12.30 140.30 9.26 142.00 BO 6.21 147.60 t.o. BO 9.74 149.00 next to BO 9.23 156.90 7.43 155.00 BO 7.81 166.40 109.42 7.45 171.40 4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)					
12.30 140.30 9.26 142.00 BO 6.21 147.60 t.o. BO 9.74 149.00 next to BO 9.23 156.90 7.43 155.00 BO 7.81 166.40 109.42 7.45 171.40 4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)					next to BO (can't determine RB bankfull)
9.26 142.00 BO 6.21 147.60 t.o. BO 9.74 149.00 next to BO 9.23 156.90 7.43 155.00 BO 7.81 166.40 109.42 7.45 171.40 4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)					
6.21 147.60 t.o. BO 9.74 149.00 next to BO 9.23 156.90 7.43 155.00 BO 7.81 166.40 109.42 7.45 171.40 4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)					PO
9.74 149.00 next to BO 9.23 156.90 7.43 155.00 BO 7.81 166.40 109.42 7.45 171.40 4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)					
9.23 156.90 7.43 155.00 BO 7.81 166.40 109.42 7.45 171.40 4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)					
7.43 155.00 BO 7.81 166.40 109.42 7.45 171.40 4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)					
7.81 166.40 109.42 7.45 171.40 4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)					BO
109.42 7.45 171.40 4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 3.05 0.60 Close out (check-marked)					
4.05 185.00 1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)	109.42				
1.63 193.20 0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)					
0.18 197.30 0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)					
0.18-2.33 203.00 t.o. RB pin 3.05 0.60 Close out (check-marked)					
					t.o. RB pin
9.42 BM 1 Close-out (check-marked)		3.05			Close out (check-marked)
		9.42			BM 1 Close-out (check-marked)

Slab Creek Dam Reach Site (SC-G1) lower cross-section

			•	
HI	BS	FS	STA	Notes
105.22	20	2.09	0.20	t.o. LB pin
105.22				
		2.95	0.20	next to LB pin
		4.71	4.20	talus
		6.22	6.20	talus
		7.90	12.40	edge of active channel estimate
		6.80	14.00	t.o. BO
		8.56	15.70	
		10.12	20.00	
		10.92	23.70	
		8.99	24.20	t.o. BO
		10.33	27.40	t.o. BO
		13.82	27.90	b.o. BO; bankfull estimate
		14.71	33.70	b.o. bo; bankian connate
		15.15	36.00	
				to PO
		13.93	37.40	t.o. BO
		15.97	38.10	left edge of water; water depth = 0.17 ft
		16.17	39.90	
		17.45	41.90	
		18.46	43.30	
		18.53	45.00	
		17.62	50.70	
		15.96	53.20	t.o. BO
		17.30	54.80	
		14.64	55.30	t.o. BO
		14.50	56.20	t.o. BO
		16.39	58.10	во
		17.78	60.00	b.o. BO
		17.53	61.50	
		15.93	63.70	во
		16.88	65.30	BO
		18.61	66.30	50
		17.97	68.80	
		18.05	72.70	
		17.20	78.50	
		16.84	81.80	
		15.95	83.60	Right edge of water
		14.71	88.90	
		13.71	89.20	BO; bankfull estimate
		13.28	91.40	BO
		14.15	91.80	
		14.00	99.10	
105.22		13.31	103.40	GR
		11.69	104.60	BO
		10.82	109.50	BO
		11.72	109.70	edge of BO
		11.84	115.40	-
		10.21	117.00	во
		11.01	119.00	
		10.95	122.50	
		10.19	126.80	
		9.24	129.60	
		9.24 7.03	129.00	во
		7.03 6.61	131.00	BO
		5.61	137.60	BO
		7.24	138.00	next to BO
		5.37	143.00	
		3.61	147.90	next to RB pin
		2.96	147.90	t.o. pin
	11.78			BM 3 - to close out XS 3
 	2.09			LB pin - to close out XS 3

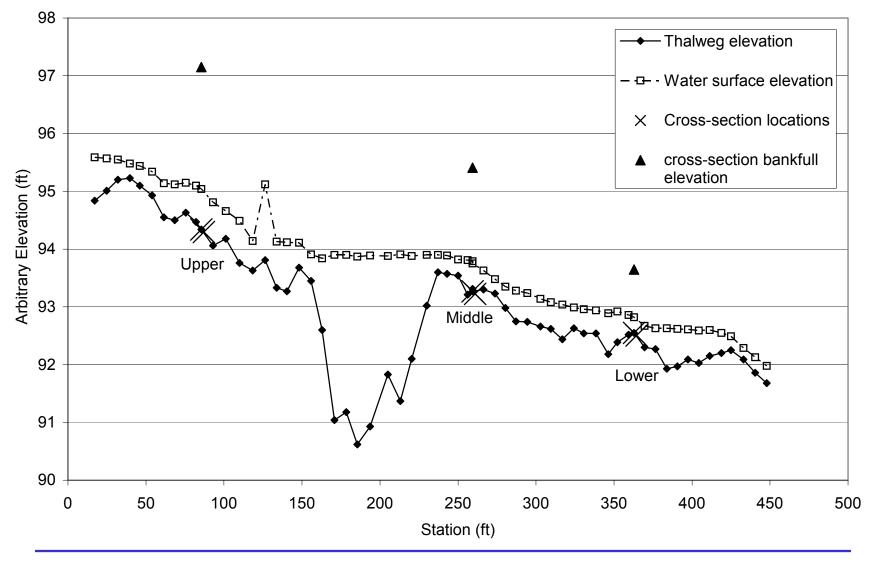
Slab Creek Dam Reach Site (SC-G1) pebble count summary

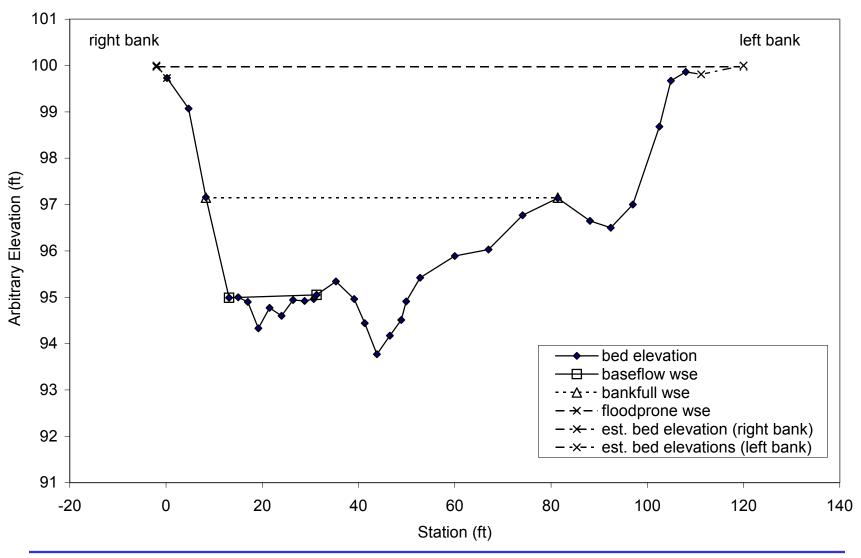
Modified Wolman Pebble Count (mm), Slab Creek Dam Reach

	Upper Class Boundary	Rosgen Particle						
Particle Description	(mm)	Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	0	0	0	0	0%	0%
Very coarse sand (measured)	2	5	0	0	0	0	0%	0%
Very Fine Gravel	4		0	0	0	0	0%	0%
Fine Gravel	8		0	0	0	0	0%	0%
Medium Gravel	16	4	0	0	0	0	0%	0%
Coarse Gravel	32		0	2	2	4	1%	1%
Very Coarse Gravel	64		3	3	3	9	3%	4%
Small Cobble	128	3	12	24	26	62	21%	25%
Large Cobble	256	3	37	39	40	116	39%	64%
Small Boulder	512		34	27	21	82	27%	91%
Medium Boulder	1024	2	14	4	8	26	9%	100%
Large Boulder	2048	2	0	1	0	1	0%	100%
Very Large Boulder	4096]	0	0	0	0	0%	100%
Bedrock	>4096	1	0	0	0	0	0%	100%
		Total	100	100	100	300	100%	

APPENDIX H

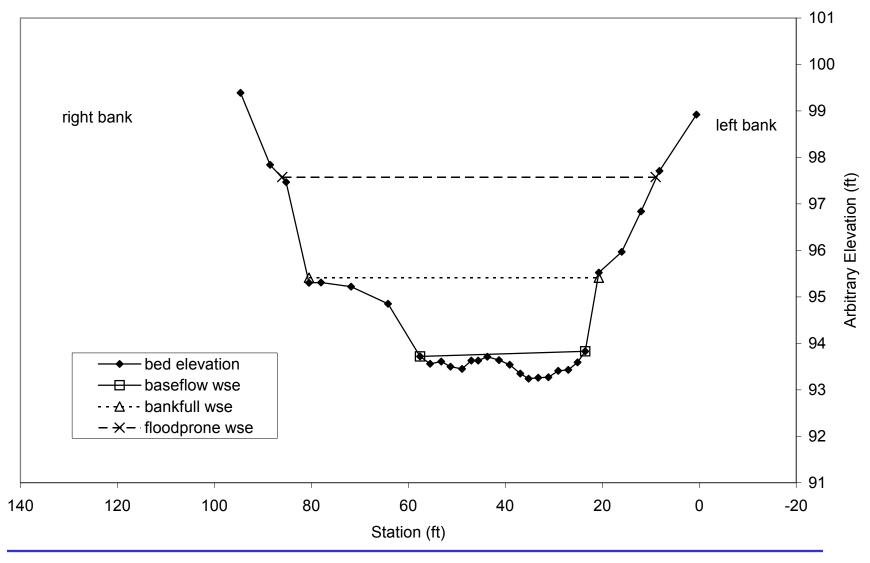
GRAPHS: LONGITUDINAL PROFILES, CROSS-SECTIONS, AND PEBBLE COUNT PLOTS FOR THE UARP


•	Site Names for the UARP	H - 1
•	Rubicon Dam Reach Site (RD-G1) long profile	H-2
•	Rubicon Dam Reach Site (RD-G1) upper cross-section	H - 3
•	Rubicon Dam Reach Site (RD-G1) middle cross-section	H - 4
•	Rubicon Dam Reach Site (RD-G1) lower cross-section	H-5
•	Rubicon Dam Reach Site (RD-G1) particle size distribution plot	H - 6
•	Loon Lake Dam Reach Upper Site (LL-G1) long profile	H - 7
•	Loon Lake Dam Reach Upper Site (LL -G1) upper cross-section	H-8
•	Loon Lake Dam Reach Upper Site (LL -G1) middle cross-section	H-9
•	Loon Lake Dam Reach Upper Site (LL -G1) lower cross-section	H - 10
•	Loon Lake Dam Reach Middle Site (LL-G2) long profile	H - 11
•	Loon Lake Dam Reach Middle Site (LL –G2) upper cross-section	H-12
•	Loon Lake Dam Reach Middle Site (LL –G2) middle cross-section	H - 13
•	Loon Lake Dam Reach Middle Site (LL –G2) lower cross-section	H - 14
•	Loon Lake Dam Reach Middle Site (LL -G2) particle size distribution plot	H-15
•	Loon Lake Dam Reach Lower Site (LL –G3) long profile	H - 16
•	Loon Lake Dam Reach Lower Site (LL –G3) upper cross-section	H - 17
•	Loon Lake Dam Reach Lower Site (LL –G3) middle cross-section	H - 18
•	Loon Lake Dam Reach Lower Site (LL –G3) lower cross-section	H - 19
•	Loon Lake Dam Reach Lower Site (LL -G3) particle size distribution plot	H-20
•	Gerle Dam Reach Site (GC –G1) long profile	H - 21
•	Gerle Dam Reach Site (GC –G1) upper cross-section	H - 22
•	Gerle Dam Reach Site (GC –G1) middle cross-section	H - 23
•	Gerle Dam Reach Site (GC –G1) lower cross-section	H - 24
•	Gerle Dam Reach Site (GC –G1) particle size distribution plot	H - 25
•	Robbs Peak Dam Reach Site (RPD –G1) long profile	H-26

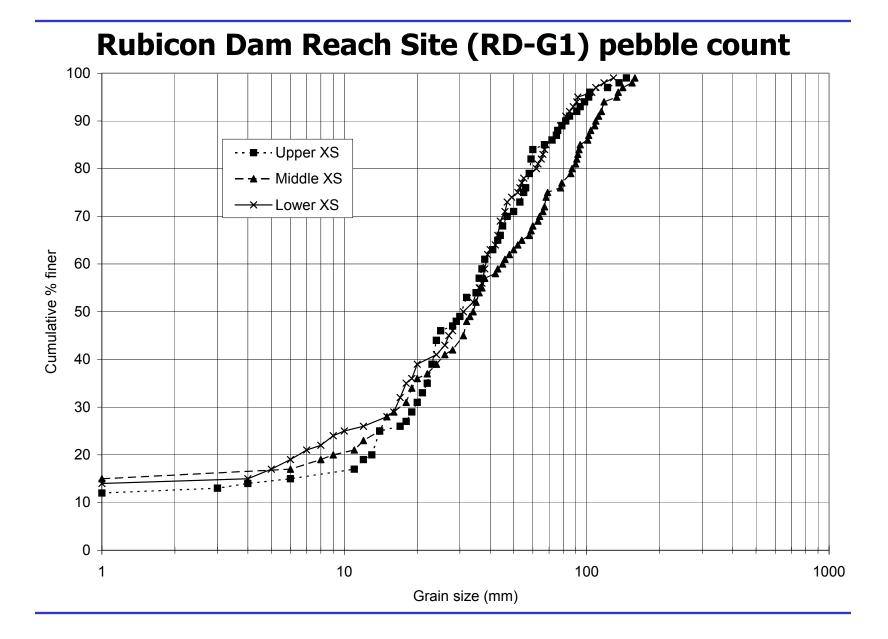

•	Robbs Peak Dam Reach Site (RPD –G1) upper cross-section	H - 27
•	Robbs Peak Dam Reach Site (RPD –G1) middle cross-section	H-28
•	Robbs Peak Dam Reach Site (RPD –G1) lower cross-section	. H-29
•	Robbs Peak Dam Reach Site (RPD –G1) particle size distribution plot	. H-30
٠	Ice House Dam Reach Upper Site (IH –G1) long profile	. H - 31
•	Ice House Dam Reach Upper Site (IH –G1) upper cross-section	H-32
•	Ice House Dam Reach Upper Site (IH –G1) middle cross-section	H - 33
٠	Ice House Dam Reach Upper Site (IH –G1) lower cross-section	
٠	Ice House Dam Reach Upper Site (IH –G1) particle size distribution plot	
٠	Ice House Dam Reach Lower Site (IH –G2) long profile	. H - 36
•	Ice House Dam Reach Lower Site (IH –G2) upper cross-section	
•	Ice House Dam Reach Lower Site (IH –G2) middle cross-section	
•	Ice House Dam Reach Lower Site (IH –G2) lower cross-section	
•	Ice House Dam Reach Lower Site (IH –G2) particle size distribution plot	H-40
•	Junction Dam Reach Site (JD –G1) long profile	
•	Junction Dam Reach Site (JD –G1) upper cross-section	
•	Junction Dam Reach Site (JD –G1) middle cross-section	
•	Junction Dam Reach Site (JD –G1) lower cross-section	
•	Junction Dam Reach Site (JD –G1) particle size distribution plot	
•	Camino Dam Reach Site (CD –G1) long profile	
•	Camino Dam Reach Site (CD –G1) upper cross-section	H-47
•	Camino Dam Reach Site (CD –G1) middle cross-section	
•	Camino Dam Reach Site (CD –G1) lower cross-section	
•	Camino Dam Reach Site (CD –G1) particle size distribution plot	
•	S.F. American Reach Site (SFAR –G1) long profile	
•	S.F. American Reach Site (SFAR –G1) upper cross-section	
•	S.F. American Reach Site (SFAR –G1) middle cross-section	
•	S.F. American Reach Site (SFAR –G1) lower cross-section	
•	S.F. American Reach Site (SFAR –G1) particle size distribution plot	
•	Slab Creek Dam Reach Site (SC –G1) long profile	
•	Slab Creek Dam Reach Site (SC –G1) upper cross-section	
•	Slab Creek Dam Reach Site (SC –G1) middle cross-section	
•	Slab Creek Dam Reach Site (SC –G1) lower cross-section	
٠	Slab Creek Dam Reach Site (SC –G1) particle size distribution plot	H - 60

UARP:

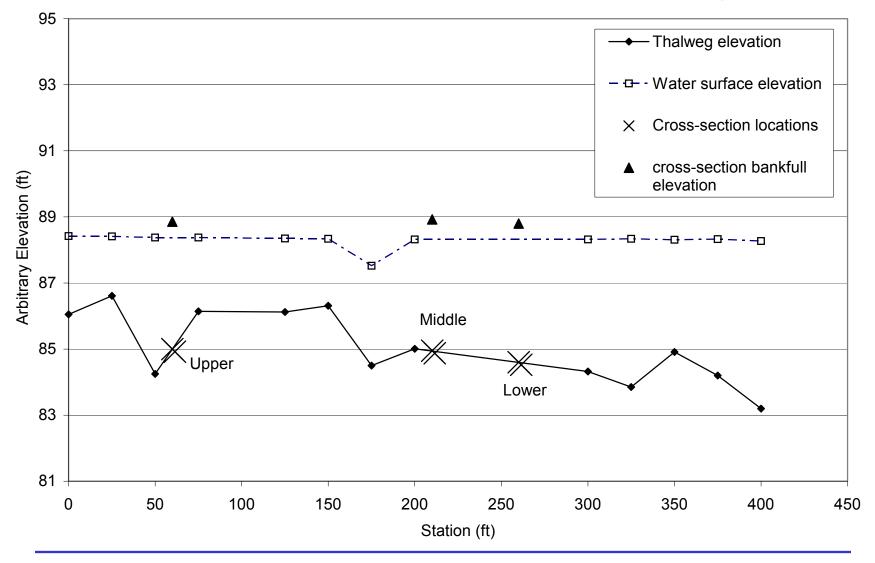
Rubicon Dam Reach Site (RD-G1) Loon Lake Dam Reach Upper Site (LL-G1) Loon Lake Dam Reach Middle Site (LL-G2) Loon Lake Dam Reach Lower Site (LL-G3) Gerle Creek Dam Reach Site (GC-G1) Robbs Peak Dam Reach Site (GC-G1) Ice House Dam Reach Upper Site (IH-G1) Ice House Dam Reach Lower Site (IH-G1) Junction Dam Reach Site (JD-G1) Camino Dam Reach Site (CD-G1) S. F. American Reach Site (SFAR-G1) Slab Creek Dam Reach Site (SC-G1)


Rubicon Dam Reach Site (RD-G1) long profile

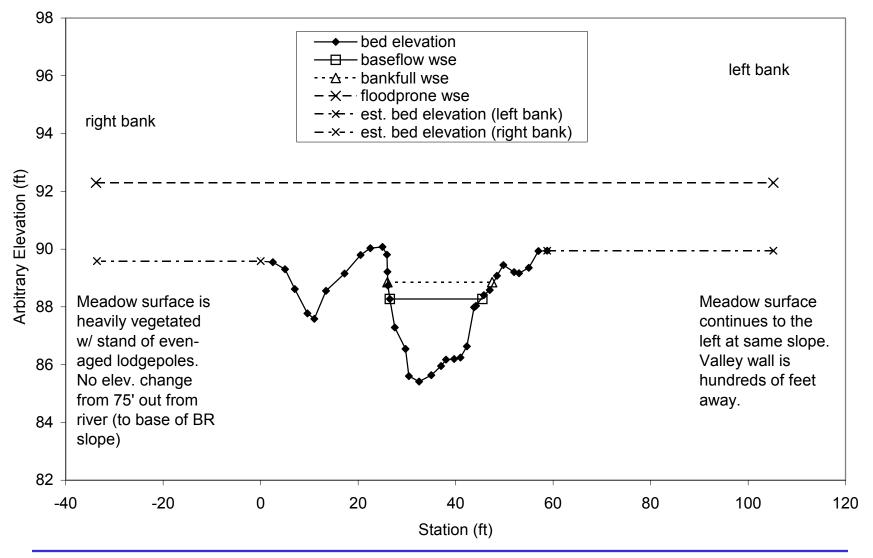


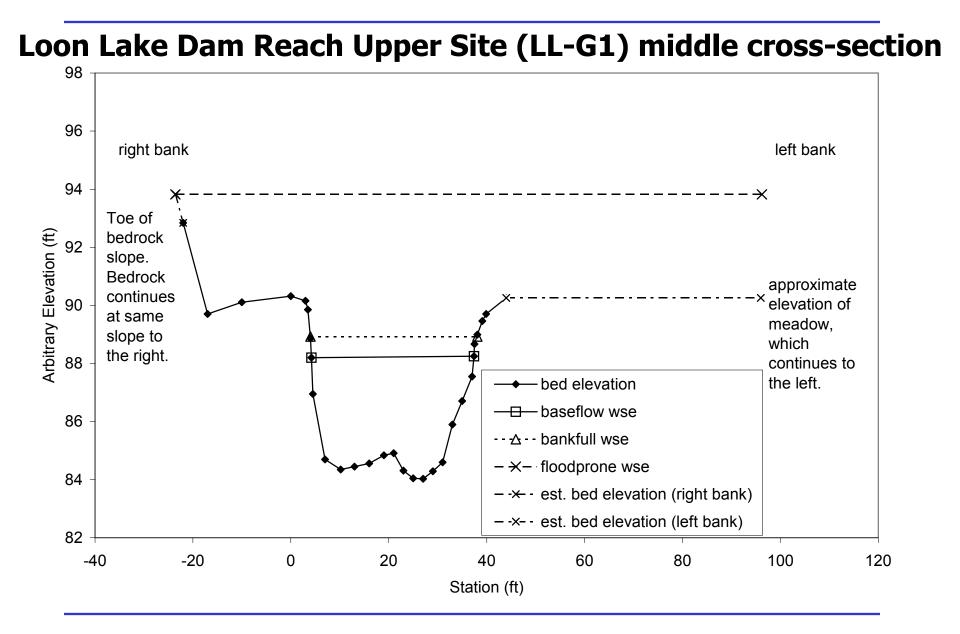

Rubicon Dam Reach Site (RD-G1) upper cross-section

Rubicon Dam Reach Site (RD-G1) middle cross-section

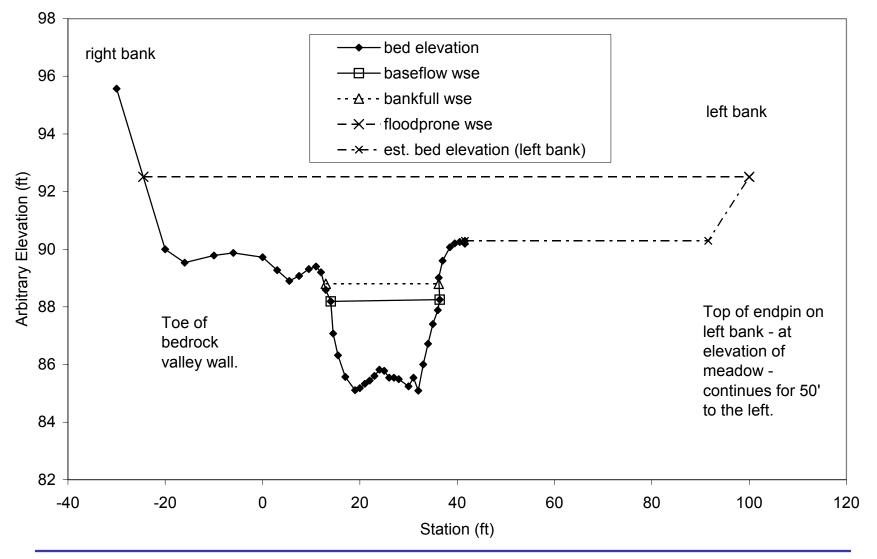


Rubicon Dam Reach Site (RD-G1) lower cross-section

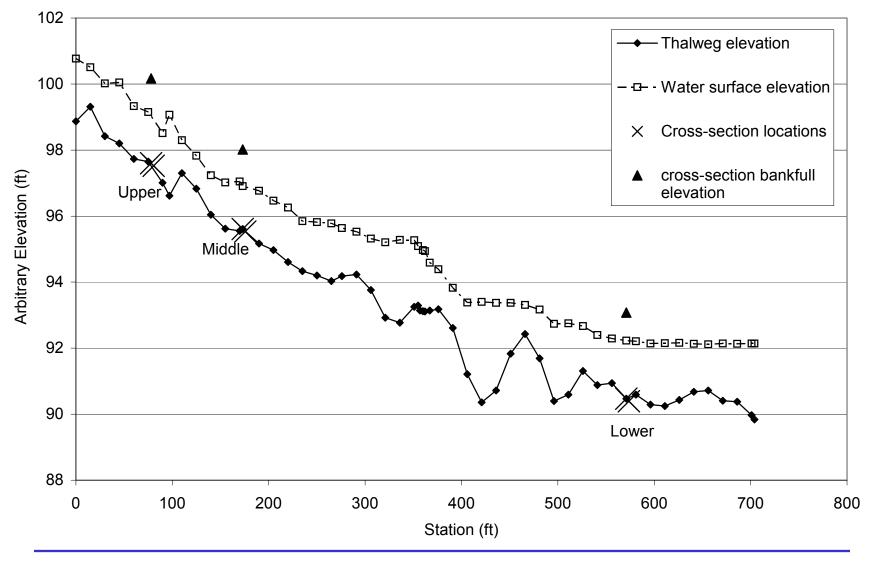


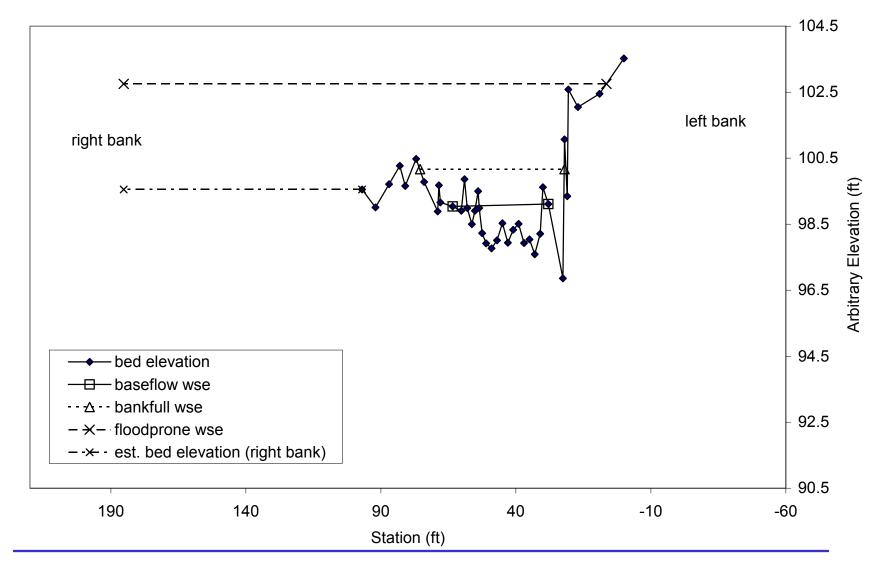


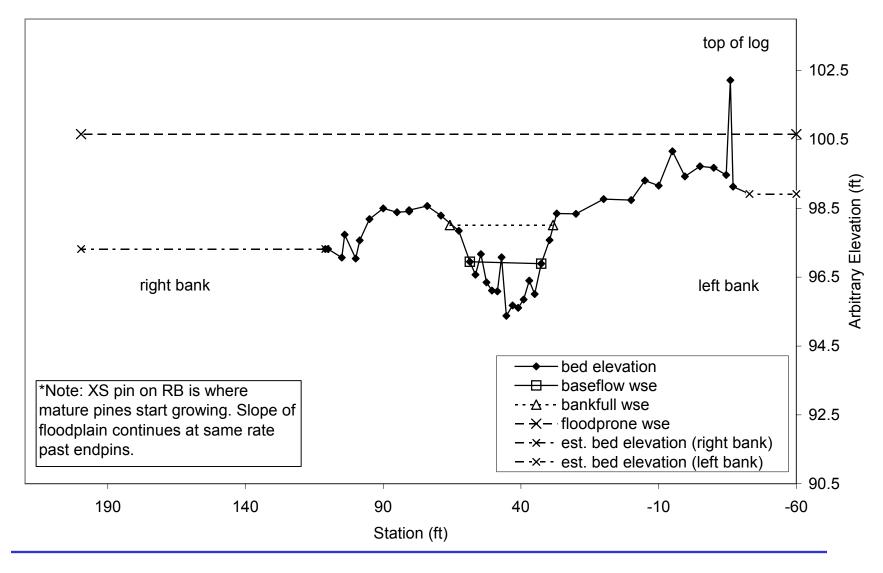
Loon Lake Dam Reach Upper Site (LL-G1) long profile

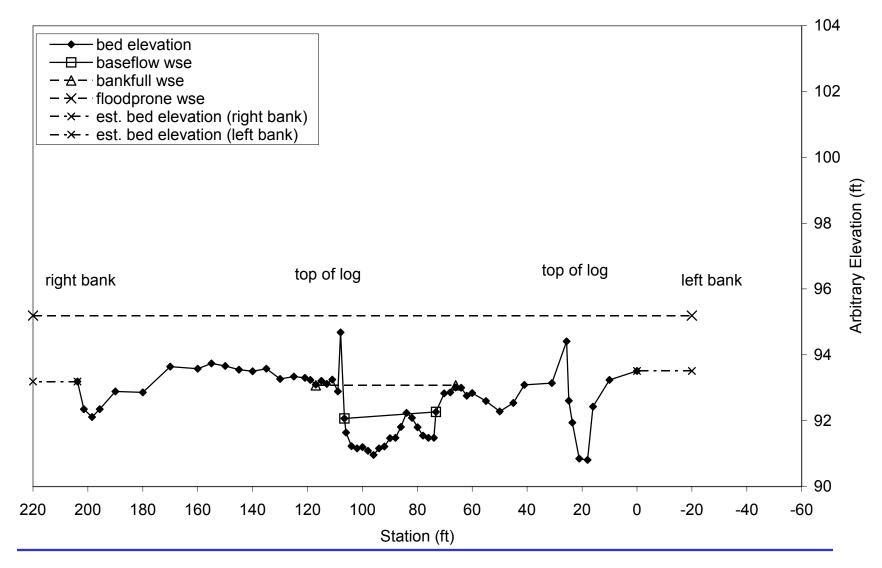


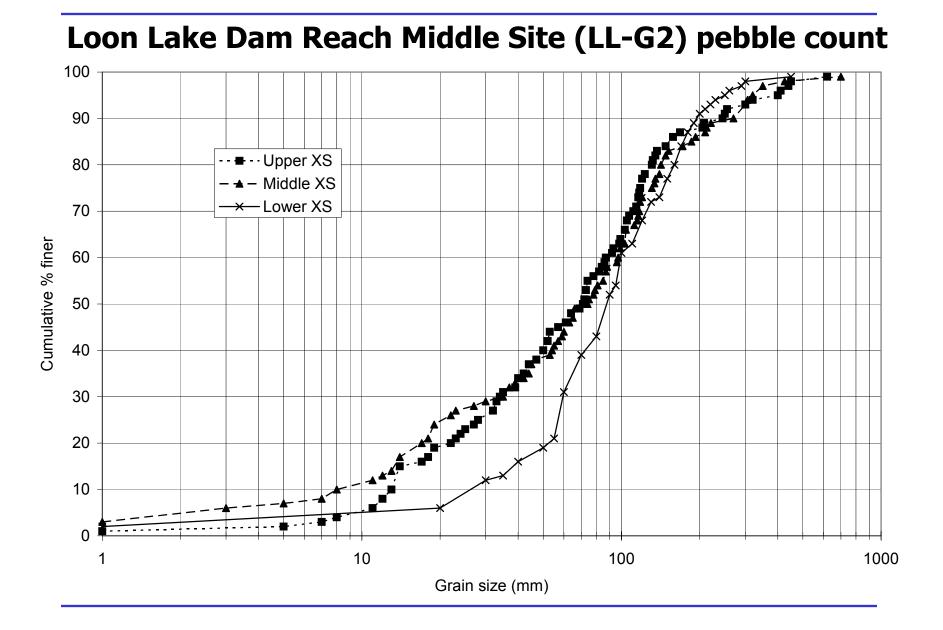
Loon Lake Dam Reach Upper Site (LL-G1) upper cross-section



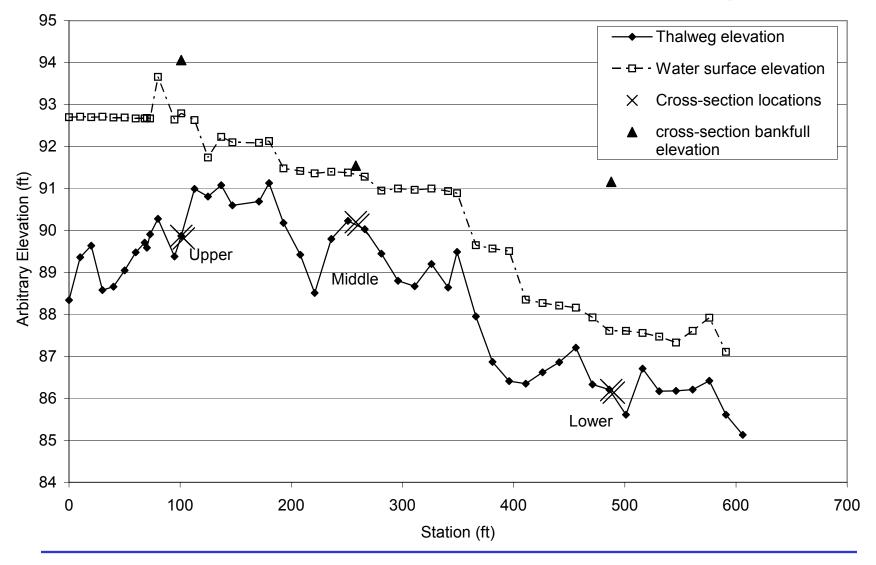

Loon Lake Dam Reach Upper Site (LL-G1) lower cross-section


Loon Lake Dam Reach Middle Site (LL-G2) long profile

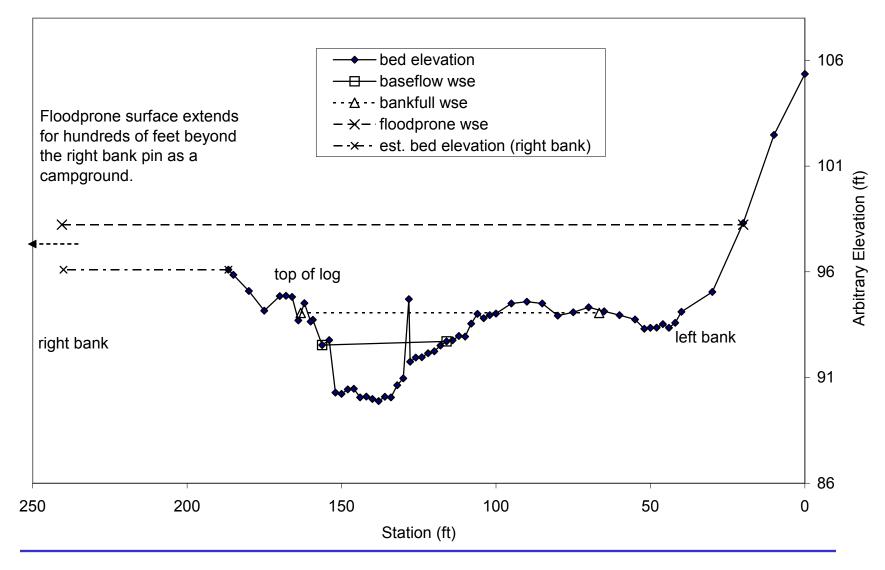

Loon Lake Dam Reach Middle Site (LL-G2) upper cross-section

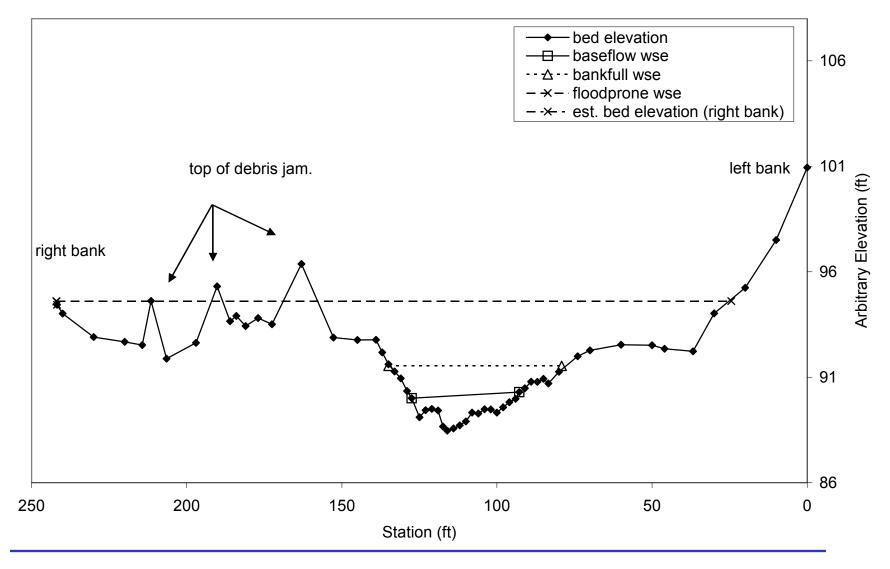


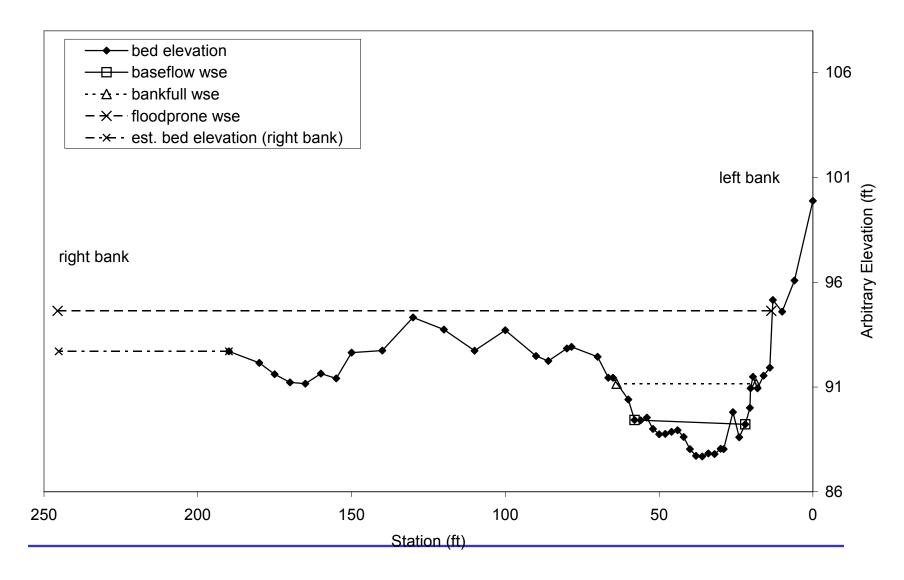
Loon Lake Dam Reach Middle Site (LL-G2) middle cross-section

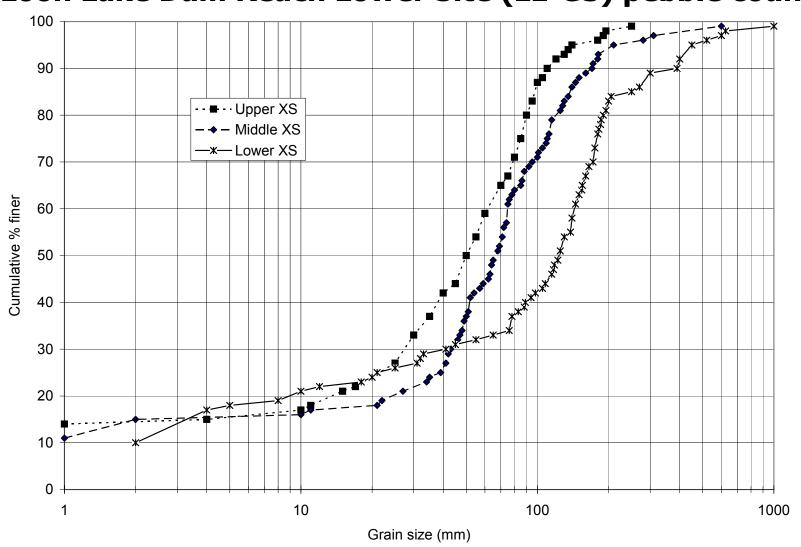


Loon Lake Dam Reach Middle Site (LL-G2) lower cross-section

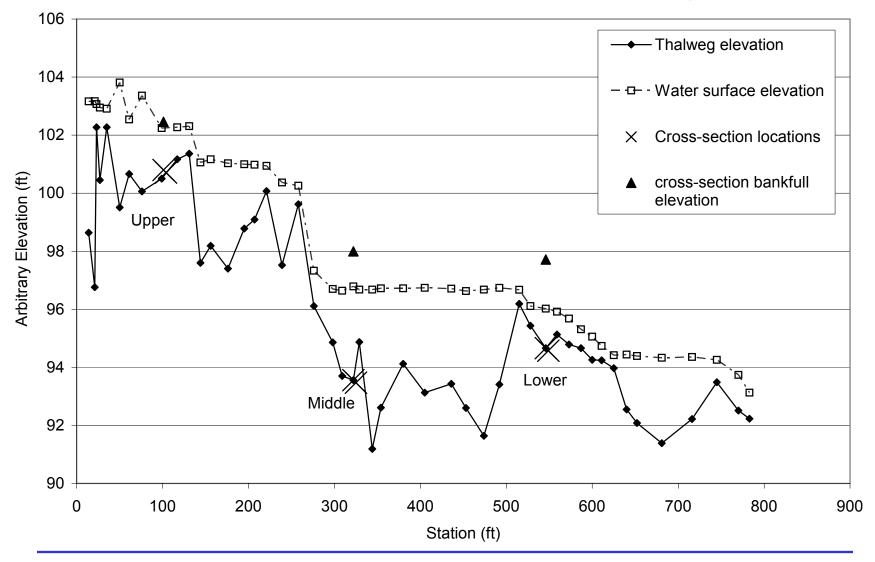


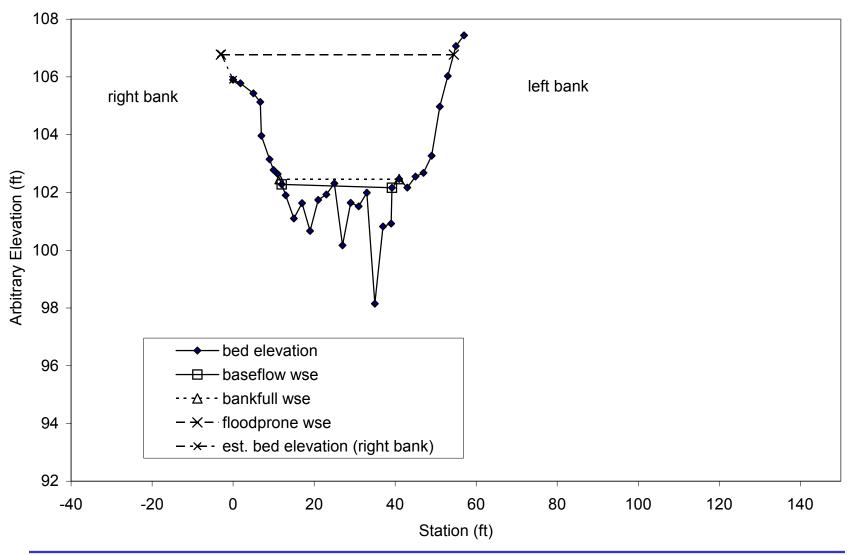

Loon Lake Dam Reach Lower Site (LL-G3) long profile


Loon Lake Dam Reach Lower Site (LL-G3) upper cross-section



Loon Lake Dam Reach Lower Site (LL-G3) middle cross-section

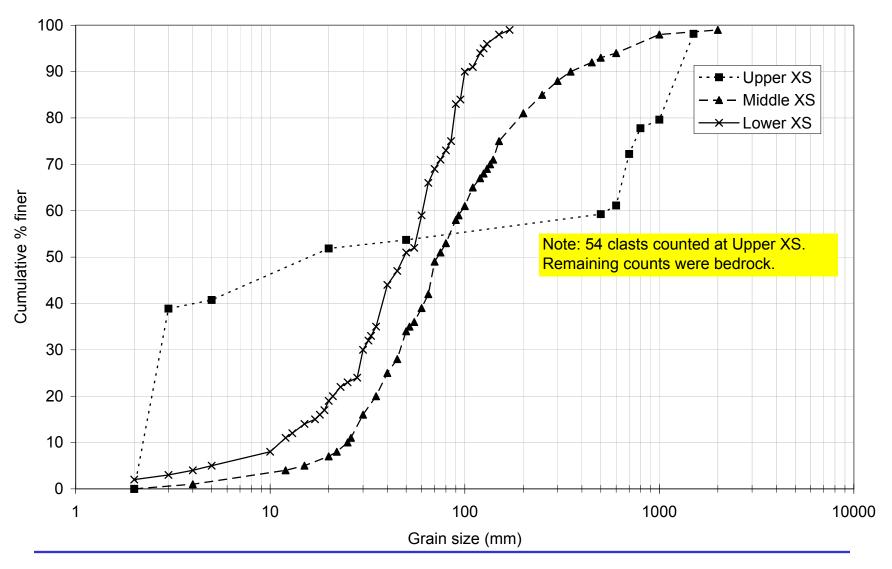

Loon Lake Dam Reach Lower Site (LL-G3) lower cross-section



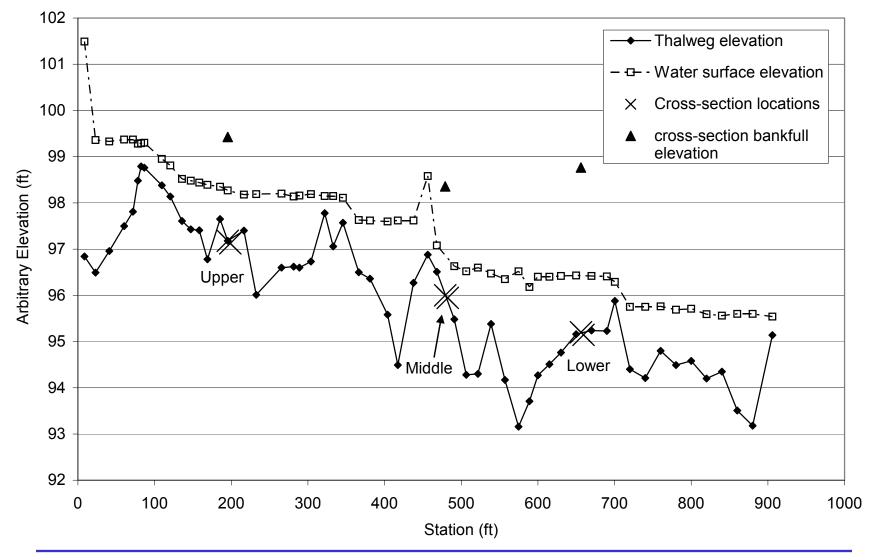
Loon Lake Dam Reach Lower Site (LL-G3) pebble count

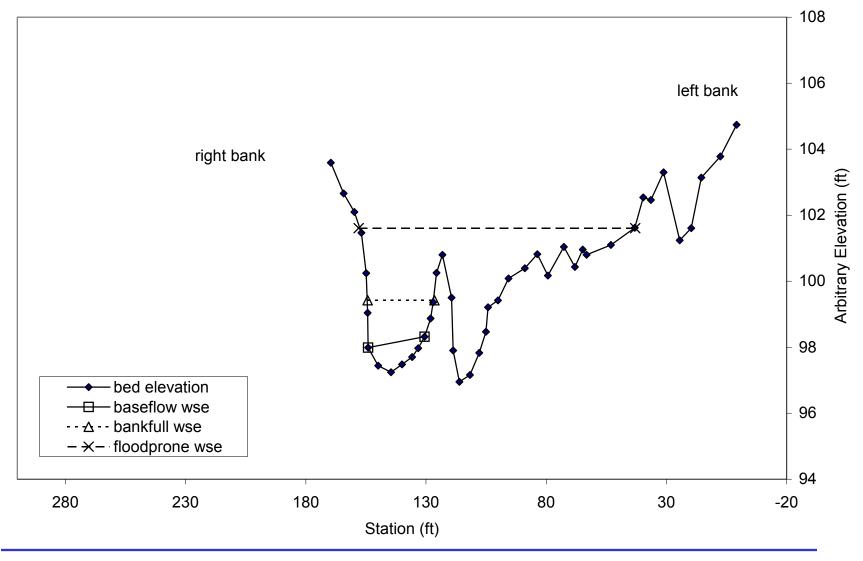
Gerle Creek Dam Reach Site (GC-G1) long profile

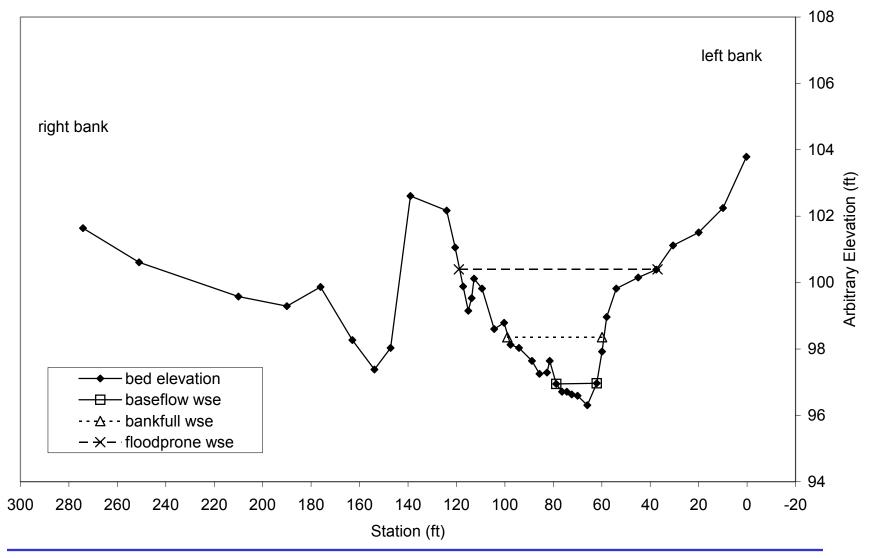
Gerle Creek Dam Reach Site (GC-G1) upper cross-section

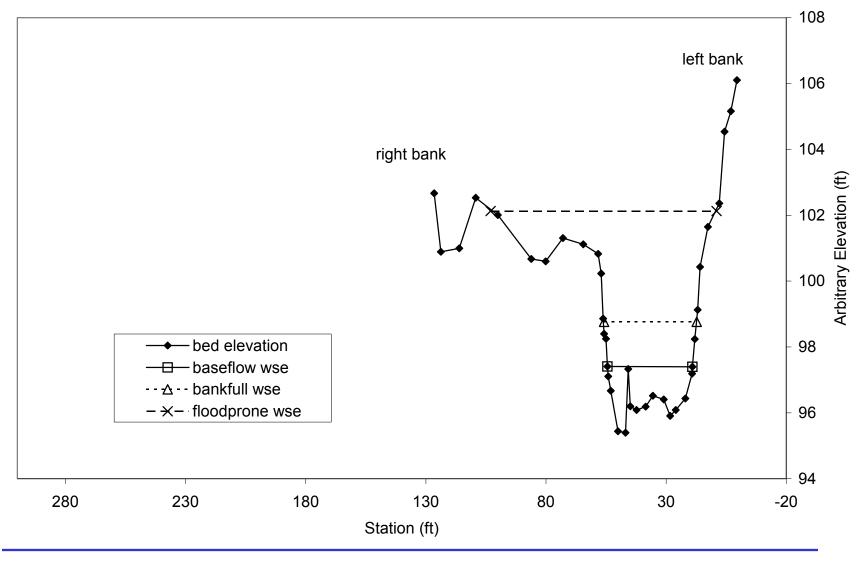

left bank right bank Arbitrary Elevation (ft) - bed elevation -- ∆ -- bankfull wse $- \times -$ floodprone wse -20 -40 Station (ft)

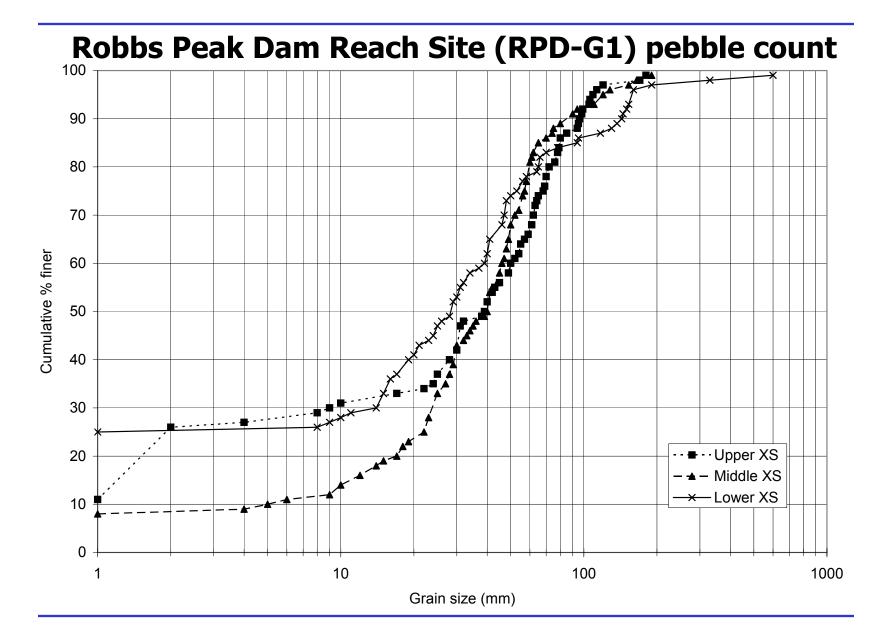
Gerle Creek Dam Reach Site (GC-G1) middle cross-section


Gerle Creek Dam Reach Site (GC-G1) lower cross-section

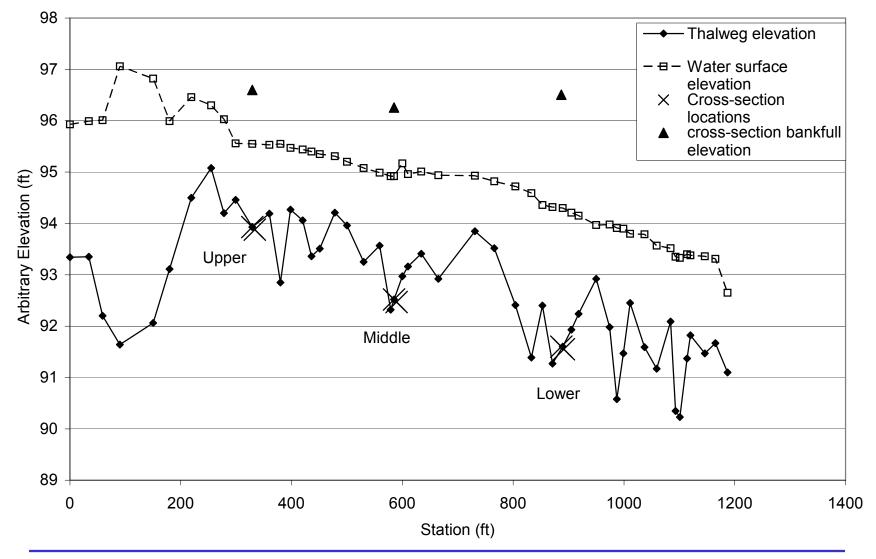

Gerle Creek Dam Reach Site (GC-G1) pebble count


Robbs Peak Dam Reach Site (RPD-G1) long profile

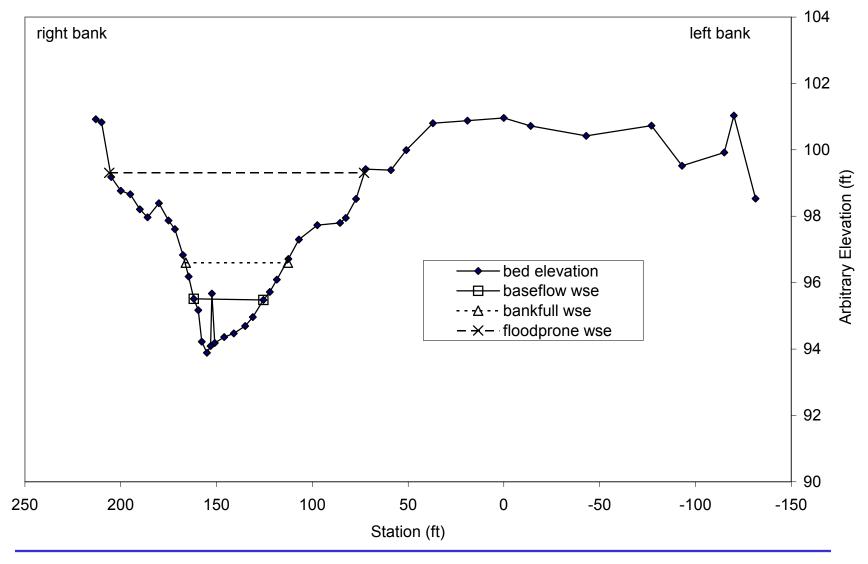

Robbs Peak Dam Reach Site (RPD-G1) upper cross-section

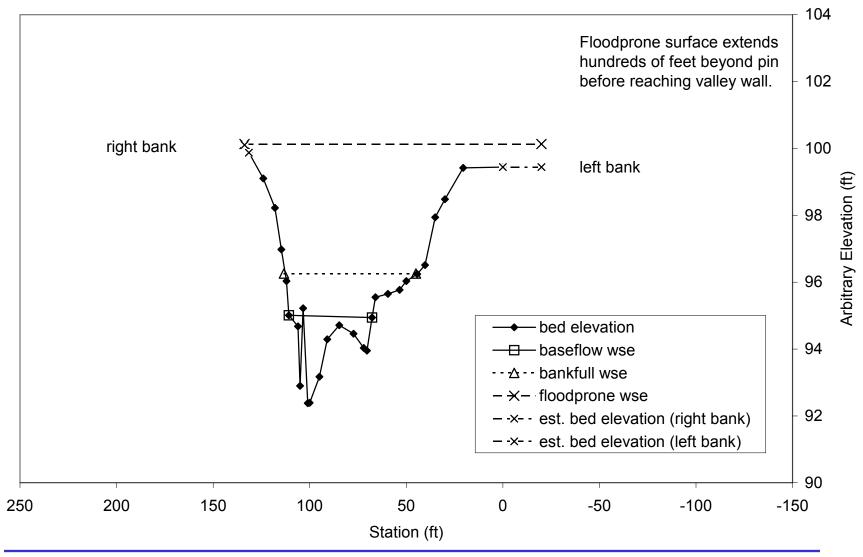


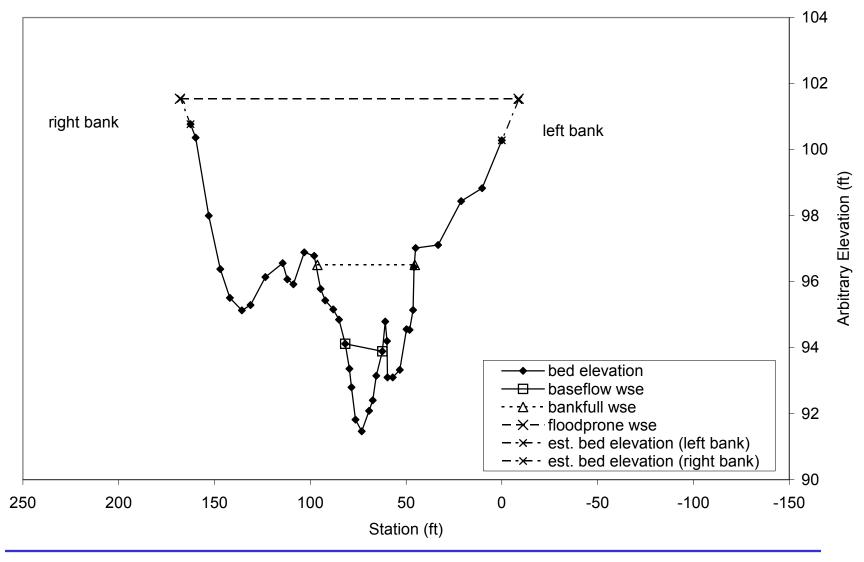
Robbs Peak Dam Reach Site (RPD-G1) middle cross-section

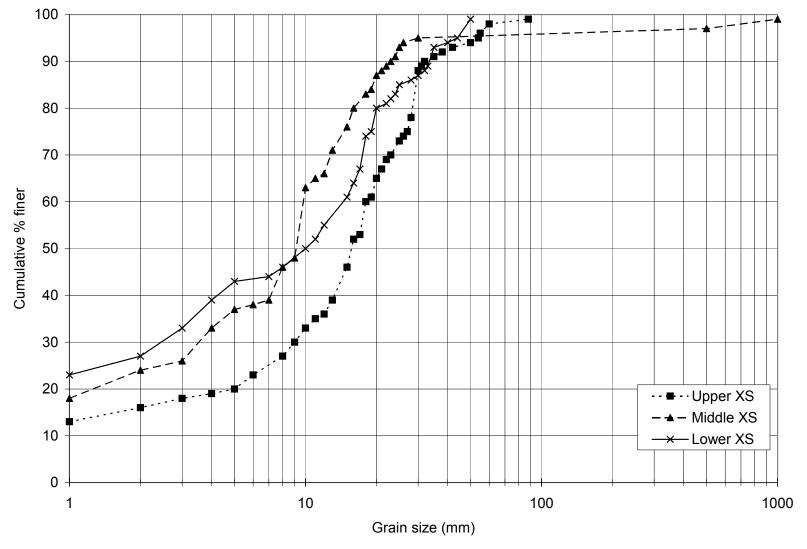


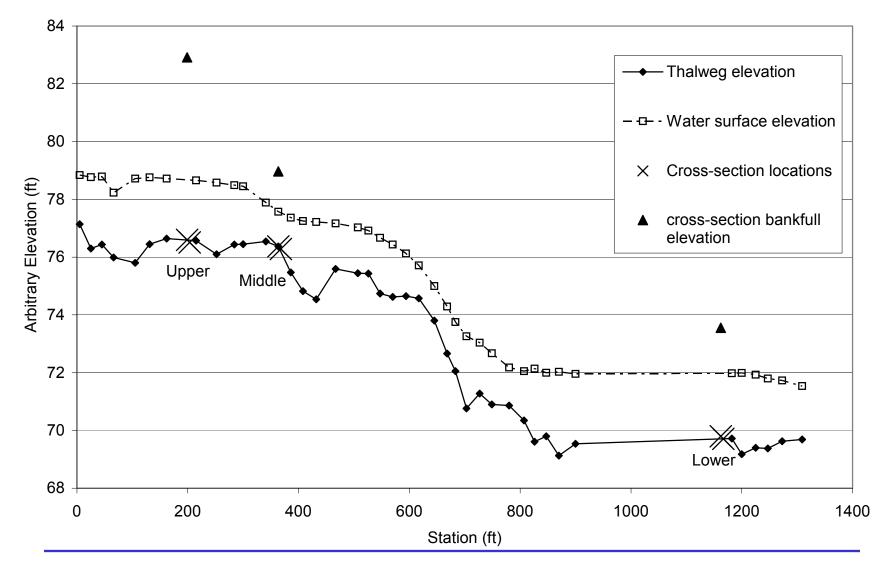
Robbs Peak Dam Reach Site (RPD-G1) lower cross-section

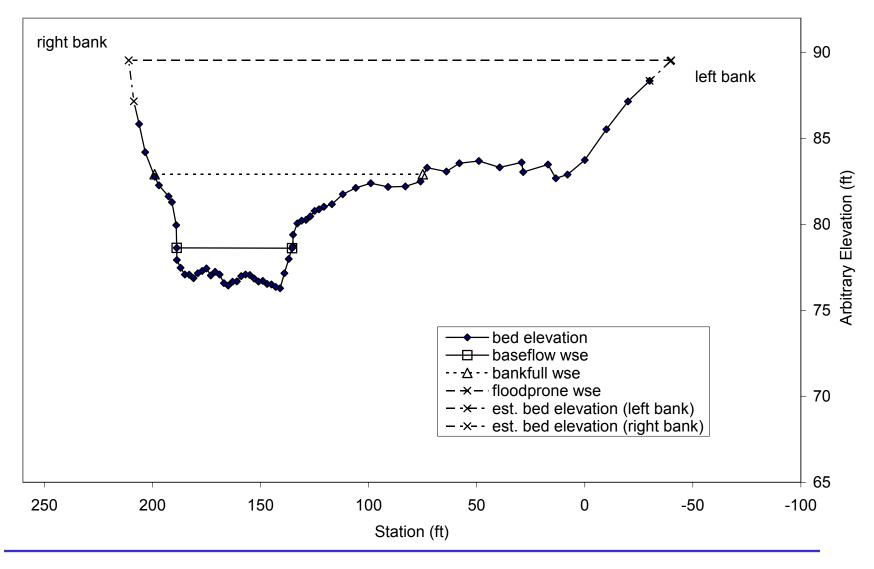


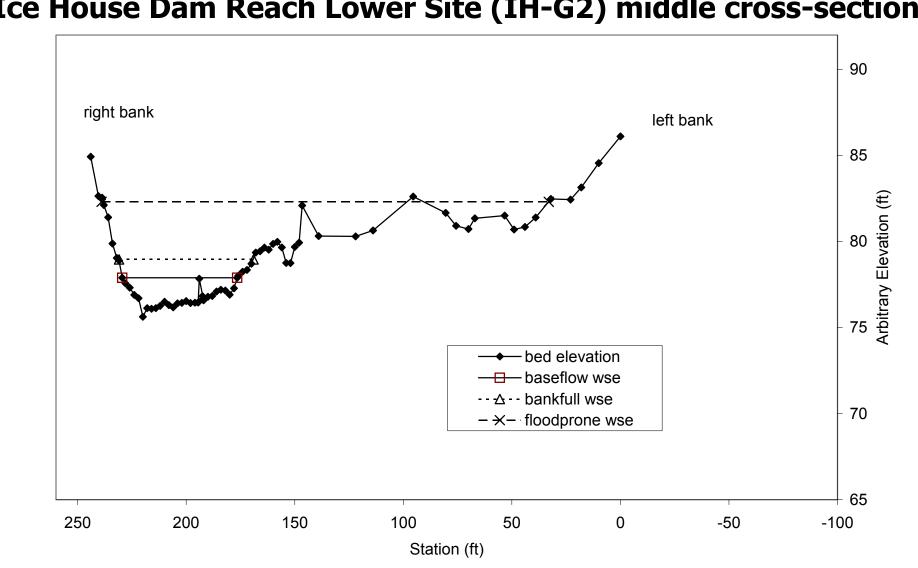

Ice House Dam Reach Upper Site (IH-G1) long profile


Ice House Dam Reach Upper Site (IH-G1) upper cross-section

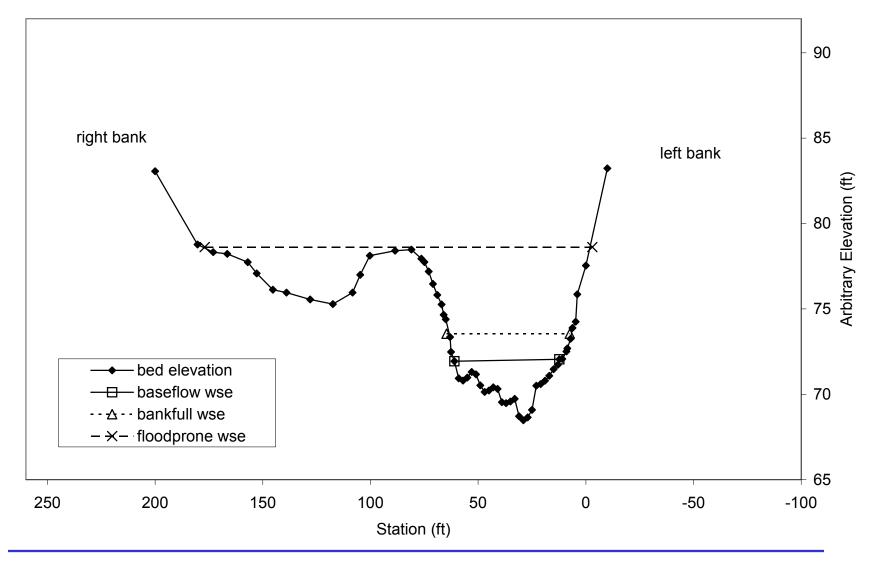

Ice House Dam Reach Upper Site (IH-G1) middle cross-section

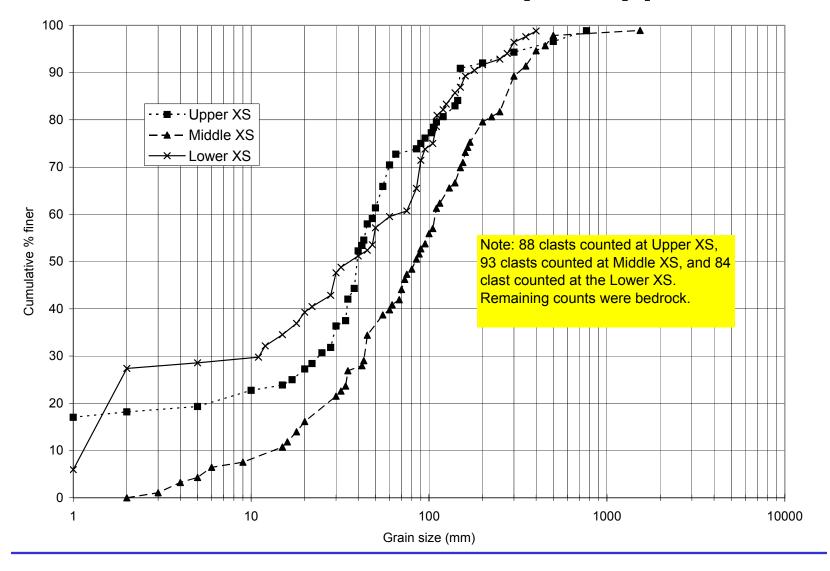

Ice House Dam Reach Upper Site (IH-G1) lower cross-section


Ice House Dam Reach Upper Site (IH-G1) pebble count

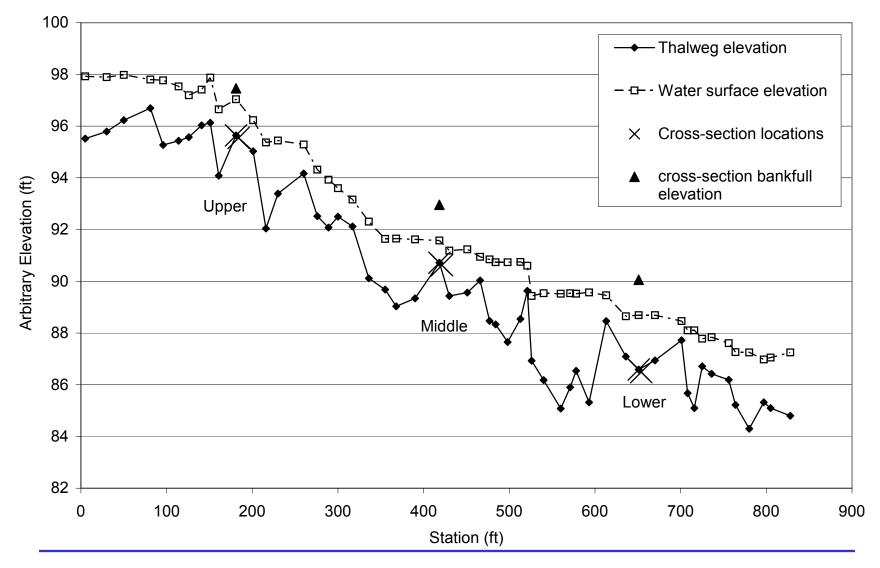


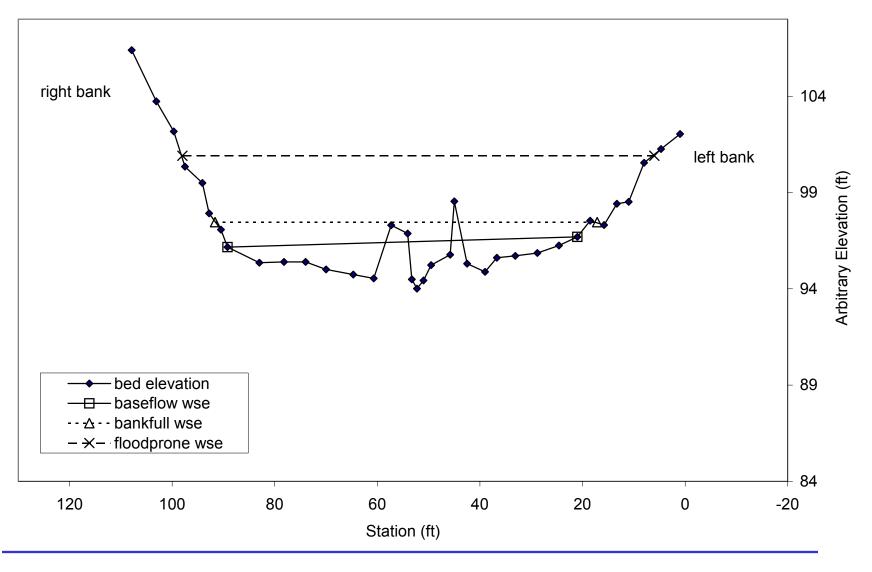
Ice House Dam Reach Lower Site (IH-G2) long profile

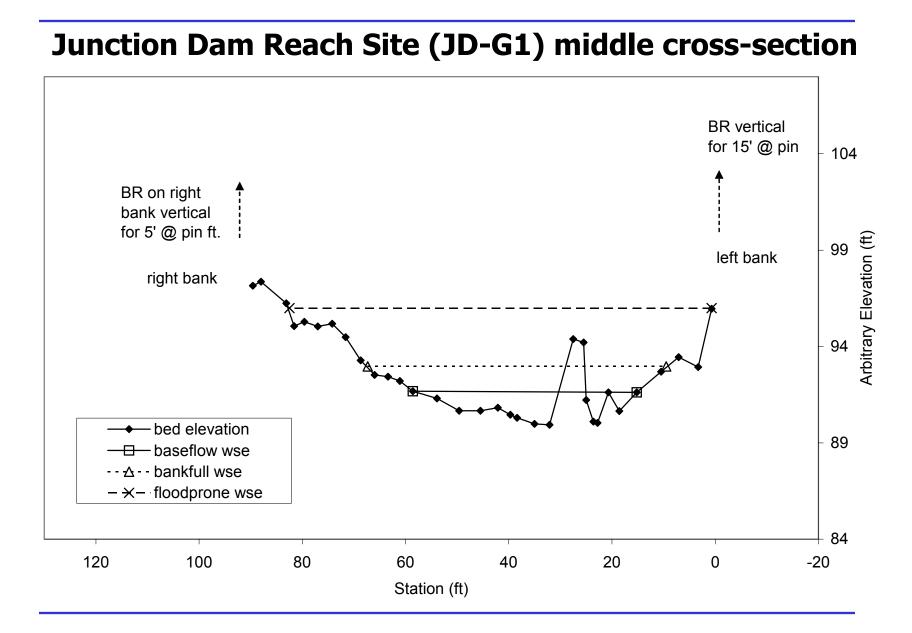

Ice House Dam Reach Lower Site (IH-G2) upper cross-section



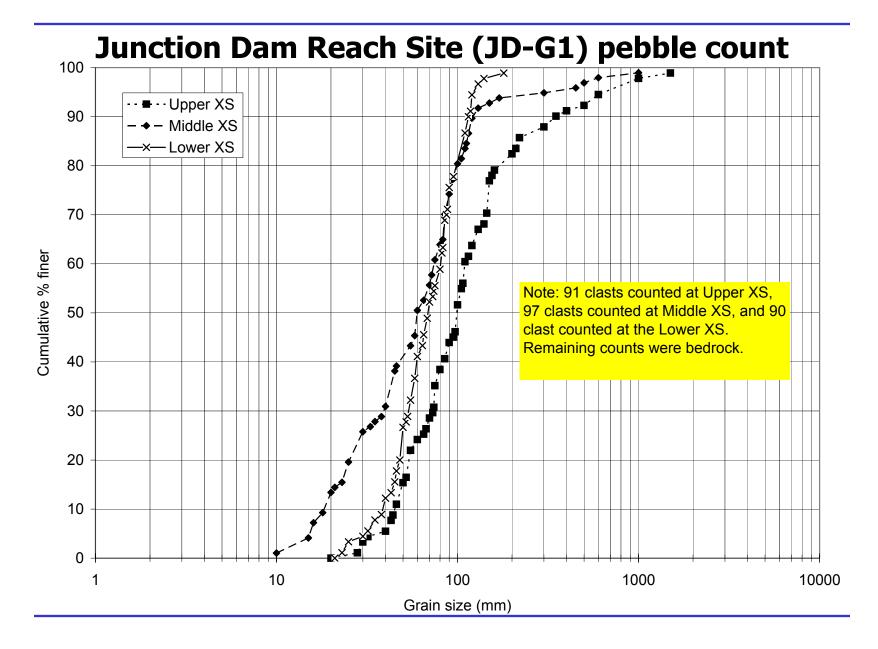
Ice House Dam Reach Lower Site (IH-G2) middle cross-section

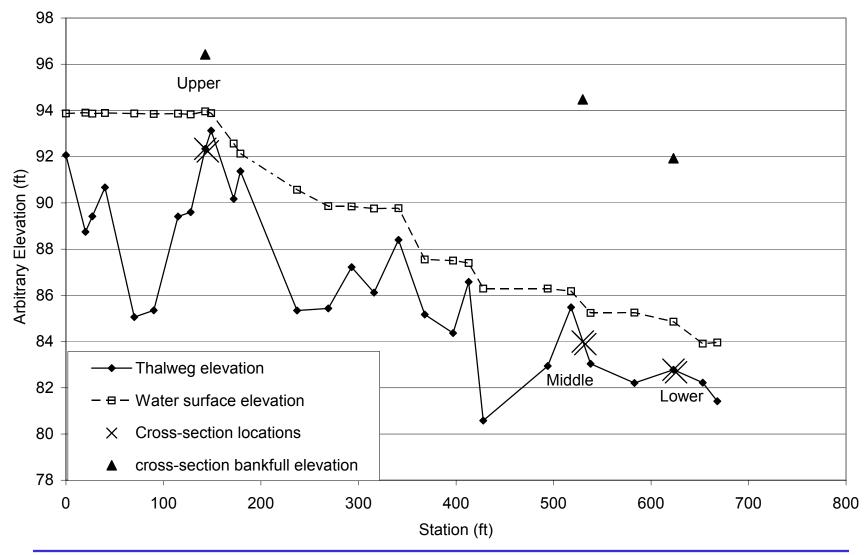

Ice House Dam Reach Lower Site (IH-G2) lower cross-section


Ice House Dam Reach Lower Site (IH-G2) pebble count

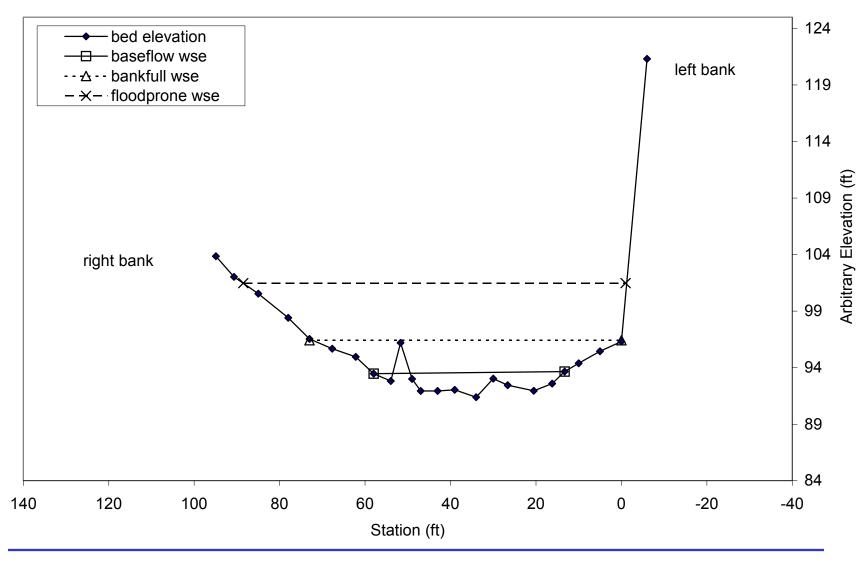


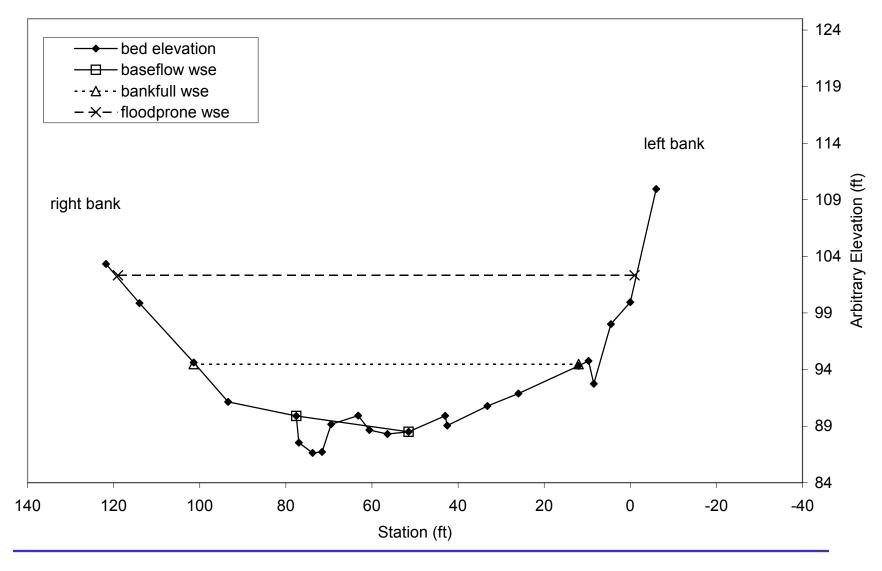
Junction Dam Reach Site (JD-G1) long profile

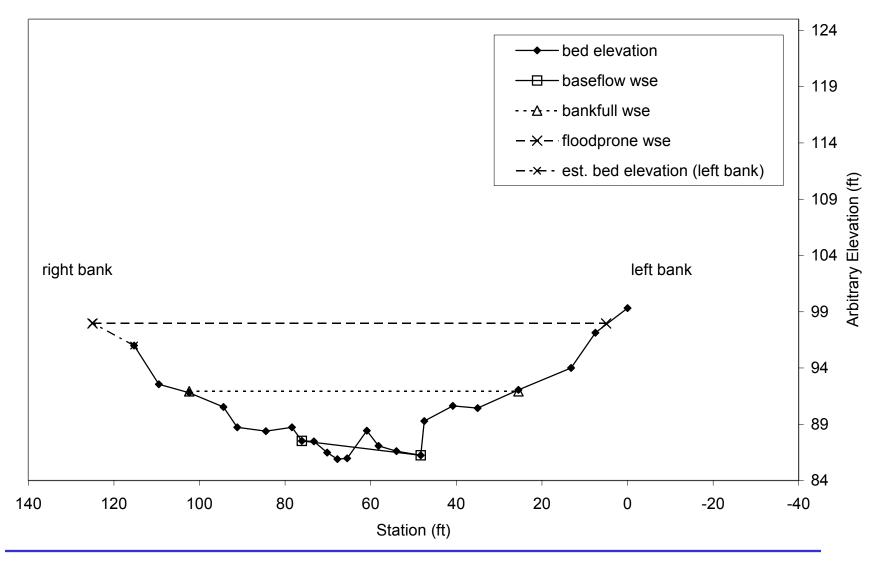

Junction Dam Reach Site (JD-G1) upper cross-section

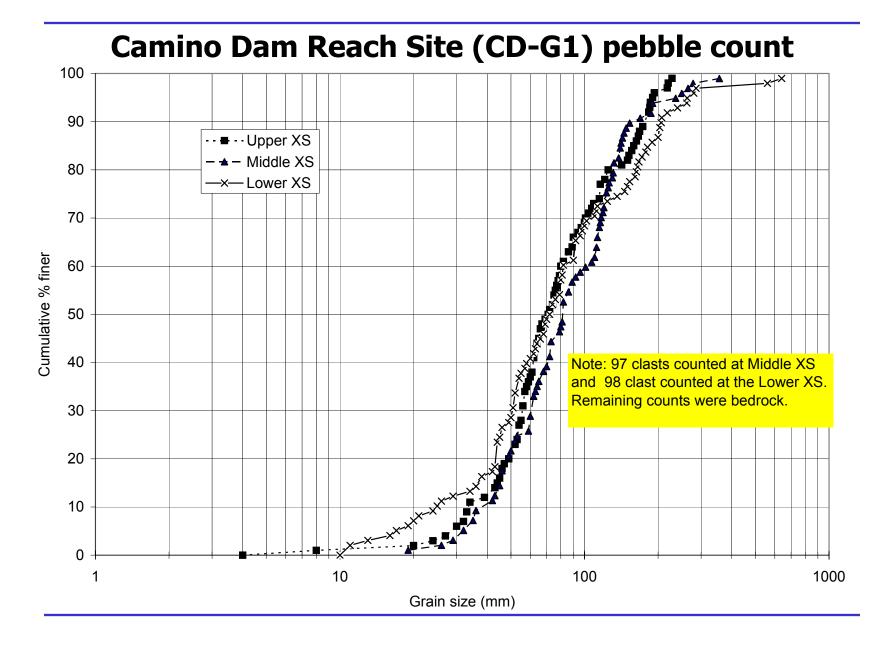


Junction Dam Reach Site (JD-G1) lower cross-section

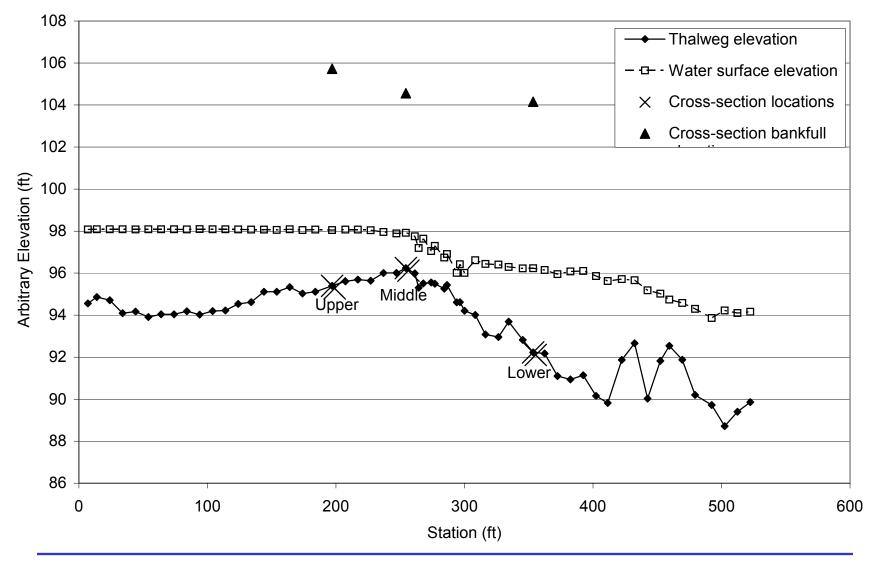



Camino Dam Reach Site (CD-G1) long profile

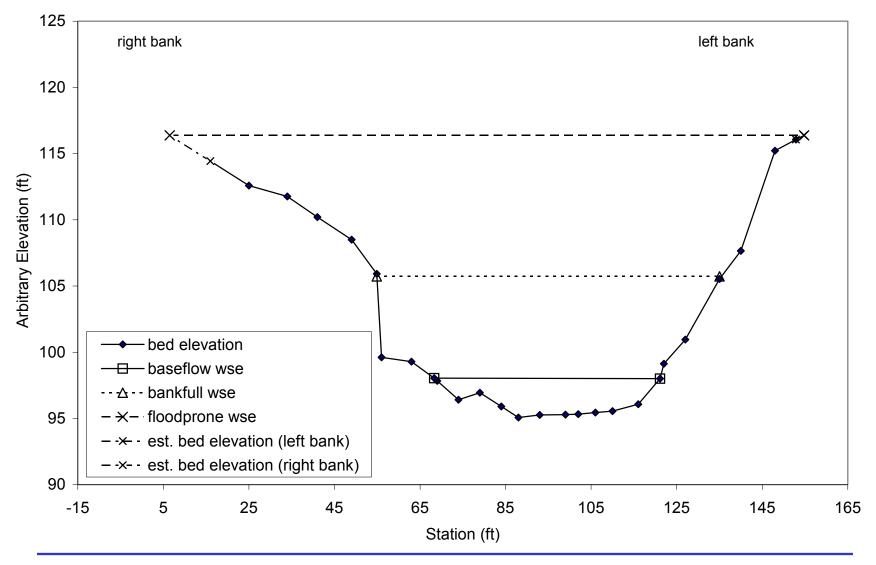

Camino Dam Reach Site (CD-G1) upper cross-section

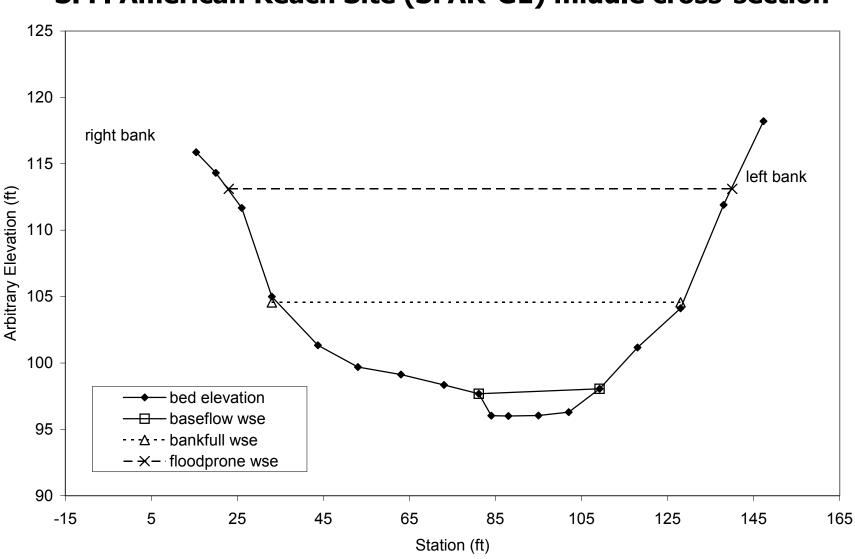


Camino Dam Reach Site (CD-G1) middle cross-section

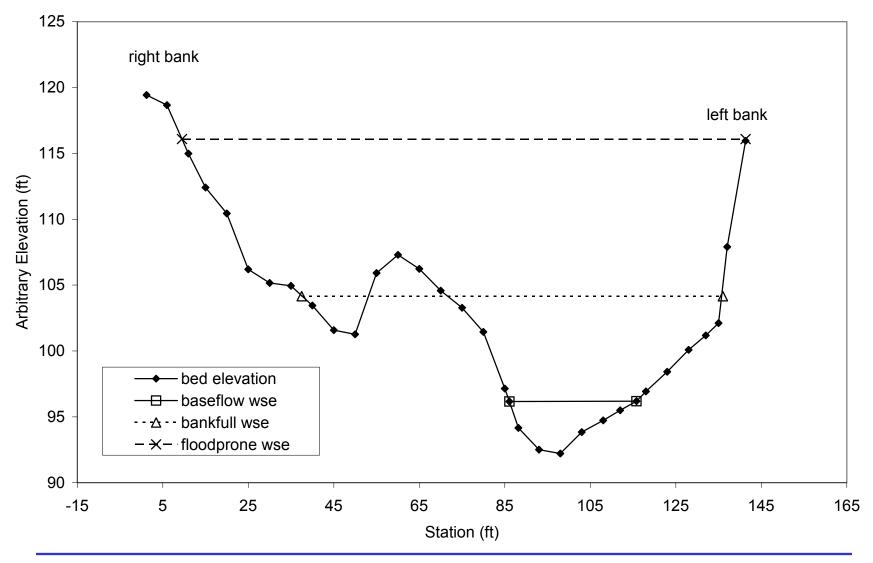


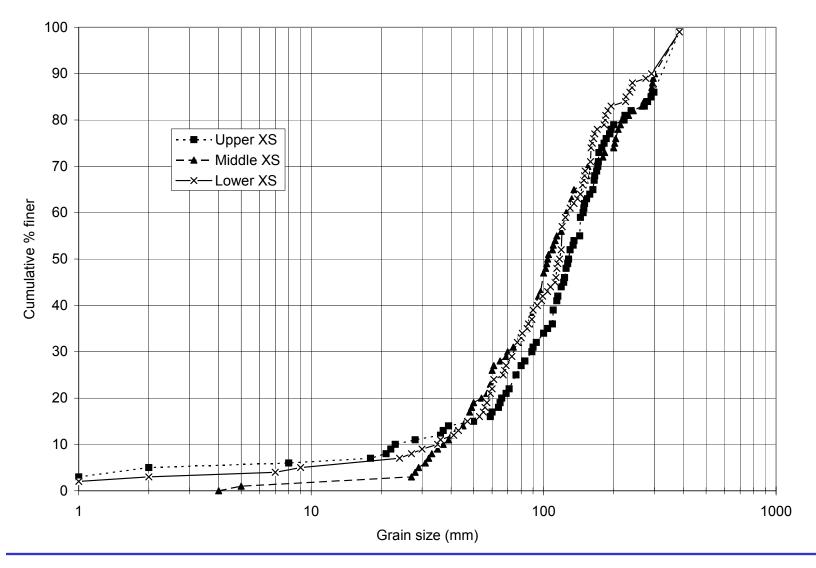
Camino Dam Reach Site (CD-G1) lower cross-section



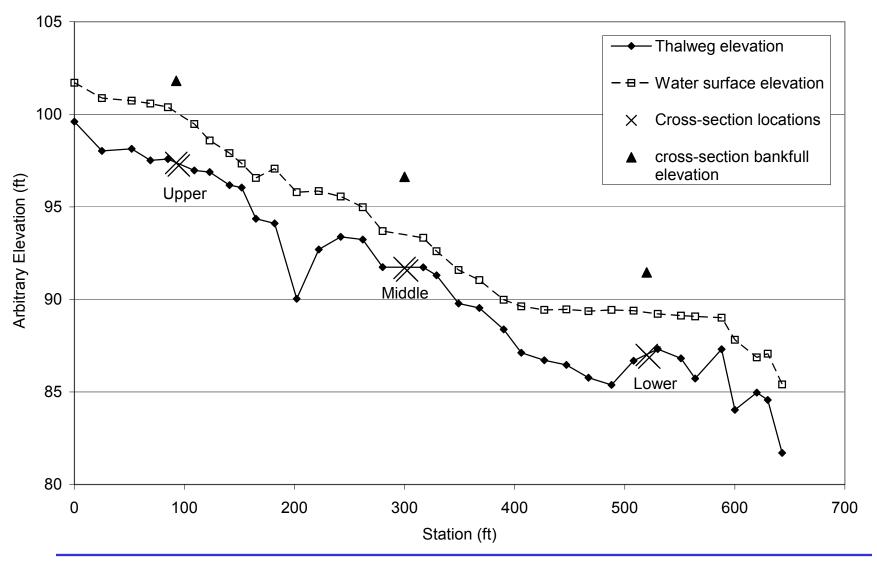


S. F. American Reach Site (SFAR-G1) long profile

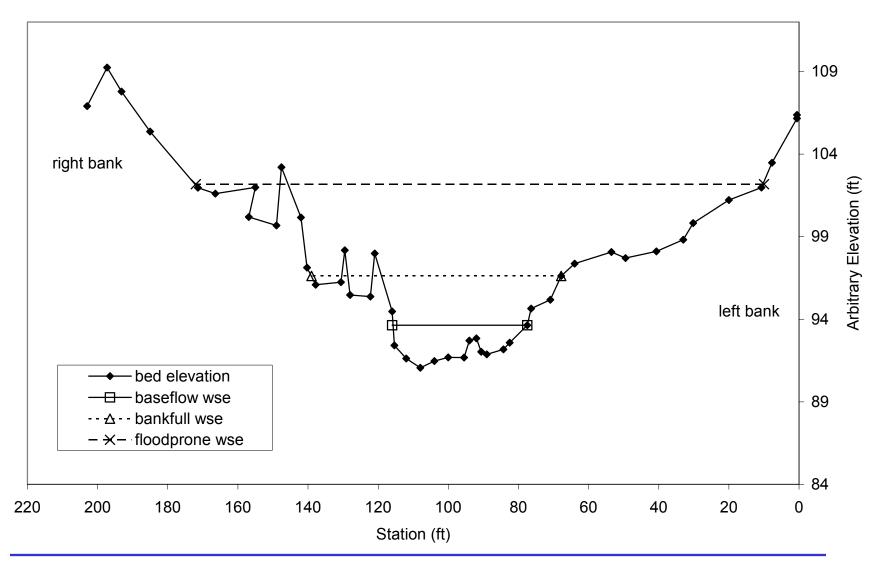

S. F. American Reach Site (SFAR-G1) upper cross-section

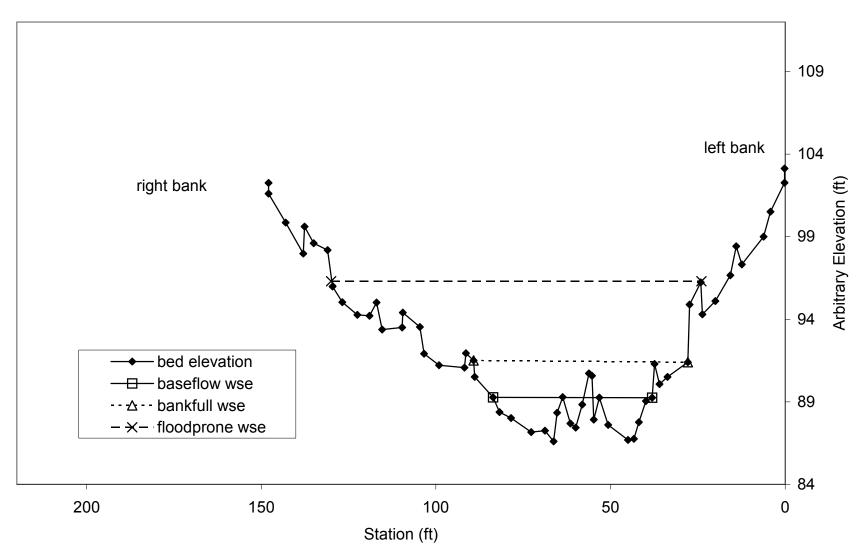


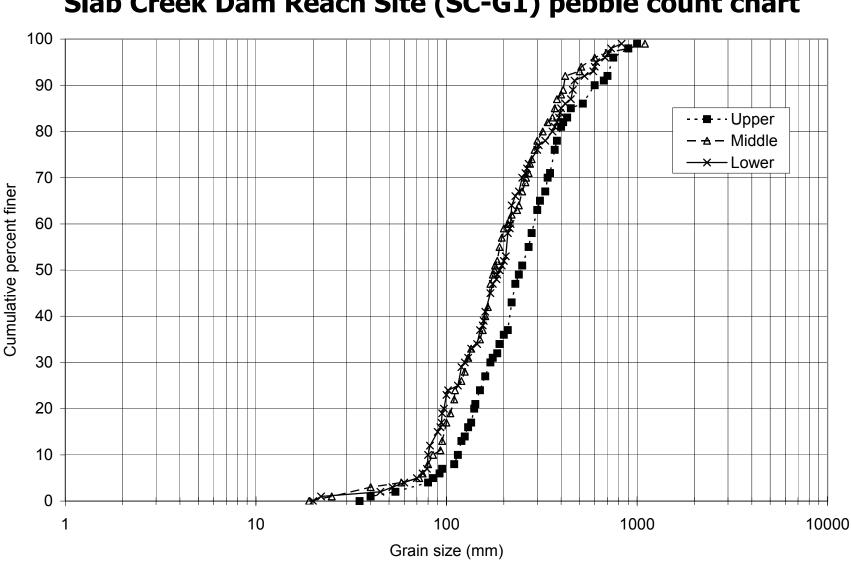
S. F. American Reach Site (SFAR-G1) middle cross-section


S. F. American Reach Site (SFAR-G1) lower cross-section




Slab Creek Dam Reach Site (SC-G1) long profile


Slab Creek Dam Reach Site (SC-G1) upper cross-section



Slab Creek Dam Reach Site (SC-G1) middle cross-section

Slab Creek Dam Reach Site (SC-G1) lower cross-section

Slab Creek Dam Reach Site (SC-G1) pebble count chart

APPENDIX I

LEVEL III DATA FOR THE UARP

Rubicon Dam Reach Site (RD-G1) LWD Frequency

LWD Frequency I Study Reach Name: Date: 8/26/03		Start time: 1315	End time:	Crew Initials: TNC, SR	D
Diameter Class	Length Class				
	3-10 ft (0.9-3.0 m)	10-25 ft (3.1-7.6 m)	25-50 ft (7.7-15.2 m)	50-75 ft (15.3-22.9 m)	>75 ft (>23 m)
6-12 in (10-30 cm) 12-24 in (31-60 cm) 24-36 in (61-90 cm)		Fallen log, REW at head of second riffle (near middle cross- section)			
>36 in (>90 cm) "Tally as R if rootwad i	s attached."				

Comments:

No key pieces

Rubicon Dam Reach Site (RD-G1) V Star

No Vstar measurements taken.

Rubicon Dam Reach Site (RD-G1) Rosgen Level III

Rosgen Level III Data Sheet Study Reach Name: Rubicon Dam Reach Date: 8/26/03 Crew Initials: TNC, SRD Start time: End time:

Depositional Features (indicate one)

	B-1	point bars
	B-2	pt. bars w/ few mid channel bars
	B-3	many mid channel bars
x	B-4	side bars
	B-5	diagonal bars
	B-6	main branching w/ many mid channel bars and islands
	B-7	mixed side bar and mid channel bars exceeding 2-3X width
	B-8	delta bars

Description: straight reach with stable, vegetated gravel/cobble bars

Meander Pattern (indicate one)

Meanaci i attei	In (Intercence offic)	
	M-1	regular meander
	M-2	tortuous meander
x	M-3	irregular meander
	M-4	truncated meander
	M-5	unconfined me. scrolls
	M-6	confine me. scrolls
	M-7	distorted me. loops
	M-8	irregular with oxbows

Description: high mountain, bedrock controlled channel

STREAM CHANNEL DEBRIS/BLOCKAGES (indicate one)

Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime

	Description/Exter	nt
x	D-1 (None)	Minor amounts of small, floatable material
	D-2 (Infrequent)	Debris consists of small, easily moved, floatable material; i.e. leaves, needles, small limbs, twigs, etc
	D-3 (Moderate)	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.
	D-4 (Numerous)	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.
	D-5 (Extensive)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.
	D-6 (Dominating)	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull
	D-7 (Beaver Dams - Few)	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.
	D-8 (Beaver Dams - Frequent)	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced.
	D-9 (Beaver Dams - Abandoned)	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.
	D-10 (Human Influences)	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have

Notes: Fairly clean channel, with with monir amounts LWD on banks/bars

Rubicon Dam Reach Site (RD-G1) Pfankuch

Place X

Channel Stability (Pfankuch)

Study Reach Name: Rubicon Dam Reach

Crew Initials: TNC, SRD Date: 8/26/2003

Date: Start Time:

start Time:

Stop Time:		Category	(choose one for each of the four options for each category)		in this
Jpper	1	Landform	Bank slope gradient <30%	2	count
Banks		slope	Bank slope gradient <50% Bank slope gradient 30-40%	4	
anks		siope			X
			Bank slope gradient 40-60%	6	
	_		Bank slope gradient 60+%	8	
	2	Mass wasting	No evidence of past or future mass wasting	3	
			Infrequent. Most likely healed over. Low future potential	6	Х
			Frequent or large, causing sediment nearly year long	9	
			Frequent or large causing sediment nearly year long or imminent danger of same	12	
	3	Debris jam	Essentially absent from immediate channel area	2	
		potential	Present, but mostly small twigs and limbs	4	
			Moderate to heavy amounts, mostly larger sizes	6	Х
			Moderate to heavy amounts, predominately lager sizes	8	
	4	Vegetative	90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	3	
		bank	70-90% density. Fewer species or less vigor suggest less dense or deep root mass	6	Х
		protection	<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass	9	
			<50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass	12	
ower	5	Channel	Ample for present plus some increases. Peak flows contained. W/D ration <7	1	
	5	capacity	Adequate. Bank overflows rare. W/D ratio 8-15	2	
anks		capacity			v
			Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	3	X
			Inadequate. Overbank flows common. W/D ratio >25	4	
	6	Bank rock	65%+ with large angular boulders. 12"+ common.	2	
		content	40-65%. Mostly small boulders to cobbles 6-12"	4	
			20-40%. With most in the 3-6" diameter class	6	
			20% rock fragments of gravel sizes, 1-3" or less	8	Х
	7	Obstructions	Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable bed	2	Х
		to flow	Some present causing erosive cross currents and minor pool filling. Obstructions newer and less	4	
8 C		Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool	6		
		Sediment traps full, channel migration occurring	8		
	Cutting	Little or none. Infrequent raw banks less than 6"	4		
	Ŭ	outung	Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6	Х
			Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12	~
			Almost continuous cuts, some over 24" high. Failure of overhangs frequent	16	
		Denesitien			X
	9	Deposition	Little or no enlargement of channel or point bars	4	X
			Some new bar increase, mostly from coarse gravel	8	
			Moderate deposition of new gravel and course sand on old and some new bars	12	
			Extensive deposits of predominately fine particles. Accelerated bar development	16	
ottom	10	Rock	Sharp edges and corners. Plane surfaces rough.	1	
		angularity	Rounded corners and edges, surfaces smooth, flat	2	
			Corners and edges well rounded in two dimensions	3	Х
			Well rounded in all dimensions, surfaces smooth	4	
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	
		5	Mostly dull, but may have <35% bright surfaces	2	
			Mixture dull and bright, ie 35-65% mixture range	3	Х
			Predominately bright, 65% exposed or scoured surfaces	4	
	10	Consolidation		2	
	12		Assorted sizes tightly packed or overlapping		
		of particles	Moderately packed with some overlapping	4	
			Mostly loose assortment with no apparent overlap	6	Х
			No packing evident. Loose assortment easily moved	8	
	13	Bottom size	No size change evident. Stable mater. 80-100%	4	
		distribution	Distribution shift light. Stable material 50-80%	8	Х
			Moderate changes in sizes. Stable materials 20-50%	12	
			Marked distribution change. Stable materials 0-20%	16	
	14	Scouring and	<5% of bottom affected by scour or deposition	6	Х
		deposition	5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools	12	
			30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools	18	
			More than 50% of the bottom in a state of flux or change nearly year long	24	
	45	Aquatic			
		COURDER	Abundant growth moss-like, dark green perennial. In swift water too.	1	
	15			0	~
		vegetation	Common. Algae forms in low velocity and pool areas. Moss here too Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick	2 3	Х

Rubicon Dam Reach Site (RD-G1) **Bank Erosion and Vegetation**

Bank Erosion and Vegetation

Study Reach Name: Rubicon Dam Reach

Crew Initials: TNC, SRD

Date: 8/26/03 Start Time: 1500 Stop Time:

BANK EROSION POTENTIAL					
(if banks are bedrock or composed of boulders, do not fill out this table)					
Bank a Bank b Bank c Bank d					
Bank height (ft)	6	8	8		
Bankfull height (ft)	3	3	3		
Root depth (ft)	4	4	4		
Root density (%)	40%	40%	40%		
Bank Angle (degrees)	30-40	30-40	30-40		
Surface Protection (%)	80%	80%	80%		
% of total study reach					

Notes

Bank material:	Sand
Stratification of unstable layers	Middle of bank
in banks (below bankfull):	

Moderate Sediment supply: Vertical streambed stability: Stable

Bank and channel bed conditions notes:

Banks are well vegetated. Well vegetated gravel bars present in channel

RIPARIAN VEGETATION					
DENSITY (indicate all that apply)					
VEGETATION TYPE	LOW	MOD.	HIGH	NOTES	
Bare					
Forbs only					
Annual Grass w/ forbes					
Perennial grass					
Rhizomatous grasses					
(bluegrass, Grass like plants,		5b			
sedges, rushes)					
Low brush					
High brush					
Combination grass/brush		8b			
Deciduous overstory					
Deciduous w/brush/grass		10b			
understory		100			
Perennial overstory					
Wetland vegetation community					

Loon Lake Dam Reach Upper Site (LL-G1) LWD Frequency

LWD Frequency Data Sheet

Study Reach Name: Date:	Upper Loon Lake 6/2/2003	Start time:	13:12	Crew Initials: End time:	JDS, MCM 13:48
Diameter Class	Length Class 3-10 ft (0.9-3.0 m)	10-25 ft (3.1-7.6 m)	25-50 ft (7.7-15.2 m)	50-75 ft (15.3-22.9 m)	>75 ft (>23 m)
6-12 in (10-30 cm)	15 + R	7	6	2	
12-24 in (31-60 cm)	4	3+R	2+R		
24-36 in (61-90 cm) >36 in (>90 cm)	4	2	3	12	

"Tally as R if rootwad is attached."

Comments:

Loon Lake Dam Reach Upper Site (LL-G1) V Star

V* Measurements

Study Reach Name:	Loon Lake Upper	
Date:	6/2/2003	Start time:

Crew Initials: JDS, MCM End time:

Comments:

No V* measurements taken.

No pool-riffle morphology, so no true riffle control points.

The bed is comprised of silt and fine to coarse sand.

Silt patches overlay the unconsolidated sand, so Silvey road wouldn't stop after going through silt. There are a lot of silt deposits, but this method doesn't seem applicable.

Loon Lake Dam Reach Upper Site (LL-G1) LWD Key Pieces

LWD Key Pieces Information

Study Reach Name: Date: Upper Loon Lake Cre 6/2/2003 Start time:

Crew Initials: JDS, MCM me: End time:

Perform for 100 m of stream or reach length, whichever is greater. **Criteria for Determining Key Pieces to be Measured** (circle which used): (1) all pieces with length > 1.2 times bankfull channel width OR (2) pieces meeting criteria 1 and having diameters

KEY PIECE NUMBER 1 2 3 4 5 6 7 8 9 10 11 Location on longitudinal profile <th></th>	
Location on longitudinal profile Diameter (in) 25 32 30 Length (ft) 75 75 40 Channel C	
Diameter (in) 25 32 30 Image: Constraint of the state of	
Length (ft) 75 75 40 Image: Constraint of the state of th	
rootwad attached no no no no contractive attached no no no no contractive attached contractive attached no no no contractive attached c	
LOCATION IN BANKFULL Image: Constraint of the system of	
CHANNEL AREA Image: Constraint of the second seco	
< 25% of piece length in bankfull channel 25-50% of piece length in bankfull channel	F
channel 25-50% of piece length in bankfull channel 25-10% of piece length in bankfull	<u> </u>
25-50% of piece length in bankfull channel	
	──
	──
75-100% of piece length in bankfull x x x	
	<u> </u>
ORIENTATION ORIENTATION	
Perpendicular x x	──
angled downstream x	—
angled upstream	\vdash
parallel or near parallel to channel	
FUNCTION IN CHANNEL	
ocated in bankfull channel, but not	
nfluencing channel morphology	
and not associated with pool habitat	
associated with, but not creating	
pool habitat	
acting as complex instream cover	
(has attached rootwad or intact	1
oranches)	
acting as velocity refuge x	<u> </u>
associated with LWD jam (3 or	<u> </u>
more key pieces)	
piece is acting as sediment storage	-
site	
	──
piece appears to be stable in x x	
stream channel*	
POOL FORMATION	—
forming dammed pool	──
forming plunge pool	<u> </u>
forming lateral scour pool x x x x	──
forming backwater pool	—
pool surface area (m ²) associated	
with piece(s) (L x W)	
ADDITIONAL INFORMATION	
(OPTIONAL)	
decay class (1 = sound, limbs 2 2 2 2	
present; 2 = bark loose or absent,	1
imbs absent, surface slightly	1
rotted; 3 = surface extensively	
rotted, center solid or rotted)	
	1
tree species (C = conifer, D = u u u	t
deciduous, U = unknown)	1
nput mechanism (W=windthrow, u u u	├───
	1
B=bank undercutting,	──
D=debris flow, L=landslide, M=tree	1
mortality, U=unkn)	
Rootwad present, piece stabilized at more than one point by banks or channel obstructions, end anchored by streambed or bank	burial,
pegged by standing trees, spanning	

Loon Lake Dam Reach Upper Site (LL-G1) Rosgen Level III

Rosgen Level III Data Sheet

Study Reach Name:	Upper Loon Lake
Date:	6/2/2003
Crew Initials:	JDS, MCM
Start time:	End time:

Depositional Features (indicate one)

x	B-1	point bars
	B-2	pt. bars w/ few mid channel bars
	B-3	many mid channel bars
	B-4	side bars
	B-5	diagonal bars
	B-6	main branching w/ many mid channel bars and islands
	B-7	mixed side bar and mid channel bars exceeding 2-3X width
	B-8	delta bars

Description: vegetated (herbaceous) point bars; lateral bars (silt and fine sand common)

Meander Pattern (indicate one)

X	M-1	regular meander
	M-2	tortuous meander
	M-3	irregular meander
	M-4	truncated meander
	M-5	unconfined me. scrolls
	M-6	confine me. scrolls
	M-7	distorted me. loops
	M-8	irregular with oxbows

Description: freely-formed meanders, subtle pool-riffle morphology

STREAM CHANNEL DEBRIS/BLOCKAGES (indicate one)

Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime

	Description/Exter	nt		
	D-1 (None)	Minor amounts of small, floatable material		
	D-2 (Infrequent)	Debris consists of small, easily moved, floatable material; i.e. leaves,		
D-2 (initequent)		needles, small limbs, twigs, etc		
		Increasing frequency of small to medium sized material, i.e. large limbs,		
	D-3 (Moderate)	branches, small logs that when accumulated effect 10% or less of the		
		active channel cross-sectional area.		
		Significant buildup of medium to large sized materials, i.e. large limbs,		
	D-4 (Numerous)	branches, small logs, or portions of trees that may occupy 10 to 30% of		
X		the active cross-sectional area.		
		Debris "dams" of predominantly larger materials, i.e. branches, logs,		
	D-5 (Extensive)	trees, etc., occupying 30 to 50% of the active channel cross-section,		
		often extending across the width of the active channel.		
	D-6 (Dominating)	Large, somewhat continuous debris "dams," extensive in nature and		
		occupying over 50% of the active channel cross-section. Such		
		accumulations may divert water into floodprone areas and form fish		
		migration barriers, even when flows are at less than bankfull		
	D-7 (Beaver	An infrequent number of dams spaced such that normal streamflow and		
	Dams - Few)	expected channel conditions exist in the reaches between dams.		
	D-8 (Beaver Dams - Frequent)	Frequency of dams is such that backwater conditions exist for channel		
		reaches between structures; where streamflow velocities are reduced		
	Danis - Frequency	and channel dimensions or conditions are influenced.		
	D-9 (Beaver	Numerous abandoned dams, many of which have filled with sediment		
	Dams -	and/or breached, initiating a series of channel adjustments such as bank		
	Abandoned)	erosion, lateral migration, evulsion, aggradations and degradation.		
		Structures, facilities, or materials related to land uses or development		
	D-10 (Human	located within the floodprone area, such as diversions or low-head dams,		
	Influences)	controlled by-pass channels, velocity control structures, and various		
	mildefiee3)	transportation encroachments that have		

Notes:

Many downed trees cross channel - some spanning above WSEL; some submerged. Many moderate to small logs and branches buried in silt and fine sand deposits.

Loon Lake Dam Reach Upper Site (LL-G1) Pfankuch

Channel Stability (Pfankuch)

Study Reach Name: Crew Initials: Date:

Upper Loon Lake JDS, MCM 6/2/2003

Date.	
Start	Time:
Stop	Time:

Start Time: Stop Time:			6/2/2003		Place X in this
		Category	(choose one for each of the four options for each category)		column:
Upper	1		Bank slope gradient <30%	2	
Banks		slope	Bank slope gradient 30-40%	4	
			Bank slope gradient 40-60%	6	
			Bank slope gradient 60+%	8	x
	2	Mass wasting	No evidence of past or future mass wasting	3	x
			Infrequent. Most likely healed over. Low future potential	6	
			Frequent or large, causing sediment nearly year long	9	
			Frequent or large causing sediment nearly year long or imminent danger of same	12	
	3	Debris jam	Essentially absent from immediate channel area	2	
		potential	Present, but mostly small twigs and limbs	4	
			Moderate to heavy amounts, mostly larger sizes	6	х
			Moderate to heavy amounts, predominately lager sizes	8	
	4	Vegetative	90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	3	X
		bank	70-90% density. Fewer species or less vigor suggest less dense or deep root mass	6	
		protection	<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass	9	
			<50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass	12	
Lower	5	Channel	Ample for present plus some increases. Peak flows contained. W/D ration <7	1	
Banks		capacity	Adequate. Bank overflows rare. W/D ratio 8-15	2	1
			Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	3	
			Inadequate. Overbank flows common. W/D ratio >25	4	х
	6	Bank rock	65%+ with large angular boulders. 12"+ common.	2	
		content	40-65%. Mostly small boulders to cobbles 6-12"	4	
			20-40%. With most in the 3-6" diameter class	6	
			20% rock fragments of gravel sizes, 1-3" or less	8	x
	7	Obstructions	Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable bed	2	
		to flow	Some present causing erosive cross currents and minor pool filling. Obstructions newer and less	4	х
			Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool	6	
			Sediment traps full, channel migration occurring	8	
	8	Cutting	Little or none. Infrequent raw banks less than 6"	4	
		Ũ	Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6	x
			Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12	<u>+ </u>
			Almost continuous cuts, some over 24" high. Failure of overhangs frequent	16	+
	9	Deposition	Little or no enlargement of channel or point bars	4	1
			Some new bar increase, mostly from coarse gravel	8	+
			Moderate deposition of new gravel and course sand on old and some new bars	12	+
			Extensive deposits of predominately fine particles. Accelerated bar development	16	x
Bottom	10	Rock	Sharp edges and corners. Plane surfaces rough.	1	
		angularity	Rounded corners and edges, surfaces smooth, flat	2	+
		yy	Corners and edges well rounded in two dimensions	3	+
			Well rounded in all dimensions, surfaces smooth	4	x
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	+
	`	Lightiess	Mostly dull, but may have <35% bright surfaces	2	+
			Mixture dull and bright, ie 35-65% mixture range	3	x
					+ <u>*</u>

		Mixture dull and bright, ie 35-65% mixture range	3	
		Predominately bright, 65% exposed or scoured surfaces	4	Г
12	Consolidation	Assorted sizes tightly packed or overlapping	2	Г
	of particles	Moderately packed with some overlapping	4	Г
		Mostly loose assortment with no apparent overlap	6	Γ
		No packing evident. Loose assortment easily moved	8	Γ
13	Bottom size	No size change evident. Stable mater. 80-100%	4	Γ
	distribution	Distribution shift light. Stable material 50-80%	8	Γ
		Moderate changes in sizes. Stable materials 20-50%	12	Г
		Marked distribution change. Stable materials 0-20%	16	Г
14	Scouring and	<5% of bottom affected by scour or deposition	6	Г
	deposition	5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools	12	Г
		30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools	18	Г
		More than 50% of the bottom in a state of flux or change nearly year long	24	Г
15	Aquatic	Abundant growth moss-like, dark green perennial. In swift water too.	1	Г
	vegetation	Common. Algae forms in low velocity and pool areas. Moss here too	2	Γ
		Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick	3	Г
		Perennial types scare or absent. Yellow-green, short term bloom may be present	4	Г

Loon Lake Dam Reach Upper Site (LL-G1) Bank Erosion and Vegetation

Bank Erosion and Vegetation

Study Reach Name:	Upper Loon Lake	Crew Initials:	JDS, MCM
Date: 6/2/03	Start Time:	Stop Time:	

Bank material:

sand, silt/clay

BANK EROSION POTENTIAL								
(if banks are bedrock or composed of boulders, do not fill out this table)								
Bank a Bank b Bank c Bank d								
Bank height	12-18"	12-18"						
Bankfull height	10"	10"						
Root depth	12-18"	12-18"						
Root density (%)	80-100%	80-100%						
Bank Angle (degrees)	60-90	1020						
Surface Protection (%)	80-100%	80-100%						
% of total study reach	80%	20%						

Notes

Stratification of unstable layers

in banks (below bankfull):

Sediment supply: High Vertical streambed stability: Aggrading

Bank and channel bed conditions notes:

Spalling of bedrock and prevasive overland flow during snowmelt leads to high rate of sand production to channel. Regulation of flow likely has led to lower transport and channel aggradation.

	RIPARIAN VEGETATION						
DENSITY (indicate all that apply)							
VEGETATION TYPE	LOW	MOD.	HIGH	NOTES			
Bare							
Forbs only							
Annual Grass w/ forbes							
Perennial grass							
Rhizomatous grasses							
(bluegrass, Grass like plants,							
sedges, rushes)							
Low brush							
High brush							
Combination grass/brush			8c				
Deciduous overstory							
Deciduous w/brush/grass							
understory							
Perennial overstory			11c				
Wetland vegetation community							
VEGETATION NOTES (compositi	on, vigor, density,	and potential):					

Loon Lake Dam Reach Middle Site (LL-G2) **LWD** Frequency

LWD Frequency Data Sheet Study Reach Name: Middle Loon Lake Crew Initials: ZED, JLA, MCM Date:7/13/03 End time: 1145 Start time: 11:00 Diameter Class Length Class 3-10 ft (0.9-3.0 m) 10-25 ft (3.1-7.6 m) 25-50 ft (7.7-15.2 m) 50-75 ft (15.3-22.9 m) >75 ft (>23 m) 6-12 in (10-30 cm) 5 5 7 5 10 3 12-24 in (31-60 cm) 24-36 in (61-90 cm) >36 in (>90 cm)

"Tally as R if rootwad is attached."

Comments: There are many downed trees in the reach and large volume of LWD compared with other sites. Because of low banks, LWD and jams tend to push flows around, creating forced overflow channels. There are no pools in this reach caused by LWD with the exception of one area that is more like an aerction channel with stagnant water. Many of the forced overflow channels are well vegetated with grasses and herbaceous plants.

So many dead pine and cedar trees because they get inundated so often?

Loon Lake Dam Reach Middle Site (LL-G2) V Star

No Vstar measurements taken.

Loon Lake Dam Reach Middle Site (LL-G2) LWD Key Pieces

LWD Key Pieces Information Study Reach Name: Date:

Crew Initials: Start time:

End time:

Perform for 100 m of stream or reach length, whichever is greater. Criteria for Determining Key Pieces to be Measured (circle which used): (1) all pieces with length > 1.2 times bankfull channel width OR (2) pieces meeting criteria 1 and having diameters

constant on longitudinal profile Images Images <thimages< th=""> Images <thimages<< th=""><th>KEY PIECE ATTRIBUTE</th><th colspan="9"></th></thimages<<></thimages<>	KEY PIECE ATTRIBUTE												
ocation on longitudinal profile Image: model													
Diameter (ft) 0.6 0.7 0.7 1.4 1 0.5 1.3 0.9 1 1.5 1.3 codwad attached N </th <th>Location on longitudinal profile</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th></th> <th>8</th> <th>9</th> <th>10</th> <th>11</th> <th>12</th>	Location on longitudinal profile	1	2	3	4	5	6		8	9	10	11	12
englin (1) 27 30 25 20 30 27 35 40 50 30 35 OcATION IN BANKFUL N N N N N N N N N N N N N N Y		0.6	0.7	0.7	1.4	1	0.5	13	0.0	1	15	13	0
N Y Y Occordiant Z Z Cocordiant X				-									
COCATION IN BANKFULL Image: Construction of piece length in bankfull Image: Construction of piece length in bankfull 25% of piece length in bankfull X X X X X 25% of piece length in bankfull X X X X X X 25% of piece length in bankfull X X X X X X X 25% of piece length in bankfull X	• • •								-				N
CHANNEL AREA Image: Constraint of the constent of the constraint of the constent of the constraint							1					'	
25% of piece length in bankfull X													
bhanel Image Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
25:50% of piece length in bankfull X X X X X 50:75% of piece length in bankfull X X X X X X 25:75% of piece length in bankfull X X X X X X X 25:75% of piece length in bankfull X													
channel k </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>х</td> <td></td> <td></td> <td>x</td> <td>х</td> <td></td>								х			x	х	
50-75% of piece length in bankfull X	channel												
hannel X <td></td> <td>х</td> <td>х</td> <td></td> <td>х</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Х</td>		х	х		х								Х
75-100% of piece length in bankfull X	channel												
channel Image <				х		х	х		х	х			
DRIENTATION X <th< td=""><td>channel</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	channel												
Perpendicular X <													
angled downstream X X X X X angled downstream X X X X X X angled upstream X X X X X X X concated in bankfull channel, but not X X X X X X X X associated with put not creating sociated with but not creating sociated with LWD jam (3 or nor key pieces) X	Perpendicular	Х	Х								X	Х	Х
angled upstream X	angled downstream	l	1	l	1		İ	İ 👘		Х	l		
arallel or near parallel to channel X	angled upstream	1		1	Х		1			1	1		
EUNCTION IN CHANNEL No. No. No. No. No. No. Coated in bankfull channel, but not X X	parallel or near parallel to channel	1	1	Х	1	Х	Х	Х	Х	1		1	
ocated in bankfull channel, but not X	FUNCTION IN CHANNEL												
nfluencing channel morphology N N N and not associated with pool habitat N N N associated with, but not creating pool habitat N N N acting as complex instream cover N X X N has attached rootwad or intact pranches) N N N N N pranches) N N N N N N N pranches) N		Х	Х	Х	Х	Х	Х						Х
and not associated with pool habitat associated with pool habitat associated with, but not creating pool habitat acting as complex instream cover has attached rootwad or intact pranches). A construction of the construction of	influencing channel morphology												
associated with, but not creating pool habitat acting as complex instream cover has attached rootwad or intact reanches) acting as velocity refuge acting as sediment storage inter key pieces) biece is acting as sediment storage inter key pieces) biece as acting as sediment storage inter key pieces) biece as acting as sediment storage inter key pieces) biece as papears to be stable in X X X X													
bool habitat	· · · · · · · · · · · · · · · · · · ·												
bool habitat	associated with, but not creating									Х			
acting as complex instream cover X													
has attached rootwad or intact pranches) x x x x acting as velocity refuge x x x x x ssociated with LWD Jam (3 or more key pieces) x X X X X piece is acting as sediment storage iste x X X X X X piece appears to be stable in stream channel* X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>х</td><td>х</td><td></td></t<>											х	х	
pranches) Image: Control of the second s													
associated with LWD jam (3 or more key pieces) X X X X X X X X X X X X X X X X X X X	branches)												
associated with LWD jam (3 or more key pieces) X X X X X X X X X X X X X X X X X X X	acting as velocity refuge								х				
nore key pieces)Image of the stable in siteImage of the stable in si	associated with LWD jam (3 or									Х	Х	Х	
biece is acting as sediment storage site biece appears to be stable in X X X X X X X X X X X X X X X X X X	more key pieces)												
site									х				
stream channel* Image: Construction of the stream channel of the	site												
POOL FORMATION X X X forming dammed pool X X X X forming plunge pool X X X X forming lateral scour pool X X X X forming backwater pool X <td>piece appears to be stable in</td> <td>Х</td> <td>Х</td> <td></td> <td>Х</td> <td></td> <td></td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td>	piece appears to be stable in	Х	Х		Х			Х	Х	Х	Х	Х	Х
iorming dammed pool X	stream channel*												
iorming plunge pool iorming lateral scour pool iormin	POOL FORMATION												
iorming lateral scour pool Image: Constraint of the second se	forming dammed pool								Х				
orming backwater pool X	forming plunge pool												
pool surface area (m ²) associated 2x3 2x3 2x3 2x3 ADDITIONAL INFORMATION 0 0 0 0 0 0 ADDITIONAL INFORMATION 0 0 0 0 0 0 0 ADDITIONAL INFORMATION 0 0 0 0 0 0 0 0 0 ADDITIONAL INFORMATION 0	forming lateral scour pool												
ADDITIONAL INFORMATION OPTIONAL) Image: Construct of the second of the	forming backwater pool								Х	Х			
with piece(s) (L x W) Image: Constraint of the structure Image: Constraintone Image: Constructure	pool surface area (m ²) associated								2x3	2x3			
ADDITIONAL INFORMATION OPTIONAL) Image: Second													
OPTIONAL) Image: Constraint of the sound, limbs Image: Consound, limbs													
decay class (1 = sound, limbs 3 <t< td=""><td>(OPTIONAL)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	(OPTIONAL)												
imbs absent, surface slightly rotted; 3 = surface extensively rotted, center solid or rotted) Image: Construct on the system of th	decay class (1 = sound, limbs	3	3	3	3	3	3	3	3	3	1	1	
rotted; 3 = surface extensively rotted, center solid or rotted) UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	present; 2 = bark loose or absent,												
reted, center solid or rotted) Image: Construct of the solution	limbs absent, surface slightly												
ree species (C = conifer, D = U U U U U U U U U U U C C C U deciduous, U = unknown) U U U U U U U U U U W/M W/M U B=bank undercutting,	rotted; 3 = surface extensively												
ree species (C = conifer, D = U U U U U U U U U U U C C C U deciduous, U = unknown) U U U U U U U U U U W/M W/M U B=bank undercutting,	rotted, center solid or rotted)												
deciduous, U = unknown) U U U U U W/M W/M nput mechanism (W=windthrow, B=bank undercutting, U U U U W/M W/M U													
nput mechanism (W=windthrow, UUUUUUWM W/MU) B=bank undercutting,	tree species (C = conifer, D =	U	U	U	U	U	U	U	U	U	С	С	U
B=bank undercutting,	deciduous, U = unknown)												
	input mechanism (W=windthrow,	U	U	U	U	U	U	m?	U	U	W/M	W/M	U
	B=bank undercutting,												
J=dedris flow, L=landslide, IM=tree	D=debris flow, L=landslide, M=tree												
	mortality, U=unkn)												
Rootwad present, piece stabilized at more than one point by banks or channel obstructions, end anchored by streambed or bank buri	*Rootwad present, piece stabilized a	at more t	han one	point by	banks or	channel	obstruct	tions, end	d anchor	ed by str	eambed	or bank	burial,

Loon Lake Dam Reach Middle Site (LL-G2) Rosgen Level III

Rosgen Level III Data Sheet

Study Reach Name: Middle Loon Lake Date:7/13/03 Crew Initials: JLA, MCM, ZED Start time: 1245 End time: 1250

Depositional Features (indicate one)

	B-1	point bars		
	B-2	t. bars w/ few mid channel bars		
	B-3	many mid channel bars		
x	B-4	side bars		
	B-5	diagonal bars		
	B-6	main branching w/ many mid channel bars and islands		
	B-7	mixed side bar and mid channel bars exceeding 2-3X width		
	B-8	delta bars		

Description: very meager- one small mid-channel and one small point.

Meander Pattern (indicate one)

x	M-1	regular meander			
	M-2	tortuous meander			
	M-3	irregular meander			
	M-4	truncated meander			
	M-5	unconfined me. scrolls			
	M-6	confine me. scrolls			
	M-7	distorted me. loops			
	M-8	irregular with oxbows			

Description: almost no meander- flows go over bank and do not scour

STREAM CHANNEL DEBRIS/BLOCKAGES (indicate one)

Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime

Description/Extent						
	D-1 (None)	Minor amounts of small, floatable material				
	D-2 (Infrequent)	Debris consists of small, easily moved, floatable material; i.e. leaves,				
	D-2 (initequent)	needles, small limbs, twigs, etc				
		Increasing frequency of small to medium sized material, i.e. large limbs,				
	D-3 (Moderate)	branches, small logs that when accumulated effect 10% or less of the				
		active channel cross-sectional area.				
		Significant buildup of medium to large sized materials, i.e. large limbs,				
	D-4 (Numerous)	branches, small logs, or portions of trees that may occupy 10 to 30% of				
x		the active cross-sectional area.				
		Debris "dams" of predominantly larger materials, i.e. branches, logs,				
	D-5 (Extensive)	trees, etc., occupying 30 to 50% of the active channel cross-section,				
		often extending across the width of the active channel.				
		Large, somewhat continuous debris "dams," extensive in nature and				
	D-6 (Dominating)	occupying over 50% of the active channel cross-section. Such				
	D-0 (Dominating)	accumulations may divert water into floodprone areas and form fish				
		migration barriers, even when flows are at less than bankfull				
	D-7 (Beaver	An infrequent number of dams spaced such that normal streamflow and				
	Dams - Few)	expected channel conditions exist in the reaches between dams.				
		Frequency of dams is such that backwater conditions exist for channel				
	D-8 (Beaver	reaches between structures; where streamflow velocities are reduced				
	Dams - Frequent)	and channel dimensions or conditions are influenced.				
	D-9 (Beaver	Numerous abandoned dams, many of which have filled with sediment				
	Dams -	and/or breached, initiating a series of channel adjustments such as bank				
	Abandoned)	erosion, lateral migration, evulsion, aggradations and degradation.				
	,					
	5 (6 // 1	Structures, facilities, or materials related to land uses or development				
	D-10 (Human	located within the floodprone area, such as diversions or low-head dams,				
	Influences)	controlled by-pass channels, velocity control structures, and various				
		transportation encroachments that have				

Notes: LWD plentiful in reach withseveral debris jams

Loon Lake Dam Reach Middle Site (LL-G2) Pfankuch

Place X

Channel Stability (Pfankuch) Study Reach Name: Loon Lake Middle Crew Initials: MCM, JLA, ZED Date: 7/13/03 Start Time: 1230 Stop Time: 1245

Start Time: Stop Time:		Category	(choose one for each of the four options for each category)		Place 2 in this columr			
Jpper	1	Landform	Bank slope gradient <30%	2	X			
Banks		slope	Bank slope gradient 30-40%	4				
			Bank slope gradient 40-60%	6				
			Bank slope gradient 60+%	8				
	2	Mass wasting	No evidence of past or future mass wasting	3	х			
	1	made madning	Infrequent. Most likely healed over. Low future potential	6	^			
			Frequent or large, causing sediment nearly year long	9				
		Dahais isaa	Frequent or large causing sediment nearly year long or imminent danger of same	12	×			
	3	Debris jam	Essentially absent from immediate channel area	2	Х			
		potential	Present, but mostly small twigs and limbs	4				
			Moderate to heavy amounts, mostly larger sizes	6				
			Moderate to heavy amounts, predominately lager sizes	8				
	4	Vegetative	90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	3	Х			
		bank	70-90% density. Fewer species or less vigor suggest less dense or deep root mass	6				
		protection	<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass	9				
			<50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass	12				
0.1107	5	Channel	Ample for present plus some increases. Peak flows contained. W/D ration <7	1				
ower	5			2				
anks		capacity	Adequate. Bank overflows rare. W/D ratio 8-15					
			Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	3	Х			
			Inadequate. Overbank flows common. W/D ratio >25	4				
	6	Bank rock	65%+ with large angular boulders. 12"+ common.	2				
		content	40-65%. Mostly small boulders to cobbles 6-12"	4	Х			
			20-40%. With most in the 3-6" diameter class	6				
			20% rock fragments of gravel sizes, 1-3" or less	8				
	7	Obstructions	Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable bed	2	x			
	· · ·	to flow	Some present causing erosive cross currents and minor pool filling. Obstructions newer and less	4	^			
		to now						
			Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool	6				
			Sediment traps full, channel migration occurring	8				
	8	Cutting	Little or none. Infrequent raw banks less than 6"	4	Х			
			Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6				
			Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12				
			Almost continuous cuts, some over 24" high. Failure of overhangs frequent	16				
	9	Deposition	Little or no enlargement of channel or point bars	4	Х			
	1		Some new bar increase, mostly from coarse gravel	8	~			
			Moderate deposition of new gravel and course sand on old and some new bars	12				
	- 10		Extensive deposits of predominately fine particles. Accelerated bar development	16				
ottom	10	Rock	Sharp edges and corners. Plane surfaces rough.	1				
		angularity	Rounded corners and edges, surfaces smooth, flat	2	Х			
			Corners and edges well rounded in two dimensions	3				
			Well rounded in all dimensions, surfaces smooth	4				
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	Х			
		Ű	Mostly dull, but may have <35% bright surfaces	2				
			Mixture dull and bright, ie 35-65% mixture range	3				
			Predominately bright, 65% exposed or scoured surfaces	4	x			
	10	Osessialstice			^			
	12		Assorted sizes tightly packed or overlapping	2				
		of particles	Moderately packed with some overlapping	4				
			Mostly loose assortment with no apparent overlap	6				
			No packing evident. Loose assortment easily moved	8				
	13	Bottom size	No size change evident. Stable mater. 80-100%	4	Х			
		distribution	Distribution shift light. Stable material 50-80%	8				
			Moderate changes in sizes. Stable materials 20-50%	12				
			Marked distribution change. Stable materials 0-20%	16				
	14							
	14	Scouring and	<5% of bottom affected by scour or deposition	6	<u> </u>			
		deposition	5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools	12	Х			
			30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools	18				
			More than 50% of the bottom in a state of flux or change nearly year long	24				
	15	Aquatic	Abundant growth moss-like, dark green perennial. In swift water too.	1				
	1.	vegetation	Common. Algae forms in low velocity and pool areas. Moss here too	2				
		regetation	Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick	3	Х			

Notes:

Loon Lake Dam Reach Middle Site (LL-G2) Bank Erosion and Vegetation

Bank Erosion and Vegetation

Study Reach Name:Loon Lake - MiddleCrew Initials:ZED, MCM, JLADate:7/13/03Start Time:121:Stop Time:1230

BANK EROSION POTENTIAL							
(if banks are bedrock or composed of boulders, do not fill out this table)							
Bank a Bank b Bank c Ba							
Bank height (ft)	2	0					
Bankfull height (ft)	3	3					
Root depth (ft)	2	<1					
Root density (%)	30%	50					
Bank Angle (degrees)	80	20					
Surface Protection (%)	95%	95					
% of total study reach	75%	25					

Notes

 Bank material:
 Cobble

 Stratification of unstable layers
 N/A - banks stable and almost totally vegetated with uniform layers

 in banks (below bankfull):
 V/A - banks stable and almost totally vegetated with uniform layers

Sediment supply: Low

Vertical streambed stability: Stable

Bank and channel bed conditions notes:

Channel and bank condition are extremely uniform throughout reach. Channel is wide and unconfined; banks are poorly defined - sometimes not at all.

	RIPARIAN V	EGETATION				
DENSITY (indicate all that apply)						
VEGETATION TYPE	LOW	MOD.	HIGH	NOTES		
Bare						
Forbs only						
Annual Grass w/ forbes						
Perennial grass						
Rhizomatous grasses						
(bluegrass, Grass like plants,						
sedges, rushes)						
Low brush						
High brush						
Combination grass/brush		8b				
Deciduous overstory	9a			some aspen		
Deciduous w/brush/grass		10b		alders with grass		
understory		dui		& wildflower		
Perennial overstory				pines, cedars,		
		11b		firs - yong only (40-50 yrs)		
Wetland vegetation community			Marsh	valley floor in almost all		
VEGETATION NOTES (compositio				marsh/swampy		

VEGETATION NOTES (composition, vigor, density, and potential):

Site is entirely vegetated. Was likely marsh/swamp through entire valley floor. Conifers have stared establishing in last 40-50 years - likely from lower stream levels.

Loon Lake Dam Reach Lower Site (LL-G3) LWD Frequency

LWD Frequency Data Sheet

Loon Lake - Lower	Start time: 0924	End time: 1200	Crew Initials: MCM, ZE	ED, JLA
Length Class				
3-10 ft (0.9-3.0 m)	10-25 ft (3.1-7.6 m)	25-50 ft (7.7-15.2 m)	50-75 ft (15.3-22.9 m)	>75 ft (>23 m)
4		R	1	
1		R		
1				
	Length Class	Start time: 0924	Start time: 0924 End time: 1200 Length Class 3-10 ft (0.9-3.0 m) 10-25 ft (3.1-7.6 m) 25-50 ft (7.7-15.2 m) 4 R	Start time: 0924 End time: 1200 Length Class 3-10 ft (0.9-3.0 m) 10-25 ft (3.1-7.6 m) 25-50 ft (7.7-15.2 m) 50-75 ft (15.3-22.9 m) 4 R 1

"Tally as R if rootwad is attached."

Comments:

Loon Lake Dam Reach Lower Site (LL-G3) V Star

V* Measurements

Study Reach Name: Lower Loon Lake Date: 7/14/03

Crew Initials: ZED, MCM, JLA Start time: 1430 End time: 1435

Comments:

- 1. No Vstar measurments taken
- 2. Sand behind obstructions; deposited on banks by high flows
- 3. No sand filling pools; pools generally scarce and not filled with sand

Loon Lake Dam Reach Lower Site (LL-G3) LWD Key Pieces

LWD Key Pieces Information

Study Reach Name: Loon Lake - Lower Date: 7/14/03

Crew Initials: MCM, ZED, JLA Start time: 0924 End time: 1200

Perform for 100 m of stream or reach length, whichever is greater. Criteria for Determining Key Pieces to be Measured (circle which used): (1) all pieces with length > 1.2 times bankfull channel width OR (2) pieces meeting criteria 1 and having diameters

KEY PIECE ATTRIBUTE												
		KEY PIECE NUMBER										
	1	2	3	4	5	6	7	8	9	10	11	12
Location on longitudinal profile	/											
Diameter (in)	12											
Length (ft)	70)										
rootwad attached	No											
LOCATION IN BANKFULL												
CHANNEL AREA												
< 25% of piece length in bankfull												
channel												
25-50% of piece length in bankfull												
channel												
50-75% of piece length in bankfull												
channel												
75-100% of piece length in bankfull	Х											
channel												
ORIENTATION												
Perpendicular												
angled downstream	Х											
angled upstream												
parallel or near parallel to channel												
FUNCTION IN CHANNEL												
located in bankfull channel, but not												
influencing channel morphology												
and not associated with pool habitat	:											
associated with, but not creating												
pool habitat												
acting as complex instream cover												
(has attached rootwad or intact												
branches)												
acting as velocity refuge	Х											
associated with LWD jam (3 or												
more key pieces)												
piece is acting as sediment storage												
site												
piece appears to be stable in												
stream channel*												
POOL FORMATION												
forming dammed pool												
forming plunge pool	Х											
forming lateral scour pool												
forming backwater pool												
pool surface area (ft ²) associated	50)										
with piece(s) $(L \times W)$												
ADDITIONAL INFORMATION												
(OPTIONAL)												
decay class (1 = sound, limbs		3										
present; 2 = bark loose or absent,												
limbs absent, surface slightly												
rotted; 3 = surface extensively			1									
rotted, center solid or rotted)												
······································			1									
tree species (C = conifer, D =	С	1	1	1			1					
deciduous, U = unknown)	Ē		1	1								
input mechanism (W=windthrow,			1									
B=bank undercutting,			1	1								
D=debris flow, L=landslide, M=tree	U		1	1								
mortality, U=unkn)	Ē		1	1								
*Rootwad present, piece stabilized a	t more	than one	point by	banks or	channel	obstruct	tions en	anchor	ed by str	eambed	or bank l	ourial

"Rootwad present, piece stabilized at more than one point by banks or channel obstructions, end anchored by streambed or bank burial, pegged by standing trees, spanning

Loon Lake Dam Reach Lower Site (LL-G3) **Rosgen Level III**

Rosgen Level III Data Sheet

Study Reach Name: Lower Loon Lake Date: 7/14/03 Crew Initials: ZED, MCM, JLA Start time: 1415

End time: 1420

Depositional Features (indicate one)

x	B-1	point bars
	B-2	pt. bars w/ few mid channel bars
	B-3	many mid channel bars
	B-4	side bars
	B-5	diagonal bars
	B-6	main branching w/ many mid channel bars and islands
	B-7	mixed side bar and mid channel bars exceeding 2-3X width
	B-8	delta bars

Description:

Meander Pattern (indicate one)

	in (inaloato ono)	
x	M-1	regular meander
	M-2	tortuous meander
	M-3	irregular meander
	M-4	truncated meander
	M-5	unconfined me. scrolls
	M-6	confine me. scrolls
	M-7	distorted me. loops
	M-8	irregular with oxbows

Description:

STREAM CHANNEL DEBRIS/BLOCKAGES (indicate one)

Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime

	nt					
	D-1 (None)	Minor amounts of small, floatable material				
	D-2 (Infrequent)	Debris consists of small, easily moved, floatable material; i.e. leaves,				
x	D-2 (initequent)	needles, small limbs, twigs, etc				
		Increasing frequency of small to medium sized material, i.e. large limbs,				
	D-3 (Moderate)	branches, small logs that when accumulated effect 10% or less of the				
		active channel cross-sectional area.				
		Significant buildup of medium to large sized materials, i.e. large limbs,				
	D-4 (Numerous)	branches, small logs, or portions of trees that may occupy 10 to 30% of				
		the active cross-sectional area.				
		Debris "dams" of predominantly larger materials, i.e. branches, logs,				
	D-5 (Extensive)	trees, etc., occupying 30 to 50% of the active channel cross-section,				
		often extending across the width of the active channel.				
		Large, somewhat continuous debris "dams," extensive in nature and				
	D-6 (Dominating)	occupying over 50% of the active channel cross-section. Such				
	D-0 (Dominating)	accumulations may divert water into floodprone areas and form fish				
		migration barriers, even when flows are at less than bankfull				
	D-7 (Beaver	An infrequent number of dams spaced such that normal streamflow and				
	Dams - Few)	expected channel conditions exist in the reaches between dams.				
		Frequency of dams is such that backwater conditions exist for channel				
	D-8 (Beaver	reaches between structures; where streamflow velocities are reduced				
	Dams - Frequent)	and channel dimensions or conditions are influenced.				
	D-9 (Beaver	Numerous abandoned dams, many of which have filled with sediment				
	Dams -	and/or breached, initiating a series of channel adjustments such as bank				
	Abandoned)	erosion, lateral migration, evulsion, aggradations and degradation.				
		Other structures facilities on materials related to land uses an development				
	D 10 (Human	Structures, facilities, or materials related to land uses or development				
	D-10 (Human	located within the floodprone area, such as diversions or low-head dams,				
	Influences)	controlled by-pass channels, velocity control structures, and various				
		transportation encroachments that have				

Notes: 3-4 LWD near XS 1

Loon Lake Dam Reach Lower Site (LL-G3) Pfankuch

Place X

Channel Stability (Pfankuch)

Study Reach Name: Loon Lake - Lower Crew Initials: ZED, MCM, JLA Date: 7/14/03 Start Time: 1420 Stop Time: 1430

Stop Time:	1430	Category	(choose one for each of the four options for each category)		in this column:
Upper	1	Landform	Bank slope gradient <30%	2	
Banks		slope	Bank slope gradient 30-40%	4	Х
			Bank slope gradient 40-60%	6	
			Bank slope gradient 60+%	8	
	2	Mass wasting	No evidence of past or future mass wasting	3	х
	-	made madning	Infrequent. Most likely healed over. Low future potential	6	~
			Frequent or large, causing sediment nearly year long	9	
			Frequent or large causing sediment nearly year long or imminent danger of same	12	
	2	Debrie iem			
	3	Debris jam	Essentially absent from immediate channel area	2	
		potential	Present, but mostly small twigs and limbs		
			Moderate to heavy amounts, mostly larger sizes	6	Х
			Moderate to heavy amounts, predominately lager sizes	8	
	4	Vegetative	90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	3	
		bank	70-90% density. Fewer species or less vigor suggest less dense or deep root mass	6	
		protection	<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass	9	Х
			<50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass	12	
Lower	5	Channel	Ample for present plus some increases. Peak flows contained. W/D ration <7	1	Х
Banks		capacity	Adequate. Bank overflows rare. W/D ratio 8-15	2	
			Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	3	
			Inadequate. Overbank flows common. W/D ratio >25	4	
	6	Bank rock	65%+ with large angular boulders. 12"+ common.	2	
	0	content	40-65%. Mostly small boulders to cobbles 6-12"	4	х
		content	20-40%. With most in the 3-6" diameter class	6	^
	_	a	20% rock fragments of gravel sizes, 1-3" or less	8	
	7	Obstructions	Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable bed	2	
		to flow	Some present causing erosive cross currents and minor pool filling. Obstructions newer and less	4	X
			Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool	6	
			Sediment traps full, channel migration occurring	8	
	8	Cutting	Little or none. Infrequent raw banks less than 6"	4	
		-	Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6	Х
			Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12	
			Almost continuous cuts, some over 24" high. Failure of overhangs frequent	16	
	9	Deposition	Little or no enlargement of channel or point bars	4	
	Ŭ	Dopoolaion	Some new bar increase, mostly from coarse gravel	8	Х
			Moderate deposition of new gravel and course sand on old and some new bars	12	~
			Extensive deposition of hew graver and course sand on oid and some new bars	16	
Dettern	10	Rock		-	
Bottom	10		Sharp edges and corners. Plane surfaces rough.	1	
		angularity	Rounded corners and edges, surfaces smooth, flat		
			Corners and edges well rounded in two dimensions	3	X
			Well rounded in all dimensions, surfaces smooth	4	
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	
			Mostly dull, but may have <35% bright surfaces	2	
			Mixture dull and bright, ie 35-65% mixture range	3	Х
			Predominately bright, 65% exposed or scoured surfaces	4	
	12	Consolidation	Assorted sizes tightly packed or overlapping	2	
		of particles	Moderately packed with some overlapping	4	Х
			Mostly loose assortment with no apparent overlap	6	
			No packing evident. Loose assortment easily moved	8	
	13	Bottom size	No size change evident. Stable mater. 80-100%	4	
		distribution	Distribution shift light. Stable material 50-80%	8	
			Moderate changes in sizes. Stable materials 20-50%	12	х
			Marked distribution change. Stable materials 0-20%	12	^
		Casurius		-	
	14	Scouring and	<5% of bottom affected by scour or deposition	6	
		deposition	5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools	12	
			30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools	18	Х
			More than 50% of the bottom in a state of flux or change nearly year long	24	
	15	Aquatic	Abundant growth moss-like, dark green perennial. In swift water too.	1	
		vegetation	Common. Algae forms in low velocity and pool areas. Moss here too	2	
			Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick	3	
			Perennial types scare or absent. Yellow-green, short term bloom may be present	4	Х

Notes:

Loon Lake Dam Reach Lower Site (LL-G3) Bank Erosion and Vegetation

Bank Erosion and Vegetation

Study Reach Name: Loon Lake - Lower Date: 7/14/03 Start

Lower Crew Initials: ZED, MCM, JLA Start Time: 1400 Stop Time: 1415

BANK EROSION POTENTIAL								
(if banks are bedrock or composed of boulders, do not fill out this table)								
Bank a Bank b Bank c Bank d								
Bank height (ft)	4	2						
Bankfull height (ft)	3	3.5						
Root depth (ft)	2	1						
Root density (%)	30%	30%						
Bank Angle (degrees)	35	20						
Surface Protection (%)	50%	70%						
% of total study reach	25%	75%						

Notes

Bank material:	Cobble
Stratification of unstable layers	Bottom of bank
in banks (below bankfull):	

Sediment supply:ModerateVertical streambed stability:StableBank and channel bed conditions notes:

About 50% of reach river-left bank is cobble bar; river-right bank is low elevation pine forest with some high flow channels; evidence of high flow (debris jams present along river-right bank)

RIPARIAN VEGETATION						
	DENSITY (indicat	e all that apply)				
VEGETATION TYPE	LOW	MOD.	HIGH	NOTES		
Bare	1			cobble bar on river-left bank		
Forbs only						
Annual Grass w/ forbes						
Perennial grass						
Rhizomatous grasses						
(bluegrass, Grass like plants,						
sedges, rushes)						
Low brush	6a			whitethorn/willow		
High brush		7b		alder/willow		
Combination grass/brush						
Deciduous overstory						
Deciduous w/brush/grass understory						
Perennial overstory		11b		pines/cedars/firs		
Wetland vegetation community						
VEGETATION NOTES (compositi	ion, vigor, density	, and potential):	1			

Gerle Creek Dam Reach Site (GC-G1) LWD Frequency

LWD Frequency Data Sheet Study Reach Name: Gerle Creek Date: 5/21/03

Start time: 1250; End time: ---

Crew Initials: JDS, TNC

Diameter Class	Length Class				
	3-10 ft (0.9-3.0 m)	10-25 ft (3.1-7.6 m)	25-50 ft (7.7-15.2 m)	50-75 ft (15.3-22.9 m)	>75 ft (>23 m)
6-12 in (10-30 cm)	4	R1	0	0	0
12-24 in (31-60 cm)	3	3	0	0	0
24-36 in (61-90 cm)	0	0	0	0	0
>36 in (>90 cm)	0	0	0	0	0

"Tally as R if rootwad is attached."

Comments: No key pieces (no datasheet filled out for key pieces).

Gerle Creek Dam Reach Site (GC-G1) V Star

No Vstar measurements taken.

Gerle Creek Dam Reach Site (GC-G1) Rosgen Level III

Rosgen Level III Data Sheet Study Reach Name: Gerle Creek Date: 5/20/03 Crew Initials: JDS, TNC Start time: 1338; End time: 1340

Depositional Features (indicate one)

[none circled]	B-1	point bars
	B-2	pt. bars w/ few mid channel bars
	B-3	many mid channel bars
	B-4	side bars
	B-5	diagonal bars
	B-6	main branching w/ many mid channel bars and islands
	B-7	mixed side bar and mid channel bars exceeding 2-3X width
	B-8	delta bars
D :		

Description: Boulder bedrock, no bars; little to no mobile sediment

Meander Pattern (indicate one)

[none circled]	M-1	regular meander				
	M-2	tortuous meander				
	M-3	irregular meander				
	M-4	truncated meander				
	M-5	unconfined me. scrolls				
	M-6	confine me. scrolls				
	M-7	distorted me. loops				
	M-8	irregular with oxbows				

Description: Boulder bedrock channel. No meander pattern - straight.

STREAM CHANNEL DEBRIS/BLOCKAGES (indicate one)

Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime

Description/Extent				
Х	D-1 (None)	Minor amounts of small, floatable material		
	D-2 (Infrequent)	Debris consists of small, easily moved, floatable material; i.e. leaves,		
	D-2 (initequent)	needles, small limbs, twigs, etc		
		Increasing frequency of small to medium sized material, i.e. large limbs,		
	D-3 (Moderate)	branches, small logs that when accumulated effect 10% or less of the		
		active channel cross-sectional area.		
		Significant buildup of medium to large sized materials, i.e. large limbs,		
	D-4 (Numerous)	branches, small logs, or portions of trees that may occupy 10 to 30% of		
		the active cross-sectional area.		
		Debris "dams" of predominantly larger materials, i.e. branches, logs,		
	D-5 (Extensive)	trees, etc., occupying 30 to 50% of the active channel cross-section,		
		often extending across the width of the active channel.		
	D-6 (Dominating)	Large, somewhat continuous debris "dams," extensive in nature and		
		occupying over 50% of the active channel cross-section. Such		
	2 0 (20111100119)	accumulations may divert water into floodprone areas and form fish		
		migration barriers, even when flows are at less than bankfull.		
	D-7 (Beaver	An infrequent number of dams spaced such that normal streamflow and		
	Dams - Few)	expected channel conditions exist in the reaches between dams.		
	D-8 (Beaver	Frequency of dams is such that backwater conditions exist for channel		
	Dams - Frequent)	reaches between structures; where streamflow velocities are reduced		
	Dams - Hequent)	and channel dimensions or conditions are influenced.		
	D-9 (Beaver	Numerous abandoned dams, many of which have filled with sediment		
	Dams -	and/or breached, initiating a series of channel adjustments such as bank		
	Abandoned)	erosion, lateral migration, evulsion, aggradations and degradation.		
		Structures, facilities, or materials related to land uses or development		
	D-10 (Human	located within the floodprone area, such as diversions or low-head dams,		
	Influences)	controlled by-pass channels, velocity control structures, and various		
	minuences)	transportation encroachments that have influence on the existing flow		
		regime, such that significant channel adjustments occur.		

Notes:

Pool tailout/riffle crest from station 515 to 625 on long profile. Comprised of cobble/gravel. Occupied by riparian scrub.

This section is the only pushable alluvial deposit in the study reach (remaining portions of reach are all boulder/ bedrock).

Thalweg through pool tailout/riffle crest impinges on LB. High flow channel/oxbow with ponded water on RB at the pool tailout/riffle crest.

From station 640 on (along long profile) channel is confined by a bedrock wall (RB) and narrows. Bed of channel from 640 on is all exposed bedrock.

LB from 640 on (long profile) is low gradient hillslope of soil material over boulders - stable, no signs of bank erosion.

Gerle Creek Dam Reach Site (GC-G1) Pfankuch

Channel Stability (Pfankuch)

Study Reach Name: Crew Initials: Date: Start Time: Stan Time: Gerle Creek JDS, TNC 5/20/2003

Start Time: Stop Time:		Category	(choose one for each of the four options for each category)		Place X in this column:
Upper	1	Landform	Bank slope gradient <30%	2	x
Banks		slope	Bank slope gradient 30-40%	4	
		-	Bank slope gradient 40-60%	6	
			Bank slope gradient 60+%	8	
	2	Mass wasting		3	х
		Ū	Infrequent. Most likely healed over. Low future potential	6	
			Frequent or large, causing sediment nearly year long	9	
			Frequent or large causing sediment nearly year long or imminent danger of same	12	
	3	Debris jam	Essentially absent from immediate channel area	2	x
		potential	Present, but mostly small twigs and limbs	4	
			Moderate to heavy amounts, mostly larger sizes	6	
			Moderate to heavy amounts, predominately lager sizes	8	
	4	Vegetative	90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	3	x
	1	bank	70-90% density. Fewer species or less vigor suggest less dense or deep root mass	6	^
		protection	<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass	9	
		protocilon	<50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass	12	
Lower	5	Channel	Ample for present plus some increases. Peak flows contained. W/D ration <7	1	v
	5	capacity		2	x
Banks		capacity	Adequate. Bank overflows rare. W/D ratio 8-15	2	
			Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	-	
		Dealersel	Inadequate. Overbank flows common. W/D ratio >25	4	
	6	Bank rock	65%+ with large angular boulders. 12"+ common.	2	
		content	40-65%. Mostly small boulders to cobbles 6-12"	4	x
			20-40%. With most in the 3-6" diameter class	6	
			20% rock fragments of gravel sizes, 1-3" or less	8	
	7	Obstructions	Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable bed	2	X
		to flow	Some present causing erosive cross currents and minor pool filling. Obstructions newer and less	4	
			Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool	6	
			Sediment traps full, channel migration occurring	8	
	8	Cutting	Little or none. Infrequent raw banks less than 6"	4	x
			Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6	
			Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12	
			Almost continuous cuts, some over 24" high. Failure of overhangs frequent	16	
	9	Deposition	Little or no enlargement of channel or point bars	4	х
			Some new bar increase, mostly from coarse gravel	8	
			Moderate deposition of new gravel and course sand on old and some new bars	12	
			Extensive deposits of predominately fine particles. Accelerated bar development	16	
Bottom	10	Rock	Sharp edges and corners. Plane surfaces rough.	1	х
		angularity	Rounded corners and edges, surfaces smooth, flat	2	
			Corners and edges well rounded in two dimensions	3	
			Well rounded in all dimensions, surfaces smooth	4	
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	х
		5	Mostly dull, but may have <35% bright surfaces	2	
			Mixture dull and bright, ie 35-65% mixture range	3	
			Predominately bright, 65% exposed or scoured surfaces	4	
	12	Consolidation	Assorted sizes tightly packed or overlapping	2	x
		of particles	Moderately packed with some overlapping	4	~
			Mostly loose assortment with no apparent overlap	6	
			No packing evident. Loose assortment easily moved	8	
	13	Bottom size	No size change evident. Stable mater. 80-100%	4	x
	1.0	distribution	Distribution shift light. Stable material 50-80%	8	^
		alouibation	Moderate changes in sizes. Stable materials 20-50%	12	
			Marked distribution change. Stable materials 0-20%	12	
	1/	Scouring and	<5% of bottom affected by scour or deposition	6	
	1 ¹⁴	deposition	5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools	12	
		deposition	· · · · · ·		x
			30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools	18	
	-		More than 50% of the bottom in a state of flux or change nearly year long	24	
	15	Aquatic	Abundant growth moss-like, dark green perennial. In swift water too.	1	x
		vegetation	Common. Algae forms in low velocity and pool areas. Moss here too	2	
			Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick	3	
1			Perennial types scare or absent. Yellow-green, short term bloom may be present	4	

Notes:

Applies only to pool margins. Remaining portion of reach are boulder or bedrock (sheet does not apply to rest of reach)

Gerle Creek Dam Reach Site (GC-G1) Bank Erosion and Vegetation

Bank Erosion and Vegetation

Study Reach Name: Date: 5/20/03 Gerle Creek Crew Initials: JDS, TNC Start Time: 1748 Stop Time: ---

BANK EROSION POTENTIAL									
(if banks are bedrock or composed of boulders, do not fill out this table)									
	Bank a Bank b Bank c Bank d								
Bank height	3 ft								
Bankfull height	1.5 ft								
Root depth	2.0+ ft								
Root density (%)	30%								
Bank Angle (degrees)	20-40 %								
Surface Protection (%)	100%								
% of total study reach	35%								
Notes	This only applies	to margin of big p	ool.						

Bank material:
Stratification of unstable layers
in banks (below bankfull):

Bedrock - boulders Banks un-stratified

Sediment supply: low Vertical streambed stability: stable

Bank and channel bed conditions notes:

See back of Rosgen Level III datasheet for notes. Little or no fine sediment stored in reach, except in deposit parts of the big pool.

RIPARIAN VEGETATION							
DENSITY (indicate all that apply)							
VEGETATION TYPE	LOW	MOD.	HIGH	NOTES			
Bare							
Forbs only							
Annual Grass w/ forbes		3b					
Perennial grass							
Rhizomatous grasses							
(bluegrass, Grass like plants,							
sedges, rushes)							
Low brush	6a			??? Below chest.			
High brush			7c				
Combination grass/brush		8b					
Deciduous overstory				none			
Deciduous w/brush/grass		10b					
understory		100					
Perennial overstory		11b					
Wetland vegetation community				doesn't apply.			

VEGETATION NOTES (composition, vigor, density, and potential): This only applies to margin and tailout of pool. Little to no veg. In other parts of reach.

Robbs Peak Dam Reach Site (RPD-G1) **LWD** Frequency

LWD Frequency I Study Reach Name: Date:		Start time:	18:46	Crew Initials: End time:	CAB, TNC, MCM
Diameter Class	Length Class 3-10 ft (0.9-3.0 m)	10-25 ft (3.1-7.6 m)	25-50 ft (7.7-15.2 m)	50-75 ft (15.3-22.9 m)	>75 ft (>23 m)
6-12 in (10-30 cm) 12-24 in (31-60 cm) 24-36 in (61-90 cm) >36 in (>90 cm)	1	1			

"Tally as R if rootwad is attached."

Comments:

Almost no LWD in BF channel. There is lots of wood rafted during extreme events (>5-1R Good [?]) that provide little or no habitat. Approximately 5 LWD jams were observed in the low water channel between the dam and the upstream end of the site, most key pieces were locally derived, w/ some smaller logs floated in. No key pieces. CAB

QA Check:

Robbs Peak Dam Reach Site (RPD-G1) V Star

V star Measurements Study Reach Name: Robbs Peak Date: 5/19/03

Crew Initials: CAB, TNC, MCM Start time: ----; End time: ----

Comments:

No V* measurements taken. No well defined residual pools, no discrete sand deposits.

Robbs Peak Dam Reach Site (RPD-G1) Rosgen Level III

Rosgen Level III Data Sheet

Study Reach Name:		Robbs Peak
Date:		5/19/2003
Crew Initials:		CAB, TNC, MCM
Start time:	18:46	End time: 18:48

Depositional Features (indicate one)

	B-1	point bars
	B-2	pt. bars w/ few mid channel bars
x	B-3	many mid channel bars
	B-4	side bars
	B-5	diagonal bars
	B-6	main branching w/ many mid channel bars and islands
	B-7	mixed side bar and mid channel bars exceeding 2-3X width
	B-8	delta bars
Description:	mid channel hare	with willow

Description: mid-channel bars with willow

Meander Pattern (indicate one)

	M-1	regular meander
	M-2	tortuous meander
х	M-3	irregular meander
	M-4	truncated meander
	M-5	unconfined me. scrolls
	M-6	confine me. scrolls
	M-7	distorted me. loops
	M-8	irregular with oxbows
De e eninsti e re c	20	of usial abayment bayer and abayed and also abayered.

Description: it's a big mess of mid channel bars and abondoned side channels

STREAM CHANNEL DEBRIS/BLOCKAGES (indicate one)

Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime

Description/Extent

			1
x	D-1 (None)	Minor amounts of small, floatable material	in low-water/bankful channel
	D-2 (Infrequent)	Debris consists of small, easily moved, floatable material; i.e. leaves,	
		needles, small limbs, twigs, etc	
		Increasing frequency of small to medium sized material, i.e. large limbs,	
	D-3 (Moderate)	branches, small logs that when accumulated effect 10% or less of the	
	· · · ·	active channel cross-sectional area.	
		Significant buildup of medium to large sized materials, i.e. large limbs,	
	D-4 (Numerous)	branches, small logs, or portions of trees that may occupy 10 to 30% of	
x	B (Runorodo)	the active cross-sectional area.	in active channel
^		Debris "dams" of predominantly larger materials, i.e. branches, logs,	
	$D = (\Gamma_{i} t_{i} t_{i} t_{i})$		
	D-5 (Extensive)		
		5	
	D-6 (Dominating)	D-5 (Extensive) trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. D-6 (Dominating) Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull D-7 (Beaver Dams - Few) An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. Erequency of dams is such that backwater conditions exist for channel.	
	2 0 (201111atilig)		
		migration barriers, even when flows are at less than bankfull	
	D-7 (Beaver	An infrequent number of dams spaced such that normal streamflow and	
	Dams - Few)	expected channel conditions exist in the reaches between dams.	
	,	Frequency of dams is such that backwater conditions exist for channel	
	D-8 (Beaver	reaches between structures: where streamflow velocities are reduced	
	Dams - Frequent)	and channel dimensions or conditions are influenced.	
	D-9 (Beaver		
	``	Numerous abandoned dams, many of which have filled with sediment	
	Dams -	and/or breached, initiating a series of channel adjustments such as bank	
	Abandoned)	erosion, lateral migration, evulsion, aggradations and degradation.	
		Structures, facilities, or materials related to land uses or development	
	D-10 (Human	located within the floodprone area, such as diversions or low-head dams,	
	Influences)		
	minuences)	controlled by-pass channels, velocity control structures, and various	
		transportation encroachments that have	

Robbs Peak Dam Reach Site (RPD-G1) Pfankuch

Study Reach			Robbs Peak		
Crew Initials:			CAB		
Date:			5/19/2003		
Start Time:			17:15		Place X
Stop Time:					in this
					column:
Upper	1				x
Banks		slope			
				ir 2 1 4 6 8 1 6 9 12 1 2 4 6 9 12 1 6 9 12 1 6 9 12 1 2 1 3 1 6 1 2 1 4 1 2 1 4 1 6 1 7 1 12 1 4 1 6 12 16 1 2 1 3 1 2 3 4 1 2 3 4 1 2 3 4 1 2 1 6 1	
	2	Mass wasting			
					x
	3				х
		potential			
			Moderate to heavy amounts, mostly larger sizes	in thit radient <30%	
			Moderate to heavy amounts, predominately lager sizes	8	
	4	Vegetative	90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	in 2 4 6 8 3 6 9 12 2 4 6 9 12 2 4 6 9 12 2 1 6 9 5 12 3 6 9 1 2 1 3 6 9 1 2 3 4 2 3 4 2 1 2 3 4 6 8 2 3 16 12 16 12 16 12 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2	
		bank	70-90% density. Fewer species or less vigor suggest less dense or deep root mass		х
		protection	<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass	9	
			<50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass	12	
Lower	5	Channel	Ample for present plus some increases. Peak flows contained. W/D ration <7	1	
Banks		capacity		in the column 2 × 4 6 8 3 6 × 9 12 2 × 4 6 2 × 4 6 8 3 4 6 8 3 6 × 9 12 1 × 2 × 4 6 2 × 4 × 6 × 8 × 6 × 8 × 16 × 12 × 3 × 4 × 16 × 12 × 3 × 4 × 1 × 3 × 4 × 2 × 3 × 4 ×	x
		CAB 519/2003 17:15 Interview of the four options for each category) Interview of the four options for each category) Interview of the four options for each category) column Landform Bank slope gradient 30% 2 X Column Colum Column Column <td></td>			
	6	Bank rock			
	Ŭ				
		oomon			v
					^
	7	Obstructions			
	· '				
		10 11000			X
	_	o			
	8	Cutting			
					X
	9	Deposition	v		X
			Extensive deposits of predominately fine particles. Accelerated bar development	-	
Bottom	10				
		angularity			х
				3	
			Well rounded in all dimensions, surfaces smooth	2 4 6 3 3 6 9 12 2 4 6 2 4 1 6 7 9 12 4 1 6 7 9 12 4 1 6 7 11 1 2 1 1 1 2 1 3 1 6 8 2 1 1 1 2 1 4 1 6 8 12 1 16 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3	
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	
			Mostly dull, but may have <35% bright surfaces	2	х
			Mixture dull and bright, ie 35-65% mixture range	3	
			Predominately bright, 65% exposed or scoured surfaces	4	
	12	Consolidation	Assorted sizes tightly packed or overlapping	2	
		of particles	Moderately packed with some overlapping	4	
			Mostly loose assortment with no apparent overlap	6	X
			No packing evident. Loose assortment easily moved	8	
	13	Bottom size	No size change evident. Stable mater. 80-100%	4	
		distribution	Distribution shift light. Stable material 50-80%	8	x
			Moderate changes in sizes. Stable materials 20-50%		
	1				
	14	Scouring and			x
	1.	0			Ê
	1				
	1				
	15	Aquatic			
	15			y year long or imminent danger of same 12 iel area 2 x s 4 4 or sizes 6 4 agest a deep, dense soil binding root mass 8 3 gor suggest less dense or deep root mass 9 5 por indicate poor, discontinuous and shallow root mass 9 5 Peak flows contained. W/D ration <7	X
	1	vegetation			
	1				ļ

Notes:

Channel Stability (Pfankuch)

The brightness is B.S. (bright where we walked). Rocks are bright but totally covered in algae. The size distribution doesn't work either. Bed poorly sorted. These categories do not apply here.

Robbs Peak Dam Reach Site (RPD-G1) Bank Erosion and Vegetation

Bank Erosion and Vegetation

Study Reach Name: Date: 5/19/2003 Robbs PeakCrew Initials:Start Time: 18:57Stop Time:

CAB, TNC, MCM 19:07

Bank material:

Gravel with high sand

	BANK EROSIO	N POTENTIAL						
(if banks are bedrock or compose	ed of boulders, do not	fill out this table)						
Bank a Bank b Bank c Bank d								
Bank height	2'	3'	BO	1'				
Bankfull height	1.5'	1.5'	BO	1'				
Root depth	2'	3'	BO	1'				
Root density (%)	70%	75	BO	75				
Bank Angle (degrees)	vertical	vertical	BO	20				
Surface Protection (%)	none	none	BO	20				
% of total study reach	20%	30	20	30				
Natao								

Notes

Stratification of unstable layers top of bank; there is no stratification **in banks (below bankfull):**

Sediment supply:moderateVertical streambed stability:stable

Bank and channel bed conditions notes:

sediment supply is moderate, but high flows capable of tranporting gravel. Banks eroding because of veg encroachment. The river avulses between side channels during high flow.

	RIPARIAN VE	GETATION		
	DENSITY (indicate	e all that apply)		
VEGETATION TYPE	LOW	MOD.	HIGH	NOTES
Bare		1		high unvegetated bar
Forbs only				
Annual Grass w/ forbes				
Perennial grass				
Rhizomatous grasses				
(bluegrass, Grass like plants,				
sedges, rushes)				
Low brush				
High brush				
Combination grass/brush			8c	willows
Deciduous overstory				
Deciduous w/brush/grass				
understory				
Perennial overstory		11b		lots of small pines
Wetland vegetation community				

VEGETATION NOTES (composition, vigor, density, and potential): Very dense willows

Ice House Dam Reach Upper Site (IH-G1) **LWD Frequency**

LWD Frequency Data Sheet

Study Reach Name: Upper Ice House Date:

5/15/2003

Start time:

Crew Initials: End time:

JDS, RAP

	Length Class				
Diameter Class	3-10 ft (0.9-3.0 m)	10-25 ft (3.1-7.6 m)	25-50 ft (7.7-15.2 m)	50-75 ft (15.3-22.9 m)	>75 ft (>23 m)
6-12 in (10-30 cm)	2	1	1		
12-24 in (31-60 cm)	3	4		2	
24-36 in (61-90 cm)					
>36 in (>90 cm)					

"Tally as R if rootwad is attached."

Comments:

All of the wood is stored in the channel downstream of XS2 where channel is steeper and narrower.

Ice House Dam Reach Upper Site (IH-G1) V Star

V* Measurements

Study Reach Name: Upper Ice House Date: 5/15/2003 Start time: Crew Initials: JDS, RAP End time:

Comments:

No V* measurements taken.

- 1. Reach is predominantly gravel/sand facies.
- 2. Little or no evidence of material finer than sand except on floodplain/low bench surfaces.
- 3. Only one "pool" at upstream end of reach, and it's too deep and doesn't have evidence of fine sediment deposits.
- 4. No other well-defined pools.

Ice House Dam Reach Upper Site (IH-G1) LWD Key Pieces

LWD Key Pieces Information

 Study Reach Name:
 Upper Ice House Crew Initials:
 JDS, RAP

 Date: 5/15/2003
 Start time:
 End time:

Perform for 100 m of stream or reach length, whichever is greater. **Criteria for Determining Key Pieces to be Measured** (circle which used): (1) all pieces with length > 1.2 times bankfull channel width OR (2) pieces meeting criteria 1 and having diameters

KEY PIECE ATTRIBUTE	KEY PIECE NUMBER								_			
	1	2	3	4	5	6	7	8	9	10	11	12
Location on longitudinal profile												
Diameter (inches)	1224	1224	1224									
Length (ft)	75	5 75	>25									
rootwad attached	Y	v	n									
LOCATION IN BANKFULL		ľ										
CHANNEL AREA												
< 25% of piece length in bankfull												
channel												
25-50% of piece length in bankfull												
channel												
50-75% of piece length in bankfull			Y									
channel												
75-100% of piece length in bankfull	Y	Y										
channel	-	1 ⁻										
ORIENTATION												
Perpendicular	Y	Y										
angled downstream	ŀ –	<u> </u>								 		
angled upstream	—	1	Y									
parallel or near parallel to channel			ľ	1								
FUNCTION IN CHANNEL												
located in bankfull channel, but not	Y	Y	Y									
influencing channel morphology and		l.	'									
not associated with pool habitat												
1												
associated with, but not creating												
pool habitat												
acting as complex instream cover	Y	Y										
(has attached rootwad or intact												
branches)		1										
acting as velocity refuge	Y	Y										
associated with LWD jam (3 or												
more key pieces)												
piece is acting as sediment storage			Y									
site												
piece appears to be stable in	Y	Y	Y									
stream channel*												
POOL FORMATION												
forming dammed pool												
forming plunge pool												
forming lateral scour pool	<u> </u>	<u> </u>	L	ļ						L		L
forming backwater pool	Y	Y										
pool surface area (m ²) associated	15	5 15										
with piece(s) (L x W)												
ADDITIONAL INFORMATION												
(OPTIONAL)												
decay class (1 = sound, limbs		1	2									
present; 2 = bark loose or absent,												
limbs absent, surface slightly rotted;												
3 = surface extensively rotted,												
center solid or rotted)												
tree species (C = conifer, D =	С	С	U									Γ
deciduous, U = unknown)												
input mechanism (W=windthrow,	U	U	U									
B=bank undercutting,												
D=debris flow, L=landslide, M=tree		1	1	1								
mortality, U=unkn)												
*Rootwad present, piece stabilized a	t more f	han one	point by I	banks or	channel	obstructi	ons, end	anchore	d by stre	ambed of	or bank h	urial.
begged by standing trees, spanning		00					, 0.10					 .,

Ice House Dam Reach Upper Site (IH-G1) Rosgen Level III

	ame:	Upper Ice House	
Date:		5/15/2003	
rew Initials:		JDS/RAP	
start time:		End time:	
epositional F	eatures (indicate or		-
X	B-1	point bars	_
	B-2	pt. bars w/ few mid channel bars	
	B-3	many mid channel bars	
X	B-4	side bars	lateral
	B-5	diagonal bars	-
	B-6	main branching w/ many mid channel bars and islands	_
	B-7	mixed side bar and mid channel bars exceeding 2-3X width	
	B-8	delta bars	
		common. Reach comprised of two point bar sequences.	
	n (indicate one)		-
X	M-1	regular meander	
	M-2	tortuous meander	
	M-3	irregular meander	4
	M-4	truncated meander	4
	M-5	unconfined me. scrolls	4
	M-6	confine me. scrolls	4
	M-7	distorted me. loops	4
	M-8	irregular with oxbows	1
Description:		urfaces approx. 3-5m above bankfull (see upper XS). Terraces retain oxb	ox characteristic
		OCKAGES (indicate one)	
laterials, which		to the active channel or floodprone area may cause and adjustment in	
	Description/Exter		-
	D-1 (None)	Minor amounts of small, floatable material	
	D-2 (Infrequent)	Debris consists of small, easily moved, floatable material; i.e. leaves,	
		needles, small limbs, twigs, etc	
		Increasing frequency of small to medium sized material, i.e. large limbs,	
	D-3 (Moderate)	branches, small logs that when accumulated effect 10% or less of the	
х		active channel cross-sectional area.	
		Significant buildup of medium to large sized materials, i.e. large limbs,	
	D-4 (Numerous)	branches, small logs, or portions of trees that may occupy 10 to 30% of	
		the active cross-sectional area.	4
		Debris "dams" of predominantly larger materials, i.e. branches, logs,	
	D-5 (Extensive)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section,	-
	D-5 (Extensive)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.	
	D-5 (Extensive)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and	-
		Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.	-
	D-5 (Extensive) D-6 (Dominating)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and	-
		Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such	
	D-6 (Dominating)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull	
	D-6 (Dominating) D-7 (Beaver	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull An infrequent number of dams spaced such that normal streamflow and	
	D-6 (Dominating)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull	
	D-6 (Dominating) D-7 (Beaver Dams - Few)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull An infrequent number of dams spaced such that normal streamflow and	
	D-6 (Dominating) D-7 (Beaver Dams - Few) D-8 (Beaver	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.	
	D-6 (Dominating) D-7 (Beaver Dams - Few)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. Frequency of dams is such that backwater conditions exist for channel	
	D-6 (Dominating) D-7 (Beaver Dams - Few) D-8 (Beaver Dams - Frequent)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced.	
	D-6 (Dominating) D-7 (Beaver Dams - Few) D-8 (Beaver Dams - Frequent) D-9 (Beaver	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced. Numerous abandoned dams, many of which have filled with sediment	
	D-6 (Dominating) D-7 (Beaver Dams - Few) D-8 (Beaver Dams - Frequent) D-9 (Beaver Dams -	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced. Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank	
	D-6 (Dominating) D-7 (Beaver Dams - Few) D-8 (Beaver Dams - Frequent) D-9 (Beaver	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced. Numerous abandoned dams, many of which have filled with sediment	
	D-6 (Dominating) D-7 (Beaver Dams - Few) D-8 (Beaver Dams - Frequent) D-9 (Beaver Dams -	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced. Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.	
	D-6 (Dominating) D-7 (Beaver Dams - Few) D-8 (Beaver Dams - Frequent) D-9 (Beaver Dams - Abandoned)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced. Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation. Structures, facilities, or materials related to land uses or development	
	D-6 (Dominating) D-7 (Beaver Dams - Few) D-8 (Beaver Dams - Frequent) D-9 (Beaver Dams -	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced. Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.	

Only a few logs w/ little influence on channel.

Ice House Dam Reach Upper Site (IH-G1) Pfankuch

Study Reach I	vann		Upper Ice House					
rew Initials:			JDS, RAP					
ate:			5/15/2003					
tart Time:			Stop Time:					
		Category	(choose one for each of the four options for each category)					
pper	1	Landform	Bank slope gradient <30%	2	X			
anks		slope	Bank slope gradient 30-40%	4				
			Bank slope gradient 40-60%	6				
			Bank slope gradient 60+%	8				
	2	Mass wasting	No evidence of past or future mass wasting	3	Х			
			Infrequent. Most likely healed over. Low future potential	6				
			Frequent or large, causing sediment nearly year long	9				
			Frequent or large causing sediment nearly year long or imminent danger of same	12				
	3	Debris jam						
		potential	Present, but mostly small twigs and limbs	4				
			Moderate to heavy amounts, mostly larger sizes	6				
			Moderate to heavy amounts, predominately lager sizes	8				
	4	Vegetative	90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	3	х			
		bank	70-90% density. Fewer species or less vigor suggest less dense or deep root mass	6				
		protection	<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass	9				
			< 50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass	12				
ower	5	Channel	Ample for present plus some increases. Peak flows contained. W/D ration <7	1				
anks	Ũ	capacity	Adequate. Bank overflows rare. W/D ratio 8-15	2	x			
unito			Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	3				
			Inadequate. Overbank flows common. W/D ratio >25	4				
	6	Bank rock	65%+ with large angular boulders. 12"+ common.	2				
	0	content	40-65%. Mostly small boulders to cobbles 6-12"	4				
		content	20-40%. With most in the 3-6" diameter class	6				
			20% rock fragments of gravel sizes, 1-3" or less		х			
	7	Obstructions	o o ,	8				
1	1		Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable bed					
		to flow	Some present causing erosive cross currents and minor pool filling. Obstructions newer and less firm	4	Х			
			Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool filling	6				
			Sediment traps full, channel migration occurring	8				
	8	Cutting	Little or none. Infrequent raw banks less than 6"	4				
			Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6	х			
			Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12				
			Almost continuous cuts, some over 24" high. Failure of overhangs frequent	16				
	9	Deposition	Little or no enlargement of channel or point bars	4				
			Some new bar increase, mostly from coarse gravel	8	х			
			Moderate deposition of new gravel and course sand on old and some new bars	12				
			Extensive deposits of predominately fine particles. Accelerated bar development	16				
ottom	10	Rock	Sharp edges and corners. Plane surfaces rough.	1				
		angularity	Rounded corners and edges, surfaces smooth, flat	2	х			
			Corners and edges well rounded in two dimensions	3				
			Well rounded in all dimensions, surfaces smooth	4				
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1				
			Mostly dull, but may have <35% bright surfaces	2	x			
			Mixture dull and bright, ie 35-65% mixture range	3	^			
			Predominately bright, 65% exposed or scoured surfaces	4				
	12	Consolidation	Assorted sizes tightly packed or overlapping	2				
	12	of particles	Moderately packed with some overlapping	4				
		or particles		6	х			
			Mostly loose assortment with no apparent overlap					
	10	D 11 ·	No packing evident. Loose assortment easily moved	8				
	13	Bottom size	No size change evident. Stable mater. 80-100%	4				
		distribution	Distribution shift light. Stable material 50-80%	8	Х			
			Moderate changes in sizes. Stable materials 20-50%	12				
		-	Marked distribution change. Stable materials 0-20%	16				
	14	Scouring and	<5% of bottom affected by scour or deposition	6				
		deposition	5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools	12	х			
			30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools	18				
			More than 50% of the bottom in a state of flux or change nearly year long	24				
	15	Aquatic	Abundant growth moss-like, dark green perennial. In swift water too.	1				
		vegetation	Common. Algae forms in low velocity and pool areas. Moss here too	2	х			
			Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick	3				

Ice House Dam Reach Upper Site (IH-G1) Bank Erosion and Vegetation

Bank Erosion and Vegetation

Study Reach Name:	Upper Ice House	Crew Initials:	JDS, RAP	
Date: 5/15/2003	Start Time:	Stop Time:		
Bank material:	gravel with high sa	and		
	BANK EROSIC	N POTENTIAL		
(if banks are bedrock or compo	osed of boulders, do not	fill out this table)		
	Bank a	Bank b	Bank c	Bank d
Bank height	3'	3'	2.5'	
Bankfull height	3'	2.5'	2.5'	
Root depth	2'	3'	2.5'	
Root density (%)	<10	40	50	
Bank Angle (degrees)	30	80	30	
Surface Protection (%)	10%	25	50	
% of total study reach	20%	10	70	

Notes

Stratification of unstable layers little stratification in bank profile **in banks (below bankfull):**

Sediment supply:	moderate
Vertical streambed stability:	aggrading

loose bed material and sand/fine gravel in pools suggest a lot of bed mobilization

Bank and channel bed conditions notes:

Moderately high supply of sand and gravel (from where?). Could be 1) passed through/over dam; 2) derived from banks (unlikely-no signs of bank erosion); 3) scoured from bed in upper part of reach

	RIPARIAN VE	GETATION					
VEGETATION TYPE	/EGETATION TYPE LOW MOD. HIGH						
Bare	1						
Forbs only							
Annual Grass w/ forbes		3b					
Perennial grass		4b					
Rhizomatous grasses							
(bluegrass, Grass like plants,	5a						
sedges, rushes)							
Low brush		6b					
High brush			7c				
Combination grass/brush			8c				
Deciduous overstory	9a						
Deciduous w/brush/grass	10a						
understory	TUa						
Perennial overstory		11b		conifer			
Wetland vegetation community							

VEGETATION NOTES (composition, vigor, density, and potential):

Ice House Dam Reach Lower Site (IH-G2) LWD Frequency

LWD Frequency Data Sheet

Study Reach Name: Ice House Dam - Lower Crew Initials: MCM, JDS							
	Start time: 0930	End time: 1140					
Length Class							
3-10 ft (0.9-3.0 m)	10-25 ft (3.1-7.6 m)	25-50 ft (7.7-15.2 m)	50-75 ft (15.3-22.9 m)	>75 ft (>23 m)			
14, RRR	5, RRR	2, RRR	1				
13	3, R	1, R					
3	1	1					
1	2						
	Length Class 3-10 ft (0.9-3.0 m) 14, RRR	Length Class 10-25 ft (3.1-7.6 m) 14, RRR 5, RRR	Start time: 0930 End time: 1140 Length Class 3-10 ft (0.9-3.0 m) 10-25 ft (3.1-7.6 m) 25-50 ft (7.7-15.2 m) 14, RRR 5, RRR 2, RRR	Start time: 0930 End time: 1140 Length Class 3-10 ft (0.9-3.0 m) 10-25 ft (3.1-7.6 m) 25-50 ft (7.7-15.2 m) 50-75 ft (15.3-22.9 m) 14, RRR 5, RRR 2, RRR 1			

"Tally as R if rootwad is attached."

Comments:

Photo number 65 (digital card 64MB) looking upstream at Jay near cross-section 2. Note LWD on left bank. In reach, there were two medium-sized log jams (see photo), but wood appears to only cause local scour, and is not affecting the channel much. Some local scour (1-1.5 feet) and sand deposits around wood. Most of the wood is only touching the wetted channel and is perched up on boulders or channel banks. Photo number 67, looking upstream. Note that LWD is not in water - perched up on bedrock. NO KEY PIECES IN REACH.

Ice House Dam Reach Lower Site (IH-G2) V Star

V* Measurements

Study Reach Name:	Lower Ice House	
Date:	5/18/2003	Start time:

Crew Initials: MCM/JDS End time:

Comments:

Pool morphology not present in this reach (it's all plane bed runs and riffles) All fine sediment is draped in thin sheets over bed, except in only localized areas (e.g., behind a log or boulder). No deep sand deposits in reach.

Ice House Dam Reach Lower Site (IH-G2) Rosgen Level III

Rosgen Level III Data Sheet

Study Reach Nar	ne:	Lower Ice House Dam		
Date:		5/18/2003		
Crew Initials:		MCM/JDS		
Start time:	9:30	End time: 9:50		

Depositional Features (indicate one)

Bepeeldend		
	B-1	point bars
	B-2	pt. bars w/ few mid channel bars
	B-3	many mid channel bars
Х	B-4	side bars
	B-5	diagonal bars
	B-6	main branching w/ many mid channel bars and islands
	B-7	mixed side bar and mid channel bars exceeding 2-3X width
	B-8	delta bars

Description: Not really bars. Active terrace-plane bed channel with local deposits behind boulder obstructions.

Meander Pattern (indicate one)

Х	M-1	regular meander
	M-2	tortuous meander
	M-3	irregular meander
	M-4	truncated meander
	M-5	unconfined me. scrolls
	M-6	confine me. scrolls
	M-7	distorted me. loops
	M-8	irregular with oxbows

Description: Not much meandering; mostly 2 straight channel segments with active terraces separated by riffle at bend.

STREAM CHANNEL DEBRIS/BLOCKAGES (indicate one)

Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime

	Description/Exter	
Х	D-1 (None)	Minor amounts of small, floatable material
	D-2 (Infrequent)	Debris consists of small, easily moved, floatable material; i.e. leaves, needles, small limbs, twigs, etc
	D-3 (Moderate)	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area
	D-4 (Numerous)	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.
	D-5 (Extensive)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the wid of the active channel.
	D-6 (Dominating)	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprom areas and form fish migration barriers, even when flows are at less than bankfull
	D-7 (Beaver Dams - Few)	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.
	D-8 (Beaver Dams - Frequent)	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced.
	D-9 (Beaver Dams - Abandoned)	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.
	D-10 (Human Influences)	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have
otes:		a sheet. Infrequent medium-sized wood occurs in channel but doesn't influence WD stored on terraces above bankfull elevations.

Ice House Dam Reach Lower Site (IH-G2) Pfankuch

Place X

Channel Stability (Pfankuch) Study Reach Name: Ice House - Lower Crew Initials: MCM, JDS Date: 5/18/03 Start Time: 930 Stop Time: 1140

Stop Time:	1140				in thi
		Category	(choose one for each of the four options for each category)		colum
Ipper	1	Landform	Bank slope gradient <30%	2	
anks		slope	Bank slope gradient 30-40%	4	Х
			Bank slope gradient 40-60%	6	
			Bank slope gradient 60+%	8	
	2	Mass wasting	No evidence of past or future mass wasting	3	Х
		_	Infrequent. Most likely healed over. Low future potential	6	
			Frequent or large, causing sediment nearly year long	9	
			Frequent or large causing sediment nearly year long or imminent danger of same	12	
	3	Debris jam	Essentially absent from immediate channel area	2	Х
	ľ	potential	Present, but mostly small twigs and limbs	4	~
		potorniai	Moderate to heavy amounts, mostly larger sizes	6	
			Moderate to heavy amounts, predominately lager sizes	8	
		Vegetative		3	
	4	•	90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	-	v
		bank	70-90% density. Fewer species or less vigor suggest less dense or deep root mass	6	Х
		protection	<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass	9	
			<50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass	12	
ower	5	Channel	Ample for present plus some increases. Peak flows contained. W/D ration <7	1	
anks		capacity	Adequate. Bank overflows rare. W/D ratio 8-15	2	X
			Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	3	
			Inadequate. Overbank flows common. W/D ratio >25	4	
	6	Bank rock	65%+ with large angular boulders. 12"+ common.	2	
		content	40-65%. Mostly small boulders to cobbles 6-12"	4	Х
			20-40%. With most in the 3-6" diameter class	6	
			20% rock fragments of gravel sizes, 1-3" or less	8	
	7	Obstructions	Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable bed	2	X
	· · ·	to flow	Some present causing erosive cross currents and minor pool filling. Obstructions newer and less firm	4	^
		LO HOW			
			Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool filling	6	
			Sediment traps full, channel migration occurring	8	
	8	Cutting	Little or none. Infrequent raw banks less than 6"	4	
			Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6	X
			Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12	
			Almost continuous cuts, some over 24" high. Failure of overhangs frequent	16	
	9	Deposition	Little or no enlargement of channel or point bars	4	
			Some new bar increase, mostly from coarse gravel	8	
			Moderate deposition of new gravel and course sand on old and some new bars	12	Х
			Extensive deposits of predominately fine particles. Accelerated bar development	16	
ottom	10	Rock	Sharp edges and corners. Plane surfaces rough.	1	
ottom	10	angularity	Rounded corners and edges, surfaces smooth, flat	2	х
		angularity		3	
			Corners and edges well rounded in two dimensions		
			Well rounded in all dimensions, surfaces smooth	4	
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	X
			Mostly dull, but may have <35% bright surfaces	2	
			Mixture dull and bright, ie 35-65% mixture range	3	
			Predominately bright, 65% exposed or scoured surfaces	4	
	12	Consolidation	Assorted sizes tightly packed or overlapping	2	
		of particles	Moderately packed with some overlapping	4	Х
			Mostly loose assortment with no apparent overlap	6	
			No packing evident. Loose assortment easily moved	8	
	13	Bottom size	No size change evident. Stable mater. 80-100%	4	
	10	distribution	Distribution shift light. Stable material 50-80%	8	
			·	0 12	~
			Moderate changes in sizes. Stable materials 20-50%		Х
			Marked distribution change. Stable materials 0-20%	16	
	14	Scouring and	<5% of bottom affected by scour or deposition	6	
		deposition	5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools	12	Х
			30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools	18	
			More than 50% of the bottom in a state of flux or change nearly year long	24	
	15	Aquatic	Abundant growth moss-like, dark green perennial. In swift water too.	1	
		vegetation	Common. Algae forms in low velocity and pool areas. Moss here too	2	Х
	1		Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick	3	

Ice House Dam Reach Lower Site (IH-G2) Bank Erosion and Vegetation

Bank Erosion and Vegetation

Study Reach Name:Ice House Dam - LowerDate:5/18/03Start Time:0930

Crew Initials: MCM, JDS Stop Time:

BANK EROSION POTENTIAL									
(if banks are bedrock or composed	(if banks are bedrock or composed of boulders, do not fill out this table)								
	Bank a Bank b Bank c Bank d								
Bank height (ft)	2	3.5	2						
Bankfull height (ft)	2	2	2						
Root depth (ft)	2	?	-						
Root density (%)	80%	?	-						
Bank Angle (degrees)	20-30	45	<10						
Surface Protection (%)	100%	20	80-100						
% of total study reach	45%	10	30						

Notes

15 % of banks are bedrock.

Bank material: Stratification of unstable layers in banks (below bankfull): Gravel w/high sand & Sand Little or no stratification of bank material

Sediment supply:HighVertical streambed stability:Stable to AggradingBank and channel bed conditions notes:

Banks very stable - low gradient - vegetated. Channel highly embedded and draped with sand in the lower gradient portions of the reach. Abundant recent sand deposits on floodplains and terraces. Plane-bed channel with sand drape suggests aggradation following fire/salvage operation.

RIPARIAN VEGETATION								
DENSITY (indicate all that apply)								
VEGETATION TYPE	LOW	MOD.	HIGH	NOTES				
Bare								
Forbs only								
Annual Grass w/ forbes		3b						
Perennial grass		4b						
Rhizomatous grasses								
(bluegrass, Grass like plants,	5a							
sedges, rushes)								
Low brush		6b		manzanita and whitethorn				
High brush			7c	head high willow and alder				
			10	riparian				
Combination grass/brush								
Deciduous overstory				none-fire				
Deciduous w/brush/grass				none-no tree overstory				
understory								
Perennial overstory				none-fire				
Wetland vegetation community								

Junction Dam Reach Site (JD-G1) LWD Frequency

LWD Frequency Data Sheet

Study Reach Name: Date:	Junction 5/19/2003	Start time:	1335	Crew Initials: End time:	ZED/JDS 1340
Diameter Class	Length Class	10.05 ft (0.1.7.6 m)	$25 = 50 \pm (7.7.45.0 m)$	E0.7E ft (4E.2.22.0 m)	> 75 ft (> 00 m)
	3-10 ft (0.9-3.0 m)	10-25 ft (3.1-7.6 m)	25-50 ft (7.7-15.2 m)	50-75 ft (15.3-22.9 m)	>75 ft (>23 m)
6-12 in (10-30 cm)					
12-24 in (31-60 cm)					
24-36 in (61-90 cm)					
>36 in (>90 cm)					

"Tally as R if rootwad is attached."

Comments: No LWD within bankfull channel. Very few pieces perched on floodplain/terrace surfaces. No key pieces.

QA Check: JDS

Junction Dam Reach Site (JD-G1) V Star

V* Measurements

Study Reach Name:	Junction Dam			Crew Initials:	ZED/JDS
Date:	5/19/2003	Start time:	1600	End time:	1605

Comments:

No V* measurements taken.

No pools at site with any substrate finer than medium gravel, therefore no V * taken. Where fine sediments occur, only occur as thin veneer.

Junction Dam Reach Site (JD-G1) Rosgen Level III

Rosgen Level III Data Sheet

Study Reach Name:		Junction
Date:		5/19/2003
Crew Initials:		ZED, JDS
Start time:	13:20	End time: 13:30

Depositional Features (indicate one)

x	B-1	point bars	
	B-2	pt. bars w/ few mid channel bars	
	B-3	many mid channel bars	
	B-4	side bars	
	B-5	diagonal bars	
	B-6	main branching w/ many mid channel bars and islands	
	B-7	mixed side bar and mid channel bars exceeding 2-3X width	
	B-8	delta bars	
	Large point bar de	position RB; Cobble-gravel deposits common behind large obstructions	

along margins and in midchannel positions. These categories apply to alluvial rivers - not high-gradient bedrock channels!

Meander Pattern (indicate one)

	(
x ?	M-1	regular meander
	M-2	tortuous meander
	M-3	irregular meander
	M-4	truncated meander
	M-5	unconfined me. scrolls
	M-6	confine me. scrolls
	M-7	distorted me. loops
	M-8	irregular with oxbows

Description: Meander pattern controlled by bedrock. These categories don't really apply.

STREAM CHANNEL DEBRIS/BLOCKAGES (indicate one)

Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime

Description/Extent			
X	D-1 (None)	Minor amounts of small, floatable material	
	D-2 (Infrequent)	Debris consists of small, easily moved, floatable material; i.e. leaves, needles, small limbs, twigs, etc	
	D-3 (Moderate)	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.	
	D-4 (Numerous)	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.	
	D-5 (Extensive)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.	
	D-6 (Dominating)	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull	
	D-7 (Beaver Dams - Few)	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.	
	D-8 (Beaver Dams - Frequent)	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced.	
	D-9 (Beaver Dams - Abandoned)	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.	
	D-10 (Human Influences)	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have	

Notes:

High transport capacity and conveyance - only coarse, large debris flows or large locally derived joint blocks have the potential to block channel.

Junction Dam Reach Site (JD-G1) Pfankuch

Date: 5/19/2003 Start Time: 13:30 Place X Stop Time: 13:35 column Upper Bank slope gradient <30% 2 Bank slope gradient <30-40% 4 2 Bank slope gradient <30-40% 4 2 Bank slope gradient <30-40% 6 2 Bank slope gradient <30-40% 6 2 Bank slope gradient <30-40% 8 x Bank slope gradient <30-40% 6 2 Bank slope gradient <30-40% 8 x Infrequent. Most likely healed over. Low future potential 6 7 Frequent or large. causing sediment nearly year long 9 9 Frequent or large. causing sediment nearly grass 8 1 Moderate to heavy amounts, mostly larger sizes 6 1 Moderate to heavy amounts, mostly larger sizes 6 1 Moderate to heavy amounts, redominately lager sizes 6 1 Moderate to heavy amounts, redominately lager sizes 6 1 Moderate to heavy amounts, redominately lager sizes 6<	Channel Sta	abil	ity (Pfankud	ch)		
Date: 51/12/003 Ster Time: 13.30 Deternial Respect Nut nostly mostly ware from time: 24 Present, but nostly small hugs and limb: 4 Present, but nostly small hugs and limb: 4 Potential Respect Nut nostly main hugs and limb: 25 Ster Time: 13.30 13.30 Ster Time: 13.30 13.30 Ster Time: 13.30 13.30 Ster Time: 13.30 <th13.30< th=""> Ster Time:</th13.30<>	Study Reach	Nan	ne:	Junction		
Start Time: 13.30 Place X Category (choose one for each of the four options for each category) column Bank aloge gradient -30% 2 Bank aloge gradient -30% 2 Bank slope gradient -30% 2 Bank slope gradient -30% 2 Bank slope gradient 60+% 3 Debts jam Essentially basent forn fumm das wasting 6 Proper Low for sign category set ong 6 Proper Low for sign category set ong 6 Addremate to heavy amounts, moduli proper sizes 6 Addremate to heavy amounts, prodominative grader sizes 6 Protection 50-70% density, Lower vigor and fewor species of less vison astallow, discontinuous root mass 0 Addremate to heavy amounts, prodominative grader sizes 6 1 Protection 6 1 2 x Addremate to heavy amounts, prodominative sizes sizes 1 2 x Addremate to heavy amounts, prodominative sizes sizes 1 2 x	Crew Initials:			ZED, JDS		
Stop Time: 13.35 in this Upper Eases 1 Landform Banks slope gradient < <0%.	Date:			5/19/2003		
Category (choose one for such of the four options for each category) column Banks 1 Landom Bank slope gradient 30-40% 2 Bank slope gradient 30-40% 8 4 Bank slope gradient 30-40% 8 4 Bank slope gradient 60-% 8 4 Bank slope gradient 60-% 8 4 Present John Slim Slope Market Slope Sl	Start Time:			13:30		Place X
Upper 1 Landform Bank stope gradient 40% 2 Banks 1 Landform 4 4 Bank stope gradient 40-60% 6 6 Bark stope gradient 40-60% 8 x 2 Mass watting No evidence of paet of future mass watting 3 x 1 Bark stope gradient 40-60% 8 x x 2 Mass watting No evidence of paet of future stopential 6 1 Foreguent of large causing sediment nearly year long or imminent danger of same 12 x 2 Mass watting gradient on their variant long and main stope stopential variant long and main stope stopential variant long and main stope stopential variant long and main stopential variant long and main stopential variant long and main variant long and main stopen increases of stope variant long and main stopen stopential variant long and main variant lo	Stop Time:			13:35		in this
Banks slope Bank slope gradient 30.40% 4 Image: Slope gradient 40.60% 6 Bank slope gradient 40.60% Bank slope gradient 40.60% 8 X 2 Mass westing 0 5 X 1 Mass westing 0 7 X X 2 Mass westing 0 7 X X 3 Debris jam Specialization from immediate darwary set long of immined darger of same 12 X 4 Vegetative Specialization monitory set long of immined darger of same 12 X 4 Vegetative Specialization monitory long and varies yages to long values at long set long values at long values			Category	(choose one for each of the four options for each category)		column:
Bark slope gradient 60% 6 Bark slope gradient 60% 8 2 Mass waiging No evidence of past or future mass wasing 3 2 Mass waiging No evidence of past or future mass wasing 3 3 Debris jam Essentially absent from immediate channel area 2 3 Debris jam Essentially absent from immediate channel area 2 x 4 Vegetative 50% ensity. Lower spaces on the suity suggest a deep, dense soil brinding root mass 6 4 Vegetative of sever spaces on the suity suggest a deep, dense soil brinding root mass 6 4 Vegetative of sever spaces and less upper discontinuous root mass 7 5 Channel Ample for present plus some increases. Peak flows contained wD ration <7	Upper	1	Landform	Bank slope gradient <30%	2	
Bark slope gradient 60% 6 Bark slope gradient 60% 8 2 Mass waiging No evidence of past or future mass wasing 3 2 Mass waiging No evidence of past or future mass wasing 3 3 Debris jam Essentially absent from immediate channel area 2 3 Debris jam Essentially absent from immediate channel area 2 x 4 Vegetative 50% ensity. Lower spaces on the suity suggest a deep, dense soil brinding root mass 6 4 Vegetative of sever spaces on the suity suggest a deep, dense soil brinding root mass 6 4 Vegetative of sever spaces and less upper discontinuous root mass 7 5 Channel Ample for present plus some increases. Peak flows contained wD ration <7	Banks		slope	Bank slope gradient 30-40%	4	
2 Mass watting No evidence of past or future mass watting 3 x a Debris jam Escentially behaled over. Low future potential 6 7 Debris jam Essentially absent from immediate channel area 2 x 9 Debris jam Essentially absent from immediate channel area 2 x 9 Debris jam Essentially absent from immediate channel area 2 x 4 Vegetative 50% e pisat density. Vigor and variety suggest a deep, dense soll binding root mass 6 - 4 Vegetative 50% ensity. Lower species on less vigor suggest ess dense or deep root mass 6 - - <50% density. Lower species on less vigor indicate poor discontinuous and shallow root mass					6	
Infrequent, Most likely healed over. Low future optential 6 0 Frequent or large, causing sediment nearly year long or imminent danger of same 12 12 3 Debris jam Sestinalizy absent from immediate channel area 2 2 4 Present, but mostly small twgs and limbs 4 4 9 Present, but mostly small twgs and limbs 4 4 4 Vegetative 50%+ paint density. Yoger and variely suggest a dese, dense soil binding not mass 6 4 Vegetative 50%+ paint density. Fewer species or less vigor suggest less dense or deep root mass 6 5 Channel To-90% density. (Hower species and less vigor indicate poor, discontinuous and shallow more mass. 1 2 Banks 5 Channel Adequate. Bank overflows rare. WD ratio 8-15 2 1 Banks 6 Bank rook. 6%+ with large andigot boulders. 12 4 4 Adequate. Bank overflows rare. WD ratio 8-15 3 1 2 8 6 Bank rook. 6 2 2 2 2 6				Bank slope gradient 60+%	8	x
Barks Frequent or large, causing sediment nearly year long or imminent danger of same 12 3 Detrisi am Essentially absent from immediate channel area 22 x apotential Present, but mossily small wigs and limbs 4 4 Moderate to heavy amounts, mostly larger sizes 6 6 Moderate to heavy amounts, mostly larger sizes 6 6 Moderate to heavy amounts, mostly larger sizes 6 6 Moderate to heavy amounts, mostly larger sizes 6 6 Moderate to heavy amounts, mostly larger sizes 6 6 AV (spetialty in the size wigs and fewer species and large sort discontinuous and shallow root mass 12 x Moderate to heavy amounts, mostly read of fewer species and large sort, advantave and the size sort advantave and the size wigs in charge lass discontane and will be read advantave and the size wigs in charge lass discontane and will be read advantave and the fibre size wigs in charge size		2	Mass wasting	No evidence of past or future mass wasting	3	x
s Debris jam Esentially absent from immediate channel area 2 x s Debris jam Esentially absent from immediate channel area 4 potential Present, but mostly small kwgs and limbs 4 potential Debris jam 5 divertate to heavy amounts, mostly lager sizes 6 Moderate to heavy amounts, mostly lager sizes 6 Poteficial Channel 5 divertato to heavy amounts, mostly lager sizes 6 soft, density, Fewer species and lever species from a shallow, discontinuous nort mass 9 <250% density, Lower vigor and fewer species from a shallow, discontinuous and shallow root mass				Infrequent. Most likely healed over. Low future potential	6	
s Debris jam Esemilally absent from immediate channel area 2 x a Debris jam Esemilally absent from immediate channel area 2 x a Debris jam Esemilally absent from immediate channel area 6 4 bank Present, but mostly small wigs and limbs 6 6 Moderate to heavy amounts, mostly sugget a dece, dense soil binding not mass 6 6 bank 70-6% density. Uservir sign and fever species for a shallow discontinuous not mass 6 exports 76-0% density. Uservir sign and fever species for a shallow discontinuous not anas 1 x capacity Adequate. Bank overflows rata. Who rate 8-15 2 1 x Banks 5 Channel Adequate. Bank overflows rata. Who rate 8-15 2 x Content 6 Bank overflow rate mesent moders and overfamk floods. WD ratio 7.5 2 x Content 6.5%* with large angular boulders. 12* common. 2 x Content 6.5%* with large angular boulders. 12* common. 2 x Cobstructions Rox and logs firmly embeddet. Flow				Frequent or large, causing sediment nearly year long	9	
potential Present, but mostly smalt lwigs and limbs 4 4 4 Vegetative 6 Moderate to heavy amounts, predominately lager sizes 6 4 Vegetative 0%+ pind censity. Vigor and variety suggets a decep, dense soil binding root mass 6 5 Channel 70-0% density. Lower vigor and fever species for a shallow, discontinuous root mass 7 5 Channel Adequate. Bank overflows rate. W/D ratio 8+15 2 6 Bank overflow rate. W/D ratio 8+15 2 2 6 Bank overflow rate. W/D ratio 8+15 2 2 6 Bank overflow rate. W/D ratio 8+15 2 2 6 Bank overflow rate. W/D ratio 8+15 2 2 6 Bank overflow rate. W/D ratio 8+15 2 2 7 Obstructions Roxes and logs fm/H embeddet. Flow pattern would centing or aver arises. 1-3 or reset 4 7 Obstructions Roxes and logs fm/H embeddet. Flow pattern would cutting or deposition. Stable bed 2 7 Obstructions Rove sum and constructions. Rove sum and constructions. Rove sam and soughing evident 12 8 </td <td></td> <td></td> <td></td> <td>Frequent or large causing sediment nearly year long or imminent danger of same</td> <td>12</td> <td></td>				Frequent or large causing sediment nearly year long or imminent danger of same	12	
potential Present, but mostly smalt wigs and limbs 4 4 4 Vegetative 6 Moderate to heavy amounts, mostly larger sizes 6 4 Vegetative 0%4- plant cleanity, Vigor and variety suggets a decep. dense soil binding root mass 9 5 Channel 75.0% density, Fewer species or less vigor indicate poor, discontinuous and shallow, discontinuous and shallow, discontinuous and shallow, discontinuous and shallow riscontinuous and		3	Debris jam		2	x
Bottom Moderate to heavy amounts, mostly larger sizes 6 4 Vegetative 90%- plant density. Vgor and variety suggest a deep, dense soil binding mot mass 3 4 Vegetative 90%- plant density. Lower species or less vigor suggest also dense or deep root mass 6 4 S0% density, Lower species or less vigor suggest also dense or deep root mass 1 x 4 Ample for present plus some increases. Peak flows contained. WDI ration r7 1 x Adequate. Diversity is a present plask. Occasional overbank floods. WID ration r7 1 x Adequate. Diversity is mall builders to cobbites 6 12" 4 4 40-65%. Mostly small boulders to cobbites 6 12" 4 4 20% rook fragments of gravel sizes, 1-3" or less 6 2 x 7 Obstructions 7 obstructions 8 4 x 8 Cutting Rocks and logs firmly embedded. Flow patern which cutting or deposition. Stable bed 2 x 9 Deposition 111 title or none. Intergravel marks. Intergrave					4	
Image: space of the server anomals, predominately lager sizes 8 Image: space of the server					6	
4 Vegetative bank 90%- plant density. Lower species on less vigor suggest less dense or deep root mass 3 Lower 5 Channel					8	
bank T0-90% density. Fewer species or less vigor suggest less dense or deer protomass 6 c50% density. Lower vigor and fewer species from a shallow, discontinuous and shallow root mass 12 x Lower 5 Channel Ample for present plus some increases. Peak flows contained. W/D ratio 15 to 25 3 Banks 6 Barky contains present peaks. Occasional overbank floods. W/D ratio 15 to 25 4 6 Bank rock 65%+ with large angular boulders. 12* 4 common. 2 x content 04-05%. Mostly small boulders to cobbits 6-12". 4 4 20-40% rock fragments of gravel sizes, 1-3" or less 6 2 x 0 betructions Rocks and logs frmily embedded. Flow pattern wiout cutting or deposition. Stable bed 2 x 10 for to fragments of gravel sizes, 1-3" or less 8 4 x 20-40% rock fragments of gravel sizes, 1-3" or less 8 4 x 30 for transprent sign and sizes, 1-4" or less 8 4 x 31 first sizes, 1-3" or less 8 4 x 32 for thir angularity Routing and nonron of fingling. Obstructions newerand less to flow sizes, 1-3"		4	Vegetative			
protection =50.70% density. Lower vigor and tess vigor indicates prov, discontinuous not mass 9 Lower 5 Channel Ample for present plus some increases. Peak Moss contained. W/D ration <7			, v			
-50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass 12 x Lower 5 Channel Ample for present puss some increases. Peak flows contained. W/D ratio 1-7 1 x Banks Capacity Adequate. Bank overflows rare. W/D ratio 5-15 2 3 6 Bank rock 65%+ with large angular boulders. 12* common. 2 x 04-055%. Mostly small boulders to cobble 6-12* 4 4 2 20% rock fragments of gravel sizes, 1-3* or less 6 2 2 7 Obstructions Rocks and logs firmly embedded. Flow pattern wlout cutting or deposition. Stable bed 2 x 7 Obstructions Rocks and logs firmly embedded. Flow pattern wlout cutting or deposition. Stable bed 2 x 8 Cutting Little or none. Infrequent raw how with high flows causing bank cutting and pool 6 9 Deposition Little or none. Infrequent raw how with high flows causing bank cutting and pool 12 9 Deposition Little or none. Infrequent raw how with high flows causing bank cutting and pool 12 9 Deposition Little or		1				
Lower 5 Channel Ample for present puts some increase. Peak flows contained. W/D ratio T 1 x Banks Capacity Adequate. Bank overflows rare. W/D ratio 8-15 2 2 2 Barly contains present peaks. Occasional overbank floods. W/D ratio 15 to 25 3 3 3 Inadequate. Overbank flows common. 2 x 4 2 4 Content 66%+ with large angular boulders. 12*+ common. 2 x 4 2 2 4 204-0%. With most in th 3-67 diameter class 6 6 20% rock fragments of gravel sizes, 1-37 or less 8 2 0 8 2 7 Obstructions Rocks and logs fimly embedded. Flow pattern wiout cutting or deposition. Stable bed 2 x 3 5		1				Y
Banks capacity Adequate: Bank overflows rare: W/D ratio 8-15 2 Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25 3 3 Inadequate. Overbank flows common. W/D ratio >25 4 4 Content 60%+ with large angular boulders. 12*+ common. 2 x 20-40%. With most in the 3-6° diameter class 6 2 x 20-90% rock fragments of gravel sizes, 1-3° or less 8 8 7 Obstructions Rocks and logs firmly embedded. Flow pattern wout cutting or deposition. Stable bed 2 x Some present causing erosite coss currents and mion pool filling. Obstructions never and less 4 x Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool 6 x Some present causing erosite. Infrequent raw banks less than 6° x x Some, intermittently at outcurves and constrictions. Raw banks may be up to 12° 6 x Significant. Lort 2-24* high. Fealure of overhangs and soughing evident 12 x Adress continuous cuts, some over 24* high. Failure of overhangs frequent 16 x Some new bar increase, mostly from coarse gravel	Lower	5	Channel			
Bare y contains present peaks Occasional overbank floods. W/D ratio 15 to 25 3 1 Inadequate. Overbank flows common. W/D ratio >25 4 4 6 Bank rock content 66%+ with large angular boulders. 12* common. 2 x 20-40%. With most in the 3-6% idameter class 6 20% rock fragments of gravel sizes. 1-3° or less 8 7 Obstructions Rocks and logs firmly embedded. Flow pattern would cutting or deposition. Stable bed 2 x 8 Rocks and logs firmly embedded. Flow pattern would cutting or deposition. Stable bed 2 x 9 Destructions Rock and logs firmly embedded. Flow pattern would cutting or deposition shale bed 2 x 8 Cutting Little or none. Infrequent raw banks less than 6° 4 x 9 Deposition Little or none. Infrequent raw banks less than 6° 4 x 9 Deposition Little or none anargement of channel or point bars 4 x 9 Deposition Inter or enlargement of channel or point bars 4 x 9 Deposition Rourded corners and edges, surfaces smooth. flat 2		1				*
Bank rock 6 Bank rock 65%+ with large angular boulders to 2* common. 2 x 40-65%. Mostly small boulders to cobbles 6-12 4 4 20-40%. With most in the 3-6 diameter class 6 20% rock fragments of gravel sizes, 1-3 or less 6 7 Obstructions Rocks and logs firmly embedded. Flow pattern wout outting or deposition. Stable bed 2 x Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool 6 8 Cutting Little or none. Infrequent raw banks less than 6° 4 8 Some present causing erosite. To shak bless than 6° 4 x 9 Deposition Little or none. Infrequent raw banks less than 6° 4 x 9 Deposition Little or none infrequent raw banks less than 6° 4 x 9 Deposition Little or none infrequent raw banks may be up to 12° 6 6 9 Rock Same present causing erosite, so than 02° than 14° to course sand on old and some new bars 12 12 10 Rock Sharp edges and course surfaces rough. 1 1 x 11 Brightness Surfaces dull, dark, or stained, Generally not bright 1	Daliks		capacity			
6 Bank rock content 65% Mosily small boulders. 12"+ common. 2 x 40-65%. Mosily small boulders. 16"+ common. 2 x 40-65%. Mosily small boulders. 16"+ common. 4 20-40%. With most in the 3-6" diameter class 6 20-40%. With most in the 3-6" diameter class 6 20-80%. With most in the 3-6" diameter class 8 7 Obstructions Rocks and Ogs firmly empedded. Flow pattern wiout cutting or deposition. Stable bed 2 x 8 Rocks and Ogs firmly empedded. Flow pattern wiout cutting or deposition. Stable bed 2 x 8 Sediment traps full, channel migration occurring 8 4 x 8 Cutting Little or none. Infrequent raw banks less fina 6" 4 x 9 Deposition Little or none alregement of channel or point bars 4 x 9 Deposition Little or no enlargement of channel or point bars 12 x 10 Rock Sharp edges. and ormers. Plane surfaces rough. 11 x 11 Brightness Surfaces drught, or staned. Generally not bright 1 x 11 Brightness Surfaces smooth. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
content 40-65%, Mostly small boulders to cobbles 6-12" 4 20-40%, With most in the 3-6' diameter class 6 20% rock fragments of gravel sizes, 1-3' or less 8 7 Obstructions Rocks and logs firmly embedded. Flow pattern wout cutting or deposition. Stable bed 2 x w Some present causing erosive cross currents and minor pool filling. Obstructions newer and less 4 Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool 6 Sediment traps full, channel migration occurring 4 x 8 Cutting Little or none. Infrequent raw banks less than 6" 4 x Significant. Cuts 12-24" high. Foldure or overhangs and sloughing evident 12 1 Amost continuous cuts, some over 24" high. Failure of overhangs frequent 16 1 Bottom 10 Rock and edges sulf or no cause gravel 8 1 10 Rock angularity Sharp edges and corners. Plane surfaces mosth. flat. 2 x 11 Brightness Surfaces differ. Might. eds/6% mixture range 3 1 12 Consolidation Assorted sizes tightly			Deals as als			
20-40%. With most in the 3-6" diameter class 6 20-40%. With most in the 3-6" diameter class 6 20% rock fragments of gravel sizes, 1-3" or less 8 7 Obstructions Rocks and logs fimily embedded. Flow pattern wlout outling or deposition. Stable bed 2 x 8 Cutting Some present causing erosive cross currents and minor pool filling. Obstructions newer and less 4 8 Cutting Little or none. Infrequent raw banks less than 6" 4 x Some, intermittently at outcurves and constrictions. Raw banks may be up to 12" 6 5 12 9 Deposition Little or none. Infrequent of channel or point bars 4 x 9 Deposition Little or new gravel and course sand on old and some new bars 12 Extensive deposits of predominately fine particles. Accelerated bar development 16 1 10 Rock Sang edges and corners. Plane surfaces month, flat 2 x 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 x 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1		0				X
Bottom 20% rock fragments of gravel sizes, 1-3° or less 8 7 Obstructions Rocks and logs firmly embedded. Flow pattern wout cutting or deposition. Stable bed 2 x 8 Some present causing erosive cross currents and minor pool filling. Obstructions newer and less 4 Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool 6 Sediment traps full, channel migration occurring 8 8 Cutting Little or none. Infrequent raw banks less than 6° 4 Significant. Cuts 12:24 'high. Root mat overhangs and sloughing evident 12 Amost continuous cuts, some over 24' high. Failure of overhangs frequent 16 9 Deposition Little or none anargement of channel or point bars 4 Some new bar increase, mostly from coarse gravel 8 4 Moderate deposition of new gravel and course sand on old and some new bars 12 1 Bottom 10 Rock Sharp edges and corners. Plane surfaces mooth, flat 2 x Corners and edges well rounded in two dimensions 3 1 x Well rounded on all dimensions, surfaces 2 1 Mot			content			
7 Obstructions to flow Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable bed 2 x 8 Information of the stable obstructions more with high flows causing bank cutting and pool 6 8 Cutting Little or none. Infrequent raw banks less than 6° 4 x 8 Cutting Little or none. Infrequent raw banks less than 6° 4 x 9 Deposition Little or none. Infrequent raw banks less than 6° 4 x 9 Deposition Little or no enlargement of channel or point bars 4 x 8 Some new bar increase, mostly from coarse gravel 8 8 10 Rock Sharp edges and comers. Plane surfaces rough. 1 1 11 Brightness Surfaces duil, dark, or stained. Generally not bright 1 x 11 Brightness Surfaces duil, dark, or stained. Generally not bright 1 x 12 Connesided jare diges will now of enapping 4 x Nosity duil, but may have <3% bright surfaces						
to flow Some present causing erosive cross currents and minor pool filling. Obstructions newer and less 4 Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool 6 Sediment traps full, channel migration occurring 8 Cutting Little or none. Infrequent raw banks less than 6" 4 Some, intermittently at outcurves and constrictions. Raw banks may be up to 12" 6 Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident 12 Almost continuous cuts, some over 24" high. Failure of overhangs frequent 16 9 Deposition Little or no enlargement of channel or point bars 4 Some new bar increase, mostly from coarse gravel 8 Moderate deposition of new gravel and course sand on old and some new bars 12 Extensive deposits of predominately fine particles. Accelerated bar development 16 angularity Rounded corners: And egges will rounded in two dimensions 3 Well rounded in all dimensions, surfaces smooth 4 4 11 Brightness Surfaces duil, dark, or stained. Generally not bright 1 x 12 Consolidation 4 55 56% mixture range </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool 6 Sediment traps full, channel migration occurring 8 8 Cutting Little or none. Infrequent raw banks less than 6° 4 x Some, intermittently at outcurves and constrictions. Raw banks may be up to 12° 6 4 x Some, intermittently at outcurves and constrictions. Raw banks may be up to 12° 6 4 x Some, intermittently at outcurves and constrictions. Raw banks may be up to 12° 6 4 x Some, intermittently at outcurves and constrictions. Raw banks may be up to 12° 6 4 x Some new bar increase, mostly from coarse gravel 8 4 x Some new bar increase, mostly from coarse gravel 8 12 2 Bottom 10 Rock Sharp deges and comes. Plane surfaces rough. 1 1 Rounded corners and edges, surfaces smooth 1 x X X Corners and edges well rounded in two dimensions 3 Well rounded in all dimensions, surfaces 2 x 11 Brightness Surfaces dull, dark, or stained. Gene		7				X
Sediment traps full, channel migration occurring Image: Construct of the second s			to flow			
8 Cutting Little or none. Infrequent raw banks less than 6° 4 x Some, intermittently at outcurves and constrictions. Raw banks may be up to 12° 6 6 Significant. Cuts 12-24° high. Root mat overhangs and sloughing evident 12 Almost continuous cuts, some over 24° high. Failure of overhangs frequent 16 9 Deposition Little or no enlargement of channel or point bars 4 x Some new bar increase, mostly from coarse gravel 8 8 8 Moderate deposition of new gravel and course sand on old and some new bars 12 12 Extensive deposits of predominately fine particles. Accelerated bar development 16 16 8 Rounded corners. Planes windraces rough. 1 1 Rounded corners and edges surfaces smooth, flat 2 x Corners and edges well rounded in two dimensions 3 3 Well rounded in all dimensions, surfaces smooth 4 4 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 x Mostly dull, but may have <33% bright surfaces						
Some, intermittently at outcurves and constrictions. Raw banks may be up to 12" 6 Significant. Cuts 12-24' high. Root mat overhangs and sloughing evident 12 Almost continuous cuts, some over 24' high. Failure of overhangs frequent 16 9 Deposition Little or no enlargement of channel or point bars 4 x Some new bar increase, mostly from coarse gravel 8 4 x Moderate deposition of new gravel and course sand on old and some new bars 12 12 Extensive deposits of predominately fine particles. Accelerated bar development 16 16 Bottom 10 Rock Sharp edges and corners. Plane surfaces mooth, flat 2 x Corners and edges, surfaces smooth, flat 2 x Well rounded in nul dimensions, surfaces 3 Well rounded in all dimensions, surfaces smooth 4 x 4 x Mixture dull and bright, 65% exposed or sourced surfaces 4 4 x Mostry dull, but may have <35% bright surfaces				Sediment traps full, channel migration occurring		
Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident 12 Almost continuous cuts, some over 24" high. Failure of overhangs frequent 16 9 Deposition Little or no enlargement of channel or point bars 4 Some new bar increase, mostly from coarse gravel 8 Moderate deposition of new gravel and course sand on old and some new bars 12 Extensive deposits of predominately fine particles. Accelerated bar development 16 Bottom 10 Rock Sharp edges and comers. Plane surfaces rough. 1 Rounded corners and edges, surfaces smooth, flat 2 x Corners and edges, surfaces smooth 4 4 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 Mostly dull, but may have <35% bright surfaces		8	Cutting	Little or none. Infrequent raw banks less than 6"		х
Almost continuous cuts, some over 24" high. Failure of overhangs frequent 16 9 Deposition Little or no enlargement of channel or point bars 4 x Some new bar increase, mostly from coarse gravel 8 8 Moderate deposition of new gravel and course sand on old and some new bars 12 Extensive deposits of predominately fine particles. Accelerated bar development 16 Bottom 10 Rock Sharp edges and corners. Plane surfaces rough. 1 angularity Rounded corners and edges, surfaces smooth, flat 2 x Corners and edges well rounded in two dimensions 3 3 Well rounded in all dimensions, surfaces smooth 4 4 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 x Mostly dull, but may have <35% bright surfaces				Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6	
9 Deposition Little or no enlargement of channel or point bars 4 x Some new bar increase, mostly from coarse gravel 8 8 Moderate deposition of new gravel and course sand on old and some new bars 12 Extensive deposits of predominately fine particles. Accelerated bar development 16 Bottom 10 Rock Sharp edges and corners. Plane surfaces rough. 1 Rounded corners and edges well rounded in two dimensions 3 3 Well rounded in all dimensions, surfaces smooth. 4 4 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 x Mostry dull, but may have <35% bright surfaces				Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12	
Some new bar increase, mostly from coarse gravel 8 Moderate deposition of new gravel and course sand on old and some new bars 12 Extensive deposits of predominately fine particles. Accelerated bar development 16 Bottom 10 Rock angularity Sharp edges and corners. Plane surfaces rough. 1 Rounded corners and edges, surfaces smooth, flat 2 x Corners and edges well rounded in two dimensions 3 Well rounded in all dimensions, surfaces smooth 4 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 x Mostly dull, but may have <35% bright surfaces				Almost continuous cuts, some over 24" high. Failure of overhangs frequent	16	
Moderate deposition of new gravel and course sand on old and some new bars 12 Extensive deposits of predominately fine particles. Accelerated bar development 16 Bottom 10 Rock angularity Rounded corners. Plane surfaces rough. 1 angularity Rounded corners and edges, surfaces mooth, flat 2 x Corners and edges well rounded in two dimensions 3 3 Well rounded in all dimensions, surfaces smooth 4 1 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 x Mostly dull, but may have <35% bright surfaces		9	Deposition	Little or no enlargement of channel or point bars		х
Extensive deposits of predominately fine particles. Accelerated bar development 16 Bottom 10 Rock angularity Sharp edges and corners. Plane surfaces rough. 1 Rounded corners and edges, surfaces smooth, flat 2 x Corners and edges well rounded in two dimensions 3 Well rounded in all dimensions, surfaces smooth 4 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 x Mostly dull, but may have <35% bright surfaces				Some new bar increase, mostly from coarse gravel	8	
Bottom 10 Rock angularity Sharp edges and corners. Plane surfaces rough. 1 Rounded corners and edges, surfaces smooth, flat Corners and edges well rounded in two dimensions 2 x Corners and edges well rounded in two dimensions 3 3 Well rounded in all dimensions, surfaces smooth 4 4 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 x Mostly dull, but may have <35% bright surfaces				Moderate deposition of new gravel and course sand on old and some new bars	12	
angularity Rounded corners and edges, surfaces smooth, flat 2 x Corners and edges well rounded in two dimensions 3 3 Well rounded in all dimensions, surfaces smooth 4 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 x Mostly dull, but may have <35% bright surfaces				Extensive deposits of predominately fine particles. Accelerated bar development	16	
Corners and edges well rounded in two dimensions 3 Well rounded in all dimensions, surfaces smooth 4 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 x Mostly dull, but may have <35% bright surfaces	Bottom	10	Rock	Sharp edges and corners. Plane surfaces rough.	1	
Well rounded in all dimensions, surfaces smooth 4 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 x Mostly dull, but may have <35% bright surfaces			angularity		2	x
Well rounded in all dimensions, surfaces smooth 4 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 x Mostly dull, but may have <35% bright surfaces				Corners and edges well rounded in two dimensions	3	
11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 x Mostly dull, but may have <35% bright surfaces				Well rounded in all dimensions, surfaces smooth	4	
Mostly dull, but may have <35% bright surfaces		11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	x
Mixture dull and bright, ie 35-65% mixture range 3 Predominately bright, 65% exposed or scoured surfaces 4 12 Consolidation of particles Assorted sizes tightly packed or overlapping 2 x Moderately packed with some overlapping 4 4 Mostly loose assortment with no apparent overlapping 6 No packing evident. Loose assortment easily moved 8 13 Bottom size distribution No size change evident. Stable mater: 80-100% 4 x Moderate changes in sizes. Stable material 50-80% 12 12 12 Marked distribution change. Stable materials 0-20% 16 14 5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools 12 x 14 Scouring and deposition <5% of bottom affected by scour or deposition a0-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools 18 More than 50% of the bottom in a state of flux or change nearly year long 24 24 15 Aquatic vegetation Abundant growth moss-like, dark green perennial. In swift water too. 2 2 Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick 3 3			°,		2	
12 Consolidation of particles Assorted sizes tightly packed or overlapping 2 x 12 Consolidation of particles Assorted sizes tightly packed or overlapping 2 x 12 Moderately packed with some overlapping 4 4 4 Mostly loose assortment with no apparent overlap 6 6 6 No packing evident. Loose assortment easily moved 8 4 x 13 Bottom size distribution No size change evident. Stable mater: 80-100% 4 x 14 Scouring and deposition Of particles of bottom affected by scour or deposition 6 6 14 Scouring and deposition <5% of bottom affected by scour or deposition and where grades steepen. Some deposition in pools						
12 Consolidation of particles Assorted sizes tightly packed or overlapping 2 x of particles Moderately packed with some overlapping 4 4 Mostly loose assortment with no apparent overlap 6 6 No packing evident. Loose assortment easily moved 8 13 Bottom size distribution No size change evident. Stable mater: 80-100% 4 x 14 Scouring and deposition deposition rsizes. Stable materials 20-50% 12 12 Marked distribution change. Stable materials 0-20% 16 16 14 Scouring and deposition deposition change. Stable materials 0-20% 16 14 Scouring and deposition deposition change. Stable materials 0-20% 16 15 Aquatic vegetation Affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools 18 More than 50% of the bottom in a state of flux or change nearly year long 24 15 Aquatic vegetation Abundant growth moss-like, dark green perennial. In swift water too. 1 x Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick 3 3						
of particles Moderately packed with some overlapping 4 Mostly loose assortment with no apparent overlap 6 No packing evident. Loose assortment easily moved 8 13 Bottom size distribution No size change evident. Stable mater. 80-100% 4 x 13 Bottom size distribution No size change evident. Stable material 50-80% 8 8 14 Scouring and deposition <5% of bottom affected by scour or deposition		12	Consolidation			v
Mostly loose assortment with no apparent overlap 6 No packing evident. Loose assortment easily moved 8 13 Bottom size No size change evident. Stable mater: 80-100% 4 x distribution Distribution shift light. Stable material 50-80% 8 8 Moderate changes in sizes. Stable materials 0-20% 12 14 Scouring and deposition 4 5% of bottom affected by scour or deposition 6 5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools 12 x 30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools 18 x More than 50% of the bottom in a state of flux or change nearly year long 24 24 15 Aquatic vegetation Abundant growth moss-like, dark green perennial. In swift water too. 1 x Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick 3 3		12				<u>^</u>
No packing evident. Loose assortment easily moved 8 13 Bottom size distribution No size change evident. Stable mater: 80-100% 4 x 13 Bottom size distribution No size change evident. Stable mater: 80-100% 4 x 14 Distribution shift light. Stable materials 50-80% 8 12 Marked distribution change. Stable materials 0-20% 16 14 Scouring and deposition <5% of bottom affected by scour or deposition 30-50% affected. Scour at constrictions and where grades steepen. Some deposition in pools 30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools 30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools 18 18 More than 50% of the bottom in a state of flux or change nearly year long 24 15 Aquatic vegetation Abundant growth moss-like, dark green perennial. In swift water too. 1 x Common. Algae forms in low velocity and pool areas. Moss here too 2 2 Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick 3						
13 Bottom size distribution No size change evident. Stable mater: 80-100% 4 x 13 Bottom size distribution No size change evident. Stable material 50-80% 8 12 Distribution Moderate changes in sizes. Stable materials 0-20% 16 12 Marked distribution change. Stable materials 0-20% 16 14 Scouring and deposition <5% of bottom affected by scour or deposition 5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools 12 14 Scouring and deposition <5% of bottom affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools				, , , , , , , , , , , , , , , , , , , ,		
distribution Distribution shift light. Stable material 50-80% 8 Moderate changes in sizes. Stable materials 20-50% 12 Marked distribution change. Stable materials 0-20% 16 14 Scouring and deposition <5% of bottom affected by scour or deposition		12	Pottom oizo	· · ·		
Moderate changes in sizes. Stable materials 20-50% 12 Marked distribution change. Stable materials 0-20% 16 14 Scouring and deposition <5% of bottom affected by scour or deposition		13		· · · · · · · · · · · · · · · · · · ·		X
Marked distribution change. Stable materials 0-20% 16 14 Scouring and deposition <5% of bottom affected by scour or deposition		1	alstribution	· · · · · · · · · · · · · · · · · · ·		
14 Scouring and deposition <5% of bottom affected by scour or deposition		1		· · · · · · · · · · · · · · · · · · ·		
deposition 5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools 12 x 30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools 18 More than 50% of the bottom in a state of flux or change nearly year long 24 15 Aquatic vegetation Abundant growth moss-like, dark green perennial. In swift water too. 1 x Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick 3				•		
30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools 18 More than 50% of the bottom in a state of flux or change nearly year long 24 15 Aquatic vegetation Abundant growth moss-like, dark green perennial. In swift water too. 1 x Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick 3		14				
More than 50% of the bottom in a state of flux or change nearly year long 24 15 Aquatic vegetation Abundant growth moss-like, dark green perennial. In swift water too. 1 x Common. Algae forms in low velocity and pool areas. Moss here too 2 2 Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick 3		1	aeposition			x
15 Aquatic vegetation Abundant growth moss-like, dark green perennial. In swift water too. 1 x Vegetation Common. Algae forms in low velocity and pool areas. Moss here too 2 2 Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick 3		1				
vegetation Common. Algae forms in low velocity and pool areas. Moss here too 2 Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick 3						
Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick 3		15				x
		1	vegetation		2	
Perennial types scare or absent. Yellow-green, short term bloom may be present 4		1			3	
		1		Perennial types scare or absent. Yellow-green, short term bloom may be present	4	

Junction Dam Reach Site (JD-G1) **Bank Erosion and Vegetation**

Bank Erosion and Vegetation

Study Reach Name: Date: 5/19/2003

Junction

Crew Initials: ZED/JDS Start Time: 1340 Stop Time: 1345

Bank material:

bedrock/boulder

BANK EROSION POTENTIAL						
(if banks are bedrock or composed of boulders, do not fill out this table)						
Bank a	Bank b	Bank c	Bank d			
	ed of boulders, do not	ed of boulders, do not fill out this table)	ed of boulders, do not fill out this table)			

Notes

Stratification of unstable layers unstratified banks in banks (below bankfull):

Sediment supply: Low Vertical streambed stability: Stable

Bank and channel bed conditions notes:

Moderately to highly embedded cobble-gravel deposits behind inchannel obstructions. Little or no fine sediment (<2mm) present. Fine gravel fills interstices of cobble-gravel.

	RIPARIAN VEGETATION				
DENSITY (indicate all that apply)					
VEGETATION TYPE	LOW	MOD.	HIGH	NOTES	
Bare			1		
Forbs only	2a				
Annual Grass w/ forbes	3a				
Perennial grass	4a				
Rhizomatous grasses					
(bluegrass, Grass like plants,	5a				
sedges, rushes)					
Low brush	6a				
High brush	7a				
Combination grass/brush	8a				
Deciduous overstory	9a				
Deciduous w/brush/grass	10a				
understory	TUa				
Perennial overstory	11a				
Wetland vegetation community				none	

VEGETATION NOTES (composition, vigor, density, and potential): few alder saplings along low water shoreline. BLDR/BDRX substrate does not support veg.

Camino Dam Reach Site (CD-G1) LWD Frequency

LWD Frequency Data Sheet

Study Reach Name: Date:	Camino 8/13/2003	Start time:		Crew Initials: End time:	ACF, SRD
Diameter Class	Length Class 3-10 ft (0.9-3.0 m)	10-25 ft (3.1-7.6 m)	25-50 ft (7.7-15.2 m)	50-75 ft (15.3-22.9 m)	>75 ft (>23 m)
6-12 in (10-30 cm) 12-24 in (31-60 cm) 24-36 in (61-90 cm) >36 in (>90 cm)	1				

"Tally as R if rootwad is attached."

Comments:

Very little LWD in channel or surrounding area. No key pieces.

Camino Dam Reach Site (CD-G1) V Star

V* Measurements

Study Reach Name:CaminoDate:8/13/2003

Start time:

Crew Initials: ACF/SRD End time:

Comments:

No V* measurements taken (N/A).

Pools were too deep to measure and there didn't appear to be any fine sediment except for in the eddy of large boulders (and even that was rare).

Camino Dam Reach Site (CD-G1) Rosgen Level III

Rosgen Level III Data Sheet

Study Reach Name:	Camino
Date:	8/13/2003
Crew Initials:	ACF, SRD
Start time: 9:30 End time	:

Depositional Features (indicate one)

B-1	point bars
B-2	pt. bars w/ few mid channel bars
B-3	many mid channel bars
B-4	side bars
B-5	diagonal bars
B-6	main branching w/ many mid channel bars and islands
B-7	mixed side bar and mid channel bars exceeding 2-3X width
B-8	delta bars

Description: bedrock channel. gravel/cobble in channel; gravel on bank ledges

Meander Pattern (indicate one)

M-1	regular meander
M-2	tortuous meander
M-3	irregular meander
M-4	truncated meander
M-5	unconfined me. scrolls
M-6	confine me. scrolls
M-7	distorted me. loops
M-8	irregular with oxbows

Description: bedrock channel. cascade/step-pool sequencing; low frequency meandering

STREAM CHANNEL DEBRIS/BLOCKAGES (indicate one)

Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime

Description/Extent				
	D-1 (None)	Minor amounts of small, floatable material		
	D-2 (Infrequent)	Debris consists of small, easily moved, floatable material; i.e. leaves, needles, small limbs, twigs, etc		
	D-3 (Moderate)	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.		
	D-4 (Numerous)	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.		
	D-5 (Extensive)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.		
	D-6 (Dominating)	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull		
	D-7 (Beaver Dams - Few)	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.		
	D-8 (Beaver Dams - Frequent)	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced.		
	D-9 (Beaver Dams - Abandoned)	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.		
x	D-10 (Human Influences)	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have		

Notes: Sediment supply/flow affected by upstream dam

Camino Dam Reach Site (CD-G1) Pfankuch

Channel Stability (Pfan
Study Reach Name:
Crew Initials:
Date:
Start Time:
Stop Time:

kuch) Camino ACF, SRD 8/13/2003 9:30

Start Time:			9:30		Place X
Stop Time:			3.50		in this
Stop Time.		Category	(choose one for each of the four options for each category)		column:
Upper	1	Landform		2	
	1'	slope	Bank slope gradient <30%	4	
Banks		siope	Bank slope gradient 30-40%		
			Bank slope gradient 40-60%	6	x
	-		Bank slope gradient 60+%	8	
	2	Mass wasting	No evidence of past or future mass wasting	3	
			Infrequent. Most likely healed over. Low future potential	6	х
			Frequent or large, causing sediment nearly year long	9	
			Frequent or large causing sediment nearly year long or imminent danger of same	12	
	3	Debris jam	Essentially absent from immediate channel area	2	х
		potential	Present, but mostly small twigs and limbs	4	
			Moderate to heavy amounts, mostly larger sizes	6	
			Moderate to heavy amounts, predominately lager sizes	8	
	4	Vegetative	90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	3	
		bank	70-90% density. Fewer species or less vigor suggest less dense or deep root mass	6	
		protection	<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass	9	x
		protootion		12	^
	-	Oherenel	< 50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass		
ower	5	Channel	Ample for present plus some increases. Peak flows contained. W/D ration <7	1	X
Banks		capacity	Adequate. Bank overflows rare. W/D ratio 8-15	2	
			Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	3	
			Inadequate. Overbank flows common. W/D ratio >25	4	
	6	Bank rock	65%+ with large angular boulders. 12"+ common.	2	х
		content	40-65%. Mostly small boulders to cobbles 6-12"	4	
			20-40%. With most in the 3-6" diameter class	6	
			20% rock fragments of gravel sizes, 1-3" or less	8	
	7	Obstructions	Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable bed	2	x
	1	to flow	Some present causing erosive cross currents and minor pool filling. Obstructions newer and less	4	^
			Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool	6	
			Sediment traps full, channel migration occurring	8	
		Cutting		4	
	0	Cutting	Little or none. Infrequent raw banks less than 6"		X
			Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6	
			Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12	
			Almost continuous cuts, some over 24" high. Failure of overhangs frequent	16	
	9	Deposition	Little or no enlargement of channel or point bars	4	X
			Some new bar increase, mostly from coarse gravel	8	
			Moderate deposition of new gravel and course sand on old and some new bars	12	
			Extensive deposits of predominately fine particles. Accelerated bar development	16	
Bottom	10	Rock	Sharp edges and corners. Plane surfaces rough.	1	
		angularity	Rounded corners and edges, surfaces smooth, flat	2	x
			Corners and edges well rounded in two dimensions	3	<u>^</u>
			Well rounded in all dimensions, surfaces smooth	4	
	11	Drightnoop			
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	
			Mostly dull, but may have <35% bright surfaces	2	x
			Mixture dull and bright, ie 35-65% mixture range	3	
			Predominately bright, 65% exposed or scoured surfaces	4	
	12	Consolidation	Assorted sizes tightly packed or overlapping	2	
		of particles	Moderately packed with some overlapping	4	
			Mostly loose assortment with no apparent overlap	6	x
			No packing evident. Loose assortment easily moved	8	
	13	Bottom size	No size change evident. Stable mater. 80-100%	4	
		distribution	Distribution shift light. Stable material 50-80%	8	x
		alstribution	Moderate changes in sizes. Stable materials 20-50%	12	<u> </u>
		1	· · · · · · · · · · · · · · · · · · ·	12	
		Coourie	Marked distribution change. Stable materials 0-20%		
	114	Scouring and	<5% of bottom affected by scour or deposition	6	
		deposition	5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools	12	
		1	30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools	18	
			More than 50% of the bottom in a state of flux or change nearly year long	24	х
	15	Aquatic	Abundant growth moss-like, dark green perennial. In swift water too.	1	
				2	x
		vegetation	Common. Algae forms in low velocity and pool areas. Moss here too	~	
		vegetation	Common. Algae forms in low velocity and pool areas. Moss here too Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick	3	<u> </u>

Camino Dam Reach Site (CD-G1) Bank Erosion and Vegetation

Bank Erosion and Vegetation

Study Reach Name: Date: 8/13/03

Camino Start Time: 9:30 Crew Initials: ACF, SRD Stop Time: 12:00

Bank material:

Bedrock

BANK EROSION POTENTIAL					
(if banks are bedrock or compos	ed of boulders, do not	fill out this table)			
	Bank a Bank b Bank c Bank d				
Bank height					
Bankfull height					
Root depth					
Root density (%)					
Bank Angle (degrees)					
Surface Protection (%)					
% of total study reach					
Nataa					

Notes

Stratification of unstable layers in banks (below bankfull):

Sediment supply:	Low
Vertical streambed stability:	Stable?
ألفاه منبا والمستعما المعام مستعادا	

Bank and channel bed conditions notes:

Coarse gravel/cobble in channel. Coarse gravel/gravel on bedrock channel ledges. Supply-limited reach due to upstream dam affects.

	RIPARIAN VE	EGETATION		
	DENSITY (indicat	e all that apply)		
VEGETATION TYPE	LOW	MOD.	HIGH	NOTES
Bare			1	
Forbs only				
Annual Grass w/ forbes	3а			along water edge
Perennial grass	4a			along water edge
Rhizomatous grasses				
(bluegrass, Grass like plants,				
sedges, rushes)				
Low brush				
High brush				
Combination grass/brush	8a			
Deciduous overstory	9a			oaks and bays on slopes; alders along water edge
Deciduous w/brush/grass understory				
Perennial overstory				
Wetland vegetation community				
VEGETATION NOTES (compositi	on, vigor, density	, and potential):		I

S. F. American Reach Site (SFAR-G1) LWD Frequency

LWD Frequency Data Sheet Study Reach Name: Date: NO LWD IN THIS REACH

Start time: End time: ---

Crew Initials:

Diameter Class	Length Class				
	3-10 ft (0.9-3.0 m)	10-25 ft (3.1-7.6 m)	25-50 ft (7.7-15.2 m)	50-75 ft (15.3-22.9 m)	>75 ft (>23 m)
6-12 in (10-30 cm)					
12-24 in (31-60 cm)					
24-36 in (61-90 cm)					
>36 in (>90 cm)					

"Tally as R if rootwad is attached."

Comments:

S. F. American Reach Site (SFAR-G1) V Star

No Vstar measurements taken.

S. F. American Reach Site (SFAR-G1) Rosgen Level III

Rosgen Level III Data Shee	et
Study Reach Name:	SFAR
Date:	10/23/2003
Crew Initials:	SRD/CDJ
Start time: ; End time:	

Depositional Features (indicate one)

	B-1	point bars		
	B-2	t. bars w/ few mid channel bars		
	B-3	many mid channel bars		
x	B-4	side bars		
	B-5	diagonal bars		
	B-6	main branching w/ many mid channel bars and islands		
	B-7	mixed side bar and mid channel bars exceeding 2-3X width		
	B-8	delta bars		

Description:

Meander Pattern (indicate one)

	M-1	regular meander
	M-2	tortuous meander
х	M-3	irregular meander
	M-4	truncated meander
	M-5	unconfined me. scrolls
	M-6	confine me. scrolls
	M-7	distorted me. loops
	M-8	irregular with oxbows

Description:

STREAM CHANNEL DEBRIS/BLOCKAGES (indicate one)

Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime

Description/Extent				
х	D-1 (None)	Minor amounts of small, floatable material		
	D-2 (Infrequent)	Debris consists of small, easily moved, floatable material; i.e. leaves, needles, small limbs, twigs, etc		
	D-3 (Moderate)	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.		
	D-4 (Numerous)	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.		
	D-5 (Extensive)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.		
	D-6 (Dominating)	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull		
	D-7 (Beaver Dams - Few)	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.		
	D-8 (Beaver Dams - Frequent)	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced.		
	D-9 (Beaver Dams - Abandoned)	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.		
	D-10 (Human Influences)	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have		
Notes: Very littl	e LWD in channel o	or on banks		

S. F. American Reach Site (SFAR-G1) Pfankuch

Channel Stability (Pfankuch)

Study Reach Name: Crew Initials: Date: Start Time:

SFAR SRD/CDJ 10/23/2003

Start Time: Stop Time:		Category	(choose one for each of the four options for each category)		Place X in this column:
Upper	1	Landform	Bank slope gradient <30%	2	
Banks		slope	Bank slope gradient 30-40%	4	
			Bank slope gradient 40-60%	6	х
			Bank slope gradient 60+%	8	
	2	Mass wasting	No evidence of past or future mass wasting	3	
			Infrequent. Most likely healed over. Low future potential	6	
			Frequent or large, causing sediment nearly year long	9	х
			Frequent or large causing sediment nearly year long or imminent danger of same	12	
	3	Debris jam	Essentially absent from immediate channel area	2	x
		potential	Present, but mostly small twigs and limbs	4	
			Moderate to heavy amounts, mostly larger sizes	6	
			Moderate to heavy amounts, predominately lager sizes	8	
	4	Vegetative	90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	3	
		bank	70-90% density. Fewer species or less vigor suggest less dense or deep root mass	6	
		protection	<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass	9	x
			<50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass	12	
Lower	5	Channel	Ample for present plus some increases. Peak flows contained. W/D ration <7	1	х
Banks		capacity	Adequate. Bank overflows rare. W/D ratio 8-15	2	
-	1		Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	3	1
			Inadequate. Overbank flows common. W/D ratio >25	4	
	6	Bank rock	65%+ with large angular boulders. 12"+ common.	2	x
	Ŭ	content	40-65%. Mostly small boulders to cobbles 6-12"	4	⊢^
		oon on t	20-40%. With most in the 3-6" diameter class	6	
			20% rock fragments of gravel sizes, 1-3" or less	8	
	7	Obstructions	Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable bed	2	
	ľ	to flow	Some present causing erosive cross currents and minor pool filling. Obstructions newer and less	4	~
		10 11000	Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool	6	x
			Sediment traps full, channel migration occurring	8	
	0	Cutting	Little or none. Infrequent raw banks less than 6"	0 4	
	0	Culling	Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	4 6	x
				12	
			Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident		
	0	Deperition	Almost continuous cuts, some over 24" high. Failure of overhangs frequent	16	
	9	Deposition	Little or no enlargement of channel or point bars	4	
			Some new bar increase, mostly from coarse gravel	8	
			Moderate deposition of new gravel and course sand on old and some new bars	12	x
-			Extensive deposits of predominately fine particles. Accelerated bar development	16	
Bottom	10	Rock	Sharp edges and corners. Plane surfaces rough.	1	
		angularity	Rounded corners and edges, surfaces smooth, flat	2	х
			Corners and edges well rounded in two dimensions	3	
			Well rounded in all dimensions, surfaces smooth	4	
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	х
			Mostly dull, but may have <35% bright surfaces	2	
			Mixture dull and bright, ie 35-65% mixture range	3	
			Predominately bright, 65% exposed or scoured surfaces	4	
	12	Consolidation	Assorted sizes tightly packed or overlapping	2	
		of particles	Moderately packed with some overlapping	4	х
			Mostly loose assortment with no apparent overlap	6	
			No packing evident. Loose assortment easily moved	8	
	13	Bottom size	No size change evident. Stable mater. 80-100%	4	
		distribution	Distribution shift light. Stable material 50-80%	8	
			Moderate changes in sizes. Stable materials 20-50%	12	х
	1		Marked distribution change. Stable materials 0-20%	16	1
	14	Scouring and	<5% of bottom affected by scour or deposition	6	1
	1	deposition	5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools	12	x
	1		30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of	18	<u> </u>
	1		More than 50% of the bottom in a state of flux or change nearly year long	24	1
	15	Aquatic	Abundant growth moss-like, dark green perennial. In swift water too.	1	
	1.0	vegetation	Common. Algae forms in low velocity and pool areas. Moss here too	2	- v
	1	- Sectation		3	x
	1		Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick		───
	1		Perennial types scare or absent. Yellow-green, short term bloom may be present	4	

Notes:

Channel is characterized by steep valley walls with coniferous overstory on shallow soils. Large clasts make up majority of bed material, with some cobble/gravel/sand deposition on banks. LWD essentially absent from reach.

S. F. American Reach Site (SFAR-G1) Bank Erosion and Vegetation

Bank Erosion and Vegetation

Study Reach Name:SFARCrew Initials:SRD, CDJDate: 10/23/03Start Time: 15:00Stop Time: ---

Bank material:

Bedrock

BANK EROSION POTENTIAL						
(if banks are bedrock or composed of boulders, do not fill out this table)						
Bank a Bank b Bank c Bank d						
Bank height						
Bankfull height						
Root depth						
Root density (%)						
Bank Angle (degrees)						
Surface Protection (%)						
6 of total study reach						
	•	-				

Notes

Stratification of unstable layers

in banks (below bankfull):

Sediment supply:	Moderate/Low
Vertical streambed stability:	Stable
Bank and channel bed condition	ons notes:

Banks are bedrock and reach is supply limited. Depositional features on banks include large boulders. Small boulder deposition and sand deposition approx. bankful elevation

RIPARIAN VEGETATION								
	DENSITY (indicate all that apply)							
VEGETATION TYPE	LOW	MOD.	HIGH	NOTES				
Bare			1					
Forbs only	2a							
Annual Grass w/ forbes		3b						
Perennial grass		4b						
Rhizomatous grasses								
(bluegrass, Grass like plants,		5b						
sedges, rushes)								
Low brush		6b						
High brush								
Combination grass/brush								
Deciduous overstory			9с	higher on banks/valley walls				
Deciduous w/brush/grass understory			10c					
Perennial overstory								
Wetland vegetation community								
VEGETATION NOTES (compositi	on, vigor, density	, and potential):		•				

Slab Creek Dam Reach Site (SC-G1) LWD Frequency

LWD Frequency Data Sheet

Study Reach Name: Date:	Slab Creek Dam 5/23/2003	Start time:	15:10	Crew Initials: End time:	CAB, ZED 15:15
Diameter Class	Length Class 3-10 ft (0.9-3.0 m)	10-25 ft (3.1-7.6 m)	25-50 ft (7.7-15.2 m)	50-75 ft (15.3-22.9 m)	>75 ft (>23 m)
6-12 in (10-30 cm) 12-24 in (31-60 cm) 24-36 in (61-90 cm) >36 in (>90 cm)			20 00 k (() 10.2 h)		10 K (20 M)

"Tally as R if rootwad is attached."

Comments:

No LWD in or out of channel. Some very floatable small pieces outside bankfull. No key pieces.

Slab Creek Dam Reach Site (SC-G1) V Star

V star Measurements					
Study Reach Name: Slab Creek Dam					
Date: 5/23/03					

Crew Initials: CAB/ZED Start time: 1520 End time: 1525

Comments:

No V* measurements taken. No evidence of fine sediment in reach. Pools absent, generally glides. Pool/glide below end of reach too turbid and deep to measure V*.

Slab Creek Dam Reach Site (SC-G1) Rosgen Level III

Rosgen Level III Data Sheet

Study Reach Name:		Slab Creek Dam
Date:		5/23/2003
Crew Initials:		CAB, ZED
Start time:	15:05	End time: 15:10

Depositional Features (indicate one)

x	B-1	point bars
	B-2	pt. bars w/ few mid channel bars
	B-3	many mid channel bars
	B-4	side bars
	B-5	diagonal bars
	B-6	main branching w/ many mid channel bars and islands
	B-7	mixed side bar and mid channel bars exceeding 2-3X width
	B-8	delta bars
Description	agarag CO/DO ng	int have

Description: coarse CO/BO point bars

Meander Pattern (indicate one)

M-1	regular meander
M-2	tortuous meander
M-3	irregular meander
M-4	truncated meander
M-5	unconfined me. scrolls
M-6	confine me. scrolls
M-7	distorted me. loops
M-8	irregular with oxbows

Description: Meander pattern (nearly straight) determined by BR

STREAM CHANNEL DEBRIS/BLOCKAGES (indicate one)

Materials, which upon placement into the active channel or floodprone area may cause and adjustment in channel dimensions or conditions, due to influences on the existing flow regime

	Description/Extent					
X	D-1 (None)	Minor amounts of small, floatable material				
	D-2 (Infrequent)	Debris consists of small, easily moved, floatable material; i.e. leaves, needles, small limbs, twigs, etc				
	D-3 (Moderate)	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.				
	D-4 (Numerous)	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.				
	D-5 (Extensive)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.				
	D-6 (Dominating)	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull				
	D-7 (Beaver Dams - Few)	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.				
	D-8 (Beaver Dams - Frequent)	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced.				
	D-9 (Beaver Dams - Abandoned)	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.				
	D-10 (Human Influences)	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have				
Notes: QA Check:	ZED					

Slab Creek Dam Reach Site (SC-G1) Pfankuch

Crew Initials:		ne:	Slab Creek Dam		
			CAB, ZED		
Date:			5/23/2003		
Start Time:			15:10		Place)
Stop Time:		• ·	15:20		in this
		Category	(choose one for each of the four options for each category)		colum
pper	1	Landform	Bank slope gradient <30%	2	
Banks		slope	Bank slope gradient 30-40%	4	
			Bank slope gradient 40-60%	6	
			Bank slope gradient 60+%	8	х
	2	Mass wasting	No evidence of past or future mass wasting	3	
			Infrequent. Most likely healed over. Low future potential	6	x
			Frequent or large, causing sediment nearly year long	9	
			Frequent or large causing sediment nearly year long or imminent danger of same	12	
	3	Debris jam	Essentially absent from immediate channel area	2	x
	ľ	potential	Present, but mostly small twigs and limbs	4	Â
		potoritidi	Moderate to heavy amounts, mostly larger sizes	6	
			Moderate to heavy amounts, predominately lager sizes	8	
		Vegetetive		3	
	4	Vegetative	90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	-	
		bank	70-90% density. Fewer species or less vigor suggest less dense or deep root mass	6	
		protection	<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass	9	x
			<50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass	12	
ower	5	Channel	Ample for present plus some increases. Peak flows contained. W/D ration <7	1	
Banks		capacity	Adequate. Bank overflows rare. W/D ratio 8-15	2	x
			Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	3	
			Inadequate. Overbank flows common. W/D ratio >25	4	
	6	Bank rock	65%+ with large angular boulders. 12"+ common.	2	х
		content	40-65%. Mostly small boulders to cobbles 6-12"	4	
			20-40%. With most in the 3-6" diameter class	6	
			20% rock fragments of gravel sizes, 1-3" or less	8	
	7	Obstructions	Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable bed	2	x
	Ľ	to flow	Some present causing erosive cross currents and minor pool filling. Obstructions newer and less	4	^
		10 11011	Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool	6	
				8	
		0	Sediment traps full, channel migration occurring	-	
	°	Cutting	Little or none. Infrequent raw banks less than 6"	4	x
			Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6	
			Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12	
		_	Almost continuous cuts, some over 24" high. Failure of overhangs frequent	16	
	9	Deposition	Little or no enlargement of channel or point bars	4	X
			Some new bar increase, mostly from coarse gravel	8	
			Moderate deposition of new gravel and course sand on old and some new bars	12	
			Extensive deposits of predominately fine particles. Accelerated bar development	16	
ottom	10	Rock	Sharp edges and corners. Plane surfaces rough.	1	
		angularity	Rounded corners and edges, surfaces smooth, flat	2	
			Corners and edges well rounded in two dimensions	3	x
			Well rounded in all dimensions, surfaces smooth	4	
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	
			Mostly dull, but may have <35% bright surfaces	2	
			moonly duil, but may have see to sight bandbee		x
			Mixture dull and bright in 35-65% mixture range	3	· ·
			Mixture dull and bright, ie 35-65% mixture range	3	
		Consolidation	Predominately bright, 65% exposed or scoured surfaces	4	×
		Consolidation	Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping	4	x
		Consolidation of particles	Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping Moderately packed with some overlapping	4 2 4	x
			Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping Moderately packed with some overlapping Mostly loose assortment with no apparent overlap	4 2 4 6	x
	12	of particles	Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping Moderately packed with some overlapping Mostly loose assortment with no apparent overlap No packing evident. Loose assortment easily moved	4 2 4 6 8	x
	12	of particles Bottom size	Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping Moderately packed with some overlapping Mostly loose assortment with no apparent overlap No packing evident. Loose assortment easily moved No size change evident. Stable mater. 80-100%	4 2 4 6 8 4	x
	12	of particles	Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping Moderately packed with some overlapping Mostly loose assortment with no apparent overlap No packing evident. Loose assortment easily moved	4 2 4 6 8	x
	12	of particles Bottom size	Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping Moderately packed with some overlapping Mostly loose assortment with no apparent overlap No packing evident. Loose assortment easily moved No size change evident. Stable mater. 80-100%	4 2 4 6 8 4	
	12	of particles Bottom size	Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping Moderately packed with some overlapping Mostly loose assortment with no apparent overlap No packing evident. Loose assortment easily moved No size change evident. Stable mater. 80-100% Distribution shift light. Stable material 50-80%	4 2 4 6 8 4 8	
	12	of particles Bottom size distribution	Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping Moderately packed with some overlapping Mostly loose assortment with no apparent overlap No packing evident. Loose assortment easily moved No size change evident. Stable mater. 80-100% Distribution shift light. Stable material 50-80% Moderate changes in sizes. Stable materials 20-50%	4 2 4 6 8 4 8 12	x
	12	of particles Bottom size distribution Scouring and	Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping Moderately packed with some overlapping Mostly loose assortment with no apparent overlap No packing evident. Loose assortment easily moved No size change evident. Stable mater: 80-100% Distribution shift light. Stable material 50-80% Moderate changes in sizes. Stable materials 20-50% Marked distribution change. Stable materials 0-20% <5% of bottom affected by scour or deposition	4 2 4 6 8 4 8 12 16 6	
	12	of particles Bottom size distribution	Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping Moderately packed with some overlapping Mostly loose assortment with no apparent overlap No packing evident. Loose assortment easily moved No size change evident. Stable mater. 80-100% Distribution shift light. Stable material 50-80% Moderate changes in sizes. Stable materials 20-50% Marked distribution change. Stable materials 0-20% <5% of bottom affected by scour or deposition	4 2 4 6 8 4 8 12 16 6 12	x
	12	of particles Bottom size distribution Scouring and	Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping Moderately packed with some overlapping Mostly loose assortment with no apparent overlap No packing evident. Loose assortment easily moved No size change evident. Loose assortment easily moved No size change evident. Stable mater: 80-100% Distribution shift light. Stable material 50-80% Moderate changes in sizes. Stable materials 20-50% Marked distribution change. Stable materials 0-20% <5% of bottom affected by scour or deposition	4 2 4 6 8 4 12 16 6 12 18	x
	12 13 14	of particles Bottom size distribution Scouring and deposition	Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping Moderately packed with some overlapping Mostly loose assortment with no apparent overlap No packing evident. Loose assortment easily moved No size change evident. Stable mater: 80-100% Distribution shift light. Stable material 50-80% Moderate changes in sizes. Stable materials 20-50% Marked distribution change. Stable materials 0-20% <5% of bottom affected by scour or deposition 5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools 30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools More than 50% of the bottom in a state of flux or change nearly year long	4 2 4 6 8 4 8 12 16 6 12 18 24	x
	12 13 14	of particles Bottom size distribution Scouring and deposition Aquatic	Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping Moderately packed with some overlapping Mostly loose assortment with no apparent overlap No packing evident. Loose assortment easily moved No packing evident. Loose assortment easily moved No size change evident. Stable mater: 80-100% Distribution shift light. Stable material 50-80% Moderate changes in sizes. Stable materials 20-50% Marked distribution change. Stable materials 0-20% <5% of bottom affected by scour or deposition 5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools 30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools More than 50% of the bottom in a state of flux or change nearly year long Abundant growth moss-like, dark green perennial. In swift water too.	4 2 4 6 8 4 8 12 16 6 12 18 24 1	x
	12 13 14	of particles Bottom size distribution Scouring and deposition	Predominately bright, 65% exposed or scoured surfaces Assorted sizes tightly packed or overlapping Moderately packed with some overlapping Mostly loose assortment with no apparent overlap No packing evident. Loose assortment easily moved No size change evident. Stable mater: 80-100% Distribution shift light. Stable material 50-80% Moderate changes in sizes. Stable materials 20-50% Marked distribution change. Stable materials 0-20% <5% of bottom affected by scour or deposition 5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools 30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools More than 50% of the bottom in a state of flux or change nearly year long	4 2 4 6 8 4 8 12 16 6 12 18 24	x

Slab Creek Dam Reach Site (SC-G1) Bank Erosion and Vegetation

Bank Erosion and Vegetation

Study Reach Name:Slab Creek DamCrew Initials:CAB, ZEDDate: 05/23/03Start Time: 15:05Stop Time:15:10

Bank material:

bedrock, boulders

BANK EROSION POTENTIAL							
(if banks are bedrock or composed of boulders, do not fill out this table)							
Bank a Bank b Bank c Bank d							
Bank height							
Bankfull height							
Root depth							
Root density (%)							
Bank Angle (degrees)	Bank Angle (degrees)						
Surface Protection (%)							
% of total study reach							

Notes

Stratification of unstable layers N/A

in banks (below bankfull):

Sediment supply:presume lowVertical streambed stability:stableBank and channel bed conditions notes:

BO/BR banks. Some overbank deposition of small CO and GR in small patches. Presume sediment supply is low; but reach is not very depositional, so hard to say.

	RIPARIAN V	EGETATION		
	DENSITY (indicat	e all that apply)		
VEGETATION TYPE	LOW	MOD.	HIGH	NOTES
Bare			1	BO/BR banks preclude veg establishment
Forbs only	2a			
Annual Grass w/ forbes	3a			
Perennial grass	4a			
Rhizomatous grasses (bluegrass, Grass like plants, sedges, rushes)	5a			
Low brush	6a			
High brush	7a			
Combination grass/brush	8a			
Deciduous overstory	9a			
Deciduous w/brush/grass understory	10a			
Perennial overstory	11a			
Wetland vegetation community				none

VEGETATION NOTES (composition, vigor, density, and potential):

UARP:

Rubicon Dam Reach Site (RD-G1) Loon Lake Dam Reach Upper Site (LL-G1) Loon Lake Dam Reach Middle Site (LL-G2) Loon Lake Dam Reach Lower Site (LL-G3) Gerle Creek Dam Reach Site (GC-G1) Robbs Peak Dam Reach Site (GC-G1) Ice House Dam Reach Upper Site (IH-G1) Ice House Dam Reach Lower Site (IH-G1) Junction Dam Reach Site (JD-G1) Camino Dam Reach Site (CD-G1) S. F. American Reach Site (SFAR-G1) Slab Creek Dam Reach Site (SC-G1)

APPENDIX J

DATA SETS: LONGITUDINAL PROFILE DATA, CROSS-SECTION DATA, AND PEBBLE COUNT TABLES FOR THE REACH DOWNSTREAM OF CHILI BAR

The Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) Upper Coloma Site (CB-G2) Lower Coloma Site (CB-G3) Gorge Site (CB-G4)

The Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) long profile (p. 1 of 2)

н	BS	FS	STA	NEW STA	WSE	ELEV	Water depth (ft)	Notes FS to US benchmark (BM 2) from OS 1 (as recorded on pg 4 of cross section data sheet) *Note original BM
90.23	3.45	10.18				80.05		name from field notes was changed to prevent confusion 18JAN2004 CDJ BS to BM 2 from OS 2 *Note original BM name from field notes was changed to prevent confusion 18JAN2004 CDJ
	0.10	6.82	10.00	10.00	78.88	76.68	2.20	
		4.95	30.00	30.00	80.85	78.55	2.30	
		5.22	50.00	50.00	80.68	78.28	2.40	
		5.66	70.00	70.00	80.52	77.84	2.68	
		7.76	90.00	90.00	78.54	75.74	2.80	
		7.74	110.00	110.00	78.36	75.76	2.60	
			127.70	127.70	78.07	74.95	3.12	XS 1 (upper XS)
			147.00	147.00	78.00	74.84	3.16	
			165.00	165.00	77.56	74.54	3.02	
			185.00	185.00	77.55	73.15	4.40	
			205.00	205.00	77.21	74.25	2.96	
		9.15	225.00	225.00	77.20	74.35	2.85	riffle rapide with bodrock bettern that is strown with
		8 70	245.00	245.00	77.04	74.80	2.24	riffle - rapids with bedrock bottom that is strewn with boulders and cobbles
			265.00	245.00	76.99	74.39	2.60	
			285.00	285.00	76.82		2.55	
		9 70	295.00	295.00	76.75	73.80	2.95	296 on the first tape is equal to 16 ft on the second tape
			315.00	315.00	75.75	74.05	1.70	rapids!
			335.00	335.00	75.20	72.30	2.90	
			75.00	355.00	74.94	71.54	3.40	Station = 296 + 75 - 16 = 355
			95.00	375.00	74.60	72.00	2.60	
		11.46	115.00	395.00	74.74	72.04	2.70	
			135.00	415.00	74.64	72.66	1.98	
			160.00	440.00	74.51	71.91	2.60	XS 2 (middle XS)
			180.00	460.00	74.35	72.59	1.76	beginning of pool
			200.00	480.00	74.63	72.15	2.48	
			220.00	500.00	74.27	70.61	3.66	
		12.90	240.00	520.00	74.74	70.60	4.14	
								mid-pool (this reading was taken just after I nudged the tripod by accident. All previous readings are not affected
		12.91	260.00	540.00	74.19	70.59	3.60	by nudge.
								FS back to BM 2 from OS 2 *Note original BM name
			R					from field notes was changed to prevent confusion
83.50		3.44						18JAN2004 CDJ
				Did not upo t	hia			BS to BM 2 from OS 3 *Note original BM name from
	40.00		`	Did not use t value in the	nis	00.05		field notes was changed to prevent confusion
	12.88			analysis beca		80.05		18JAN2004 CDJ
				of the "nudge				FS to middle XS LB pin from OS 3 (this is the only tie-in
92.93		0.61				92.32		to the other cross-sections, so back calculating elevations from here CDJ)
Day 2 Lo	ona Prof	ile						
				L]			
92.70	0.38					92.32		top LB middle XS
		14.72				77.98		BM 3 *Note original BM name from field notes was changed to prevent confusion 18JAN2004 CDJ
-								

The Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) long profile (p. 2 of 2)

н	BS	FS	STA	NEW STA	WSE	ELEV	Water depth (ft)	Notes
								BM 3 *Note original BM name from field notes was
83.24	5.26					77.98		changed to prevent confusion 18JAN2004 CDJ
			96.00	540.00	74.15	70.11	4.04	starting where we left off on sheet 1 (STA 96 = 260)
			116.00	560.00	74.16	69.71	4.45	
			136.00	580.00	74.23	69.83	4.40	
		13.16	156.00	600.00	74.13	70.08	4.05	
		14.35	176.00	620.00	73.99	68.89	5.10	tail of pool
		13.94	196.00	640.00	74.10	69.30	4.80	tail of pool
		13.65	216.00	660.00	74.01	69.59	4.42	tail of pool
			236.00	680.00	73.99	71.24	2.75	head of riffle
		12.45	256.00	700.00	73.95	70.79	3.16	middle of riffle
		12.31	276.00	720.00	73.03	70.93	2.10	middle of riffle
		13.01	296.00	740.00	72.38	70.23	2.15	=6 ft on new tape
		14.10	26.00	760.00	72.24	69.14	3.10	
		13.78	46.00	780.00	72.01	69.46	2.55	top edge of small pool
		14.33	66.00	800.00	71.91	68.91	3.00	
		14.95	86.00	820.00	71.94	68.29	3.65	
		14.71	106.00	840.00	71.83	68.53	3.30	tail end of small pool
		14.63	126.00	860.00	71.76	68.61	3.15	
			146.00	880.00	71.47	69.07	2.40	
			153.00	887.00	71.46	68.76	2.70	XS 3 (lower XS)
		14.39	170.00	904.00	71.35	68.85	2.50	
		14.83	190.00	924.00	71.21	68.41	2.80	
			210.00	944.00	71.18	68.28	2.90	
			230.00	964.00	70.90	68.80	2.10	
			250.00	984.00	70.64	67.54	3.10	beginning of pool (end riffle)
			270.00	1004.00	70.67	67.07	3.60	
		16.60	290.00	1024.00	70.64	66.64	4.00	middle pool
								BM 3 *Note original BM name from field notes was
		5.27				77.97		changed to prevent confusion 18JAN2004 CDJ

The Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) upper cross-section (p. 1 of 2)

HÌ	BS	FS	STA	ELEV	Notes
100.35	0.35		LB pin		top of pin = assumed to be 100.0
		0.79	15.50	99.56	base of LB pin
		4.88	20.00	95.47	
		7.53	25.00	92.82	
		9.21	30.00	91.14	
		11.18	36.00	89.17	
		12.14	40.00	88.21	
		13.66	45.00	86.69	upper bankfull est.
		14.80	50.00	85.55	
		15.99	55.00	84.36	
		16.92	60.00	83.43	
		19.63	65.00	80.72	
		20.00	67.00	80.35	lower bankfull est.
		20.97	73.00	79.38	
		21.28	80.00	79.07	
		22.03	80.40	78.32	LEW
		22.95	85.00	77.40	
		23.06	90.00	77.29	
		23.33	95.00	77.02	
		22.70	100.00	77.65	
		23.09	105.00	77.26	
		22.45	110.00	77.90	
		22.12	115.00	78.23	
		23.11	120.00	77.24	
		24.10	125.00	76.25	
		23.39	130.00	76.96	
		23.42	135.00	76.93	
		23.36	140.00	76.99	
		21.22	145.00	79.13	
		23.60	150.00	76.75	
		24.48	155.00	75.87	
		24.66	160.00	75.69	
		25.40	165.00	74.95	estimated readingthalweg (rod was too sho
		24.05	170.00	76.30	50(1111111111111
		23.52	175.00	76.83	
		23.46	180.00	76.89	
		21.77	190.00	78.58	
		23.73	195.00	76.62	

The Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) upper cross-section (p. 2 of 2)

н	BS	FS	STA	ELEV	Notes
100.35		22.82	200.00	77.53	
		22.68	205.00	77.67	
		23.46	210.00	76.89	
		21.96	215.00	78.39	
		22.25	220.00	78.10	
		22.87	225.00	77.48	
		22.67	230.00	77.68	
		22.34	235.00	78.01	
		22.09	240.00	78.26	
		20.96	245.00	79.39	
		19.84	250.00	80.51	
		20.32	257.00	80.03	
		21.40	243.50	78.95	REW
		20.39	264.00	79.96	
		19.51	270.00	80.84	
		20.21	277.00	80.14	
		19.79	283.00	80.56	
		19.22	290.00	81.13	lower bankfull
		16.91	297.00	83.44	
		13.90	304.00	86.45	
		13.41	310.00	86.94	
		14.95	317.00	85.40	
		16.62	325.00	83.73	
		17.30	332.00	83.05	
		15.85	339.00	84.50	
		15.11	346.00	85.24	
		14.00	353.00	86.35	
		13.10	356.30	87.25	upper bankfull
		10.66	360.00	89.69	
		4.48	365.80	95.87	base of pin
		3.66	RB pin		top of pin
		0.35	LB pin		top of pin OK

	Tł	ne Rea			Chili Bar: Upper Can s-section (p. 1 of 2	
н	BS	FS	STA	ELEV	Bed material	Notes In order to tie cross sections together, reshooting top of LB pin on upper cross section (XS 1) and turning on BM 1 to tie into top of LB
100.30	0.30	14.36	top of LB pin XS 1 BM 1	100.00 85.94		pin XS 2, middle cross section Discharge ~ 200 cfs
92.96	7.02	0.64 1.20 2.44 5.29 6.60 8.58 10.70 11.26 13.56 14.90 15.38 17.03 17.77 19.92 22.88 21.56 20.70	BM 1 (OS 1) top of LB pin XS 2 1.40 6.00 11.00 17.00 24.00 31.00 38.00 45.00 49.00 56.00 65.00 65.00 67.00 69.00 76.00 80.00	87.67 86.36 84.38 82.26 81.70 79.40 78.06 77.58 75.93 75.19 73.04 70.08 71.40	bedrock bedrock bedrock	Estimate 21 feet up and 15 feet back to edge of terrace [from pin] base of pin XS 2 upper bankfull estimate lower bankfull estimate LEW thalweg estimated. Tape broke!! Knot in tape, 0.1 feet lost
		20.78 20.05 19.54 20.05 20.48 20.75 20.30 20.83 20.40 20.64 21.29 21.26 21.26 21.26 21.04 20.42 20.13 20.27	85.00 90.00 95.00 100.00 105.00 110.00 115.00 120.00 125.00 130.00 135.00 140.00 145.00 155.00 160.00 165.00	72.18 72.91 73.42 72.91 72.48 72.21 72.66 72.13 72.56 72.32 71.67 71.70 71.70 71.70 71.92 72.54 72.69	bedrock/gravel boulder	

The Beach Downstream of Chili Bary Upper Canyon Site (CB-C1)

The Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) middle cross-section (p. 2 of 2)

HI	BS	FS	STA	ELEV	Bed material	Notes
92.96		19.50	170.00	73.46		
		19.63	175.00	73.33		
		19.31	180.00	73.65		
		18.68	185.00	74.28	boulder/large cobble	REW
		17.72	190.00	75.24	boulder/large cobble	
		17.70	197.00	75.26	large cobble/small boulder	
		17.29	207.00	75.67	large cobble/small boulder	
		16.05	214.00	76.91	large cobble/small boulder	
		15.18	221.00	77.78	large cobble/small boulder	
		14.72	227.00	78.24	large cobble/small boulder	lower bankfull estimate
		12.24	238.00	80.72	riparian veg	
		11.88	245.00	81.08	riparian veg	
						on top of cobble bar, dividing main
		12.04	252.00	80.92		channel and high flow channel
		11.58	259.00	81.38		
		10.60	267.00	82.36		
		9.00	279.00	83.96		top of cobble bar, upper BF estimate
		9.81	287.00	83.15		left edge of bank high flow channel
		10.88	295.00	82.08		
		11.29	300.00	81.67		
		10.46	307.00	82.50		
		9.70	314.00	83.26		
		9.21	321.00	83.75		
		8.76	330.00	84.20		
		4.75	336.00	88.21	bedrock	on steep slope
		2.10	340.00	90.86		
		1.14	348.00	91.82		
		1.49	TP 1	91.47		
103.56	12.09		TP 1			OS 2
		5.26	352.40	98.30		base of pin RB
		5.09	352.40	98.47		top of pin RB
		11.25	top LB pin	92.31		reshoot OK

The Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) lower cross-section (p. 1 of 2)

HI	BS	FS	STA	ELEV	WD	Bed material	Notes 5 feet back from left bank pin, 15 feet
00.00							up from hillslope is the location of first
90.23	1.44		1.20				measurement Top of pin (LB)
	1.44	1.78	1.20	88.45	68.99		base of pin (LB)
		2.00	2.00	07.00			alluvial terrace, boulder-cobble w/veg
		2.90	3.00	87.33			on it
		3.88	5.00	86.35			
		4.59 5.16	7.00 9.00	85.64 85.07			
		5.74	9.00 11.00	84.49			
		6.16	13.00	84.07			
		6.39	15.00	83.84			
		6.48	17.00	83.75			
		6.65	19.00	83.58			
		6.56	21.00	83.67			
		8.40	23.00	81.83			
		7.30	25.00	82.93			on top of boulder
		9.57	27.00	80.66			•
		10.23	29.00	80.00			
		9.65	31.00	80.58			estimated bankfull (LB)
		10.92	33.00	79.31			
		11.04	35.00	79.19			
		11.36	37.00	78.87			
		11.10	39.00	79.13			
		11.10	41.00	79.13			
		10.99	43.00	79.24			
		11.01	45.00	79.22			
		11.15	47.00	79.08 79.40			
		10.83 10.95	49.00	79.40 79.28			
		11.24	51.00 53.00	79.20 78.99			
		11.10	55.00	79.13			
		12.31	57.00	77.92			
		12.27	59.00	77.96			
		12.05	61.00	78.18			
		11.20	63.00	79.03			measurement taken on top of boulder
		11.65	65.00	78.58			meddarement taken on top of boulder
		12.57	67.40	77.66			
		14.29	70.40	75.94			
		15.02	72.50	75.21			
		15.69	75.00	74.54			
		16.05	77.00	74.18			on a small cobb gravel bar
		16.28	79.00	73.95			
		16.56	81.00	73.67			
		17.00	83.00	73.23			
		17.75	85.00	72.48			
		18.00	87.00 89.00	72.23			LEW
		18.40 19.50	89.00 95.00	71.83 70.73			small cobble gravel
		20.14	100.00	70.09			
		20.00	105.00	70.23		bedrock and small boulder	
		20.28	111.00	69.95			
		19.74	117.00	70.49			
		21.04	122.00	69.19			
		21.16	127.50	69.07			
		20.66	134.00	69.57			
		19.37	141.30	70.86			
		20.68	148.00	69.55			2.3 feet water depth ~ thalweg, time:
		21.07	154.30	69.16	2.30		11:30am
		20.82	161.00	69.41			
		21.24	166.00	68.99			
		21.22	172.00	69.01			
		20.26	177.00	69.97			

The Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) lower cross-section (p. 2 of 2)

				0000		033 Section (p. 2	01 2)
HI	BS	FS	STA	ELEV	wп	Bed material	Notes
	50					Dea material	Notes
90.23		20.68	182.00	69.55			
		20.05	189.00	70.18			
		19.16	195.00	71.07			
		19.46	200.00	70.77			
		19.60	205.00	70.63			
		19.52	210.00	70.71			
		19.65	215.00	70.58		gravel sand boulder	
		19.44	220.00	70.79		3	
		19.02	224.10	71.21			REW at 11:45 am
				71.90		apphile houlder aged (now facion)	NEW at 11.45 am
		18.33	227.00			cobble boulder sand (new facies)	
		18.04	229.00	72.19			
		17.77	231.00	72.46			
		17.61	233.00	72.62			
		17.06	235.00	73.17			
		16.65	237.00	73.58			
		16.36	239.00	73.87			
		16.13	241.00	74.10			
		15.84	243.00	74.39			
		15.65	245.00	74.58		more cobble gravel boulder facies	
		15.29	247.00	74.94		· · · · · · · · · · · · · · · · · · ·	
		14.84	249.00	75.39			
		13.87	251.00	76.36			
		13.42	253.00	76.81			
		12.80	255.00	77.43		riparian veg begins	
		12.14	257.00	78.09			
		11.56	259.00	78.67			
		11.20	261.00	79.03			
		10.53	263.00	79.70			
		10.08	265.00	80.15			
		9.68	267.00	80.55			
		9.59	269.00	80.64			estimated bankfull (RB)
		9.26	271.00				
				80.97			
		9.02	273.00	81.21			
		8.86	275.00	81.37			
		9.32	277.00	80.91			
		9.58	279.00	80.65			
		9.89	281.00	80.34			
		10.28	283.00	79.95			
		10.57	285.00	79.66			
		10.92	287.00	79.31			
		11.46	289.00	78.77			
		11.90	291.00	78.33			
		12.13	293.00	78.10			
		12.44	295.00	77.79			
		12.54	297.00	77.69			
		12.33	299.00	77.90			
		12.22	301.00	78.01			
		11.76	303.00	78.47			
		11.53	305.00	78.70			
		11.32	307.00	78.91		gravel sand	
		11.11	309.00	79.12			
		10.83	311.00	79.40			
		9.20	313.00	81.03		bedrock	
		8.61	315.00	81.62			
		8.07	315.00	82.16		scree slope w/bedrock	
						scree slope w/bedrock	
		7.72	319.00	82.51			
		6.15	321.00	84.08			
		4.27	323.00	85.96			
		4.05	325.00	86.18			
		3.82	327.00	86.41			
		3.29	328.50	86.94			base of pin, RB
		2.75	328.50				top of pin, RB (12:33 pm)
		1.44	LB T.O.P.				LB top of pin, reshoot close-out
							FS from OS 1 to u/s benchmark (BM
							2) *Note original BM name from field
							notes was changed to prevent
90.23		10.18	BM 2	80.05			confusion 18JAN2004 CDJ
30.23		10.10		60.00			
							BS from OS 2 to BM 2 *Note original
							BM name from field notes was
	• • • •						changed to prevent confusion
	3.45		BM 2				18JAN2004 CDJ

The Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) pebble count summary

	Upper Class	Rosgen						
	Boundary	Particle						
Particle Description	(mm)	Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	0	0	0	0	0%	0%
Very coarse sand (measured)	2	5	0	0	0	0	0%	0%
Very Fine Gravel	4		0	1	0	1	0%	0%
Fine Gravel	8		1	3	1	5	2%	2%
Medium Gravel	16	4	5	1	1	7	2%	4%
Coarse Gravel	32		9	9	9	27	9%	13%
Very Coarse Gravel	64		24	20	24	68	23%	36%
Small Cobble	128	- 3	25	28	29	82	27%	63%
Large Cobble	256	5	24	24	19	67	22%	86%
Small Boulder	512		12	14	17	43	14%	100%
Medium Boulder	1024	2	0	0	0	0	0%	100%
Large Boulder	2048	2	0	0	0	0	0%	100%
Very Large Boulder	4096		0	0	0	0	0%	100%
Bedrock	>4096	1	0	0	0	0	0%	100%
		Total	100	100	100	300	100%	

Modified Wolman Pebble Count (mm), Upper Canyon Chili Bar

The Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) long profile

						•••	
	BS 2.87	FS	STA BM2	WSE	ELEV	Water depth (ft)	Notes A non-descript rock on RB near XS1
		12.01		89.32	84.67	4.65	·····
		11.26			85.42	3.90	
		10.89	30.00			3.50	
		9.82			86.86	2.40	head of riffle
		9.35			87.33	1.70	
		0.00	68.00	00.00	07.00	1.10	Upper XS crosses long profile
		9.89	75.00	88 99	86.79	2.20	opper ve crococc long prome
			90.00			1.95	
			105.00			2.00	
			120.00			2.53	
			135.00			2.20	
			151.90			1.40	
			165.00			1.88	end of island
			180.00				
						2.40	
			195.00			2.45	
			210.00			3.40	
		14.64	225.00	85.44	82.04	3.40	
		44.40	231.50	05.00	00.00	0.40	Long profile crosses Middle XS
			240.00			3.10	
			255.00			2.25	
			270.00			2.15	
			285.00			2.20	
			300.00			2.30	
			315.00			2.70	
			330.00			2.70	
			345.00			2.80	
			360.00			2.25	End of riffle/top of pool
			375.00			2.70	
			390.00			2.75	
		14.90	405.00	84.38	81.78	2.60	
			420.00			3.18	
		15.62	435.00	84.41	81.06	3.35	
		15.95	450.00	84.43	80.73	3.70	
			459.80				Long profile crosses Lower XS
		15.88	465.00	84.40	80.80	3.60	
		16.16	480.00	84.37	80.52	3.85	
		15.93	495.00	84.35	80.75	3.60	
		15.80	510.00	84.36	80.88	3.48	
			525.00			4.10	
			540.00			3.75	
			555.00			3.30	
			570.00			3.70	
			585.00			3.54	
			600.00			3.90	
							A non-descript rock on RB near XS1 Loop Closed Station
96.68		2.88	BM2	93.80	93.80		OK (0.01 error) A non-descript rock on RB near XS1 BM2, backshot from
93.81	12.55						different OS
							T.O.P. R.B. Upper XS (really on 6.355 but closer to 6.36)
		6.36			100.00		[Used this value for the analysis]
106.36		0.50					

The Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) upper cross-section

H BS FS STA ELEV WD Bed material Massume devadion T.O.P. Ra assume devadion T.O.P. Ra D.P. Ra Upper XS Description 100.99 1.21 16.20 99.78 sediment: and gravel cobble boulder massume devadion T.O.P. Ra D.P. Ra Upper XS base of pin Rd Dase of pin Rd Discover devadion T.O.P. Ra Dase of pin Rd Dase of pin Rd Dase of pin Rd Dase of pin Rd Discover devadion T.O.P. Ra Dase of pin Rd Dase of pin Rd Dase of pin Rd Dase of pin Rd Discover devadion T.O.P. Ra Dase of pin Rd Dase of pin Rd Dase of pin Rd Discover devadion T.O.P. Ra Dase of pin Rd Dase of pin Rd Discover devadion T.O.P. Ra Dase of pin Rd Discover devadion T.O.P. Ra Dase of pin Rd Discover devadion T.O.P. Ra Discover devadion T.O.P	ce bar, slightly vegetated ade of sand/gravel/cobble
100.99 0.99 16.20 100.00 sediment: sand gravel cobble boulder FLOP. RB Upper XS there from the RB pin coad surface of the RB pin	ce bar, slightly vegetated ade of sand/gravel/cobble
100.99 16.20 99.76 sediment: sand gravel cobble boulder To.P. RB Upper XS base of pin RB Upper XS transport 0.30 -4.00 100.69 97.30 sediment: sand gravel cobble boulder base of pin RB Upper XS transport totto transport tottotransport tottotottototto tottotottototto totto tottotottototto tottotottototto tottotot	ce bar, slightly vegetated ade of sand/gravel/cobble
1.21 16.20 99.78 sediment: sand gravel cobble boulder base of pin RB Upper XB term from the RB pin road surface r extending -15 feet horizontally 3.69 2.20 97.70 84.53 extending -15 feet horizontally 7.27 40.00 93.72 extending -15 feet horizontally 7.27 40.00 93.79 extending -15 feet horizontally 7.27 10.00 87.69 extending -15 feet horizontally 7.27 10.00 87.69 boulders present 13.10 70.00 87.74 14.44 78.00 86.67 14.31 103.00 86.67 14.32 98.00 86.77 14.31 13.00 85.92 15.33 13.00 85.92 15.39 14.30 86.92 15.39 14.30 86.92 15.39 14.30 86.92	ade of sand/gravel/cobble
100 100.69 from the RB pin road surface; 3.69 22.00 97.30 extending ~15 feet horizontally 5.44 22.00 97.30 estimated bankfull elevation 6.46 33.00 94.53 estimated bankfull elevation 10.32 52.00 90.67 estimated bankfull elevation 10.32 52.00 90.67 estimated bankfull elevation 11.44 57.00 89.55 cobble, gravel, sand active channel 11.60 58.00 87.89 boulders present wSE RB (09.58) 13.11 73.00 87.68 sand in small patches between boulder and cobble 14.43 193.00 86.65 sand in small patches between boulder and cobble 14.44 113.00 86.65 sand in small patches between boulder and cobble 14.44 113.00 86.65 sand in small patches between boulder and cobble 14.42 113.00 86.65 sand in small patches between boulder and cobble 14.44 113.00 86.65 sand in small patches between boulder and cobble 1	ade of sand/gravel/cobble
0.30 -4.00 100.69 extending -15 feet horizontally 3.69 22.00 97.30 standing -15 feet horizontally 5.24 26.00 95.75 estimated bankfull elevation 10.32 52.00 90.67 estimated bankfull elevation 10.32 52.00 90.67 estimated bankfull elevation 10.32 52.00 90.67 estimated bankfull elevation 11.44 57.00 88.39 0.00 WSE RB (08.56) 12.70 63.00 88.29 boulders present with elevation 13.10 68.00 87.51 stand in small patches between boulder and cobble with elevation 14.34 93.00 86.67 stand in small patches between boulder and cobble estimate thalweg 14.461 103.00 86.48 stand in small patches between boulder and cobble with elevation 14.32 98.00 86.67 stand in small patches between boulder and cobble with elevation 14.31 183.00 85.66 with elevation with elevation 15.33	
3.69 22.00 97.30 5.24 22.60 95.75 6.46 33.00 94.53 7.27 40.00 93.72 8.03 45.00 92.96 11.44 57.00 89.55 11.44 57.00 89.55 11.44 57.00 89.39 13.10 68.00 87.89 13.11 7.300 87.68 13.44 78.00 87.68 13.44 78.00 86.65 14.42 93.00 86.65 14.43 93.00 86.65 14.44 103.00 86.18 14.45 113.00 86.57 14.31 113.00 86.57 15.37 133.00 85.50 15.37 133.00 85.52 15.39 143.00 86.65 15.39 143.00 86.60 15.39 143.00 85.60 15.39 143.00 86.60	away from the pin.
3.69 22.00 97.30 5.24 22.60 95.75 6.46 33.00 94.53 7.27 40.00 93.72 8.03 45.00 92.96 11.44 57.00 89.55 11.44 57.00 89.55 11.44 57.00 89.39 13.10 68.00 87.89 13.11 7.300 87.68 13.44 78.00 87.68 13.44 78.00 86.65 14.42 93.00 86.65 14.43 93.00 86.65 14.44 103.00 86.18 14.45 113.00 86.57 14.31 113.00 86.57 15.37 133.00 85.50 15.37 133.00 85.52 15.39 143.00 86.65 15.39 143.00 86.60 15.39 143.00 85.60 15.39 143.00 86.60	
5.24 26.00 96.75 7.27 40.00 93.72 8.03 45.00 92.96 10.32 52.00 90.87 11.44 57.00 89.55 11.44 57.00 89.55 11.44 57.00 88.29 11.31 68.00 87.89 11.31 73.00 87.55 11.34 93.00 86.67 11.34 93.00 86.67 11.34 93.00 86.67 11.43 93.00 86.67 11.43 103.00 86.42 11.43 103.00 86.67 11.43 103.00 86.67 11.43 103.00 86.67 11.43 128.00 86.71 11.43 128.00 86.71 11.43 128.00 86.67 11.43 128.00 86.67 11.43 128.00 86.71 11.43 128.00 85.61	
6.6 33.00 94.53 estimated bankfull elevation 7.27 40.00 93.72 estimated bankfull elevation 10.32 62.00 90.67 estimated bankfull elevation 11.44 57.00 89.55 cobble, gravel, sand estimated bankfull elevation 11.40 56.00 89.39 0.00 WSE RB (09.58) 13.10 68.00 87.89 boulders present WSE RB (09.58) 13.31 73.00 87.68 sand in small patches between boulder and cobble 14.32 14.34 88.00 87.51 sand in small patches between boulder and cobble 14.81 14.34 93.00 86.67 sand in small patches between boulder and cobble 14.32 14.434 103.00 86.42 sand in small patches between boulder and cobble 14.81 14.429 118.00 86.73 sand in small patches between boulder and cobble 14.91 14.421 118.00 86.74 sand in small patches between boulder and cobble 14.92 14.421 118.00 86.74 sand in small patches between boulder and cobble 15.91 14.422 118	
7.27 40.00 93.72 estimated bankfull elevation 8.03 45.00 99.55 cobbile, gravel, sand active channel 11.44 57.00 88.29 boulders present WSE R8 (09.58) 12.70 63.00 87.89 wset in the second seco	
8.03 45.00 92.96 estimated bankfull elevation 10.32 52.00 90.67 active channel 11.44 57.00 89.55 cobble, gravel, sand active channel 11.60 58.00 87.39 boulders present WSE RB (09:58) 13.10 68.00 87.54 stantation wSE RB (09:58) 13.44 78.00 87.54 stantation wSE RB (09:58) 13.43 88.00 87.54 stantation wSE RB (09:58) 14.32 98.00 86.67 sand in small patches between boulder and cobble stantation 14.434 103.00 86.83 stantation stantation stantation 14.431 103.00 86.31 stantation stantation stantation 14.431 103.00 86.67 stantation stantation stantation 14.432 18.00 86.67 stantation stantation stantation 14.442 18.00 86.57 stantation stantation stantation<	
10.32 52.00 90.67 cobble, gravel, sand active channel 11.44 57.00 89.55 cobble, gravel, sand WSE RB (09:59) 12.70 63.00 87.89 boulders present WSE RB (09:59) 13.31 73.00 87.69 sand in small patches between boulder and cobble	
11.44 57.00 89.55 cobble, gravel, sand adive channel 11.60 58.00 88.29 boulders present WSE RB (09:58) 13.10 68.00 87.68 - - 13.31 73.00 87.68 - - 13.44 78.00 87.64 - - 13.43 78.00 87.64 - - 13.44 78.00 87.64 - - 13.48 88.00 87.51 - - 14.32 98.00 86.67 - - 14.48 103.00 86.62 - - 14.57 113.00 86.62 - - 14.59 113.00 85.60 - - 15.33 13.30 85.62 - - 15.39 143.00 85.60 - - 15.33 143.00 85.60 - - - 12.22 156.00 86.	
11.44 57.0 89.35 cobble gravel, sand active channel 11.60 58.00 88.29 boulders present WSE RB (09:58) 13.10 68.00 67.89 boulders present Fig. 200 13.41 78.00 87.54 Fig. 200 Fig. 200 13.44 78.00 87.54 Fig. 200 Fig. 200 14.34 98.00 86.65 Fig. 200 Fig. 200 14.32 98.00 86.65 Fig. 200 Fig. 200 14.34 93.00 86.65 Fig. 200 Fig. 200 14.45 118.00 86.65 Fig. 200 Fig. 200 14.42 118.00 86.65 Fig. 200 Fig. 200 15.33 13.40 85.66 Fig. 200 Fig. 200 15.33 143.00 85.66 Fig. 200 Fig. 200 15.33 143.00 85.66 Fig. 200 Fig. 200 15.33 143.00 85.66 Fig. 200 Fig. 200 12.22 <	
11.60 58.00 89.39 0.00 WSE RB (09:58) 12.70 63.00 88.29 boulders present 13.10 73.00 87.69 13.31 73.00 87.69 13.44 78.00 87.51 13.65 83.00 87.51 14.32 98.00 86.67 14.34 93.00 86.65 14.31 103.00 86.33 14.57 113.00 86.70 14.81 103.00 86.70 14.82 123.00 86.67 14.81 103.00 86.57 15.37 113.00 86.59 15.33 138.00 85.60 15.33 138.00 85.60 12.22 158.00 87.54 11.00 165.60 89.33 13.34 153.00 87.54 12.22 158.00 88.75 13.33 100.00 92.60 14.69 148.00 92.70 8.33 180.00 92.61 10.71 190.00	
12.70 63.00 82.89 boulders present 13.10 68.00 87.89 13.44 78.00 87.54 13.45 63.00 87.51 13.48 88.00 87.51 14.32 98.00 86.65 14.42 103.00 86.45 14.42 103.00 86.43 14.42 114.00 86.70 14.42 118.00 86.70 14.42 118.00 86.60 15.07 133.00 85.66 15.07 133.00 85.66 15.33 138.00 85.66 15.34 153.00 87.54 11.22 153.00 85.74 11.22 153.00 87.54 11.06 165.00 89.93 11.106 165.00 89.93 11.108 165.00 89.93 11.108 165.00 89.93 11.108 165.00 89.93 11.108 165.00 89.93 12.10 193.70 88.89 0.00	
13.10 68.00 87.89 13.31 73.00 87.68 13.44 78.00 87.51 13.86 83.00 87.51 14.32 98.00 86.65 14.34 93.00 86.65 14.31 103.00 86.65 14.32 98.00 86.67 14.41 103.00 86.18 14.42 123.00 86.67 14.42 123.00 86.67 14.42 123.00 86.67 15.33 138.00 85.66 15.33 138.00 85.66 12.22 158.00 87.7 12.22 158.00 87.7 12.22 158.00 87.6 13.45 13.00 85.66 14.69 14.00 86.30 14.22 158.00 87.7 12.22 158.00 87.61 14.69 14.00 92.9 10.10 89.29 0.00 11.70 161.60 89.33 12.42 195.00 <	
13.31 73.00 87.88 13.44 78.00 87.55 13.45 83.00 87.51 13.45 93.00 86.67 14.32 98.00 86.67 14.34 103.00 86.47 14.45 103.00 86.47 14.46 108.00 86.33 14.47 13.00 86.67 14.42 123.00 86.67 14.42 13.00 86.57 14.43 13.00 85.60 15.33 143.00 85.60 15.34 153.00 87.54 12.22 158.00 87.54 12.22 158.00 87.74 12.22 158.00 87.74 12.22 158.00 87.74 12.22 158.00 87.74 12.22 158.00 87.74 12.22 158.00 87.74 12.22 158.00 87.74 13.45 153.00 87.64 14.99 10.00 91.10 8.89 170.00	
13.44 78.00 87.55 13.66 83.00 87.34 13.44 88.00 87.51 14.34 93.00 86.65 14.32 98.00 86.67 14.31 103.00 86.18 14.46 108.00 86.33 14.57 113.00 86.42 14.42 123.00 86.60 15.07 133.00 85.92 15.33 138.00 85.66 14.49 148.00 86.30 14.49 148.00 86.30 14.49 148.00 86.70 15.33 138.00 85.66 15.33 143.00 85.60 12.22 158.00 86.77 12.22 158.00 86.77 12.22 158.00 86.70 11.70 161.60 89.93 10.14) 10.14) 11.06 165.00 89.93 11.70 161.60 89.92 10.71 19.00 92.66 8.44 184.00 92.56 </td <td></td>	
13.44 78.00 87.55 13.66 83.00 87.34 13.44 88.00 87.51 14.34 93.00 86.65 14.32 98.00 86.67 14.31 103.00 86.18 14.46 108.00 86.33 14.57 113.00 86.42 14.42 123.00 86.60 15.07 133.00 85.92 15.33 138.00 85.66 14.49 148.00 86.30 14.49 148.00 86.30 14.49 148.00 86.70 15.33 138.00 85.66 15.33 143.00 85.60 12.22 158.00 86.77 12.22 158.00 86.77 12.22 158.00 86.70 11.70 161.60 89.93 10.14) 10.14) 11.06 165.00 89.93 11.70 161.60 89.92 10.71 19.00 92.66 8.44 184.00 92.56 </td <td></td>	
13.65 83.00 87.34 13.48 88.00 87.51 14.34 93.00 86.65 14.32 98.00 86.67 14.81 103.00 86.18 14.66 108.00 86.33 14.57 113.00 86.42 14.429 118.00 86.70 14.429 118.00 86.70 14.429 118.00 86.60 15.07 133.00 85.66 15.33 143.00 85.66 15.33 143.00 87.54 12.22 158.00 87.54 12.22 159.00 87.54 13.45 153.00 87.54 12.22 159.00 87.54 12.24 10 89.29 0.00 11.06 169.29 0.00 10:14) 11.06 169.29 0.00 10:14) 12.24 195.00 82.57 10:71 13.97 200.00 87.02 10:14) 12.10 193.70 88.89 0.00 chann	
13.48 88.00 87.51 14.32 98.00 86.65 14.31 103.00 86.18 14.41 103.00 86.13 14.66 108.00 86.33 14.57 113.00 86.42 14.29 118.00 86.70 14.42 123.00 86.67 15.37 138.00 85.66 15.39 143.00 85.60 15.39 143.00 85.60 14.69 148.00 86.30 15.39 143.00 85.60 14.69 148.00 86.30 13.45 153.00 87.54 12.22 158.00 88.77 WSE start of mid-channel islar 10:14) 11.00 165.00 89.33 9.89 170.00 91.10 8.29 175.00 82.77 11.70 161.60 89.29 0.00 12.10 193.70 92.66 8.33 180.00 92.66 8.44 184.00 92.55 13.57	
14.34 93.00 86.65 14.32 98.00 86.67 sand in small patches between boulder and cobble 14.81 103.00 86.13 sand in small patches between boulder and cobble 14.81 103.00 86.13 sand in small patches between boulder and cobble 14.81 113.00 86.42 sand in small patches between boulder and cobble 14.42 118.00 86.60 sand in small patches between boulder and cobble 14.42 118.00 86.60 sand in small patches between boulder and cobble 14.42 12.00 86.60 sand in small patches between boulder and cobble 15.33 12.00 86.60 sand in small patches between boulder and cobble 16.07 13.30 85.92 sand in small patches between boulder and cobble 15.33 143.00 85.60 satd in small patches between boulder and cobble 15.39 143.00 85.60 satd in small patches between boulder and cobble 15.39 143.00 85.60 satd in small patches between boulder and cobble 15.39 143.00 85.60 satd in small patches between boulder and cobble 15.39 143.0	
14.32 98.00 86.67 sand in small patches between boulder and cobble 14.81 103.00 86.18 14.66 108.00 86.33 14.57 113.00 86.42 14.42 123.00 86.60 15.07 133.00 85.92 15.33 138.00 85.60 15.39 143.00 85.60 15.45 153.00 87.54 12.22 158.00 87.54 12.22 158.00 87.54 12.22 158.00 87.54 12.22 158.00 87.7 WSE start of mid-channel islar 10:14) 11.06 165.00 89.93 9.89 170.00 92.70 8.33 180.00 92.66 8.44 184.00 92.55 10.71 190.00 90.28 WSE (time= 10:23) end of mid channel 12.42 195.00 86.57 13.59 210.00 87.42 13.59 210.00 87.42 13.59 210.00 87.42 <td></td>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{ c c c c c } 14.39 & 128.00 & 86.60 \\ 15.07 & 133.00 & 85.92 \\ 15.33 & 138.00 & 85.60 \\ 15.39 & 143.00 & 85.60 \\ 14.69 & 148.00 & 86.30 \\ 13.45 & 153.00 & 87.54 \\ 12.22 & 158.00 & 88.77 \\ & & & & & & & & & & & & & & & & & &$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
15.33 138.00 85.66 estimate thalweg 15.39 143.00 85.00 estimate thalweg 14.69 148.00 86.30 model 13.45 153.00 87.54 model 12.22 158.00 88.77 wsst start of mid-channel islar 11.70 161.60 89.29 0.00 10:14) 11.06 165.00 89.93 10:14) 11:14 8.29 175.00 92.70 8.33 180.00 92.66 8.44 184.00 92.55 wsst start of mid channel 12.10 193.70 88.89 0.00 wsst start of mid 12.42 195.00 88.57 wsst start is cobble/gravel/boulder continues wsst start is cobble/gravel/boulder continues 13.97 200.00 87.02 substrate: cobble/gravel/boulder continues wsst start is cobble/gravel/boulder continues 13.59 210.00 87.72 13.12 220.00 87.87 12.95 225.00 88.04 12.58 12.58 12.58	
15.39 143.00 85.60 estimate thalweg 14.69 148.00 86.30 13.45 153.00 87.54 12.22 158.00 87.54 WSE start of mid-channel islam 11.22 161.60 89.29 0.00 $10:14$ 11.06 165.00 89.93 $10:14$ 8.29 175.00 92.70 83.33 180.00 8.29 175.00 92.56 92.56 8.44 184.00 92.55 92.80 12.10 193.70 88.89 0.00 12.42 195.00 88.57 13.97 200.00 87.02 14.09 205.00 86.50 13.59 210.00 87.72 13.12 220.00 87.72 13.12 220.00 87.87 12.95 225.00 88.51 12.95 225.00 88.51 12.95 225.00 88.51 12.95 225.00 88.51 12.95 225.00 88.51 12.95 225.00 88.51 12.95 225.00 88.51 12.58 235.00 88.41	
14.69 148.00 86.30 13.45 153.00 87.54 12.22 188.00 88.77 WSE start of mid-channel islar 11.70 161.60 89.29 10.00 91.10 10:14) 8.29 175.00 92.70 8.33 180.00 92.66 8.44 184.00 92.55 10.71 190.00 90.28 WSE (time= 10:23) end of mid channel 12.42 195.00 88.57 13.59 210.00 87.02 14.09 205.00 86.90 substrate: cobble/gravel/boulder continues channel 13.27 215.00 87.72 13.12 220.00 87.87 12.95 225.00 88.04 12.47 230.00 88.52 12.58 235.00 88.41	
13.45 153.00 87.54 12.22 158.00 88.77 WSE start of mid-channel islar 11.70 161.60 89.29 11.06 165.00 89.93 9.89 170.00 91.10 8.29 175.00 92.70 8.33 180.00 92.66 8.44 184.00 92.55 10.71 190.00 90.28 WSE (time= 10:23) end of mid channel 12.42 195.00 88.57 13.57 200.00 87.02 14.09 205.00 86.90 substrate: cobble/gravel/boulder continues 13.59 210.00 87.40 13.27 215.00 87.72 13.12 220.00 87.87 12.95 225.00 88.04 12.47 230.00 88.52 12.58 235.00 88.41	
13.45 153.00 87.54 12.22 158.00 88.77 WSE start of mid-channel islar 11.70 161.60 89.29 11.06 165.00 89.93 9.89 170.00 91.10 8.29 175.00 92.70 8.33 180.00 92.66 8.44 184.00 92.55 10.71 190.00 90.28 WSE (time= 10:23) end of mid channel 12.42 195.00 88.57 13.59 210.00 87.02 14.09 205.00 86.90 substrate: cobble/gravel/boulder continues channel 13.27 215.00 87.72 13.12 220.00 87.87 12.95 225.00 88.04 12.47 230.00 85.52 12.58 235.00 88.41	
12.22 158.00 88.77 WSE start of mid-channel islar 11.70 161.60 89.29 0.00 10:14) 11.06 165.00 89.93 9.89 170.00 91.10 8.29 175.00 92.70 8.33 180.00 92.66 8.44 184.00 92.55 VSE (time= 10:23) end of mid channel 12.10 193.70 88.89 0.00 channel 12.42 195.00 85.57 NSE (time= 10:23) end of mid channel 12.42 195.00 86.57 substrate: cobble/gravel/boulder continues 13.59 201.00 87.40 substrate: cobble/gravel/boulder continues 13.59 210.00 87.40 substrate: cobble/gravel/boulder continues 13.27 215.00 87.72 substrate: cobble/gravel/boulder continues 13.27 215.00 87.87 substrate: cobble/gravel/boulder continues 12.42 225.00 88.04 substrate: cobble/gravel/boulder continues 13.59 210.00 87.87 substrate: cobble/gravel/boulder continues 12.58 235.00 88.41 substrate: cobble/gravel	
WSE start of mid-channel islar 11.70 161.60 89.29 0.00 10:14) 11.06 165.00 89.93 9.89 170.00 91.10 8.29 175.00 92.70 8.33 180.00 92.66 8.44 184.00 92.55 9.85 10.14 10.71 190.00 90.28 WSE (time= 10:23) end of mid channel 12.42 195.00 88.57 Kime= 10:23) end of mid channel 12.42 195.00 86.57 Kime= 10:23) end of mid channel 13.97 200.00 87.02 Kime= 10:23) end of mid channel 13.41 29.00 87.72 Kime= 10:23 13.59 210.00 87.40 Kime= 10:23 13.27 215.00 87.72 Kime= 10:23 13.12 220.00 87.87 Kime= 10:23 12.47 230.00 87.52 Kime= 10:23 12.47 230.00 88.52 Kime= 10:23 12.58 235.00 88.41 Kime= 10:23	
11.70 161.60 89.29 0.00 10:14) 11.06 165.00 89.93 9.89 170.00 91.10 8.29 175.00 92.70 8.33 180.00 92.66 8.44 184.00 92.55 90.71 190.00 90.28 WSE (time= 10:23) end of mid channel 12.10 193.70 88.89 0.00 channel 12.42 195.00 86.57 84.57 64.57 13.97 200.00 87.02 substrate: cobble/gravel/boulder continues 16.14 13.27 215.00 87.72 13.12 220.00 87.87 13.12 220.00 87.87 88.04 12.47 230.00 88.52 12.58 235.00 88.41 12.58 235.00 88.41	d I D of right choose I (Tim
11.06 165.00 89.93 9.89 170.00 91.10 8.29 175.00 92.70 8.33 180.00 92.66 8.44 184.00 92.55 10.71 190.00 90.28 WSE (time= 10:23) end of mid channel 12.10 193.70 88.89 0.00 channel 12.42 195.00 88.57 3.37 200.00 87.02 14.09 205.00 86.90 substrate: cobble/gravel/boulder continues 13.59 210.00 87.40 13.27 215.00 87.72 31.12 220.00 87.87 13.12 225.00 88.04 2.47 230.00 85.52 12.58 235.00 88.41 14.00 14.00 14.00 14.00	LB of right channel (Time
9.89 170.00 91.10 8.29 175.00 92.70 8.33 180.00 92.66 8.44 184.00 92.55 10.71 190.00 90.28 WSE (time= 10:23) end of mid 12.42 195.00 88.57 13.97 200.00 87.02 14.09 205.00 86.90 substrate: cobble/gravel/boulder continues 13.59 210.00 87.40 13.27 215.00 87.72 13.12 220.00 87.87 12.95 225.00 88.04 12.47 230.00 88.52 12.58 235.00 88.41	
8.29 175.00 92.70 8.33 180.00 92.66 8.44 184.00 92.55 10.71 190.00 90.28 WSE (time= 10:23) end of mid 12.10 193.70 88.89 0.00 channel 12.42 195.00 85.7 substrate: cobble/gravel/boulder continues channel 13.97 200.00 87.02 substrate: cobble/gravel/boulder continues 13.59 210.00 87.40 13.27 215.00 87.72 13.12 220.00 87.87 12.47 230.00 88.62 12.47 230.00 88.62 12.47 230.00 88.52 12.58 235.00 88.41	
8.29 175.00 92.70 8.33 180.00 92.66 8.44 184.00 92.55 10.71 190.00 90.28 WSE (time= 10:23) end of mid 12.10 193.70 88.89 0.00 channel 12.42 195.00 85.7 substrate: cobble/gravel/boulder continues channel 13.97 200.00 87.02 substrate: cobble/gravel/boulder continues 13.59 210.00 87.40 13.27 215.00 87.72 13.12 220.00 87.87 12.47 230.00 88.62 12.47 230.00 88.62 12.47 230.00 88.52 12.58 235.00 88.41	
8.33 180.00 92.66 8.44 184.00 92.55 10.71 190.00 90.28 WSE (time= 10:23) end of mid channel 12.10 193.70 88.89 0.00 channel 12.42 195.00 88.57 substrate: cobble/gravel/boulder continues channel 13.97 200.00 87.02 substrate: cobble/gravel/boulder continues 13.59 210.00 87.40 13.27 215.00 87.72 13.12 220.00 87.87 12.95 225.00 88.04 12.47 230.00 88.52 12.47 230.00 88.52 12.58 235.00 88.41	
8.44 184.00 92.55 10.71 190.00 90.28 WSE (time= 10:23) end of mid 12.10 193.70 88.89 0.00 12.42 195.00 88.57 13.97 200.00 87.02 14.09 205.00 86.90 substrate: cobble/gravel/boulder continues 13.59 13.27 215.00 87.72 13.12 220.00 87.87 12.95 225.00 88.04 12.47 230.00 88.52 12.58 235.00 88.41	
10.71 190.00 90.28 WSE (time= 10:23) end of mid channel 12.10 193.70 88.89 0.00 channel 12.42 195.00 88.57 channel 13.97 200.00 87.02 substrate: cobble/gravel/boulder continues 13.59 210.00 87.40 substrate: cobble/gravel/boulder continues 13.27 215.00 87.72 substrate: cobble/gravel/boulder continues 13.27 215.00 87.87 12.47 230.00 88.52 12.58 235.00 88.41	
WSE (time= 10:23) end of mid 12.10 193.70 88.89 0.00 channel 12.42 195.00 88.57 channel 13.97 200.00 87.02 substrate: cobble/gravel/boulder continues channel 14.09 205.00 86.90 substrate: cobble/gravel/boulder continues substrate: cobble/gravel/boulder continues 13.27 215.00 87.72 substrate: cobble/gravel/boulder continues substrate: cobble/gravel/boulder continues 13.27 215.00 87.72 substrate: cobble/gravel/boulder continues substrate: cobble/gravel/boulder continues 13.27 225.00 88.04 substrate: cobble/gravel/boulder continues 12.47 230.00 88.52 substrate: cobble/gravel/boulder continues 12.58 235.00 88.41 substrate: cobble/gravel/boulder continues	
12.10 193.70 88.89 0.00 channel 12.42 195.00 88.57	
12.42 195.00 88.57 13.97 200.00 87.02 14.09 205.00 86.90 substrate: cobble/gravel/boulder continues 13.59 210.00 87.40 13.27 215.00 87.72 13.12 220.00 87.87 12.95 225.00 88.04 12.47 230.00 88.52 12.58 235.00 88.41	channel island, RB of left
12.42 195.00 88.57 13.97 200.00 87.02 14.09 205.00 86.90 substrate: cobble/gravel/boulder continues 13.59 210.00 87.40 13.27 215.00 87.72 13.12 220.00 87.87 12.95 225.00 88.04 12.47 230.00 88.52 12.58 235.00 88.41	
13.97200.0087.0214.09205.0086.90substrate: cobble/gravel/boulder continues13.59210.0087.4013.27215.0087.7213.12220.0087.8712.95225.0088.0412.47230.0088.5212.58235.0088.41	
14.09205.0086.90substrate: cobble/gravel/boulder continues13.59210.0087.4013.27215.0087.7213.12220.0087.8712.95225.0088.0412.47230.0088.5212.58235.0088.41	
13.59 210.00 87.40 13.27 215.00 87.72 13.12 220.00 87.87 12.95 225.00 88.04 12.47 230.00 88.52 12.58 235.00 88.41	
13.27 215.00 87.72 13.12 220.00 87.87 12.95 225.00 88.04 12.47 230.00 88.52 12.58 235.00 88.41	
13.12220.0087.8712.95225.0088.0412.47230.0088.5212.58235.0088.41	
13.12220.0087.8712.95225.0088.0412.47230.0088.5212.58235.0088.41	
12.95225.0088.0412.47230.0088.5212.58235.0088.41	
12.47 230.00 88.52 12.58 235.00 88.41	
12.58 235.00 88.41	
12.53 240.00 88.46	
12.32 245.00 88.67	
12.38 250.00 88.61	
12.11 255.00 88.88	
12.26 260.00 88.73	
12.24 265.00 88.75	
11.63 270.00 89.36 0.00 WSE, LB (Time = 10:37)	
11.35 275.00 89.64	
11.23 280.00 89.76	
10.57 286.00 90.42	
11.13 290.00 89.86	
10.17 295.00 90.82 entering riparian veg. zone	
9.39 300.00 91.60	
8.38 305.00 92.61 substrate: sand/gravel/boulder	
7.18 310.00 93.81	
7.06313.3093.93estimated bankfull elevation	
5.45 320.00 95.54	
5.11 325.00 95.88	
4.13 332.00 96.86	
6.06 BM1 11/16/2003 94.93 from OS1	

The Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) upper cross-section (p. 2 of 2)

н	BS	FS	STA	ELEV	WD Bed material	Notes
106.05	11.12		BM1 11/16/2003			from OS2
		8.55	337.00	97.50		
		7.82	342.00	98.23		
		6.81	347.00	99.24		
		5.64	352.00	100.41		
		3.58	359.00	102.47		
		2.18	366.00	103.87		Bottom of pin LB, upper XS
		1.72	366.00	104.33		Top of pin LB, upper XS
		11.13		94.92		BM1 11/16/2003
		6.05		100.00		Top of pin RB, Closed out loop, OK

middle cross-section (p. 1 of 2) HI BS FS STA ELEV WD Bed material Notes									
105.29	5.29	15	JIA	100.00	D Ded material	T.O.P. RB Upper XS			
100.20	0.20	7.45		97.84		T.O.P. RB Middle XS			
		0.43	-67.00	104.86		From RB pin @ middle XS			
					silt/sand in middle of				
					dirt driveway of property	,			
		2.21	-52.00	103.08	owner				
		4.16	-37.00	101.13					
		5.01	-22.00	100.28					
		6.63	-7.00	98.66					
		7.45	4.00	97.84		T.O.P. RB middle XS station is stable			
		7.75	4.00	97.54	_	Base of pin RB Middle XS			
		9.05	10.00	96.24					
		9.07	15.00	96.22	silt/cobble/boulder				
		9.83	20.00	95.46					
		9.96	25.00	95.33					
		9.97 10.01	30.00 35.00	95.32 95.28	cobble/boulder/sand	←			
		10.01	35.00	95.20	cobble/boulder/sallu	"Historical Floodplain = obviously once a surfa			
						that saw frequent floods, but now high above			
		10.35	40.00	94.94		current active channel surface"			
			45.00	93.94					
			50.00	93.57					
		12.61		92.68					
			60.00	92.46		estimated bankfull elevation			
		13.43	65.00	91.86	_				
		14.03	70.00	91.26	cobble/boulder/gravel				
			75.00	91.33					
			80.00	91.25					
			85.00	91.11					
			90.00	91.05					
			95.00	90.18					
			100.00						
			105.00 110.00						
			115.00						
			120.00						
			125.00						
			130.00						
			135.00						
			140.00						
			145.00						
			150.00						
		15.53	155.00	89.76					
		16.12	160.00	89.17					
		16.43	165.00	88.86					
		17.30	170.00	87.99					
			175.00						
			177.80			W.S.E. RB (14:57 = Time)			
		20.01	180.00	85.28					

The Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) middle cross-section (p. 1 of 2)

The Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2)
middle cross-section (p. 2 of 2)

н	105.29	BS	FS	STA 185.00		WD	Bed material	Notes
	105.29			190.00			cobble/small boulder	
				195.00				
				200.00				
				205.00				
				210.00				
				215.00				
				220.00				
				223.20				W.S.E. LB (Time = 15:13)
			19.57	225.00	85.72			
			17.73	230.00	87.56			
			15.90	235.00	89.39			
			15.90	240.00	89.39		cobble/gravel/boulder	
				245.00				
				250.00				
				255.00				
				260.00				
				265.00				estimated bankfull elevation - start riparian veg.
				270.00				
				275.00				
				280.00				
				285.00				
				290.00				
				295.00 300.00				
				305.00				Historical Floodplain
				310.00				Thistorical Thooppain
				315.00				
				320.00				
				325.00				
				330.00				
				335.00				
								base LB pin Middle XS (pin is at the base of a
			5.85	341.30	99.44			large pine tree)
				341.30				T.O.P. LB
			7.46		97.83			T.O.P. RB Middle XS
			5.29		100.00			T.O.P. RB Upper XS Loop closed OK
			5.06		100.23			T.O.P. RB Lower XS

The Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) lower cross-section (p. 1 of 2)

н	BS	FS	STA	ELEV	WD	Bed material	Notes
102.98	2.75	3.31	1.20 1.20	100.23 99.67			T.O.P. RB Lower XS B.O.P. RB Lower XS
						silt/sand/angular boulders (at end of earth driveway	
		4.17	5.00	98.81		along flow axis)	
		4.28	10.00	98.70			
		4.85 5.40	15.00 20.00	98.13			
		5.67	25.00	97.58 97.31			
		6.10	30.00	96.88			
		6.11	35.00	96.87		cobble/boulder/silt and sand	entered historic floodplain
		6.40	40.00	96.58			
		6.54	45.00	96.44			
		6.83	50.00	96.15			
		6.38	55.00	96.60			
		6.96	60.00	96.02			
		6.42 6.28	65.00 70.00	96.56 96.70			
		6.83	75.00	96.15			
		6.75	80.00	96.23			
		7.40	85.00	95.58			
		6.38	90.00	96.60			
		7.16	95.00	95.82			
		8.06	100.00	94.92			
		8.33	105.00	94.65			
		8.86 8.67	110.00 115.00	94.12 94.31			
		9.36	120.00	93.62			
		9.53	125.00	93.45		rounded boulder/cobble	
		9.37	130.00	93.61			
		9.76	135.00	93.22			
		10.18	140.00	92.80			
		10.86	145.00 150.00	92.12			
		11.56 12.43	155.00	91.42 90.55			
		12.55	160.00	90.43			
		12.85	165.00	90.13			
		13.92	170.00	89.06			estimated bankfull elevation
		13.94	175.00	89.04			
		14.42	180.00	88.56			
		15.06 14.75	185.00	87.92 88.23			
		14.75	190.00 195.00	88.84			
		13.85	200.00	89.13			
		14.11	205.00	88.87			
		14.69	210.00	88.29		cobble/boulder/gravel	
		15.52	215.00	87.46			
		15.85	220.00	87.13			
		17.00 18.64	225.00 228.70	85.98 84.34			WSE RB (Time=10:51)
		18.70	230.00	84.28			
		20.29	235.00	82.69			
		21.88	240.00	81.10			
		22.31	245.00	80.67			
		22.31 22.06	250.00	80.67 80.92			estimated thalweg
		22.06	255.00 260.00	80.92 80.68			
		21.77	265.00	81.21			
		21.34	270.00	81.64			
		19.96	275.00	83.02		bedrock	
		18.75	279.00	84.23		bedrock	WSE LB (Time=10:59)
		16.88	284.00	86.10		bedrock	
		14.36 13.65	290.00 295.00	88.62 89.33		cobble/boulder/gravel	dense riparian veg.
		12.88	295.00 300.00	89.33 90.10			achse npanan veg.
		13.95	305.00	89.03		sand/silt matrix	
		12.58	310.00	90.40			
		11.92	315.00	91.06			estimated bankfull elevation
		11.41	320.00	91.57			
		10.39 9.09	325.00 330.00	92.59 93.89			
		9.09 8.78	335.00	93.89			
		8.60	340.00	94.38			
		8.65	345.00	94.33			
		11.56	BM1	91.42			From OS1

The Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) lower cross-section (p. 2 of 2)

HI 108.68	BS 17.26	FS	STA BM1	ELEV	WD	Bed material	Notes From OS2
		14.75	351.60	93.93			
		15.01	355.00	93.67			
							boulders more angular with moss on historic
		15.76	360.00	92.92			floodplain
		15.41	365.00	93.27			
		14.59	370.00	94.09			
		14.50	375.00	94.18			
		13.68	380.00	95.00			
		13.20	385.00	95.48			
		13.28	390.00	95.40			
		13.05	395.00	95.63			
		12.55	400.00	96.13			
							end of historic floodplain (Terrace 1) entering a
		12.78	405.00	95.90			slope and then bench (terrace 2)
		11.59	410.00	97.09		silt/sand	
		10.38	415.00	98.30			
		9.41	420.00	99.27			
		8.53	425.00	100.15			
		8.27	430.00	100.41			
		7.70	435.00	100.98			
		6.99	440.00	101.69			
		6.61	445.00	102.07			
		6.53	450.00	102.15			
		5.80	455.00	102.88			
		4.33	461.40	104.35			Base LB pin
		3.96	461.40	104.72			T.O.P. LB
		17.26		91.42			BM1 11/17/2003
		8.43		100.25			T.O.P. RB Lower XS Loop Closed OK (0.02 error)
		8.68		100.20			T.O.P. RB Upper XS
		0.00					

The Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) Pebble count summary

Madified Walman	Dobble Cour	t (mm) I In	nor Coloma
Modified Wolman		ι (πππ), υρ	

	Upper Class Boundary	Rosgen Particle						
Particle Description	(mm)	Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	3	0	0	3	1%	1%
Very coarse sand (measured)	2	5	0	0	0	0	0%	1%
Very Fine Gravel	4		1	0	1	2	1%	2%
Fine Gravel	8		1	0	1	2	1%	2%
Medium Gravel	16	4	0	0	0	0	0%	2%
Coarse Gravel	32		3	2	4	9	3%	5%
Very Coarse Gravel	64		17	10	3	30	10%	15%
Small Cobble	128	3	36	41	27	104	35%	50%
Large Cobble	256	5	26	34	42	102	34%	84%
Small Boulder	512		13	13	22	48	16%	100%
Medium Boulder	1024	2	0	0	0	0	0%	100%
Large Boulder	2048		0	0	0	0	0%	100%
Very Large Boulder	4096		0	0	0	0	0%	100%
Bedrock	>4096	1	0	0	0	0	0%	100%
		Total	100	100	100	300	100%	

The Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) long profile

						long prom	
н	BS	FS	STA	WSE	ELEV	Water depth (ft)	Notes
•••			•				set up level near XS2 on LB
93.45	3.59		TP2		89.86		low flow fluctuation pin on XS2, LB
55.45	0.00	5.62	XS3pin		87.83		flow fluctuation pin on RB, U/S of XS3
		1.23	TP1		92.22		flow fluctuation pin on RB, XS2
				06 07		E 44	now nucluation pin on RB, X32
		12.62	65.00	86.27	80.83	5.44	
		10.92	75.00	87.32	82.53	4.79	
		9.32	85.00	86.33	84.13	2.20	
		8.70	95.00	86.32	84.75	1.57	
		8.15	105.00	86.30	85.30	1.00	
		8.36	115.00	86.28	85.09	1.19	
		8.30	125.00	86.32	85.15	1.17	
		8.35	135.00	86.25	85.10	1.15	
		8.42	145.00	86.13	85.03	1.10	
		8.33	155.00	86.04	85.12	0.92	
		8.35	161.30	85.77	85.10	0.67	XS1 (upper XS)
		8.41	165.00	85.91	85.04	0.87	
		8.69	175.00	85.76	84.76	1.00	
		8.98	185.00	85.49	84.47	1.02	
		9.89	195.00	85.30	83.56	1.74	
		10.88	205.00	85.09	82.57	2.52	
		10.21	215.00	85.14	83.24	1.90	
		10.97	225.00	84.68	82.48	2.20	
		10.96	235.00	84.59	82.49	2.10	
		11.24	245.00	84.08	82.21	1.87	
		12.40	255.00	83.65	81.05	2.60	
		16.75	265.00	82.80	76.70	6.10	
		16.09	275.00	83.18	77.36	5.82	
		15.54	285.00	83.16	77.91	5.25	
		15.82	295.00	82.87	77.63	5.24	
		16.62	305.00	83.00	76.83	6.17	(not quite in thalweg)
		15.60	315.00	83.10	77.85	5.25	(not quite in thalweg)
		14.27	325.00	83.28	79.18	4.10	(
		12.77	335.00	83.26	80.68	2.58	
		12.65	345.00	83.25	80.80	2.45	
		12.50	350.20	83.23	80.95	2.28	XS2 (middle XS)
		12.34	355.00	83.11	81.11	2.00	
		12.53	365.00	83.11	80.92	2.19	
		3.59	TP2	05.11	89.86	2.15	flow fluctuation pin on LB at XS2
		12.64	375.00	83.08	80.81	2.27	now nucleation pin on ED at X02
		12.33				1.75	
			385.00	82.87	81.12		
		12.47	395.00	82.78	80.98	1.80	
		12.99	405.00	82.66	80.46	2.20	
		13.77	415.00	82.18	79.68	2.50	
		13.91	425.00	82.22	79.54	2.68	
		13.45	435.00	82.27	80.00	2.27	
		13.22	445.00	82.18	80.23	1.95	
		13.65	455.00	81.98	79.80	2.18	
		13.91	465.00	81.79	79.54	2.25	
		14.25	475.00	81.60	79.20	2.40	
		14.39	485.00	81.61	79.06	2.55	
		14.09	495.00	81.96	79.36	2.60	
		14.76	505.00	81.29	78.69	2.60	
		15.44	515.00	80.66	78.01	2.65	
		15.17	525.00	80.55	78.28	2.27	
		15.88	535.00	80.57	77.57	3.00	
		15.97	545.00	80.54	77.48	3.06	
		15.59	555.00	80.50	77.86	2.64	
		15.72	565.00	80.37	77.73	2.64	
		15.54	575.00	80.31	77.91	2.40	
			~RB XS3pin		87.83		XS3 - flow fluctuation pin on RB
		3.59	TP2		89.86		flow pin on LB at XS2
		15.48	585.00	80.16	77.97	2.19	at XS3 (lower XS) 295 on tape 2 = 25 on tape 3
		15.56	594.70	80.11	77.89	2.22	
		15.98	605.00	79.97	77.47	2.50	
		16.20	615.00	79.85	77.25	2.60	
		16.53	625.00	79.57	76.92	2.65	
		16.85	635.00	79.70	76.60	3.10	
		17.04	645.00	79.76	76.41	3.35	
		16.96	655.00	79.74	76.49	3.25	
		17.98	665.00	79.69	75.47	4.22	
		17.80	675.00	79.70	75.65	4.05	
		18.20	685.00	79.65	75.25	4.40	
		3.59	TP2		89.86		

The Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) upper cross section

н	BS	FS	STA	ELEV W	/D Bed material	Notes
100.07	C 07		DM4	100.00		pipe in ground near RB pin (top of pipe) [arbitrary
106.87	6.87	3.13	BM1	100.00		elevation = 100 ft]
		4.02		103.74		RB top of pin RB base of pin
		3.88	22.00			on boulder
		6.72		100.15		
		7.58	32.00	99.29		
		7.69		99.18		
		7.69	42.00	99.18		
		8.15 9.42	47.00 52.00	98.72 97.45		
			57.00	97.45 96.24		brambles
			62.00	95.57		
			67.00	95.76		
			72.00	96.21		
			75.00	95.24		edge of tall brambles
			89.00 93.00	89.48 89.00	co/gravel/boulder	waters edge of small backwater small channel:
			93.00 98.00	88.67	co/gravel/boulder	Sindi charnel.
			103.00			
						waters edge of backwater (sand) LOTS OF
			105.00			BRAMBLES BETWEEN 105-115
			115.00			
			120.00			
			125.00 130.00		cobbles/sand	upper bankfull estimate
			135.00		cobbles/sand	
			140.00		cobbles/sand	
		14.20	145.00	92.67	cobbles/sand	
			150.00		cobbles/sand	
			157.00		cobbles/sand	
			162.00 167.00		cobbles/sand cobbles/sand	
			174.80		cobble/gravel/small boulder	Lower bankfull estimate
			180.00		cobble/gravel/small boulder	
		19.25	185.00	87.62	cobble/gravel/small boulder	
			190.00		cobble/gravel/small boulder	
			195.00		cobble/gravel/small boulder	
			196.60 200.00		cobble/gravel/small boulder	RB WSEL (at 12:57)
			205.00			
			210.00			
			215.00			
			220.00			2
			225.00			
			230.00 235.00			
			240.00			
			245.00			
			249.00			> tail end of pool
			251.00			
			255.00 259.00			
			265.00			
			270.00			
			275.00)
			280.00			edge of riffle cross-over
			285.00			
			290.00 295.00			
			299.00			tapes knotted together
			303.00			
			308.00			
			313.00			
			318.00 323.00			
			328.00			
			330.40			LB WSEL (13:16)
			333.00			
			338.00			
			343.00		CO/SI/GR (small bar)	von lower bonkfull estimate (ten of odes of ten)
			348.30 353.00			very lower bankfull estimate (top of edge of bar)
		10.00	355.00	30.01		

The Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) middle cross section (p. 1 of 2)

	HI 107.67	BS 7.67	FS	STA BM1	ELEV 100.00	WD	Bed material	Notes metal pipe in ground near XS1
			4.84	RB pin	102.83			top of RB pin
			5.28	16.40	102.39			base of RB pin
			5.90	22.00	101.77		silts/soil	
			6.69	30.00	100.98		asphalt driveway	
			7.55	37.00	100.00		asphalt arreway	
			8.06	44.00	99.61			
			8.49	50.00	99.18			
			8.78	56.00	98.89			
			9.08	61.00	98.59			
			9.08 9.45	68.00	98.22		end of asphalt driveway	
			9.43 9.84	73.00	97.83		silts/soil	
			9.84 10.53	80.00	97.83 97.14		5115/501	
			11.05	85.00 90.00	96.62 96.21			
			11.46					
			12.40	95.00	95.27			
			13.76	100.00	93.91			
			14.13	105.00	93.54			
			14.70	110.00	92.97			
			15.62	115.00	92.05			ten of bould of eventless observed
			16.65	117.50	91.02			top of bank of overflow channel bottom of bank of overflow channel
			18.72	120.10	88.95			WSEL (10:20)
			19.12	122.70	88.55			thalweg of overflow channel
			18.20	128.00	89.47			
			17.44	133.00	90.23			
			17.43	138.00	90.24			
			17.52	143.00	90.15			
								passed rod through the blackberry
Phase 1			16.93	148.00	90.74			brambles!
1			15.84	157.00	91.83			
			16.01	162.00	91.66			
			16.15	167.00	91.52			
			16.39	172.00	91.28			upper bankfull
			16.58	177.00	91.09			edge of brambles
			17.82	182.00	89.85			
			18.74	187.00	88.93			
			19.50	192.00	88.17			
			20.17	197.00	87.50			
			21.08	202.40	86.59			lower bankfull?WSEL for side channel
			21.21	207.00	86.46			
			21.45	212.00	86.22			
			21.25	217.40	86.42			WSEL on LB of small channel
			21.20	222.00	86.47			
	107.67		21.35	227.00	86.32			
			21.53	232.00	86.14			
			21.88	237.00	85.79			
			22.30	242.00	85.37			
			22.46	247.00	85.21			
			22.40	252.00	85.27			
			22.48	257.00	85.19			
			22.86	262.00	84.81			
			23.17	267.00	84.50			
			23.83	272.00	83.84			
			24.70	276.50	82.97			WSEL RB
			21.70	210.00	02.01			TP1 (sta 180.7) turning point. Top of
								rebar (RB) from Matt Sloat. Surveyed
								upper stations of LB before turning to get
			15.46	TP1	92.21			shots in the channel.
	l		17.81	TP2	89.86			top of pin (low flow fluctuation pin LB)
					00.00			

The Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) middle cross section (p. 2 of 2)

Phase 3 9.87 280.00 81.74 an old tape (298 on old tape = 8 feet on new tape) 10.42 290.00 81.74 new tape) tape (298 on old tape = 8 feet on new tape) 10.42 290.00 81.74 new tape) tape (298 on old tape = 8 feet on new tape) 10.68 300.00 81.64 nord tape troke had to retie it 11.09 305.00 81.74 tape troke had to retie it tape troke had to retie it 107.24 17.38 10.62 315.00 81.34 tape troke had to retie it 107.24 17.38 722 BM1 100.02 tape troke had to retie it 107.74 17.38 722 BM1 100.02 to retie to the fill 107.75 722 BM1 100.02 to retie to the fill to retie to the fill 107.75 5.88 TopotLBpin 108.82 to retie to the fill to retie to the fill 107.75 5.88 109.93 44.00 83.30 to rounded co/boly 107.76 5.88 109.93	(HI 92.16	BS 2.30	FS	STA TP2	ELEV 89.86	WD	Bed material	Notes flow fluctuation pin on LB turned level down to cobble bar to get shots in channel
Phase 3 10.42 290.00 81.74 10.75 295.00 81.41 10.68 300.00 81.44 10.06 305.00 81.41 10.06 305.00 81.41 10.0 305.00 81.07 10.21 320.00 81.34 10.21 320.00 81.34 10.21 320.00 81.74 10.21 320.00 81.74 10.22 325.00 81.74 10.72 320.00 81.74 10.72 320.00 81.74 10.72 320.00 81.74 10.72 320.00 81.74 10.72 320.00 81.74 10.72 320.00 81.74 10.72 320.00 81.74 10.72 320.00 81.74 10.72 320.00 81.74 10.72 320.00 81.74 10.72 320.00 81.74 10.72 320.00 81.74 10.99 40.00 81.74 10.99 40.00 81.74 10.99 40.00 81.74 10.99 40.00 81.74 10.99 40.00 81.74 10.02 10.75 10.75 10.75 17.7 80.80 10.91 10.91 10.80 24.43 342.00 83.43 rounded co/bo/gr bedrock 10ever bankfull estimate 10ever bankfull estimate 10ever bankfull estimate 10ever bankfull estimate 10.91 10.91 10				9.87	280.00	82.29			
Phase 3 1075 108 107 108 1000 80 100.02 100.08 24.45 100.08 24.45 100.08 24.45 100.08 108 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109									
Phase 3 10.75 10.68 10.68 10.82 10.82 10.82 10.82 10.82 10.82 10.82 10.82 10.82 10.82 10.82 10.82 10.82 10.82 10.82 10.82 10.7.24 107.24 107.24 107.24 107.24 107.24 107.24 107.24 107.24 107.76 10.41 10.00 10.00 10.00 10.00 11.41 10.00 10.00 11.41 10.00 11.42 10.00 10.00 11.41 10.00 11.42 10.00 10.00 11.41 10.00 10				10.42	290.00	81.74			
Phase 3 10.68 300.00 81.48 tape broke had to retie it Phase 3 11.09 305.00 81.07 11.30 310.00 80.86 10.42 10.21 320.00 81.96 10.22 315.00 81.74 10.72 330.00 81.44 10.69 340.00 81.17 10.99 340.00 81.17 7.22 BM1 100.02 close out OK (0.02 error) 107.76 - - - - 107.76 - - - - 107.76 - - - - 107.76 - - - - 107.76 - - - - 107.76 - - - - 107.76 - - - - 107.76 - - - - 107.76 - - - -				10 75	205.00	81 / 1			
Phase 3 11.09 305.00 81.07 11.30 110.00 80.86 10.82 315.00 81.34 10.21 320.00 81.96 10.42 325.00 81.74 10.72 30.00 81.67 107.24 17.38 TP2 station 50 on new tape 107.24 17.38 TP2 station 50 on new tape 107.76 5.30 81.57 flow fluctuation pin on LB 107.76 5.38 TopofLEpin 100.02 rounded corbogr 107.76 5.88 TopofLEpin 100.88 top of LB pin (station 172.2 on new tape) 107.76 5.88 TopofLEpin 100.88 top of LB pin (station 172.2 on new tape) 24.46 343.00 83.30 rounded corbogr base of bank lower bankfull estimate 19.91 357.60 87.79 bedrock lower bankfull estimate lower bankfull estimate 19.81 357.60 87.95 rounded corbogr base of low flow flow flow flow flow flow fl									
Phase 3 11.30 310.00 80.86 10.82 315.00 81.34 10.21 320.00 81.95 10.72 330.00 81.44 10.09 336.00 81.95 10.99 340.00 81.17 2.30 TP2 89.86 107.24 17.38 TP2 7.22 BM1 100.02 107.76 6.88 TopotLBpin 100.83 24.46 343.00 83.30 24.43 346.00 83.43 24.43 346.00 83.43 19.77 355.00 87.79 24.80 363.00 87.66 19.97 355.00 87.79 18.10 357.60 88.51 18.31 370.00 88.45 18.25 375.00 89.51 18.13 350.00 90.26 17.71 390.00 86.27 18.80 365.00 99.54 18.32 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Phase 2 102.1 320.00 81.95 1042 325.00 81.74 1007 330.00 81.44 1009 340.00 81.17 2.30 TP2 89.86 flow flow flow 107.24 17.38 TP2 7.22 BM1 100.02 close out OK (0.02 error) station #1 (OS1) 6.88 TopofLBpin 100.88 24.46 343.00 83.43 7.22 BM1 100.28 24.46 343.00 83.43 7.43 345.00 83.43 7.43 7.95 bedrock 19.97 355.00 87.79 19.81 357.60 87.95 18.80 365.00 88.96 18.25 375.00 89.51 18.01 365.00 89.54 18.25 375.00 89.51 18.01 365.00 89.54 16.32 407.00 90.	{					80.86			
Phase 2 10.42 325.00 81.74 10.72 330.00 81.174 10.60 335.00 81.56 10.99 340.00 81.17 2.30 TP2 89.86 107.24 17.38 TP2 7.22 BM1 100.02 close out OK (0.02 error) high continued from above, Operation Station #1 (OS1) 107.76 6.88 TopofLBpin 100.88 24.40 343.00 83.30 rounded co/bo/gr 24.20 346.00 83.30 rounded co/bo/gr 24.20 346.00 83.30 rounded co/bo/gr 24.20 345.00 85.68 lower bankfull estimate 19.97 355.00 87.79 bedrock 19.48 360.00 88.27 rounded co/bo/gr 19.49 360.00 89.41 at base of low flow pin (Matt Sloat) 19.49 360.00 89.44 at base of low flow pin (Matt Sloat) 19.49 396.00 89.44 at base of low flow pin (Matt Sloat)	Phase 3					81.34			
Phase 2 10.7.24 17.72 330.00 81.44 10.99 340.00 81.17 station 50 on new tape flow fluctuation pin on LB 107.24 17.38 7.22 BM1 100.02 close out OK (0.02 error) 107.76 - - - - - - 107.76 - - - - - - 107.76 - - - - - - 107.76 - - - - - - 107.76 - - - - - - - 107.76 -<									
Phase 2 10.80 10.99 2.30 7.22 335.00 81.17 BMI 81.56 80.86 10.09 TP2 80.86 station 50 on new tape flow fluctuation pin on LB turned back to RB close out OK (0.02 error) 107.76 T72 BMI 100.02 high continued from above, Operation Station #1 (OS1) 107.76 6.88 TopofLBpin 100.83 24.33 345.00 83.30 83.30 24.33 turned back to RB close out OK (0.02 error) 24.46 343.00 83.30 rounded co/bo/gr bedrock base of bank lower bankfull estimate 22.08 350.00 85.68 bedrock base of bank lower bankfull estimate 19.97 355.00 87.75 rounded co/bo/gr bedrock base of low flow pin (Matt Sloat) 19.49 365.00 89.56 rounded co/bo/gr bedrock base of low flow pin (Matt Sloat) 19.49 365.00 89.44 18.25 375.00 89.51 18.80 385.00 89.75 rounded co/ble/gravel upper bankfull estimate 16.32 404.80 90.33 upper bankfull estimate 12.21 19.43 367.00 9.61 cobble/sand upper bankfull estimate									
Phase 2 107.24 17.38 17.22 340.00 81.17 station 50 on new tape 107.24 17.38 TP2 89.86 flow flow flow that to RB turned back to RB 107.76 7.22 BM1 100.02 high continued from above, Operation Station #1 (OS1) 107.76 6.88 TopofLBpin 100.88 top of LB pin (station 172.2 on new tape) 24.46 343.00 83.30 rounded co/bo/gr base of bank 24.20 345.00 83.66 bedrock base of bank 109.7 355.00 87.79 bedrock top of rule were bankfull estimate 19.97 355.00 87.79 bedrock top of pin (low flow fluctuation pin LB) 19.81 357.60 89.55 at base of low flow fluctuation pin LB) 19.81 357.00 89.45 at base of low flow fluctuation pin LB) 19.81 357.00 89.45 at base of low flow fluctuation pin LB) 19.81 357.00 89.45 at base of low flow fluctuation pin LB) 19.49 360.00 89.45 at base of low flow fluctuation pin LB) 18.80 385.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Phase 2 2.30 TP2 17.24 89.86 17.22 flow fluctuation pin on LB turned back to RB close out OK (0.02 error) 107.76 7.22 BM1 100.02 close out OK (0.02 error) 107.76 6.88 TopofLBpin 100.88 top of LB pin (station 172.2 on new tape) 24.46 343.00 83.30 rounded co/bo/gr bedrock bedrock 24.20 350.00 85.68 bedrock bedrock bedrock 19.97 355.00 87.79 bedrock top of pin (low flow fluctuation pin LB) 19.41 17.81 TP2 89.95 top of pin (low flow fluctuation pin LB) 19.81 357.60 87.95 top of pin (low flow fluctuation pin LB) at base of low flow pin (Matt Sloat) 19.49 365.00 89.51 rounded cobble/gravel top of pin (low flow pin (Matt Sloat) 19.49 365.00 89.75 rounded cobble/gravel top of pin (low flow pin (Matt Sloat) 19.49 365.00 89.75 rounded cobble/gravel top of pin (low flow pin (Matt Sloat) 19.49 345.00 99.36									station 50 on new tane
Phase 2 107.24 17.38 TP2 7.22 turned back to PB bigh continued from above, Operation Station #1 (OS1) 107.76 5.88 TopofLBpin 100.88 top of LB pin (station 172.2 on new tape) WSEL - LB (11:25) 24.46 343.00 83.30 rounded co/bo/gr bedrock bedrock 22.48 350.00 85.68 bedrock bedrock 19.97 355.00 87.79 bedrock top of pin (low flow fluctuation pin LB) at base of bank 19.81 357.60 89.51 rounded cobble/gravel top of pin (low flow fluctuation pin LB) at base of low flow pin (Matt Sloat) 19.43 360.00 89.41 18.31 370.00 89.41 18.31 370.00 89.41 18.31 370.00 89.41 18.25 375.00 89.51 rounded cobble/gravel top of pin (low flow pin (Matt Sloat) 17.50 395.00 90.55 rounded cobble/gravel top pin (low flow pin (Matt Sloat) 18.25 395.00 90.56 rounded cobble/gravel top pin (low flow pin (Matt Sloat) 110.1 12.24 407.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Phase 2 BM1 100.02 close out OK (0.02 error) high continued from above, Operation Station #1 (OS1) high continued from above, Operation Station #1 (OS1) 107.76 6.88 TopofLBpin 100.88 24.46 543.00 83.30 24.43 345.00 83.43 24.20 348.20 83.56 22.08 35.00 87.79 17.81 TP2 89.95 17.81 TP2 89.95 18.80 365.00 88.79 19.94 360.00 88.27 18.80 385.00 89.75 18.81 357.60 89.75 18.82 380.50 89.44 18.31 370.00 89.45 18.22 380.50 89.45 18.23 3412.00 90.64 17.71 390.00 90.54 18.32 407.00 90.54 18.32 407.00 90.54 18.32 407.00 90.67 12.94		107.24	17.38	2.00		00.00			
107.76 Station #1 (OS1) 6.88 TopofLBpin 100.88 top of LB pin (station 172.2 on new tape) 24.46 343.00 83.30 WSEL - LB (11:25) 24.33 345.00 83.43 rounded co/bo/gr 24.20 348.20 83.56 bedrock base of bank 19.97 355.00 87.79 bedrock top of pin (low flow fluctuation pin LB) 19.81 357.60 87.95 at base of low flow pin (Matt Sloat) top of pin (low flow pin (Matt Sloat) Phase 2 17.81 TP2 89.95 rounded cobble/gravel top of pin (low flow pin (Matt Sloat) Phase 2 17.71 390.00 90.26 rounded cobble/gravel top of pin (low flow pin (Matt Sloat) Phase 2 17.75 395.00 90.26 cobble/sand upper bankfull estimate 16.83 404.80 90.93 top of pin (low flow pin (Matt Sloat) top of pin (low flow pin (Matt Sloat) 11.62 407.00 91.44 385.00 90.26 cobble/sand upper bankfull estimate 16.83 404.80 </td <td></td> <td></td> <td></td> <td>7.22</td> <td></td> <td>100.02</td> <td></td> <td></td> <td></td>				7.22		100.02			
107.76 Station #1 (OS1) 6.88 TopofLBpin 100.88 top of LB pin (station 172.2 on new tape) 24.46 343.00 83.30 WSEL - LB (11:25) 24.33 345.00 83.43 rounded co/bo/gr 24.20 348.20 83.56 bedrock base of bank 19.97 355.00 87.79 bedrock top of pin (low flow fluctuation pin LB) 19.81 357.60 87.95 at base of low flow pin (Matt Sloat) top of pin (low flow pin (Matt Sloat) Phase 2 17.81 TP2 89.95 rounded cobble/gravel top of pin (low flow pin (Matt Sloat) Phase 2 17.71 390.00 90.26 rounded cobble/gravel top of pin (low flow pin (Matt Sloat) Phase 2 17.75 395.00 90.26 cobble/sand upper bankfull estimate 16.83 404.80 90.93 top of pin (low flow pin (Matt Sloat) top of pin (low flow pin (Matt Sloat) 11.62 407.00 91.44 385.00 90.26 cobble/sand upper bankfull estimate 16.83 404.80 </td <td>l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	l								
Phase 2 107.76 Station #1 (OS1) 6.88 TopofLBpin 100.88 top of LB pin (station 172.2 on new tape) 24.46 343.00 83.43 rounded co/bo/gr 24.20 346.20 83.66 bedrock 24.20 346.20 83.66 bedrock 19.97 355.00 85.68 lower bankfull estimate 19.97 355.00 88.27 top of pin (low flow fluctuation pin LB) 18.80 366.00 88.96 tabse of low flow pin (Matt Sloat) 19.41 37.60 89.75 rounded cobble/gravel top of pin (low flow flow pin (Matt Sloat) 18.80 366.00 88.96 tabse of low flow pin (Matt Sloat) tabse of low flow pin (Matt Sloat) 17.71 390.00 90.26 rounded cobble/gravel upper bankfull estimate 16.82 407.00 91.44 14.93 110.00 92.83 16.92 407.00 94.05 upper bankfull estimate 16.93 16.93 404.80 90.93 upper bankfull estimate 16.92 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
Phase 2 6.88 24.46 343.00 24.46 343.00 348.20 348.20 356.00 355.00		107.76							
Phase 2 24.46 34.300 83.30 WSEL - LB (11:25) 24.33 345.00 83.43 rounded co/bo/gr 24.20 348.20 83.56 bedrock base of bank 19.97 355.00 87.79 bedrock top of pin (low flow fluctuation pin LB) 19.97 355.00 87.79 bedrock top of pin (low flow fluctuation pin LB) 19.81 357.60 87.95 at base of low flow pin (Matt Sloat) 19.49 360.00 88.27 at base of low flow pin (Matt Sloat) 19.49 360.00 89.41 at base of low flow pin (Matt Sloat) 19.49 360.00 89.45 at base of low flow pin (Matt Sloat) 18.32 380.50 89.44 at base of low flow pin (Matt Sloat) 18.61 385.00 90.26 rounded cobble/gravel 17.70 395.00 90.26 rounded cobble/sand 16.32 407.00 91.44 at 2.00 14.93 412.00 92.83 at 2.00 12.94 427.00 94.82		107.70							
Phase 2 24.46 34.300 83.30 WSEL - LB (11:25) 24.33 345.00 83.43 rounded co/bo/gr 24.20 348.20 83.56 bedrock base of bank 19.97 355.00 87.79 bedrock top of pin (low flow fluctuation pin LB) 19.97 355.00 87.79 bedrock top of pin (low flow fluctuation pin LB) 19.81 357.60 87.95 at base of low flow pin (Matt Sloat) 19.49 360.00 88.27 at base of low flow pin (Matt Sloat) 19.49 360.00 89.41 at base of low flow pin (Matt Sloat) 19.49 360.00 89.45 at base of low flow pin (Matt Sloat) 18.32 380.50 89.44 at base of low flow pin (Matt Sloat) 18.61 385.00 90.26 rounded cobble/gravel 17.70 395.00 90.26 rounded cobble/sand 16.32 407.00 91.44 at 2.00 14.93 412.00 92.83 at 2.00 12.94 427.00 94.82				6.88	TopofLBpin	100.88			top of LB pin (station 172.2 on new tape)
Phase 2 24.20 348.20 83.56 bedrock base of bank 19.97 355.00 87.79 bedrock lower bankfull estimate 19.91 357.60 87.95 top of pin (low flow fluctuation pin LB) 19.81 357.60 87.95 at base of low flow pin (Matt Sloat) 19.49 360.00 88.27 at base of low flow pin (Matt Sloat) 18.82 380.50 89.44 stase of low flow pin (Matt Sloat) 18.25 375.00 89.51 rounded cobble/gravel 17.71 390.00 90.05 upper bankfull estimate 16.83 404.80 90.93 upper bankfull estimate 16.32 407.00 91.54 cobble/sand 16.32 407.00 94.05 upper bankfull estimate 16.32 407.00 93.67 upper bankfull estimate 12.94 427.00 94.05 upper bankfull estimate 12.94 427.00 94.82 silts/sands (on yard) 9.93 447.00 97.83 silts/sands (on yard) <									
Phase 2 22.08 350.00 85.68 lower bankfull estimate 19.97 355.00 87.79 bedrock top of pin (low flow fluctuation pin LB) at base of low flow pin (Matt Sloat) 19.81 357.60 87.95 at base of low flow pin (Matt Sloat) 19.49 360.00 88.27 at base of low flow pin (Matt Sloat) 18.32 380.50 89.44 at base of low flow pin (Matt Sloat) 18.31 370.00 89.45 at base of low flow pin (Matt Sloat) 18.13 370.00 89.75 rounded cobble/gravel 17.71 390.00 90.05 at base of low flow pin (Matt Sloat) 17.22 400.00 90.54 cobble/sand 16.33 404.80 90.93 upper bankfull estimate 16.32 407.00 91.44 at 20.00 14.09 417.00 93.67 at 20.00 12.94 422.00 94.65 at 20.00 12.12 432.00 95.64 at 20.00 11.00 437.00 97.36 at 20.00				24.33	345.00	83.43		rounded co/bo/gr	
Phase 2 19.97 17.81 19.81 19.81 357.60 19.81 357.60 19.81 357.60 19.81 357.60 87.95 87.95 88.27 18.80 365.00 18.32 380.50 18.32 380.50 18.32 380.50 18.32 380.50 18.32 385.00 18.25 375.00 18.25 375.00 18.25 375.00 18.25 375.00 18.25 375.00 17.71 395.00 90.26 17.22 400.00 90.54 17.22 400.00 90.54 16.83 404.80 90.93 14.40 16.83 404.80 90.93 14.40 16.83 407.00 91.44 14.93 412.00 92.83 14.09 417.00 93.67 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 94.65 12.94 427.00 95.64 11.00 437.00 95.64 11.00 437.00 95.64 11.00 437.00 97.83 8ilts/sands (on yard) 94.84 452.00 94.82 86.00 457.00 99.16 7.76 462.20 10.00 99.16 7.76 462.20 10.00 99.16 7.76 base of LB pin								bedrock	
Phase 2 17.81 TP2 89.95 top of pin (low flow fluctuation pin LB) at base of low flow pin (Matt Sloat) 19.81 357.60 87.95 at base of low flow pin (Matt Sloat) 19.49 360.00 88.27 at base of low flow pin (Matt Sloat) 19.49 360.00 88.96 at base of low flow pin (Matt Sloat) 18.32 380.50 89.44 at base of low flow pin (Matt Sloat) 18.11 370.00 89.45 at base of low flow pin (Matt Sloat) 18.125 375.00 89.51 rounded cobble/gravel 17.71 390.00 90.05 at base of low flow pin (Matt Sloat) 18.32 400.00 90.54 cobble/sand 16.32 407.00 91.44 at 12.00 14.93 412.00 92.83 at 14.94 14.93 412.00 94.65 at 2.94 12.94 427.00 94.82 at 2.94 12.12 432.00 95.64 at 3.94 11.00 437.00 97.36 at 3.94 9.93 447.									lower bankfull estimate
Phase 2 19.81 357.60 87.95 at base of low flow pin (Matt Sloat) 19.49 360.00 88.27 18.80 365.00 88.96 18.22 380.50 89.44 18.31 370.00 89.45 18.25 375.00 89.51 18.01 385.00 89.75 17.71 390.00 90.05 17.72 400.00 90.54 16.83 404.80 90.93 16.32 407.00 91.44 14.93 412.00 92.83 14.09 417.00 93.67 13.71 422.00 94.65 12.94 427.00 94.82 12.12 432.00 95.64 11.00 437.00 96.76 19.93 447.00 97.83 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin								bedrock	top of his (low flow fluctuation his LP)
Phase 2 19.49 360.00 88.27 18.80 365.00 88.96 18.32 380.50 89.44 18.31 370.00 89.45 18.25 375.00 89.51 18.26 375.00 89.51 18.27 18.01 385.00 89.75 17.71 390.00 90.26 17.72 400.00 90.54 16.83 404.80 90.93 upper bankfull estimate 16.32 16.32 407.00 91.44 14.93 412.00 92.83 13.71 422.00 94.05 12.94 427.00 94.82 12.12 432.00 95.64 11.00 437.00 97.83 9.93 447.00 97.83 9.93 447.00 97.83 9.93 447.00 98.28 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin									
Phase 2 18.80 365.00 88.96 18.32 380.50 89.44 18.31 370.00 89.45 18.25 375.00 89.51 18.25 375.00 89.75 18.01 385.00 90.95 17.71 390.00 90.26 17.72 400.00 90.54 16.32 407.00 91.44 16.32 407.00 92.83 14.09 417.00 93.67 13.71 422.00 94.05 12.94 427.00 94.82 12.12 432.00 95.64 11.00 437.00 96.76 10.40 442.00 97.36 9.93 447.00 97.83 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin									
Phase 2 18.32 380.50 89.44 18.31 370.00 89.45 18.25 375.00 89.51 18.01 385.00 89.75 18.01 390.00 90.05 17.71 390.00 90.26 17.22 400.00 90.54 cobble/sand 16.33 404.80 90.93 upper bankfull estimate 16.32 407.00 91.44 14.93 14.09 417.00 93.67 13.71 12.94 427.00 94.82 12.12 11.00 437.00 95.64 10.40 11.00 437.00 97.83 silts/sands (on yard) 9.93 447.00 97.83 silts/sands (on yard) 9.48 452.00 99.16 5 7.76 462.20 100.00 base of LB pin									
Phase 2 18.25 375.00 89.51 18.01 385.00 89.75 rounded cobble/gravel 17.71 390.00 90.26 17.72 400.00 90.54 cobble/sand 16.83 404.80 90.93 upper bankfull estimate 16.32 407.00 91.44 14.93 412.00 92.83 14.09 417.00 93.67 94.05 94.05 94.05 12.12 422.00 94.05 94.62 94.62 94.05 12.12 432.00 95.64 94.82 94.82 94.82 11.00 437.00 96.76 99.3 silts/sands (on yard) 9.48 452.00 98.28 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin base of LB pin				18.32		89.44			
H8.01 385.00 89.75 rounded cobble/gravel 17.71 390.00 90.05 17.72 400.00 90.54 cobble/sand 16.83 404.80 90.93 upper bankfull estimate 16.32 407.00 91.44 14.93 14.09 412.00 92.83 14.09 14.09 417.00 93.67 13.71 422.00 94.05 12.94 427.00 94.82 12.12 432.00 95.64 11.00 437.00 96.76 10.40 442.00 97.36 9.93 447.00 97.83 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin									
Phase 2 17.71 390.00 90.05 Phase 2 17.50 395.00 90.26 17.22 400.00 90.54 cobble/sand 16.83 404.80 90.93 upper bankfull estimate 16.32 407.00 91.44 upper bankfull estimate 16.32 407.00 92.83 14.09 14.09 417.00 93.67 13.71 422.00 94.05 12.94 427.00 94.82 12.12 432.00 95.64 11.00 437.00 96.76 10.40 442.00 97.36 9.93 447.00 97.83 9.93 447.00 97.83 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin									
Phase 2 17.50 395.00 90.26 17.22 400.00 90.54 cobble/sand 16.83 404.80 90.93 upper bankfull estimate 16.32 407.00 91.44 14.93 412.00 92.83 14.09 417.00 93.67 13.71 422.00 94.05 12.94 427.00 94.82 12.12 432.00 95.64 11.00 437.00 96.76 10.40 442.00 97.36 9.93 447.00 97.83 silts/sands (on yard) 9.48 452.00 98.28 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin base of LB pin								rounded cobble/gravel	
17.22 400.00 90.54 cobble/sand 16.83 404.80 90.93 upper bankfull estimate 16.32 407.00 91.44 14.93 412.00 92.83 14.09 417.00 93.67 13.71 422.00 94.05 12.94 427.00 94.82 12.12 432.00 95.64 11.00 437.00 96.76 9.93 447.00 97.83 9.93 447.00 97.83 silts/sands (on yard) 9.48 452.00 98.28 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin 10.80 LB pin	Bhasa 2	{							
16.83 404.80 90.93 upper bankfull estimate 16.32 407.00 91.44 14.93 412.00 92.83 14.09 417.00 93.67 13.71 422.00 94.05 12.94 427.00 94.82 12.12 432.00 95.64 11.00 437.00 96.76 10.40 442.00 97.36 9.93 447.00 97.83 9.48 452.00 98.28 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin	Filase 2							cobble/sand	
16.32 407.00 91.44 14.93 412.00 92.83 14.09 417.00 93.67 13.71 422.00 94.05 12.94 427.00 94.82 12.12 432.00 95.64 11.00 437.00 96.76 10.40 442.00 97.36 9.93 447.00 97.83 9.48 452.00 98.28 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin									upper bankfull estimate
14.09 417.00 93.67 13.71 422.00 94.05 12.94 427.00 94.82 12.12 432.00 95.64 11.00 437.00 96.76 10.40 442.00 97.36 9.93 447.00 97.83 9.48 452.00 98.28 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin									
13.71 422.00 94.05 12.94 427.00 94.82 12.12 432.00 95.64 11.00 437.00 96.76 10.40 442.00 97.36 9.93 447.00 97.83 9.48 452.00 98.28 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin				14.93	412.00				
12.94 427.00 94.82 12.12 432.00 95.64 11.00 437.00 96.76 10.40 442.00 97.36 9.93 447.00 97.83 9.48 452.00 98.28 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin									
12.12 432.00 95.64 11.00 437.00 96.76 10.40 442.00 97.36 9.93 447.00 97.83 silts/sands (on yard) 9.48 452.00 98.28 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin									
11.00 437.00 96.76 10.40 442.00 97.36 9.93 447.00 97.83 silts/sands (on yard) 9.48 452.00 98.28 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin									
10.40 442.00 97.36 9.93 447.00 97.83 silts/sands (on yard) 9.48 452.00 98.28 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin									
9.93 447.00 97.83 silts/sands (on yard) 9.48 452.00 98.28 8.60 457.00 99.16 7.76 462.20 100.00									
9.48 452.00 98.28 8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin									silts/sands (on yard)
8.60 457.00 99.16 7.76 462.20 100.00 base of LB pin									· · ·
					457.00	99.16			
6.88 TopofLBpin 100.88 top of LB pin (station 172.2 on new tape)				7.76	462.20	100.00			base of LB pin
				6.88	TopofLBpin	100.88			top of LB pin (station 172.2 on new tape)

The Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) lower cross section (p. 1 of 2)

н	BS	FS	s	TA	ELEV	WD	Bed material	Notes
	96.74	0.13		16.3	96.61			RB TOP XS3
			0.80	16.3	95.94			RB Base of pin XS3
			2.60	21.0	94.14			
			4.68	27.0	92.06			top of pond RBsilt sand
			7.68	29.4	89.06			WSE of pond, bottom of bank
			10.54	34.0	86.20		substrate: silty muck	
			11.36	39.0	85.38			
			11.45	44.0	85.29			
			11.13	49.0	85.61			
			10.76	54.0	85.98			
			9.57	59.0	87.17			
			7.71	62.4	89.03			WSE of LB pond
			5.79	66.0	90.95			
			4.95	71.0	91.79			
								upper bankfull estimate substrate:
			4.99	76.0	91.75			sand/cobble/small boulder
			5.51	81.0	91.23			
			5.03	86.0	91.71			
			5.20	91.0	91.54			
			4.68	96.1	92.06			
			5.44	105.0	91.30		substrate: cobble/gravel/boulder	
			6.06	110.0	90.68			
			6.74	115.0	90.00			
			7.56 7.91	120.0	89.18 88.83			
			9.42	125.0 130.0	87.32			
			9.42 10.65	130.0	86.09			
			11.11	140.0	85.63			
			11.61	140.0	85.13			
			11.29	145.0	85.45			
			10.73	155.0	86.01			
			9.83	160.0	86.91			
			9.77	165.0	86.97			
			9.38	170.0	87.36			
			9.29	175.0	87.45			
			9.69	180.0	87.05			
			9.98	185.0	86.76			
			9.73	190.0	87.01			
			10.09	195.0	86.65			
			11.54	200.0	85.20			
					00.20		substrate: boulder top of bank on right side of	
			11.81	203.5	84.93		channel	lower bankfull estimate
			16.28	207.0	80.46			
			16.75	207.9	79.99			RB WSE (time=15:30)
								· · · ·

The Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) lower cross section (p. 2 of 2)

н	BS	FS	ST	A	ELEV	WD	Bed material	Notes top of RB flow fluctuation pin just upstream of
9	6.74		8.91		87.83	3		XS3
-			17.92	210.0	78.82			
			18.97	215.0	77.77			
			18.75	220.0	77.99)		
			18.62	225.0	78.12			
			18.60	230.0	78.14	ŀ		
			18.24	235.0	78.50)		
			17.83	240.0	78.91			
			17.61	245.0	79.13	3		
			17.54	250.0	79.20)		
			17.58	255.0	79.16			
			17.46	260.0	79.28			
			17.55	265.0	79.19			
			17.17	270.0	79.57			
			17.02	275.0	79.72			
			17.22	280.0	79.52			
			16.77	284.2	79.97			LB XS3 WSE (Time = 15:50)
			16.68	285.0	80.06			
			16.48	290.0	80.26			
			16.56	295.0	80.18			
			15.35	300.0	81.39			298 ft old tape = 8 ft new tape
			13.75	305.0	82.99			
			13.86	307.5	82.88			base of a large boulder
			11.26	307.3	85.48			top of boulder
			10.09	310.6	86.65			other edge of boulder
			11.65	311.0	85.09			lower bankfull estimate
			11.82	312.7	84.92			
			7.31	317.5	89.43			top of bedrock outcrop
			8.56	322.7	88.18			upper bankfull estimate
			8.00	328.0	88.74			
			7.19	331.7	89.55			
			4.75	334.5	91.99			
			3.40	338.7	93.34			LB base of pin XS3
			2.61	338.7	94.13)		TOP LB XS3 (15 ft, post LB pip and 10 ft alouation to road
			7 20	252 7	104 42)		(15 ft. past LB pin and 10 ft elevation to road
			-7.39	353.7	104.13			surface)
			2.61		94.13)		LB pin XS3 T.O.P.
			0.00		07.04			Top of RB flow fluctuation pin just upstream of XS3
			8.90 0.13		87.84 96.61			
			0.15		90.0			RB TOP XS3 Loop closed OK

The Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) pebble count summary

	Upper Class	Rosgen						
	Boundary	Particle						
Particle Description	(mm)	Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	12	3	2	17	6%	6%
Very coarse sand (measured)	2	5	0	0	0	0	0%	6%
Very Fine Gravel	4		1	0	0	1	0%	6%
Fine Gravel	8		4	2	1	7	2%	8%
Medium Gravel	16	4	1	1	1	3	1%	9%
Coarse Gravel	32	-	9	8	1	18	6%	15%
Very Coarse Gravel	64	-	13	13	19	45	15%	30%
Small Cobble	128	3	32	32	28	92	30%	61%
Large Cobble	256		25	30	39	94	31%	92%
Small Boulder	512		3	11	9	23	8%	99%
Medium Boulder	1024	2	0	0	0	0	0%	99%
Large Boulder	2048		0	0	0	0	0%	99%
Very Large Boulder	4096]	0	0	0	0	0%	99%
Bedrock	>4096	1	0	2	0	2	1%	100%
		Total	100	102	100	302	100%	

Modified Wolman Pebble Count (mm), Lower Coloma

The Reach Downstream of Chili Bar: Gorge Site (CB-G4) long profile

н	BS	FS	STA	WSE	ELEV	Water depth (ft)	Notes
							Elev = 80.27+4.73=85.00 (mid-channel BR)
85.00	4.73		TP 5		80.27		(use TP2, error = 0.01)
84.99	1.62		TP 2		83.37		Elev = 83.37+1.62=84.99 (on island)
		9.44	20.00	79.55		4.00	
		8.38	30.00	79.51		2.90	
		8.19	40.00	79.52		2.72	
		9.60	50.00	79.55		4.16	
		9.59		79.59		4.19	
		8.57		79.49		3.07	
		8.88		79.27		3.16	
		8.95	106.00			3.24	
		9.13	125.00			3.20	
			140.00			5.50	not quite thalweg
			154.00			6.70	
			160.00			5.92	upper XS - XS 1
		9.85	180.00			3.96	
		9.95	203.00			4.00	
			224.00			4.00	
			244.00			4.20	
			265.00			4.20	
		9.71	285.00			3.40	
		9.03	300.00			2.75	
		9.27	320.00			3.00	
		8.89	340.00			2.60	
		8.36	360.00			2.06	
		8.61	380.00			2.40	
			400.00			2.34	
			420.00			2.48	middle XS - XS 2
			440.00			2.40	
		8.70	460.00			1.90	
		9.06	480.00			1.80	
		9.44	500.00			1.40	
		10.19	520.00	76.50	74.80	1.70	
		5.83	TP 6		79.16		near XS 2, LB. Elev TP 6 = 85.00-5.83=79.17
81.44	2.28		TP 6				turned to end of island
81.44	4.65		TP 4				OK. HI using TP 4 = 76.79+4.65=81.44 OK
		7.17	540.00		74.27		
		7.79	560.00	75.31	73.65	1.66	
		7.91	573.00	74.83	73.53	1.30	lower XS
		9.10	600.00	74.74	72.34	2.40	
		4.65	TP 4		76.79		OK, closed

The Reach Downstream of Chili Bar: Gorge Site (CB-G4) upper cross-section (p. 1 of 2)

HI 102.18	BS 2.18	FS	STA LB pin	ELEV	WD	Bed material	Notes top of LB pin = assumed to be 100.0
102.10	2.10	2.48	1.20	99.70			base of LB pin
		3.29	8.00	98.89			
		3.57	13.00	98.61			
		3.99	22.00	98.19			
		4.56	29.00	97.62			
		5.19	36.00	96.99			
		6.06	42.50	96.12			
		8.09	46.00	94.09			
		8.74	51.00	93.44			
		10.82	58.00	91.36			
		13.58	64.00	88.60			
		15.30	69.00	86.88		sand	entering small drainage
		17.03	73.20	85.15		CO/SA	bottom of draw
			80.00	85.16			
			87.00	86.41			
			93.00	86.62		sand	
			100.00	86.85			
			107.00	86.52			
			115.00	84.77			upper BF indicator (veg)
			122.00	82.94			
			126.10	82.00			lower BF indicator (break in slope)
			132.30	79.62			LB edge of water
			137.00	78.61		GR/CO	
00.40	10.00	19.32	TP 1	82.86			Elev = 102.18-19.32=82.86
93.49	10.63	47 40	TP 1	70.00			moved level
			143.20	76.30			
			149.00 153.50	76.25 75.18			
			156.00	73.04			tape broke-had to retie
			173.00	74.86			tape bloke-had to relie
			178.00	76.67			
			185.00	78.19			
			191.00	78.71			
			198.20	78.92			
			205.00	79.35			
			212.00	79.36			
			219.00	79.46			
			225.00	79.43			
		14.01	230.00	79.48			
		14.00	237.00	79.49			
		13.70	243.00	79.79			
				79.87			RB edge of water-island
				80.64			
			258.20	80.88			
			265.00	80.91			
			271.00	81.09			BF depth ~ 9.0 ft therefore pins are high enough
			276.00	81.10			
		12.24	282.00	81.25			

The Reach Downstream of Chili Bar: Gorge Site (CB-G4) upper cross-section (p. 2 of 2)

н	BS	FS STA	ELEV	WD	Bed material	Notes
93.49		12.06 288.00	81.43			
		12.04 293.00	81.45			
		12.16 299.00	81.33			
		12.23 305.00	81.26			
		12.60 311.00				
		13.18 320.00				
		13.81 326.00				
		13.82 331.00				
		14.46 337.00				LB edge of water - island
		14.57 342.00				
		15.68 349.00				
		16.53 354.00				
		16.08 360.00				
		15.84 365.00				
		15.59 370.00				
		14.95 375.00			bedrock	
		15.19 381.00				
		14.84 388.00				
		14.47 393.50				RB edge of water
		14.33 400.00				
		13.98 404.50				
		11.95 407.00				lower bankfull indicator (break in slope)
		11.38 413.00				
		11.00 420.00				
		10.09 423.10				upper bankfull indicator (veg break)
		9.82 430.00				
		8.05 435.00				
		6.34 440.00				
		5.18 447.00				
		4.02 453.00				
		3.25 456.80				base of RB pin
		2.98 RB pin				top of RB pin
		10.63 TP 1	82.86			
102.23	19.37	TP 1				turned
		2.25 LB pin	99.98			top of LB pin, OK (0.02 error)

The Reach Downstream of Chili Bar: Gorge Site (CB-G4) middle cross-section (p. 1 of 2)

HI 102.25	BS	FS 18.88	STA TP 2	ELEV 83.37	Bed material	Notes TP on island, Elev = 102.25
	9.54		TP 2			turn
92.91		0.82	LB pin			Top of LB tailpin
		0.82	LB pin			top of pin
		1.96	1.30	90.95		base of pin
		2.30	6.00	90.61		
		4.17	11.60	88.74		
		5.06	21.20	87.85		
		6.46	26.00	86.45		
		6.79	31.00	86.12		
		7.47	36.00	85.44		
		8.69	42.00	84.22		
		9.10	47.00	83.81		
		9.66	51.10	83.25		upper BF indicator
		10.25	58.00	82.66		
		10.55	65.00	82.36		
		10.50	70.00	82.41		
		10.77	77.00	82.14		lower BF indicator
		11.93		80.98		
		13.21		79.70		
		14.03	95.00 98.00	78.88		L D adda of water
				78.64		LB edge of water
			105.00 110.00	78.18 77.52		
				76.94		
			122.00	76.43		
				76.20		
				76.33		
			138.00	76.43		
			143.00	76.67		
			149.00	76.76		
			155.00	76.87		
		16.01		76.90		
		15.41		77.50		
			172.50	78.71		RB edge of water (island)
		12.58	178.00	80.33		5
			185.00	81.28		
			191.00	81.56		
		10.91	197.00	82.00		
		10.64	202.00	82.27		
		10.52	209.00	82.39		

The Reach Downstream of Chili Bar: Gorge Site (CB-G4) middle cross-section (p. 2 of 2)

н	BS	FS	STA	ELEV	Bed material	Notes
92.91		10.10	215.00	82.81		
		9.86	222.00	83.05		
		9.85	230.00	83.06		
		9.54	237.00	83.37		
		9.86	243.00	83.05		
		9.90	250.00	83.01		
		10.50	258.00	82.41		
		10.92	264.00	81.99		
		12.14	270.00	80.77		
		13.06	275.10	79.85		
		14.25	281.00	78.66		
		15.87	287.50	77.04		LB edge of water (island)
		15.95	292.00	76.96		
		16.47	297.00	76.44		
			303.00			
		17.04	309.00	75.87		
			314.00			
			320.00			
					bedrock	
			332.00			
		15.98	337.00			
			343.10	77.37		RB edge of water
			349.00			
			353.20			lower bankfull estimate
			360.00			
			366.00			
			372.00			
			377.00			
			383.00			
			387.00			
			390.00			upper bankfull estimate
			396.00			
			402.00			
			408.00			
			411.90	90.86		base of RB pin
			RB pin	91.04		top of RB pin
			LB pin	92.09		top of LB pin
		9.55	TP 2	83.36		turning point on island (0.01 error)
102.37	19.01		TP 2			turning point on island
		2.39	BM 1	99.98		top of XS 1 LB pin = BM 1 (0.02 error)

The Reach Downstream of Chili Bar: Gorge Site (CB-G4) lower cross-section (p. 1 of 2)

н	BS	FS	STA	ELEV	Notes
					turning point on island (HI =
93.05	9.68		TP 2	83.37	83.37+9.68=93.05)
		0.26	LB pin	92.79	top of pin
		0.80	1.30	92.25	
		2.03	7.00	91.02	
		4.16	14.00	88.89	
		5.57	20.00	87.48	
		6.75	25.00	86.30	
		7.63	30.00	85.42	
		8.09	35.00	84.96	
		8.69	40.00	84.36	
		0.50	45.00	00 50	toe of slope - start of cobble bar (upper
		9.53	45.00	83.52	bankfull estimate)
		9.91	50.00	83.14	
		10.22	55.00	82.83	
		10.30	60.00	82.75	
		10.52	65.00	82.53	
		10.73	70.00	82.32	
		10.71	75.00	82.34	
		10.72	80.00	82.33	
		10.85	85.00	82.20	
		10.98	90.00	82.07	
		11.45	95.00	81.60	
		11.88	100.00	81.17	
		12.11	105.00	80.94	
		12.18	110.00	80.87	
		12.34	115.00	80.71	
		12.58	120.00	80.47	
		12.69	125.00	80.36	
		12.43	130.00	80.62	
		12.74	135.00	80.31	
		12.97	140.00	80.08	
		13.19	145.00	79.86	
		13.19	150.00	79.86	lower bankfull estimate
		13.71	155.00	79.34	
		14.49	160.00	78.56	
		16.08	165.00	76.97	
		16.56	170.00	76.49	
		17.07	175.00	75.98	
		17.93	179.00	75.12	LEW
		18.40	184.00	74.65	tape broke
		10.40	104.00	1 1.00	

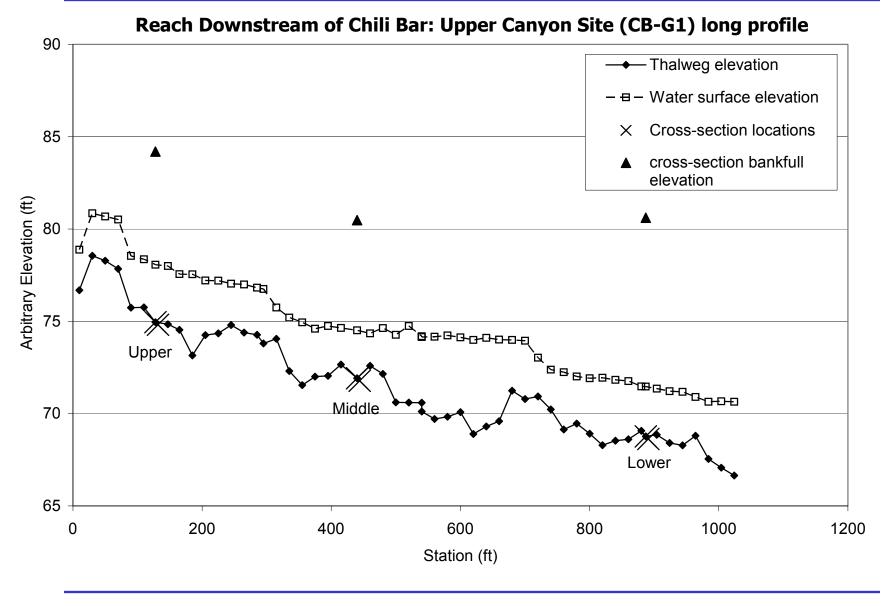
The Reach Downstream of Chili Bar: Gorge Site (CB-G4) lower cross-section (p. 2 of 2)

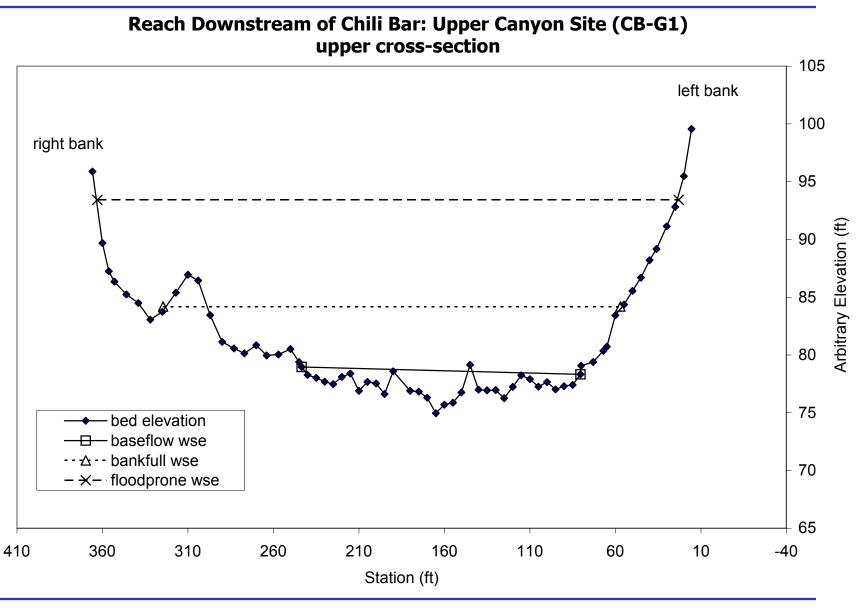
HI 81.67	BS 5.32	FS	STA TP 3	ELEV	Notes turned level (to edge of island)
		7.23	185.00	74.44	
		7.68	190.00	73.99	
		9.04	198.00	72.63	thalweg is very swiftcan't get
		8.89	202.00	72.78	
		8.74	206.50	72.93	
		8.71	212.00	72.96	
		7.18	218.00	74.49	
		7.57	225.00	74.10	
		7.17	230.00	74.50	
		7.81	235.00	73.86	
		8.10	240.00	73.57	
		8.54	245.00	73.13	
		7.71	250.00	73.96	at crossover riffle
		6.44	255.00	75.23	
		6.28	260.00	75.39	
		6.24	265.00	75.43	
		6.03	270.00	75.64	
		6.14	275.00	75.53	
		5.96	280.00	75.71	
		6.23	285.00	75.44	
		6.50	290.00	75.17	
		6.17	295.00	75.50	
		5.96	300.00	75.71	
		5.63	305.00	76.04	
		5.68	310.00	75.99	
		5.18	316.10	76.49	bedrock, REW
		3.73	320.00	77.94	
		2.85	326.00	78.82	
00.44	04.05	4.88	TP 4	76.79	on XS 3 RB, Elev TP 4 = 81.67-4.88=76.79
98.44	21.65	40.07	TP 4	70.07	turned up to bank
		19.07	330.00	79.37	
		18.34	335.00	80.10	* 3.4 ft knot in rope b/w Sta 95 and 100 (on second tape-need to correct for it) CDJ, MCM, and SRD decided that knot was
		17.69	340.00	80.75	actually on unmeasured side of endpin.
		16.34	345.00	82.10	
		15.13	350.00	83.31	
		13.28	355.00	85.16	
		10.73	360.00	87.71	
		8.52	365.00	89.92	
		5.62	370.70	92.82	base of RB pin
		5.28	RB pin	93.16	top of pin
			-		
		18.17	TP 5	80.27	on bedrock outcrop, mid channel u/s of XS 3
		5.63	LB pin	92.81	top of LB pin (error = 0.02)

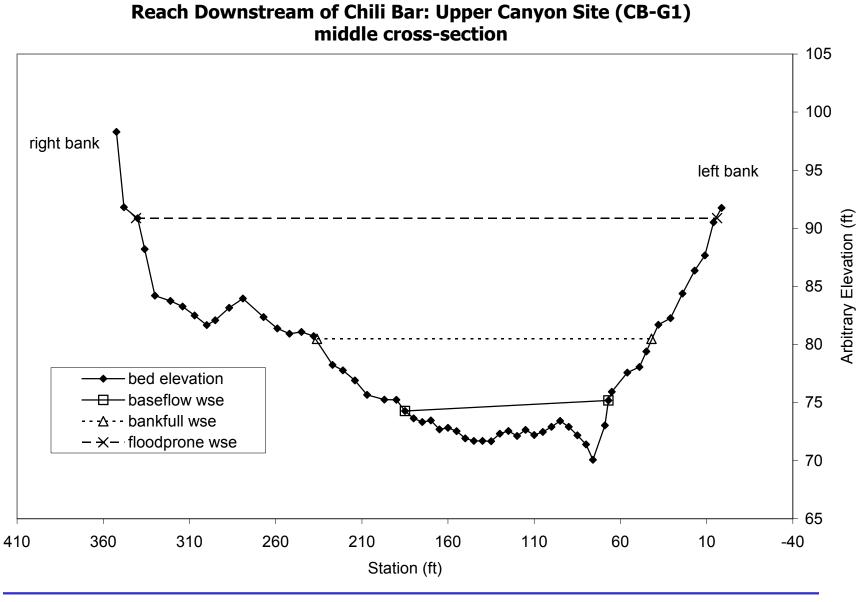
The Reach Downstream of Chili Bar: Gorge Site (CB-G4) pebble count summary

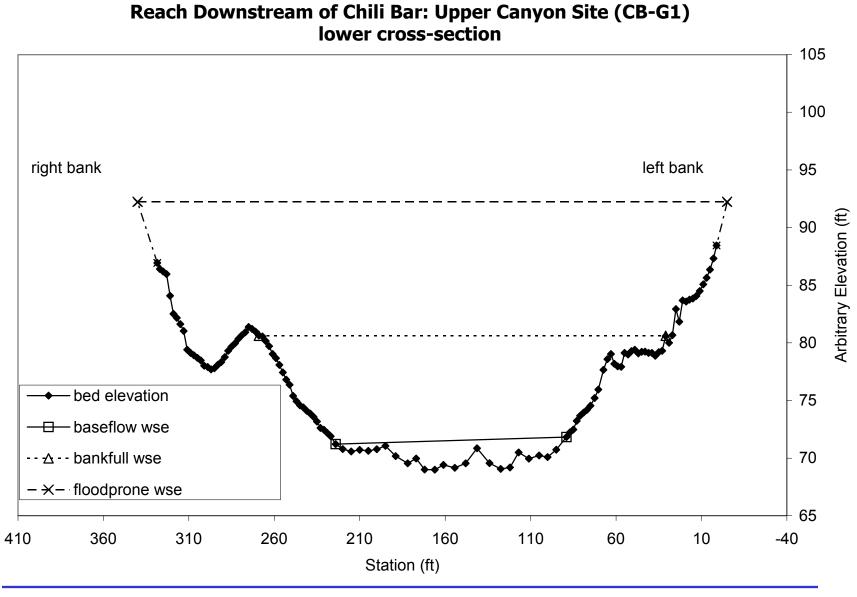
Modified Wolman Pebble Count (mm), Chili Bar Gorge Reach

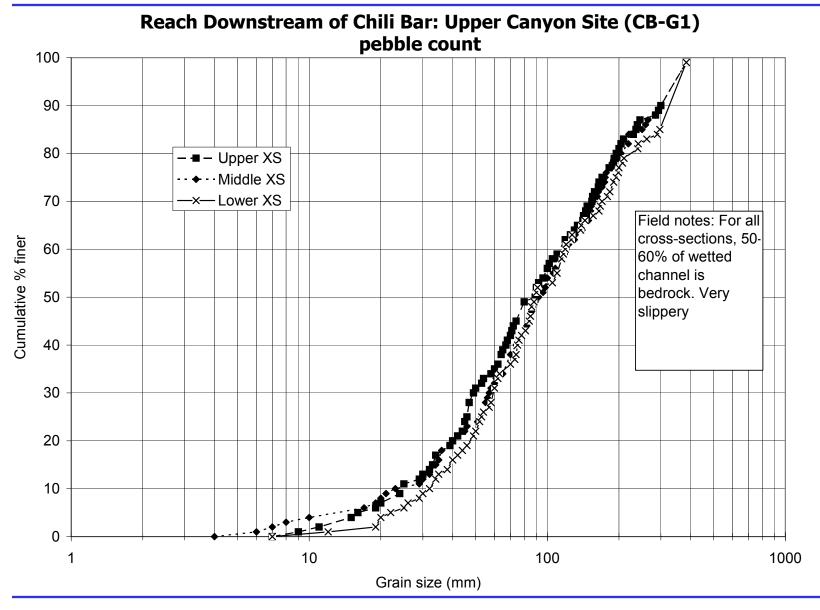
	Upper Class Boundary	Rosgen Particle						
Particle Description	(mm)	Size	XS #1	XS #2	XS #3	Total	Item %	Cum %
Very coarse sand (unmeasured)	<2	6	0	0	0	0	0%	0%
Very coarse sand (measured)	2	5	0	0	0	0	0%	0%
Very Fine Gravel	4		0	0	0	0	0%	0%
Fine Gravel	8		2	0	0	2	1%	1%
Medium Gravel	16	4	4	0	0	4	1%	2%
Coarse Gravel	32		10	5	4	19	6%	8%
Very Coarse Gravel	64		32	28	21	81	27%	35%
Small Cobble	128	- 3	36	44	47	127	42%	78%
Large Cobble	256	3	15	20	18	53	18%	95%
Small Boulder	512		1	3	10	14	5%	100%
Medium Boulder	1024	2	0	0	0	0	0%	100%
Large Boulder	2048	2	0	0	0	0	0%	100%
Very Large Boulder	4096		0	0	0	0	0%	100%
Bedrock	>4096	1	0	0	0	0	0%	100%
		Total	100	100	100	300	100%	

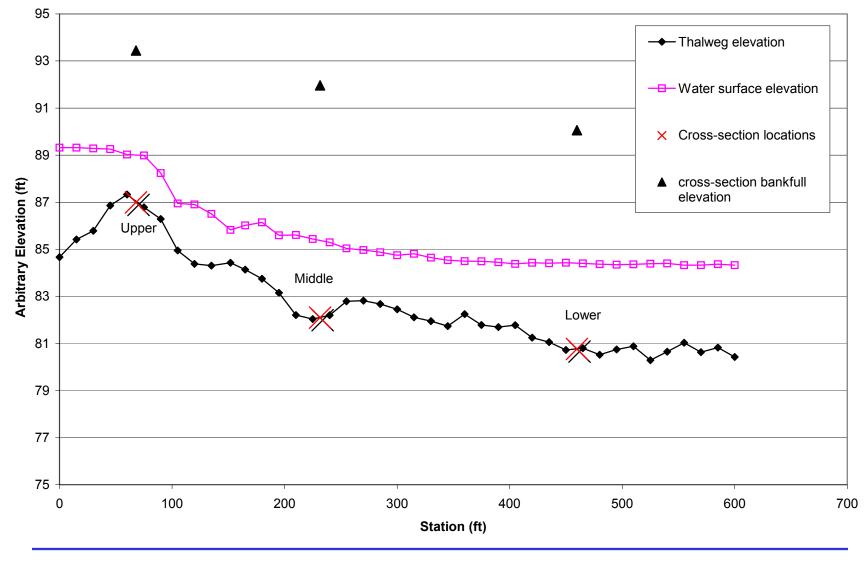

APPENDIX K

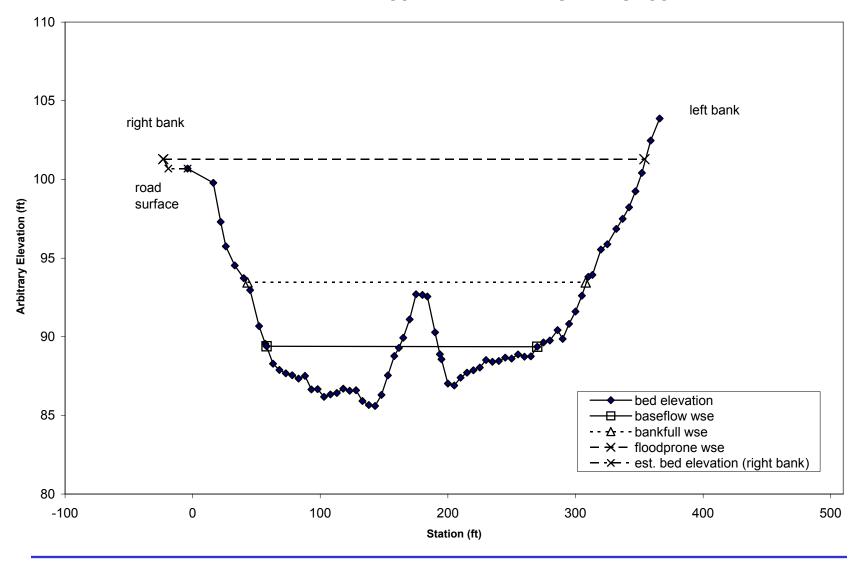

GRAPHS: LONGITUDINAL PROFILES, CROSS-SECTIONS, AND PEBBLE COUNT PLOTS FOR THE REACH DOWNSTREAM OF CHILI BAR

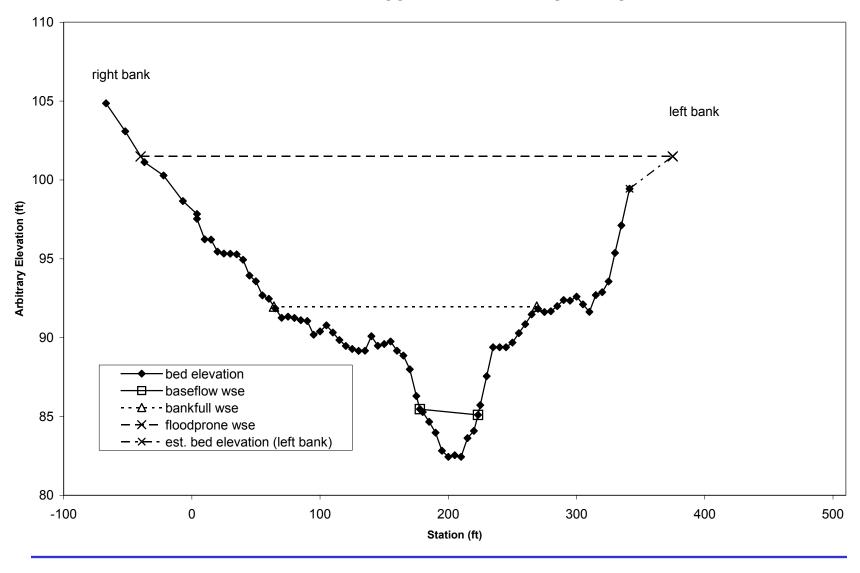

• Site Names for the Reach Downstream of Chili Bar	K-1
• Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) long profile	K-2
• Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) upper cross-	
section	K-3
• Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) middle cross-	
section	K-4
• Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) lower cross-	
section	K-5
• Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) particle size	
distribution plot	
Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) long profile	K-7
• Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) upper cross-	
section	K-8
• Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) middle cross-	
section	K-9
• Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) lower cross-	
section	K-10
• Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) particle size	** 44
distribution plot	
• Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) long profile	K-12
• Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) upper cross-	TZ 10
section	K-13
• Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) middle cross-	TZ 14
	K-14
• Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) lower cross-	IZ 15
section	K-15

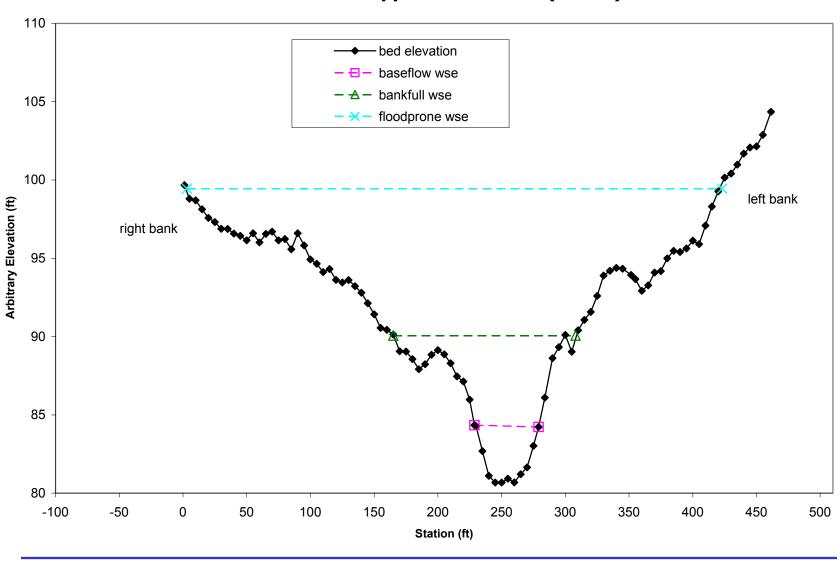

•	Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) particle size	
	distribution plot	K-16
•	Reach Downstream of Chili Bar: Gorge Site (CB-G4) long profile	K-17
•	Reach Downstream of Chili Bar: Gorge Site (CB-G4) upper cross-section	K-18
•	Reach Downstream of Chili Bar: Gorge Site (CB-G4) middle cross-section	K-19
•	Reach Downstream of Chili Bar: Gorge Site (CB-G4) lower cross-section	K-20
•	Reach Downstream of Chili Bar: Gorge Site (CB-G4) particle size distribution	
	plot	K-21

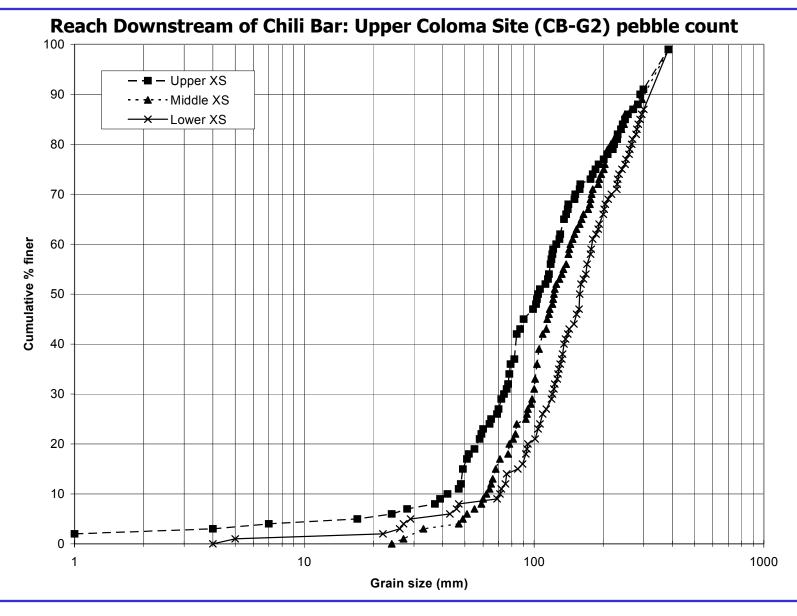

Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) Upper Coloma Site (CB-G2) Lower Coloma Site (CB-G3) Gorge Site (CB-G4)

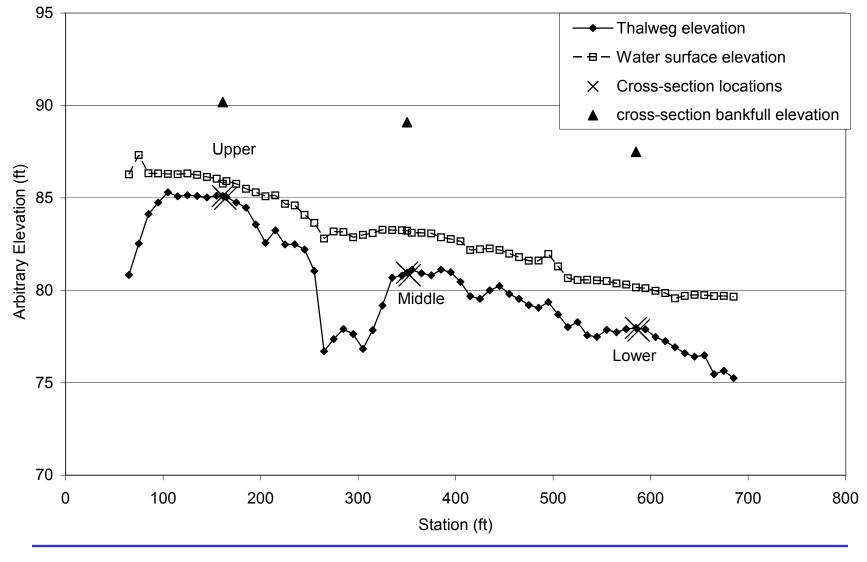




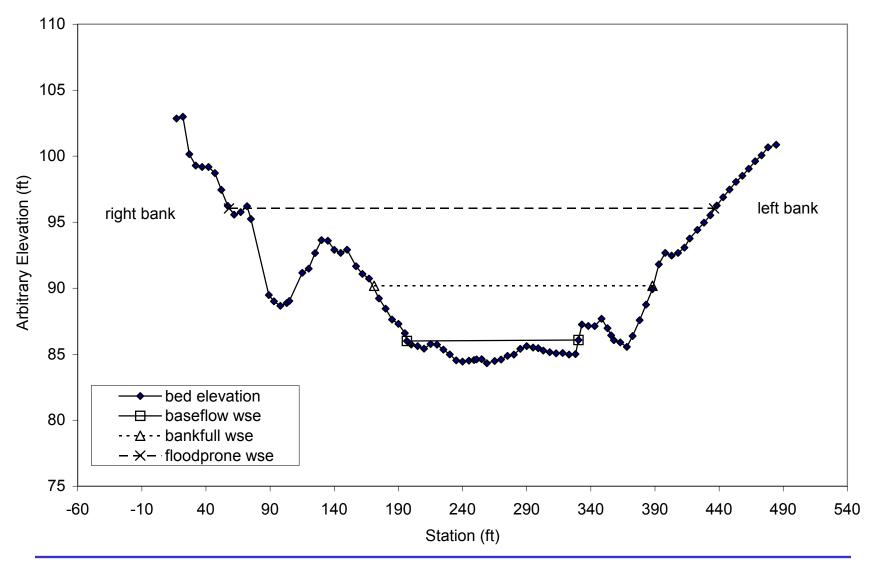



Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) long profile

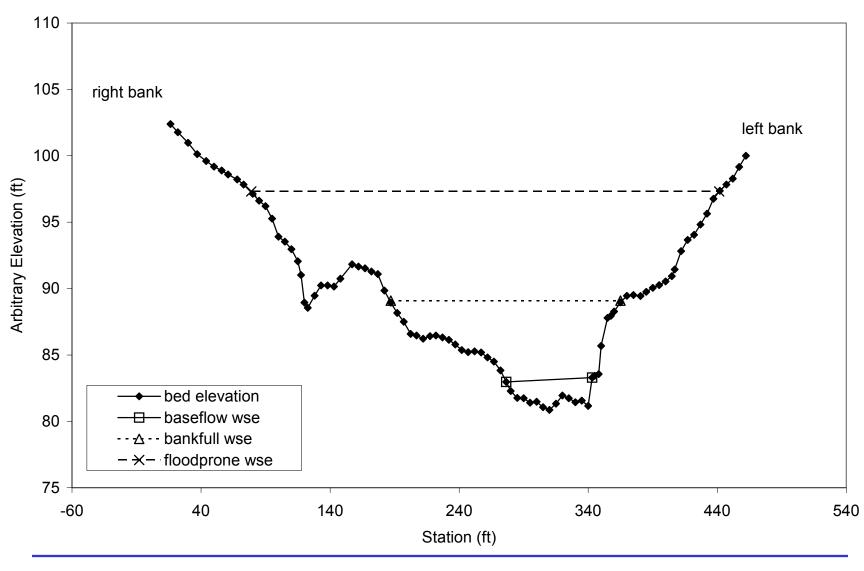

Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) upper cross-section



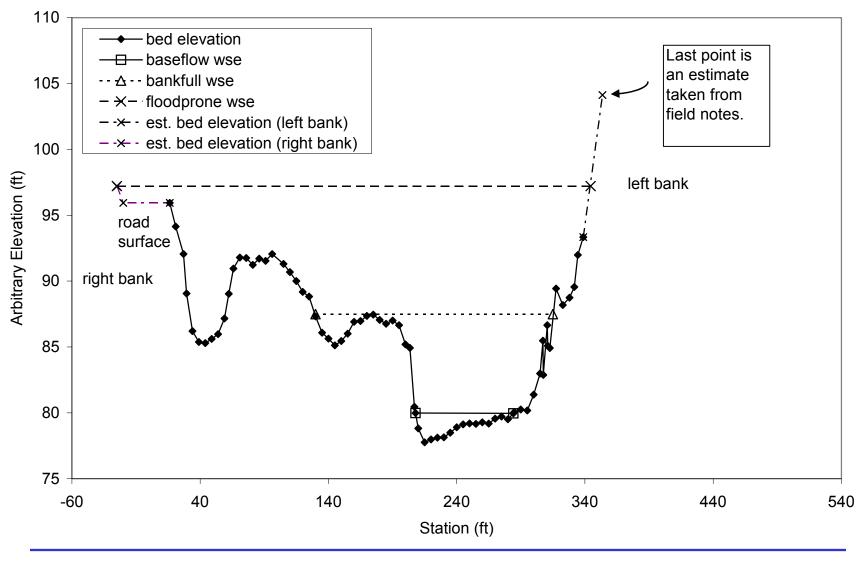
Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) middle cross-section

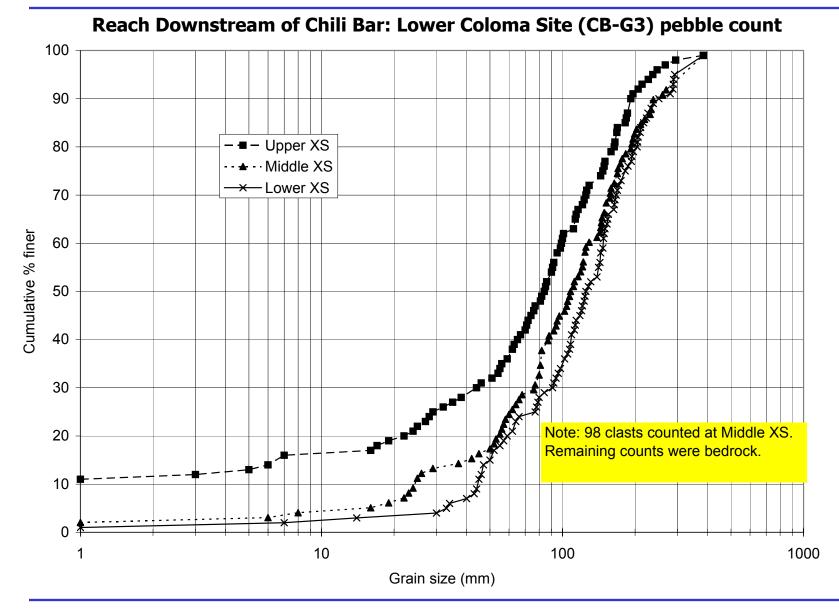


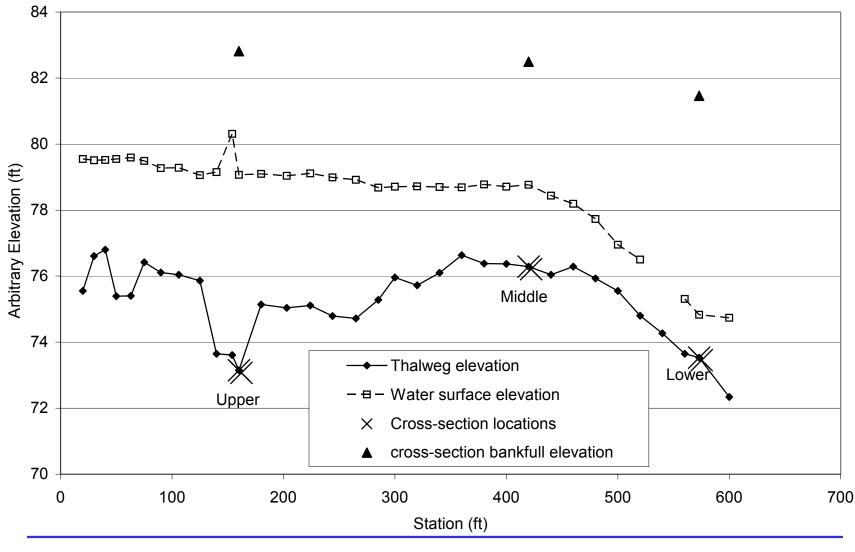
Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) lower cross-section



Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) long profile

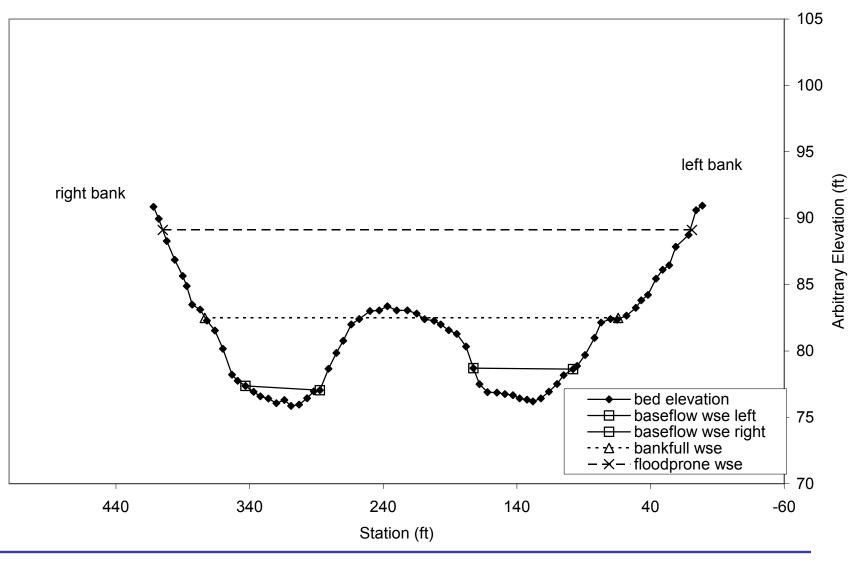


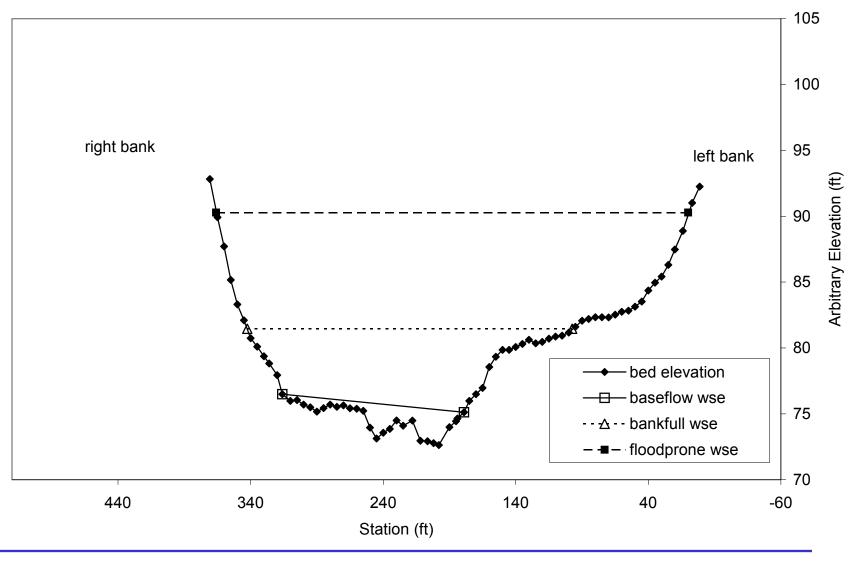

Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) upper cross-section



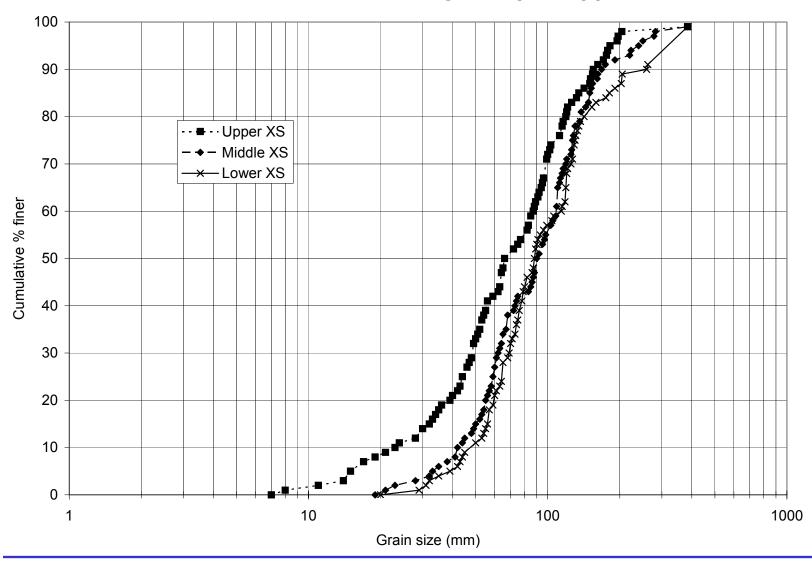
Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) middle cross-section

Reach Downstream of Chili Bar: Lower Coloma Site (CB-G3) lower cross-section




Reach Downstream of Chili Bar: Gorge Site (CB-G4) long profile

Reach Downstream of Chili Bar: Gorge Site (CB-G4) upper cross-section



Reach Downstream of Chili Bar: Gorge Site (CB-G4) middle cross-section

Reach Downstream of Chili Bar: Gorge Site (CB-G4) lower cross-section

Reach Downstream of Chili Bar: Gorge Site (CB-G4) pebble count

APPENDIX L

LEVEL III DATA FOR THE REACH DOWNSTREAM OF CHILI BAR

The Reach Downstream of Chili Bar: Upper Coloma Site (CB-G2) Lower Coloma Site (CB-G3)

Upper Coloma Site (CB-G2) LWD Frequency

LWD Frequency Data Sheet

Study Reach Name: Chili Bar - Upper Coloma Date: 11/18/03 Start time: Crew Initials: CDJ, SKW End time:

Diameter Class	Length Class				
	3-10 ft (0.9-3.0 m)	10-25 ft (3.1-7.6 m)	25-50 ft (7.7-15.2 m)	50-75 ft (15.3-22.9 m)	>75 ft (>23 m)
6-12 in (10-30 cm)					
12-24 in (31-60 cm)					
24-36 in (61-90 cm)					
>36 in (>90 cm)					

"Tally as R if rootwad is attached."

Comments: No Key Pieces. No LWD in channel or along bank. Some present above bankfull elevation on left bank upper slope

Upper Coloma Site (CB-G2) V Star

V* Measurements

Study Reach Name: Chili Bar - Upper Coloma Date: 11/18/03 Start time: Crew Initials: CDJ, SDW End time:

Comments: No V* taken - small patches of fine sediment present in residual pools, but wetted not applicable due to lack of fine sediment

Upper Coloma Site (CB-G2) Rosgen Level III

Rosgen Level III Data Sheet

Study Reach Name:Chili Bar - Upper ColomaDate:11/18/2003Crew Initials:CDJ, SDW

Start time: End time:

Depositional Features (indicate one)

	B-1	point bars
Х	B-2	pt. bars w/ few mid channel bars
	B-3	many mid channel bars
	B-4	side bars
	B-5	diagonal bars
	B-6	main branching w/ many mid channel bars and islands
	B-7	mixed side bar and mid channel bars exceeding 2-3X width
	B-8	delta bars
Description:		C/B/G Bars

Meander Pattern (indicate one)

	M-1	regular meander
	M-2	tortuous meander
Х	M-3	irregular meander
	M-4	truncated meander
	M-5	unconfined me. scrolls
	M-6	confine me. scrolls
	M-7	distorted me. loops
	M-8	irregular with oxbows
Description:		Channel marked by occasional meanders and long runs with pool riffle sequences

STREAM CHANNEL DEBRIS/BLOCKAGES (indicate one)

Materials, which upon placement into the active channel or floodprone area may cause an adjustment in channel dimensions or conditions, due to influences on the existing flow regime

	Description/Exter	nt
Х	D-1 (None)	Minor amounts of small, floatable material
	D-2 (Infrequent)	Debris consists of small, easily moved, floatable material; i.e. leaves, needles, small limbs, twigs, etc
	D-3 (Moderate)	Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.
	D-4 (Numerous)	Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.
	D-5 (Extensive)	Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel.
	D-6 (Dominating)	Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull
	D-7 (Beaver Dams - Few)	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.
	D-8 (Beaver Dams - Frequent)	Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced.
	D-9 (Beaver Dams - Abandoned)	Numerous abandoned dams, many of which have filled with sediment and/or breached, initiating a series of channel adjustments such as bank erosion, lateral migration, evulsion, aggradations and degradation.
	D-10 (Human Influences)	Structures, facilities, or materials related to land uses or development located within the floodprone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have influence on the existing flow regime, such that significant channel adjustments occur.

Upper Coloma Site (CB-G2) Pfankuch

Place X in this

Channel Stability (Pfankuch)

Study Reach Name: Chili Bar - Upper Coloma

Crew Initials: CDJ, SDW Date: 11/18/2003

Start Time: Stop Time:

Stop Time:		Category	(choose one for each of the four options for each category)		in this columr
Upper	1	Landform	Bank slope gradient <30%	2	
Banks		slope	Bank slope gradient 30-40%	4	
			Bank slope gradient 40-60%	6	Х
			Bank slope gradient 60+%	8	
	2	Mass wasting	No evidence of past or future mass wasting	3	
	_		Infrequent. Most likely healed over. Low future potential	6	Х
			Frequent or large, causing sediment nearly year long	9	~
			Frequent or large causing sediment nearly year long or imminent danger of same	12	
	2	Debris jam	Essentially absent from immediate channel area	2	~
	3	potential		4	Х
		potential	Present, but mostly small twigs and limbs		
			Moderate to heavy amounts, mostly larger sizes	6	
			Moderate to heavy amounts, predominately lager sizes	8	
	4	Vegetative	90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass	3	
		bank	70-90% density. Fewer species or less vigor suggest less dense or deep root mass	6	
		protection	<50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass	9	Х
			<50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass	12	
.ower	5	Channel	Ample for present plus some increases. Peak flows contained. W/D ration <7	1	
Banks		capacity	Adequate. Bank overflows rare. W/D ratio 8-15	2	Х
			Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25	3	
			Inadeguate. Overbank flows common. W/D ratio >25	4	
	6	Bank rock	65%+ with large angular boulders. 12"+ common.	2	
	Ŭ	content	40-65%. Mostly small boulders to cobbles 6-12"	4	х
		oomon	20-40%. With most in the 3-6" diameter class	6	~
				8	
		Obstantises	20% rock fragments of gravel sizes, 1-3" or less	-	
	7	Obstructions	Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable bed	2	
		to flow	Some present causing erosive cross currents and minor pool filling. Obstructions newer and less firm	4	Х
			Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool filling	6	
			Sediment traps full, channel migration occurring	8	
	8	Cutting	Little or none. Infrequent raw banks less than 6"	4	Х
			Some, intermittently at outcurves and constrictions. Raw banks may be up to 12"	6	
			Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident	12	
			Almost continuous cuts, some over 24" high. Failure of overhangs frequent	16	
	9	Deposition	Little or no enlargement of channel or point bars	4	Х
			Some new bar increase, mostly from coarse gravel	8	
			Moderate deposition of new gravel and course sand on old and some new bars	12	
			Extensive deposits of predominately fine particles. Accelerated bar development	16	
Bottom	10	Rock	Sharp edges and corners. Plane surfaces rough.	1	
Jottom	10	angularity	Rounded corners and edges, surfaces smooth, flat	2	
		angularity	Corners and edges well rounded in two dimensions	3	v
			·	4	X
		D. S. L. L. S.	Well rounded in all dimensions, surfaces smooth		
	11	Brightness	Surfaces dull, dark, or stained. Generally not bright	1	X
			Mostly dull, but may have <35% bright surfaces	2	
			Mixture dull and bright, ie 35-65% mixture range	3	
			Predominately bright, 65% exposed or scoured surfaces	4	
	12	Consolidation	Assorted sizes tightly packed or overlapping	2	
		of particles	Moderately packed with some overlapping	4	
			Mostly loose assortment with no apparent overlap	6	Х
			No packing evident. Loose assortment easily moved	8	
	13	Bottom size	No size change evident. Stable mater. 80-100%	4	
		distribution	Distribution shift light. Stable material 50-80%	8	
			Moderate changes in sizes. Stable materials 20-50%	12	Х
			Marked distribution change. Stable materials 0-20%	16	~
	1.4	Scouring and	<5% of bottom affected by scour or deposition	6	
	14				~
		deposition	5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools	12	X
			30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools	18	
			More than 50% of the bottom in a state of flux or change nearly year long	24	
	15	Aquatic	Abundant growth moss-like, dark green perennial. In swift water too.	1	
		vegetation	Common. Algae forms in low velocity and pool areas. Moss here too	2	Х
			Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick	3	
	1	1	Perennial types scare or absent. Yellow-green, short term bloom may be present	4	

Upper Coloma Site (CB-G2) Bank Erosion and Vegetation

Bank Erosion and Vegetation

Study Reach Name:Chili Bar - Upper ColomaDate:11/18/03Start Time:

Crew Initials: CDJ, SKW Stop Time:

Bank material: Boulders, cobble

	BANK EROSIO	N POTENTIAL		
(if banks are bedrock or compos	ed of boulders, do not	fill out this table)		
	Bank a	Bank b	Bank c	Bank d
Bank height (ft)	8.03-11.60	14.69-18.64		
Bankfull height (ft)	8.03	13.92		
Root depth (ft)	0.5-1.5	not visible		
Root density (%)	5-20%	not visible		
Bank Angle (degrees)	60-80	30-50		
Surface Protection (%)	75%	<5%		
% of total study reach	20-30%	60-80%		

Notes

Stratification of unstable layers in banks (below bankfull):

N/A No stratification present

Sediment supply: Moderat Vertical streambed stability: Degrading

Bank and channel bed conditions notes: Modern river is incising alluvial fill deposited during a prior period of aggradation. Thus, modern river banks are comprised of well rounded large cobble and small boulder. Modern river lies 5 - 15 feet below historical flow surface. Occasional high flows cover this historical surface (middle and lower cross-section).

RIPARIAN VEGETATION							
	DENSITY (indicate all that apply)						
VEGETATION TYPE	LOW	MOD.	HIGH	NOTES			
Bare		1					
Forbs only	2a						
Annual Grass w/ forbes	За						
Perennial grass	4a						
Rhizomatous grasses							
(bluegrass, Grass like plants,							
sedges, rushes)							
Low brush			6c				
High brush							
Combination grass/brush	8a						
Deciduous overstory		9b					
Deciduous w/brush/grass		10b					
understory		100					
Perennial overstory							
Wetland vegetation community							

VEGETATION NOTES (composition, vigor, density, and potential): Left bank has higher veg. denisity due to north facing aspect

Lower Coloma Site (CB-G1) LWD Frequency

LWD Frequency Data Sheet

Study Reach Name: Chili Bar - Lower Coloma Date: 11/22/03 Start time: Crew Initials: MCM, SKW, CDJ End time:

Diameter Class	Length Class			50 75 ft (45 0 00 0 m)	5 75 () (5 00 m)
	3-10 ft (0.9-3.0 m)	10-25 ft (3.1-7.6 m)	25-50 ft (7.7-15.2 m)	50-75 ft (15.3-22.9 m)	>75 ft (>23 m)
6-12 in (10-30 cm)	3				
12-24 in (31-60 cm)					
24-36 in (61-90 cm)					
>36 in (>90 cm)					

"Tally as R if rootwad is attached."

Comments: No Key Pieces. A few pieces upstream of cross-section 3 on right bank, along with smaller twigs - but thest might be just above bankfull (?). Otherwise no wood in bankfull channel.

Lower Coloma Site (CB-G1) V Star

V* Measurements

Study Reach Name: Chili Bar - Lower Coloma Date: 11/23/03 Start time: Crew Initials: CDJ, SKW, MCM End time:

Comments: Fine sediment is present in backwaters. No significant accumulation of fine sediment within the pools of their reach. No V* measurements done. Small patches with disucts pockets, but none measureable

Lower Coloma Site (CB-G1) Rosgen Level III

Rosgen Level III Data Sheet

Study Reach Name: Chili Bar - Lower Coloma Date: 11/22/03 Crew Initials: MCM, SKU, CDJ Start time: End time:

Depositional Features (indicate one)

Х	B-1	point bars
	B-2	pt. bars w/ few mid channel bars
	B-3	many mid channel bars
	B-4	side bars
	B-5	diagonal bars
	B-6	main branching w/ many mid channel bars and islands
	B-7	mixed side bar and mid channel bars exceeding 2-3X width
	B-8	delta bars
Description:		Pod at upstream end, followed by riffle, then a long run

Meander Pattern (indicate one)

Х	M-1	regular meander
	M-2	tortuous meander
	M-3	irregular meander
	M-4	truncated meander
	M-5	unconfined me. scrolls
	M-6	confine me. scrolls
	M-7	distorted me. loops
	M-8	irregular with oxbows
Description:		

STREAM CHANNEL DEBRIS/BLOCKAGES (indicate one)

Materials, which upon placement into the active channel or floodprone area may cause an adjustment in channel dimensions or conditions, due to influences on the existing flow regime

XD-1 (None)Minor amounts of small, floatable materialD-2 (Infrequent)Debris consists of small, easily moved, floatable material; i.e. leaves, needles, small limbs, twigs, etcD-3 (Moderate)Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.D-4 (Numerous)Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.D-4 (Numerous)Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel.D-5 (Extensive)Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel.D-6 (Dominating)Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfullD-7 (Beaver Dams - Few)An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.D-8 (Beaver Dams - Frequent)Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced and channel dimensions or conditions are influenced.		Description/Exter	nt
D-2 (Initequent) needles, small limbs, twigs, etc D-3 (Moderate) Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area. D-4 (Numerous) Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area. D-4 (Numerous) Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull D-7 (Beaver Dams - Few) An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. D-8 (Beaver Dams - Frequent) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced	Х	D-1 (None)	
D-3 (Moderate) Increasing frequency of small to medium sized material, i.e. large limbs, branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area. D-4 (Numerous) Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area. D-4 (Numerous) D-4 (Numerous) D-5 (Extensive) Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel. D-6 (Dominating) Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull D-7 (Beaver Dams - Few) An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. D-8 (Beaver Dams - Frequent) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced		D 2 (Infroquent)	Debris consists of small, easily moved, floatable material; i.e. leaves,
D-3 (Moderate)branches, small logs that when accumulated effect 10% or less of the active channel cross-sectional area.D-4 (Numerous)Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area.D-4 (Numerous)D-4 (Numerous)D-5 (Extensive)Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel often extending across the width of the active channel.D-6 (Dominating)Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfullD-7 (Beaver Dams - Few)An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.D-8 (Beaver Dams - Frequent)Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced		D-2 (Innequent)	needles, small limbs, twigs, etc
active channel cross-sectional area. D-4 (Numerous) Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area. D-5 (Extensive) Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. D-6 (Dominating) Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull D-7 (Beaver Dams - Few) An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. D-8 (Beaver Dams - Frequent) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced			Increasing frequency of small to medium sized material, i.e. large limbs,
D-4 (Numerous) Significant buildup of medium to large sized materials, i.e. large limbs, branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area. D-5 (Extensive) Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. D-6 (Dominating) Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull D-7 (Beaver Dams - Few) An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. D-8 (Beaver Dams - Frequent) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced		D-3 (Moderate)	branches, small logs that when accumulated effect 10% or less of the
D-4 (Numerous) branches, small logs, or portions of trees that may occupy 10 to 30% of the active cross-sectional area. D-5 (Extensive) Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. D-6 (Dominating) Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull D-7 (Beaver Dams - Few) An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. D-8 (Beaver Dams - Frequent) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced			active channel cross-sectional area.
the active cross-sectional area. D-5 (Extensive) D-5 (Extensive) D-6 (Dominating) D-6 (Dominating) D-7 (Beaver Dams - Few) D-8 (Beaver Dams - Frequent)			Significant buildup of medium to large sized materials, i.e. large limbs,
D-5 (Extensive) Debris "dams" of predominantly larger materials, i.e. branches, logs, trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. D-6 (Dominating) Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull D-7 (Beaver Dams - Few) An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. D-8 (Beaver Dams - Frequent) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced		D-4 (Numerous)	branches, small logs, or portions of trees that may occupy 10 to 30% of
D-5 (Extensive) trees, etc., occupying 30 to 50% of the active channel cross-section, often extending across the width of the active channel. D-6 (Dominating) Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull D-7 (Beaver Dams - Few) An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. D-8 (Beaver Dams - Frequent) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced			the active cross-sectional area.
often extending across the width of the active channel. D-6 (Dominating) Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull D-7 (Beaver Dams - Few) An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. D-8 (Beaver Dams - Frequent) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced			Debris "dams" of predominantly larger materials, i.e. branches, logs,
D-6 (Dominating) Large, somewhat continuous debris "dams," extensive in nature and occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull D-7 (Beaver Dams - Few) An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. D-8 (Beaver Dams - Frequent) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced		D-5 (Extensive)	trees, etc., occupying 30 to 50% of the active channel cross-section,
D-6 (Dominating) occupying over 50% of the active channel cross-section. Such accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull D-7 (Beaver Dams - Few) An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. D-8 (Beaver Dams - Frequent) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced			often extending across the width of the active channel.
D-6 (Dominating) accumulations may divert water into floodprone areas and form fish migration barriers, even when flows are at less than bankfull D-7 (Beaver Dams - Few) An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. D-8 (Beaver Dams - Frequent) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced			Large, somewhat continuous debris "dams," extensive in nature and
D-7 (Beaver Dams - Few) An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. D-8 (Beaver Dams - Frequent) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced		D-6 (Dominating)	occupying over 50% of the active channel cross-section. Such
D-7 (Beaver Dams - Few) An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams. D-8 (Beaver Dams - Frequent) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced			accumulations may divert water into floodprone areas and form fish
Dams - Few) expected channel conditions exist in the reaches between dams. D-8 (Beaver Dams - Frequency) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced			migration barriers, even when flows are at less than bankfull
D-8 (Beaver Dams - Erequent) Frequency of dams is such that backwater conditions exist for channel reaches between structures; where streamflow velocities are reduced		D-7 (Beaver	An infrequent number of dams spaced such that normal streamflow and
D-8 (Beaver Dams - Frequent) reaches between structures; where streamflow velocities are reduced		Dams - Few)	expected channel conditions exist in the reaches between dams.
Dams - Frequent) reaches between structures; where streamflow velocities are reduced			Frequency of dams is such that backwater conditions exist for channel
Dams - Frequency and channel dimensions or conditions are influenced.		`	reaches between structures; where streamflow velocities are reduced
		Dams - Frequent)	and channel dimensions or conditions are influenced.
D-9 (Beaver Numerous abandoned dams, many of which have filled with sediment		D-9 (Beaver	Numerous abandoned dams, many of which have filled with sediment
Dams - and/or breached, initiating a series of channel adjustments such as bank		Dams -	and/or breached, initiating a series of channel adjustments such as bank
Abandoned) erosion, lateral migration, evulsion, aggradations and degradation.		Abandoned)	erosion, lateral migration, evulsion, aggradations and degradation.
Structures, facilities, or materials related to land uses or development			Structures, facilities, or materials related to land uses or development
located within the floodprone area, such as diversions or low-head dams		D-10 (Human	located within the floodprone area, such as diversions or low-head dams,
			controlled by-pass channels, velocity control structures, and various
Influences) Influences transportation encroachments that have influence on the existing flow		influences)	
regime, such that significant channel adjustments occur.			

Lower Coloma Site (CB-G1) Pfankuch

Place X

Channel Stability (Pfankuch)

Study Reach Name: Chili Bar - Lower Coloma

Crew Initials: SKW/MCM/CDJ Date: 11/22/2003

Start Time:

Stop Time: in this (choose one for each of the four options for each category) Category column: Upper Bank slope gradient <30% 2 Landform slope Bank slope gradient 30-40% 4 Banks х Bank slope gradient 40-60% 6 Bank slope gradient 60+% 8 2 Mass wasting No evidence of past or future mass wasting 3 х 6 Infrequent. Most likely healed over. Low future potential 9 Frequent or large, causing sediment nearly year long Frequent or large causing sediment nearly year long or imminent danger of same 12 3 Debris jam Essentially absent from immediate channel area 2 х potential Present, but mostly small twigs and limbs 4 Moderate to heavy amounts, mostly larger sizes 6 Moderate to heavy amounts, predominately lager sizes 8 Vegetative 90%+ plant density. Vigor and variety suggest a deep, dense soil binding root mass 3 4 bank 70-90% density. Fewer species or less vigor suggest less dense or deep root mass 6 protection <50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass 9 Х <50% density, fewer species and less vigor indicate poor, discontinuous and shallow root mass 12 Lower 5 Channel Ample for present plus some increases. Peak flows contained. W/D ration <7 1 2 X Banks capacity Adequate. Bank overflows rare. W/D ratio 8-15 Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25 3 Inadequate. Overbank flows common. W/D ratio >25 4 65%+ with large angular boulders. 12"+ common 6 Bank rock 2 Х content 40-65%. Mostly small boulders to cobbles 6-12" 4 6 20-40%. With most in the 3-6" diameter class 8 20% rock fragments of gravel sizes, 1-3" or less 7 Obstructions Rocks and logs firmly embedded. Flow pattern w/out cutting or deposition. Stable bed 2 to flow Some present causing erosive cross currents and minor pool filling. Obstructions newer and less firm 4 х Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool filling 6 Sediment traps full, channel migration occurring 8 8 Cutting 4 Х Little or none. Infrequent raw banks less than 6' 6 Some, intermittently at outcurves and constrictions. Raw banks may be up to 12" Significant. Cuts 12-24" high. Root mat overhangs and sloughing evident 12 Almost continuous cuts, some over 24" high. Failure of overhangs frequent 16 9 Deposition Little or no enlargement of channel or point bars 4 Х Some new bar increase, mostly from coarse gravel 8 Moderate deposition of new gravel and course sand on old and some new bars 12 Extensive deposits of predominately fine particles. Accelerated bar development 16 Sharp edges and corners. Plane surfaces rough. Bottom 10 Rock 1 angularity 2 Rounded corners and edges, surfaces smooth, flat Corners and edges well rounded in two dimensions 3 Well rounded in all dimensions, surfaces smooth 4 х 11 Brightness Surfaces dull, dark, or stained. Generally not bright 1 х 2 Mostly dull, but may have <35% bright surfaces Mixture dull and bright, ie 35-65% mixture range 3 Predominately bright, 65% exposed or scoured surfaces 4 12 Consolidation Assorted sizes tightly packed or overlapping 2 of particles Moderately packed with some overlapping 4 Х 6 Mostly loose assortment with no apparent overlap 8 No packing evident. Loose assortment easily moved 13 Bottom size No size change evident. Stable mater. 80-100% 4 distribution 8 Х Distribution shift light. Stable material 50-80% Moderate changes in sizes. Stable materials 20-50% 12 Marked distribution change. Stable materials 0-20% 16 14 Scouring and 6 Х <5% of bottom affected by scour or deposition deposition 5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools 12 30-50% affected. Deposits and scour at obstructions, constrictions, and bends. Some filling of pools 18 More than 50% of the bottom in a state of flux or change nearly year long 24 15 Aquatic Abundant growth moss-like, dark green perennial. In swift water too. 1 vegetation Common. Algae forms in low velocity and pool areas. Moss here too 2 Present but spotty, mostly in backwater. Seasonal algae growth makes rocks slick 3 х Perennial types scare or absent. Yellow-green, short term bloom may be present 4

Lower Coloma Site (CB-G1) Bank Erosion and Vegetation

Bank Erosion and Vegetation

Study Reach Name:Chili Bar - Lower ColomaDate:11/22/03Start Time:

Crew Initials: MCM, CDJ, SKU Stop Time:

Bank material: Cobble

	BANK EROSIO	N POTENTIAL				
(if banks are bedrock or composed	(if banks are bedrock or composed of boulders, do not fill out this table)					
	Bank a	Bank b	Bank c	Bank d		
Bank height	3	1				
Bankfull height	5	5				
Root depth	1	0				
Root density (%)	20%	0%				
Bank Angle (degrees)	40	20				
Surface Protection (%)	20%	5%				
% of total study reach	30%	40%				

Notes: 30% of banks are bedrock or boulder

Stratification of unstable layers Middle of bank in banks (below bankfull):

Sediment supply:	High
Vertical streambed stability:	Stable
Bank and channel bed condition	ons notes:

	RIPARIAN VE	GETATION		
VEGETATION TYPE	LOW	MOD.	HIGH	NOTES
Bare			1	
Forbs only				
Annual Grass w/ forbes				
Perennial grass	4a			looks like bunch grass
Rhizomatous grasses				
(bluegrass, Grass like plants,				
sedges, rushes)				
Low brush	6a			
High brush	7a			
Combination grass/brush				
Deciduous overstory				
Deciduous w/brush/grass	10a			
understory	10a			
Perennial overstory				
Wetland vegetation community				

VEGETATION NOTES (composition, vigor, density, and potential):

Willows, alders, and blackberry pervasive along both banks, but cobble bars are generally exposed

APPENDIX M

ENHANCED ACRONYM SERIES (1 & 2) WITH INTERFACE (EASI): MODEL DOCUMENTATION

•	Table M-1.	Comparison of input and output parameters of EASI and Acronym	
		series	M-1
•	Figure M-1.	Parameters $\sigma 0$ and ωo as functions of ϕ sgo in Parker equation	M-4
•	Figure M-2.	A typical cross-section of a river	M- 7
•	Figure M-3.	Channel cross-sections to be used in the example	M-9
•	Figure M-4.	Pre- and post-dam duration curves to be used in the example	M-10
•	Figure M-5.	Grain size distributions presented in the example	M-10
•	Figure M-6.	Predicted gravel transport rate presented in the example	M-11
•	Figure M-7.	Predicted normalized Shields stress as presented in the example	M-11

ENHANCED ACRONYM SERIES (1 & 2) WITH INTERFACE (EASI): MODEL DOCUMENTATION

1 INTRODUCTION

Sediment transport has been realized to be one of the most important processes in a fluvial ecosystem. Many recent channel rehabilitation projects and proposals have been focused on the remobilization or augmentation of gravel in heavily altered rivers in order to improve the quality of fish habitats. Suggestions on modifying channel cross sections (e.g., narrowing the main channel, lowering floodplain elevation, and lay back levees) are also proposed in certain rivers in order to increase the frequency of gravel transport and decrease the amount of gravel transported during extremely high flows. For example, gravel has been added below the Whiskeytown Reservoir in Clear Creek, California in hope of improving the existing salmonid spawning habitats. Similar practices are also documented at the Keswick Dam on the upper Sacramento River, California (Kondolf 1995). Larger scale gravel augmentations and flow alterations are also being considered in other rivers of California's Central Valley. A user-friendly tool for evaluation of such projects and proposals is, however, still unavailable to watershed managers, planners and practitioners. To fill in this void, Stillwater Sciences developed the EASI (Enhanced Acronym Series with Interface) program based on the surface based bedload equation and the Acronym1 and Acronym2 programs of Parker (Parker 1990a, b). In the EASI program, the *Acronym* programs are enhanced to allow for calculation of: (1) gravel transport rate and bedload grain size distribution with given surface gravel grain size distribution, channel geometry and water discharge; and (2) bedload transport rate and surface layer grain size distribution with given bedload grain size distribution, channel geometry and water discharge. The EASI program also allows for a river cross section and a duration curve as input parameters. In the case of a river cross section, the EASI program allows for the separation of floodplain and the main channel so that the hydraulics of the river can be evaluated more accurately. Table M-1 shows the similarities and differences between the EASI program and the Acronym Series (1 & 2) of Parker (1990b).

The most significant difference between *EASI* and the *Acronym* series is in the case of calculating surface layer grain size distribution. In this specific case, the *EASI* program uses bedload grain size distribution, water discharge or duration curve and channel width or channel cross section as input parameters, whereas *Acronym2* uses bedload transport rate and grain size distribution but not bedload transport rate as an input parameter can easily be seen in the case of gravel augmentation, in which the bedload grain size is readily available and bedload transport rate needs to be evaluated.

This report discusses how the surface based bedload equation of Parker (1990a) is implemented.

As is for any sediment modeling tools, the *EASI* program predicts certain parameters only as guidelines for management and engineering practice and thus, its results must be

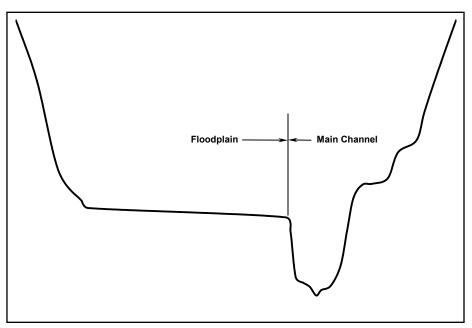


Figure M-2. A typical cross section of a river.

Floodplain hydraulics and flow continuity are brought in to close the equations,

$$Q_{wf} = \frac{1}{n} A_f R_{hf}^{2/3} S^{1/2}$$
(17)

$$Q_{wf} + Q_{wc} = Q_w \tag{18}$$

$$R_{hf} = \frac{A_f}{P_f} \tag{19}$$

$$u_c = \frac{Q_{wc}}{A_c} \tag{20}$$

where n denotes Manning's n for floodplain; A_f denotes flow area in floodplain; P_f denotes the wet perimeter of the floodplain; R_{hf} denotes hydraulic radius of the floodplain; Q_{wf} and Q_{wc} denotes the discharge on floodplain and main channel respectively.

3 CALCULATION OF BEDLOAD TRANSPORT RATE AND BEDLOAD GRAIN SIZE DISTRIBUTION

This part of the EASI program is designed for the following two cases:

interpreted by qualified hydraulic engineers or fluvial geomorphologists with field experience in the river to be modeled.

	Input Parameters	Output Parameters
Acronym1	 Surface layer grain size distribution Shear velocity 	 Bedload transport rate Bedload grain size distribution
Acronym2	 Bedload transport rate Bedload grain size distribution 	 Surface layer grain size distribution Shear velocity
	 Surface layer grain size distribution Water discharge or duration curve Channel width or channel cross section Average channel/water surface slope Floodplain Manning's n 	 Bedload transport rate Bedload grain size distribution
EASI	 Bedload grain size distribution Water discharge or duration curve Channel width or channel cross section Average channel/water surface slope Floodplain Manning's n 	 Bedload transport rate Surface layer grain size distribution

Table M-1. Comparison of input and output parameters of EASI and Acronym series

2 THE SURFACE BASED BEDLOAD EQUATION OF PARKER AND ITS MODIFICATION

The surface based bedload equation of Parker (1990a) is expressed for wide rectangular channel for which channel geometry can be expressed as a channel width. The equation is modified for the *EASI* program so that it can also handle a given cross section. Details of the surface based bedload equation of Parker can be found in the original references (Parker 1990a, b). Here only the most essential part of the Parker equation is presented so that we can discuss how the equation is modified and implemented in the *EASI* program.

The surface based bedload equation of Parker (1990a) for a wide rectangular channel is as follows,

$$\frac{RgQ_G p_i}{Bu_*^3} = \alpha F_i G \left[\omega \phi_{sgo} \left(\frac{\overline{D_i}}{D_{sg}} \right)^{-\beta} \right]$$
(1)

where R denotes the submerged specific gravity of gravel; g denotes the acceleration of gravity; Q_G denotes volumetric bedload transport rate; B denotes channel width; u^{*} denotes shear velocity; $\overline{D_i}$ denotes the mean grain size of the i-th subrange; p_i denotes the volumetric fraction of the i-th subrange in bedload; F_i denotes the volumetric fraction of the surface layer; D_{sg} denotes geometric mean grain size of the surface layer; ϕ_{sgo} is normalized Shields stress; ω is a function of the normalized Shields stress ϕ_{sgo} and the arithmetic standard deviation of the surface layer. Coefficients α and β are given as

$$\alpha = 0.00218; \quad \beta = 0.0951$$
 (2a, b)

Grain size is described both in diameter and in Ψ -scale, which is the negative of the more commonly used ϕ -scale in geophysics community (Parker 1990b).

$$\psi_i = -\phi_i = \log_2(D_i) \tag{3}$$

The grain size is divided into N subgroups bounded by N+1 grain sizes Ψ_1 (D₁) to Ψ_{N+1} (D_{N+1}). The mean grain size of the i-th subrange is then given as

$$\overline{\psi_i} = \frac{\psi_i + \psi_{i+1}}{2}, \quad \overline{D_i} = \sqrt{D_i D_{i+1}}$$
(4a, b)

The surface layer mean grain size $\overline{\psi_s}$ and standard deviation $\sigma_{s\psi}$ are as follows,

$$\overline{\psi_s} = \sum_{i=1}^{N} \overline{\psi_i} F_i , \quad \sigma_{s\psi}^2 = \sum \left(\overline{\psi_i} - \overline{\psi_s} \right)^2 F_i$$
(5a, b)

and the geometric mean grain size is given as

$$D_{sg} = 2^{\overline{\psi_s}} \tag{5c}$$

Note that the surface based bedload equation of Parker applies only to particles too coarse to be transported in suspension, and Parker further suggested that the finest grain size (D_1) be set as 2 mm as a common rule in field cases (Parker 1990a, b).

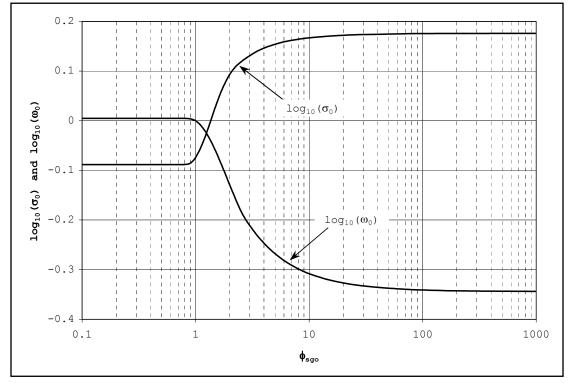


Figure M-1. Parameters σ_0 and ω_0 as functions of ϕ_{sgo} in Parker equation

Parameter $\omega_{\rm i}$ is a function of the normalized Shields stress $\phi_{\rm sgo}$,

$$\omega = 1 + \frac{\sigma_0}{\sigma_{s\psi}} (\omega_0 - 1) \tag{6}$$

where σ_0 and ω_0 are functions of ϕ_{sgo} given in Figure M-1 (Parker 1990a). The relations can also be found in tabulated form in Parker (1990b).

The normalized Shields stress ϕ_{sgo} is acquired by dividing the surface based Shields stress τ_{sg}^* by a reference stress τ_{rsgo}^* ,

$$\phi_{sgo} = \frac{\tau_{sg}^*}{\tau_{rsgo}^*} \tag{7}$$

where the reference Shields stress τ_{rsgo}^* is given by Parker (1990a) as 0.0386. The surface based Shields stress τ_{sg}^* is defined as

$$\tau_{sg}^* = \frac{{u_*}^2}{RgD_{sg}} \tag{8}$$

Shear velocity u* is assumed to obey the Keulegan resistance relation,

$$\frac{u}{u_*} = 2.5 \ln \left(11 \frac{h}{k_s} \right) \tag{9}$$

in which u denotes flow velocity; h denotes water depth and k_s denotes roughness height. Roughness height is defined slightly differently from the original work of Parker (1990a, b) for simplicity,

$$k_s = 2D_{sg}\sigma_{sg}^{1.28} \tag{10}$$

where $\sigma_{\rm sg}$ denotes surface layer geometric standard deviation,

$$\sigma_{sg} = 2^{\sigma_{s\psi}} \tag{11}$$

Note that the roughness height given by Equation (10) is an approximation of the original value given by Parker (1990a, b), in which the roughness height was defined as twice of surface layer D_{90} .

In case of a normal flow, shear velocity u_* can be expressed as

$$u_* = \sqrt{ghS} \tag{12}$$

in which S is channel bed slope.

Function G is given by Parker (1990a, b) as

$$G(\phi) = \begin{cases} 5474 \left(1 - \frac{0.853}{\phi}\right)^{4.5} & \phi > 1.59\\ \exp\left[14.2(\phi - 1) - 9.28(\phi - 1)^2\right] & 1 \le \phi \le 1.59\\ \phi^{14.2} & \phi < 1 \end{cases}$$
(13)

In case of an arbitrary cross section, the cross section is divided into the main channel and a floodplain as shown in Figure M-2. In this case the sediment transport over floodplain is assumed to be insignificant.

The surface based bedload equation of Parker (Equation 1) and the Keulegan resistance relation (Equation 9) are modified as follows,

$$\frac{RQ_G p_i}{A_c Su_*} = \alpha F_i G \left(\omega \phi_{sgo} \left(\overline{D_i} / D_{sg} \right)^{-\beta} \right)$$
(14)

$$\frac{u_c}{u_*} = 2.5 \ln \left(11 \frac{R_{hc}}{k_s} \right) \tag{15}$$

where A_c denotes flow area in the main channel; R_{hc} denotes hydraulic radius of the flow in the main channel,

$$R_{hc} = \frac{A_c}{P_c} \tag{16}$$

and P_c denotes the wet perimeter of the main channel. Shear velocity, roughness height and grain size parameters in equations (14) and (15) all refer to those in the main channel.

- 1. To estimate current or historical gravel transport rate and bedload grain size distribution based on the existing or historical surface layer grain size distribution and the knowledge of channel geometry and water discharge information;
- 2. To estimate gravel transport rate and grain size distribution based on targeted surface layer grain size distribution, channel geometry and water discharge in case of gravel augmentation.

With the two cases, channel restoration practitioners and management can evaluate different restoration options or whether certain restoration practices are economically achievable. The procedure also allows for evaluation of channel cross section optimization such as channel narrowing, floodplain restoration and modification, etc.

4 CALCULATION OF BEDLOAD TRANSPORT RATE AND SURFACE LAYER GRAIN SIZE DISTRIBUTION

This part of the *EASI* program is designed for the purpose of estimating gravel transport rate and surface layer grain size distribution if a gravel augmentation with certain grain size distribution is given. Such an application allows restoration practitioners and management to evaluate whether the existing gravel for augmentation should be modified and if the practice is economically achievable. The procedure also allows for the evaluation of aforementioned channel cross section optimization.

5 APPLICATION EXAMPLE

The example is presented here to demonstrate what can be achieved from program *EASI*. The cross sections and grain size distributions used here are from an actual river. The scenarios to be simulated, however, are constructed only for demonstration purposes.

The scenario is as follows. A certain reach of a gravel bed river with salmon run is deprived of gravel because of a dam built not too far upstream. As a result, there are fewer areas available as salmonid spawning habitat and the quality of the available spawning habitat is degrading. The management is considering gravel augmentation as a way of improving the salmon habitat. The reach is fairly uniform with a typical cross section as shown in Figure M-3. The reach average channel slope is 0.003 based on water surface survey at a medium discharge. Post-dam flow duration curves are given in Figure M-4. The current reach average surface layer grain size distribution is given in Figure M-5.

Applying *EASI* program, it is found that the current post-dam gravel transport rate is only about 10 metric tons per annum (t/a) with bedload grain size distribution given in Figure M-5. Because the dam is capturing all the gravel and there are no tributaries between the dam and the reach, the 10 t/a gravel transport rate calculated by *EASI* program is probably not too far from reality. In some cases, however, the *EASI* program might over estimate the sediment transport rate because of the following conditions: (a) the reach could still be under going the post dam erosion process; and (b) there are bedrock controls that prevent further erosion of the current channel bed, banks or terraces. Under

either of the two conditions, the actual gravel transport rate could be lower than the value calculated with *EASI* program.

In order to increase gravel transport and improve salmonid spawning habitat, fish and wild life management is planning to have a gravel augmentation project implemented upstream of the reach in question. One of the concepts developed by McBain and Trush is to do a "gravel transfusion" before the augmentation. That is, to introduce massive amount of gravel into the reach before the augmentation so that the channel can be recovered quickly. The gravel transfusion will also prevent the possibility that gravel from augmentation will simply pass through the reach during high flows without leaving enough deposit.

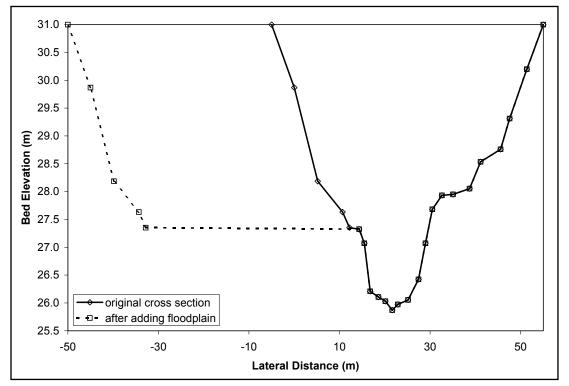


Figure M-3. Channel cross sections to be used in the example

In this example, it is assumed that a gravel transfusion will be implemented with the grain size distribution given in Figure M-5. Applying *EASI* program, it is found that the long time average gravel transport rate will be increased to about 3660 t/a, or an annual gravel augmentation of about 3660 t/a.

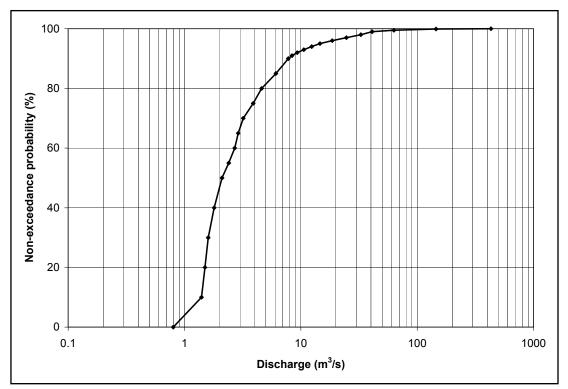


Figure M-4. Pre- and post-dam duration curves to be used in the example.

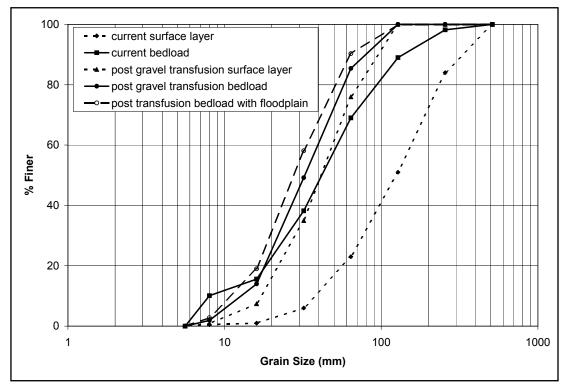


Figure M-5. Grain size distributions presented in the example.

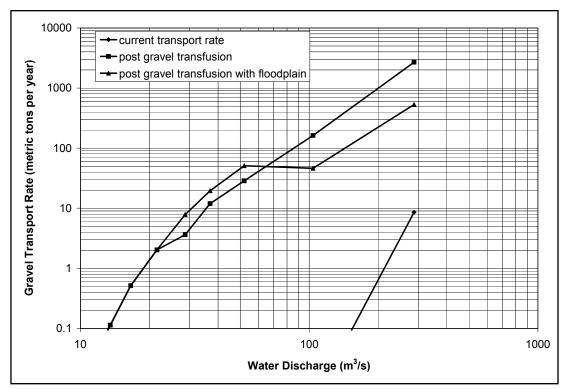


Figure M-6. Predicted gravel transport rate presented in the example.

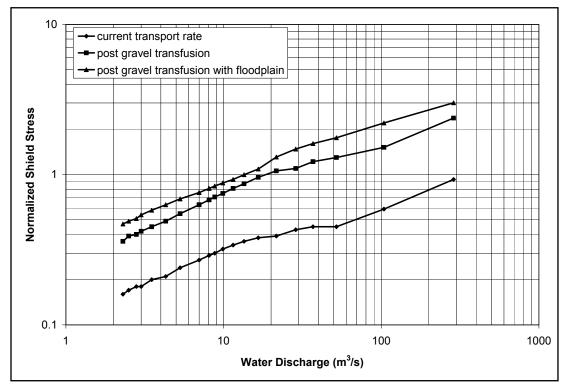


Figure M-7. Predicted normalized Shields stress as presented in the example.

3,660 t/a of gravel transport is probably a very reasonable amount for augmentation. For demonstration purposes, however, let's assume that the management decided that the 3660 t/a gravel is too much to add and there is easy way to modify the channel so that a floodplain can be added as shown in Figure M-3. Applying *EASI* program it is found that the gravel transport rate dropped to about 1,270 t/a by adding the floodplain, which is about 35% of the amount without a floodplain. In this calculation the Manning's n for floodplain is assumed to be 0.035.

The grain size distributions, bedload rating curves and normalized Shields stresses in this example are given in Figures M-5, M-6, and M-7 respectively. One of the potentially most useful diagram is the normalized Shields stress given in Figure M-7. It is important to point out that normalized Shields stress equals to unity represents the incipient motion of bed material. Combine the rating curve given in Figure M-4 with the normalized Shields stress curves in Figure M-7, one can easily estimate at what percentage of time there is significant gravel transport in the river reach. For example, in the case of post gravel transfusion, the water discharge identified to correspond to normalized Shields stress equal to unit is about 19 m³/s, which corresponds to a non-exceedance probability of about 95%. In other word, there is only about 5% of the time during which the river is actively transporting gravel even with the gravel transfusion.

Possible measures to increase gravel transport duration include modification on the operation of the upstream reservoir, narrowing the main channel, further decrease the grain size of the transfusion gravel within the limitation for fish habitat, or a combination of those measures. All those measures could be evaluated with the *EASI* program. In the post transfusion case, for example, modifying the operation of the upstream reservoir so that there is more than 37 days every year to have discharge over 19 m³/s will increase the gravel transport period to 10%.

6 **DISCUSSIONS**

Program EASI stands for "Enhanced Acronym Series (1 & 2) with Interface", which is adopted from the Acronym series (Parker 1990b) and is simply a solution of the modified surface based bedload equation of Parker (1990a, b). It provides a tool for hydraulic engineers, fluvial geomorphologists, river restoration practitioners and management for a quantitative evaluation of gravel transport in a river reach. The program, however, cannot be blindly used to answer management questions. The practitioners must use their field experience in the river reach in question and in sediment transport in general in order to interpret the results. We strongly discourage any application of the program prior to a good understanding of the hydrology of the river and thorough field investigations of the river reach to be modeled. To reiterate, we would like to cite a sentence from Parker (1990b) while presenting his Acronym series: This program is "nothing more than tools for implementing calculation procedures published in the literature. The calculation of bedload transport in gravel rivers yields at best crude approximations of the actual observed numbers in field streams. Where engineering decisions are to be made, the results should be interpreted only by a competent hydraulic engineer or river geomorphologist with prior experience in the field of gravel rivers."

7 **REFERENCES**

Kondolf, G. M. (1995) Managing bedload sediment in regulated rivers: Examples from California, U.S.A. in *Natural and Anthropogenic Influences in Fluvial Geomorphology*, Geophysical Monograph 89, Costa, J.E., Miller, A.J., Potter, K.W., Wilcock, P.R. editors.

Parker, G. (1990a) Surface-based bedload transport relation for gravel rivers. *Journal of Hydraulic Research*, IAHR, 28(4), 417-436.

Parker, G. (1990b) The "ACRONYM" series of PASCAL programs for computing bedload transport in gravel rivers. External Memorandum No. M-220, St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, February, 123p.

APPENDIX N

BEDLOAD TRANSPORT AND SHEAR STRESS PLOTS

•	Figure N-1:	Estimated bedload transport rating curve for the Rubicon Dam Reach Site	N-1
•	Figure N-2:	Estimated Shields stress rating curve for the Rubicon Dam Reach Site	
•	Figure N-3:	Estimated bedload transport rating curve for the Loon Lake Dam Reach Middle Site	
•	Figure N-4:	Estimated Shields stress rating curve for the Loon Lake Dam Reach Middle Site	N-4
•	Figure N-5:	Estimated bedload transport rating curve for the Loon Lake Dam Reach Lower Site	
•	Figure N-6:	Estimated Shields stress rating curve for the Loon Lake Dam Reach Lower Site	N-6
•	Figure N-7:	Estimated bedload transport rating curve for the Robbs Peak Dam Reach Site	N-7
•	Figure N-8:	Estimated Shields stress rating curve for the Robbs Peak Dam Reach Site	
•	Figure N-9:	Estimated bedload transport rating curve for the Ice House Dam Reach Upper Site	N-9
•	Figure N-10:	Estimated Shields stress rating curve for the Ice House Dam Reach Upper Site	N-10
•	Figure N-11:	Estimated bedload transport rating curve for the Ice House Dam Reach Lower Site	
•	Figure N-12:	Estimated Shields stress rating curve for the Ice House Dam Reach Lower Site	N-12
•	Figure N-13:	Estimated bedload transport rating curve for the Reach Downstream of Chili Bar, Upper Coloma Study Site	N-13
•	Figure N-14:	Estimated Shields stress rating curve for the Reach Downstream of Chili Bar, Upper Coloma Study Site	

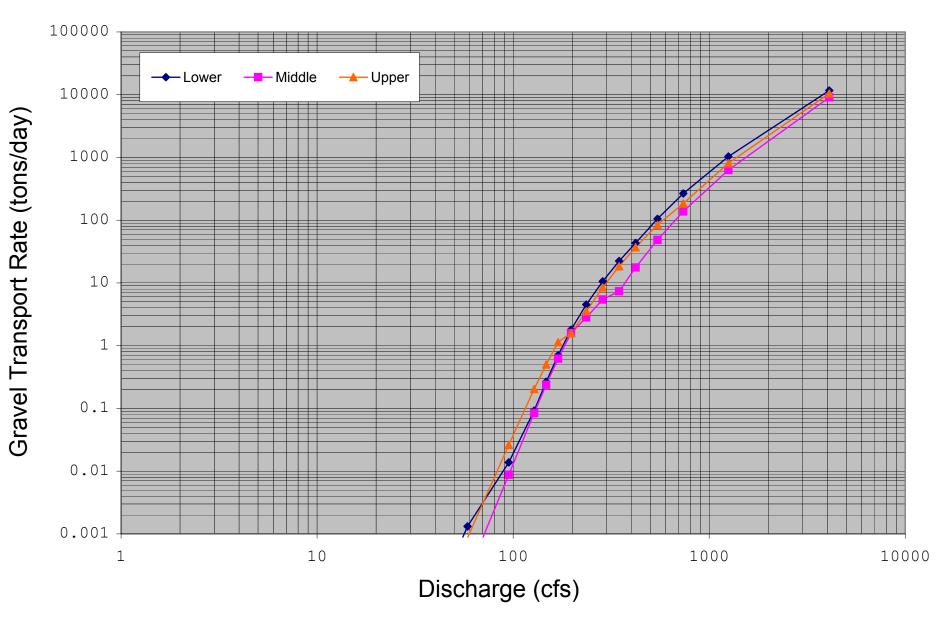


Figure N-1: Estimated bedload transport rating curve for the Rubicon Dam Reach Site.

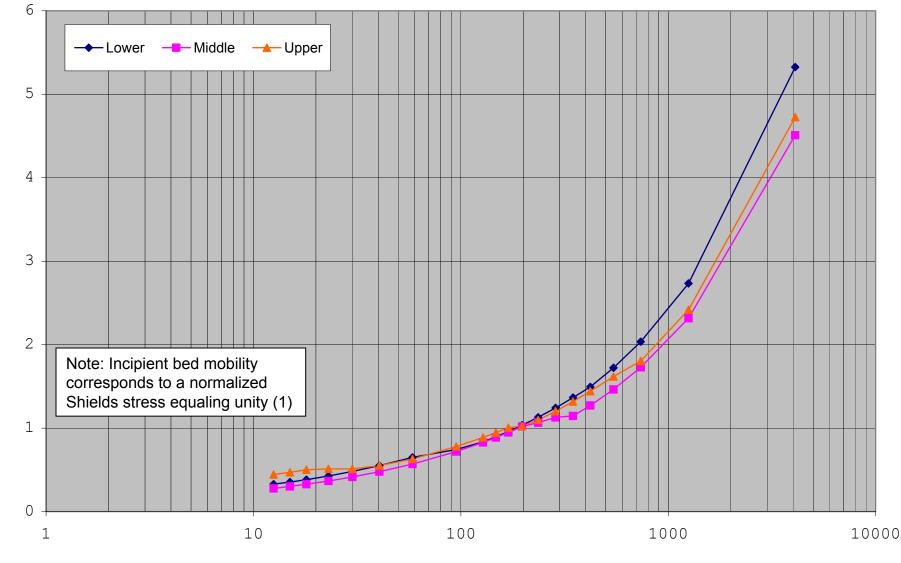
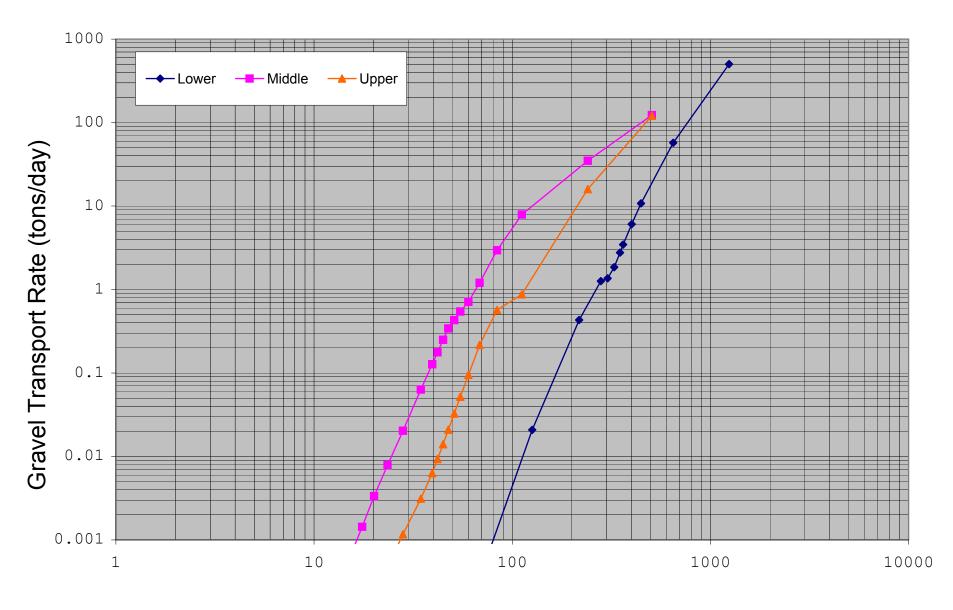



Figure N-2: Estimated Shields stress rating curve for the Rubicon Dam Reach Site.

Normalized Shields Stress

N-2

Figure N-3: Estimated bedload transport rating curve for the Loon Lake Dam Reach Middle Site.

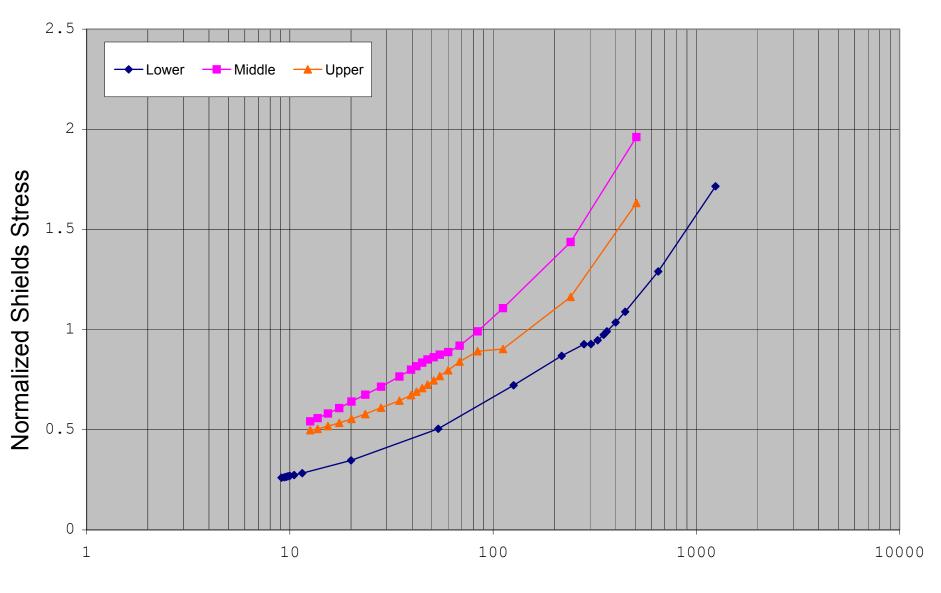


Figure N-4: Estimated Shields stress rating curve for the Loon Lake Dam Reach Middle Site.

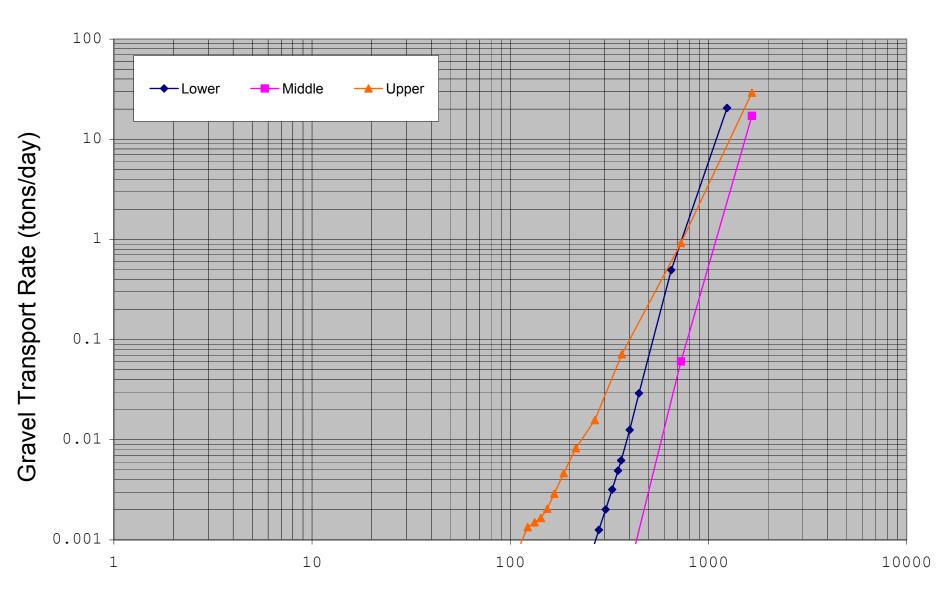


Figure N-5: Estimated bedload transport rating curve for the Loon Lake Dam Reach Lower Site.

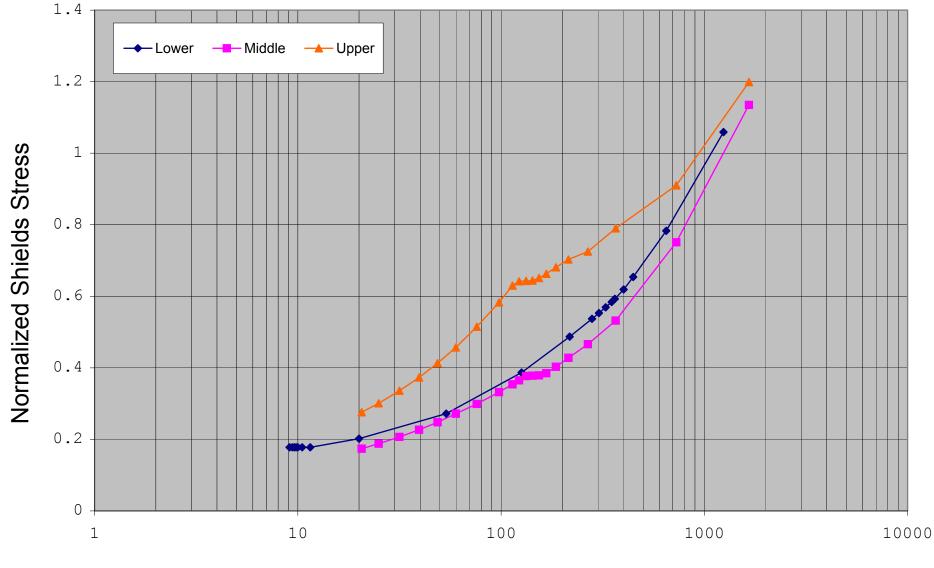


Figure N-6: Estimated Shields stress rating curve for the Loon Lake Dam Reach Lower Site.

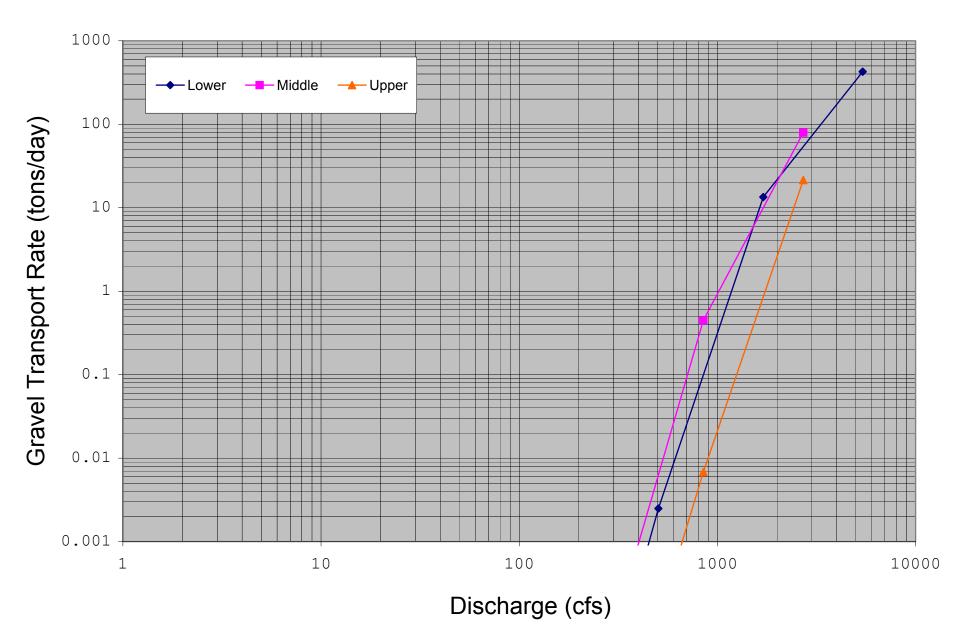


Figure N-7: Estimated bedload transport rating curve for the Robbs Peak Dam Reach Site.

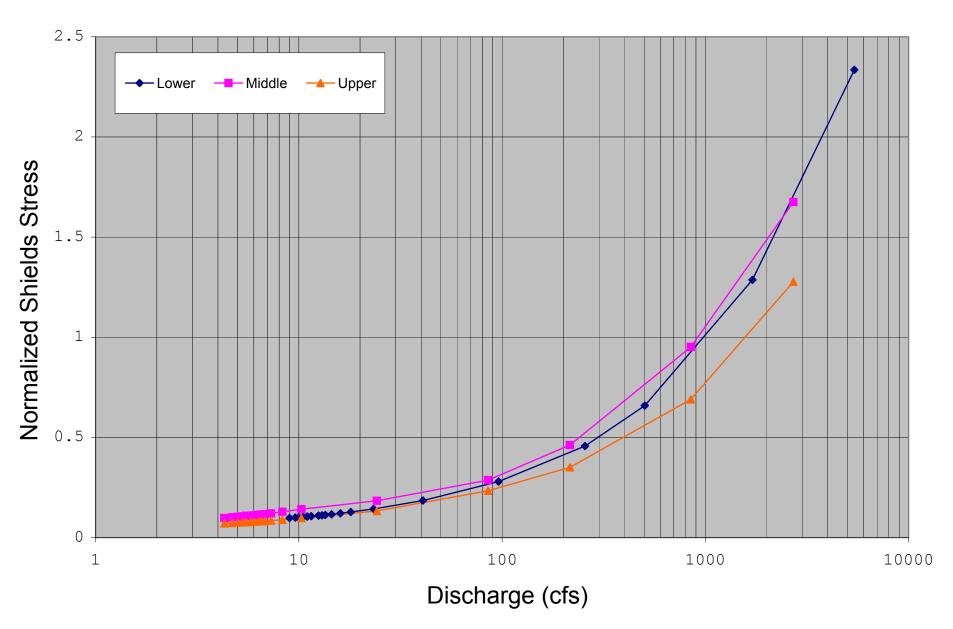


Figure N-8: Estimated Shields stress rating curve for the Robbs Peak Dam Reach Site.

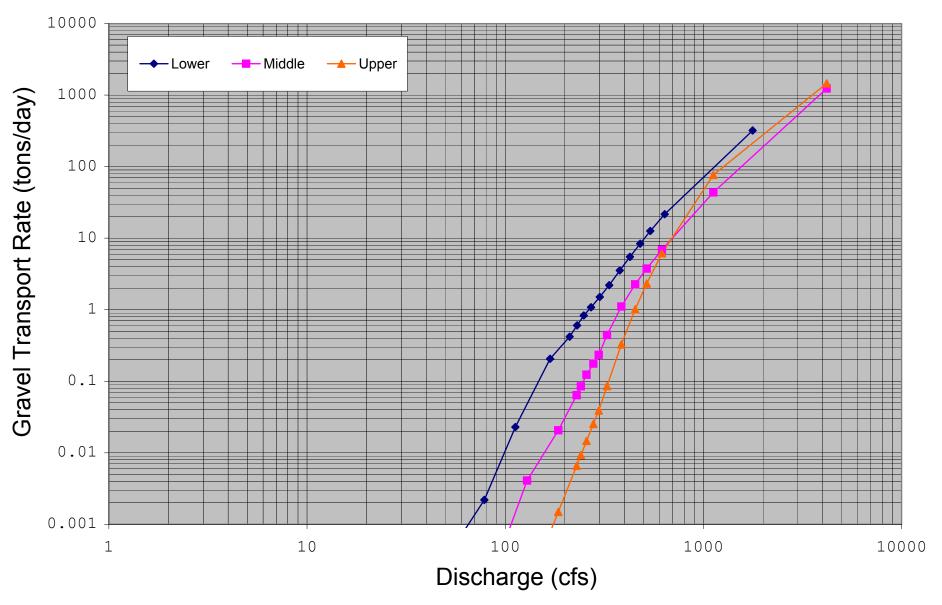


Figure N-9: Estimated bedload transport rating curve for the Ice House Dam Reach Upper Site.

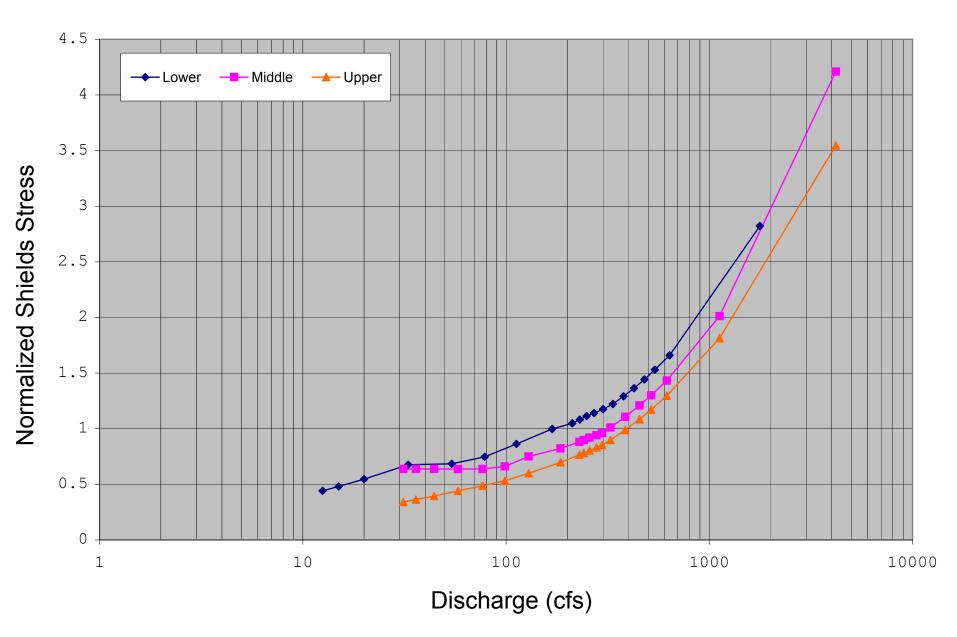


Figure N-10: Estimated Shields stress rating curve for the Ice House Dam Reach Upper Site.

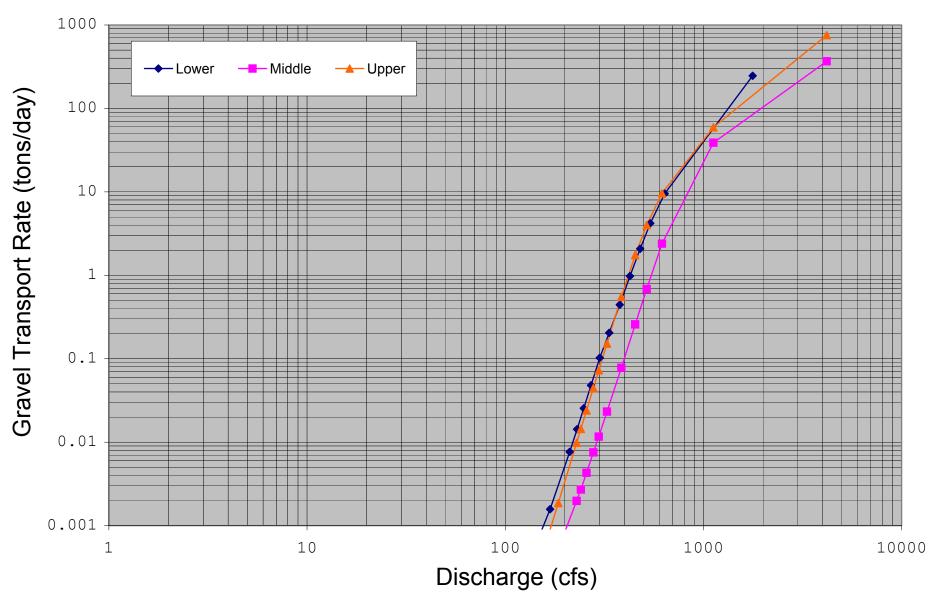
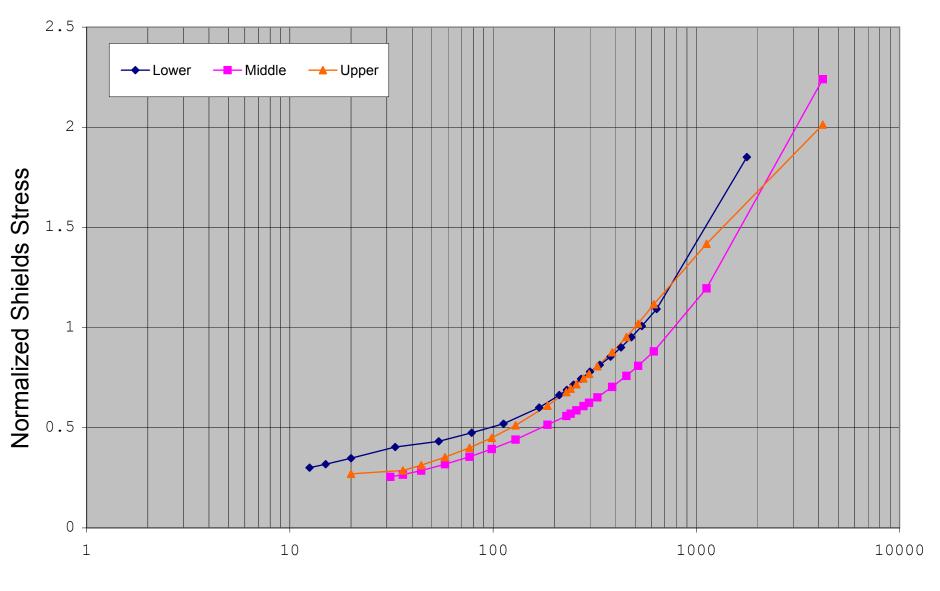
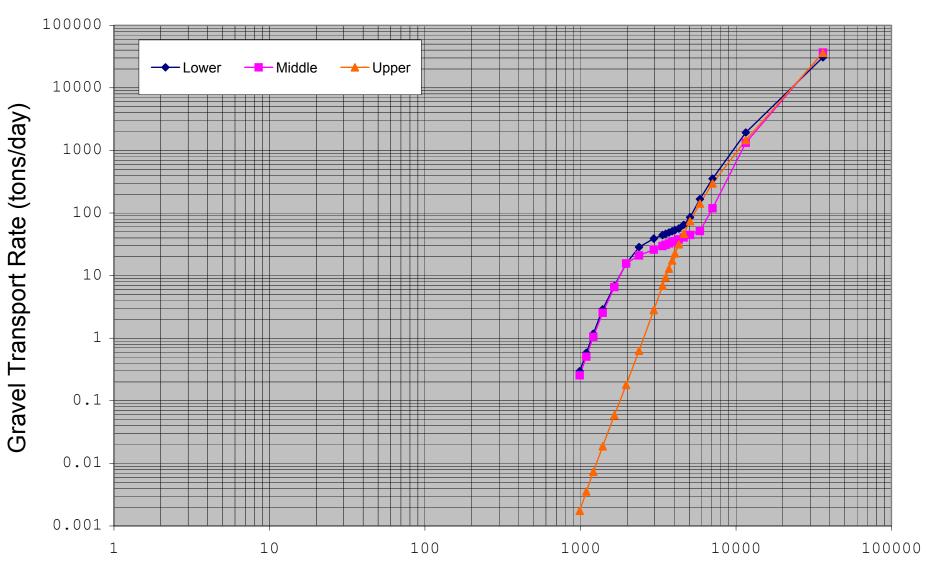




Figure N-11: Estimated bedload transport rating curve for the Ice House Dam Reach Lower Site.

Discharge (cfs)

Figure N-12: Estimated Shields stress rating curve for the Ice House Dam Reach Lower Site.

Discharge (cfs)

Figure N-13: Estimated bedload transport rating curve for the Reach Downstream of Chili Bar, Upper Coloma Study Site.

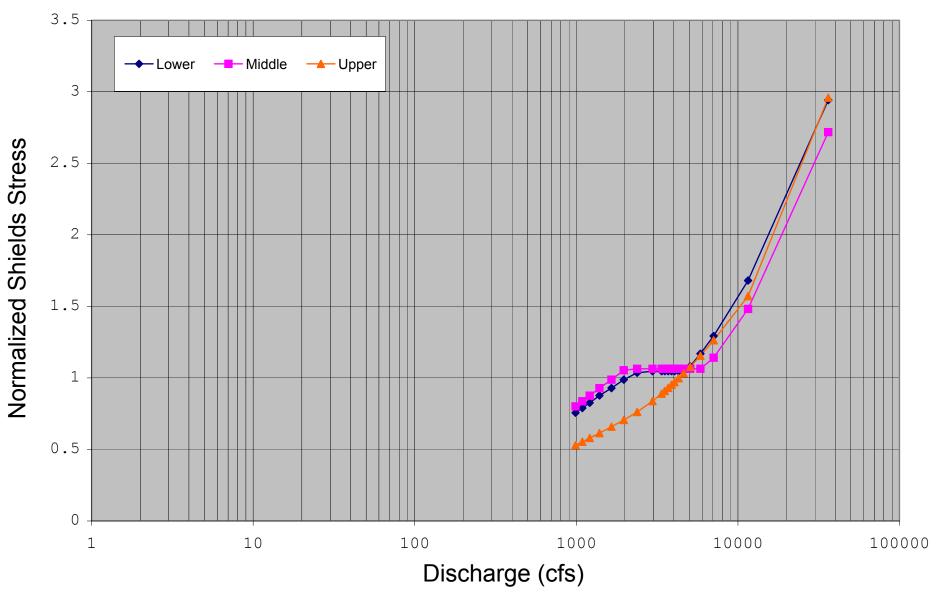


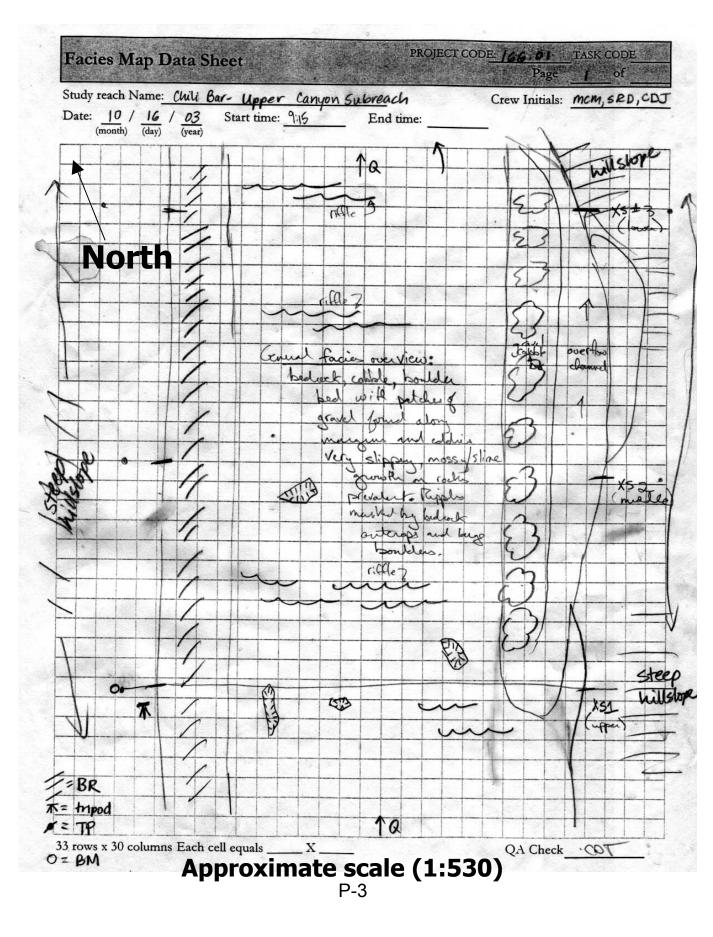
Figure N-14: Estimated Shields stress rating curve for the Reach Downstream of Chili Bar, Upper Coloma Study Site.

APPENDIX O

FACIES MAPS FOR THE UARP PROJECT AREA SITES

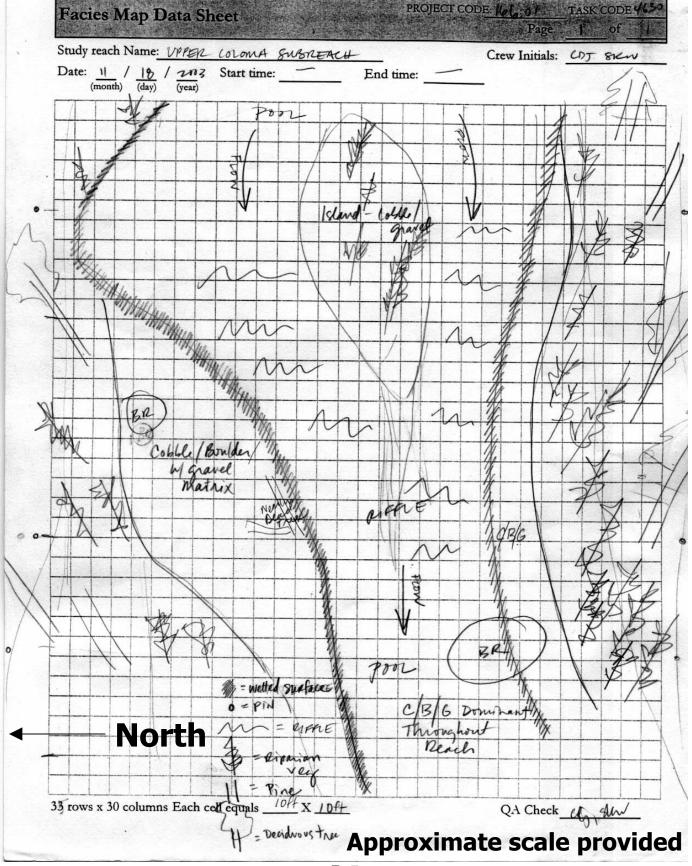
Rubicon E	Dam Reach Site (RD-G1)	
• Loon Lake	e Dam Reach Upper Site (LL-G2)	
• Loon Lake	e Dam Reach Middle Site (LL-G3)	
	e Dam Reach Lower Site (LL-G3)	
	ek Dam Reach Site (GC-G1)	
	k Dam Reach Site (RPD-G1)	
	Dam Reach Upper Site (IH-G1)	
	Dam Reach Lower Site (IH-G2)	
	Dam Reach Site (JD-G1).	
Camino D	am Reach (CD-G1)	
• S.F. Amer	ican Reach Site (SFAR-G1)	
	k Dam Reach (SC-G1)	

APPENDIX P

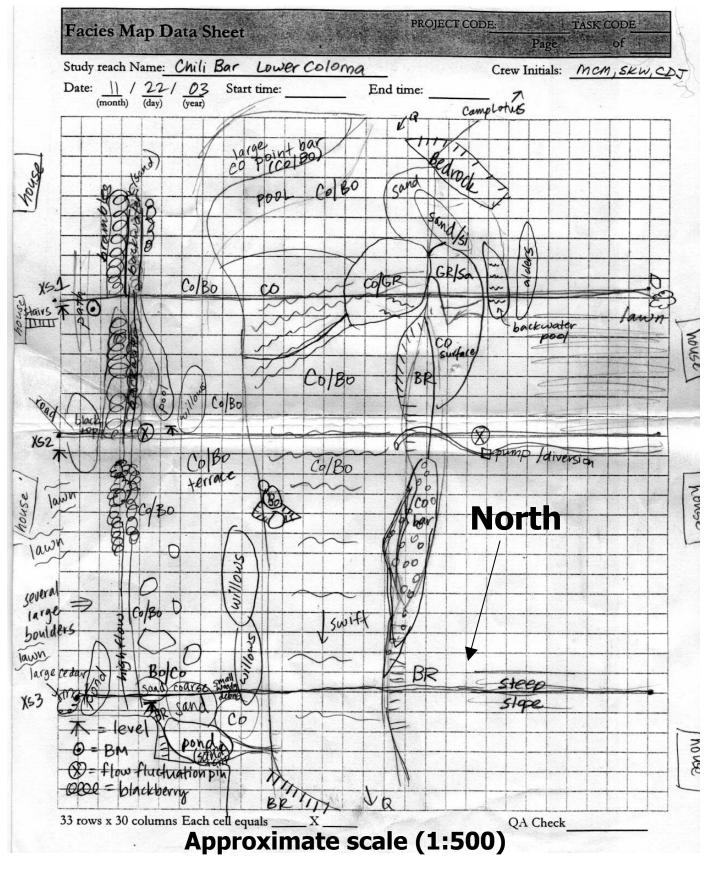

FACIES MAPS FOR THE REACH DOWNSTREAM OF CHILI BAR

•	Upper Canyon Site (CB-G1)	.P-2
	Upper Coloma Site (CB-G2)	
	Lower Coloma Site (CB-G3)	
	Gorge Site (CB-G4)	
-		• •

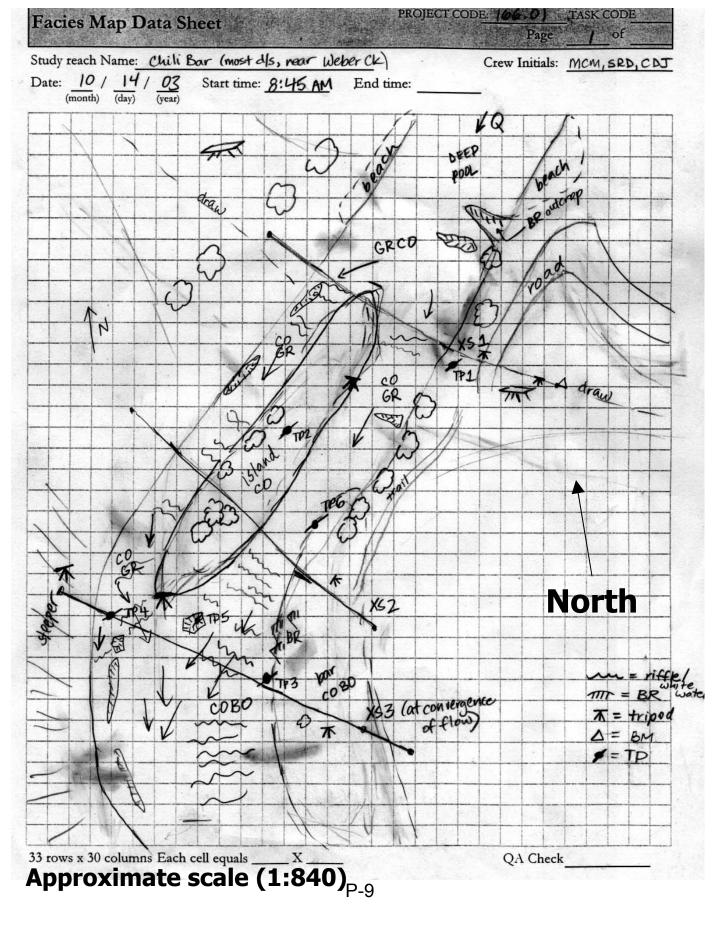
Reach Downstream of Chili Bar: Upper Canyon Site (CB-G1) Upper Coloma Site (CB-G2) Lower Coloma Site (CB-G3) Gorge Site (CB-G4)


Upper Canyon Site (CB-G1)

The channel at the Upper Canyon Site is straight with a gravel bar on the right bank. Boulder and bedrock facies dominate the banks and channel (50-60 % of the wetted channel). Cobble and small amounts of coarse gravel are deposited along the margins of the channel and behind large flow obstructions in the channel. Sparsely vegetated, steep hillslopes constrict the active channel, leaving little room for lateral movement or floodplain development. Despite this, wellestablished riparian plant communities were observed in some places along the waters edge, particularly on river-right. A thick layer of algae covers much of the substrate within the wetted channel.


Upper Coloma Site (CB-G2)

The channel at the Upper Coloma Site is dominated by cobble, boulder, and gravel, with a small amount of fines in the tail end of the upstream pool. A densely vegetated, cobble and gravel mid-channel island exists near the upper cross-section, creating a riffle that ends upstream of the lower cross-section. Cobble, boulder, and gravel dominate the facies on both banks and a large lateral bar on river-right. Large trees are set back from the wetted channel on both banks, with smaller trees and shrubs growing close to the waters edge.


Lower Coloma Site (CB-G3)

The channel at the Lower Coloma Site is dominated by cobble and boulder. Sand, gravel, and silt are deposited in a bar on the left bank below a large bedrock outcrop that obstructs the primary channel flow on the left bank above the upper cross-section. Both banks consist of cobble and boulder, with bedrock dominating near the end of the reach. Large trees are set back on a cobble and boulder terrace on both banks, with smaller trees and shrubs growing close to the waters edge.

Gorge Site (CB-G4)

The flow splits around a lightly vegetated mid-channel bar, which extends from the upper cross-section to just upstream of the lower cross-section at the Gorge Site. A riffle exists at the tail end of this bar. A cobble and boulder lateral bar extends from upstream of the middle cross-section through the end of the reach on river left. The wetted channel is dominated by gravel and cobble for most of the site, coarsening in the downstream direction as the main flow runs through a riffle. Bedrock outcrops occur in several locations along the left bank. Sand beaches exist on both banks upstream of the upper cross-section.

APPENDIX Q

BANKFULL ELEVATION AND DISCHARGE COMPARISONS

Q Calculations	Q-1
Roughness "n" Comparisons	
• Roughness "n" values based on Cowan (1956)	
• 1.5 Regulated	
• 1.5 Unregulated	
• 1.5 Unregulated Gages Outside	
• 1.5 Gages Inside	

Appendix Q. Q Calculations

Eight response reaches, three calculations each:

References:

Cowan, W.L. 1956. Estimating hydraulic roughness coefficients. Agricultural Engineering 37, 473-475. Hannaford, M. 2004. Pers. comm. with Chris Jaquette, Stillwater Sciences, September 2004. Wohl, E. 2000. Mountain Rivers. American Geophysical Union, Washington D.C.

Field Q_{bf}. Solve for Q with known input parameters from field data. Use Manning's, because V needs to be calculated.

assumptions: A, S, and R are determined using XS data, n is determined using Cowan's method. w and d are from field data. equation : $Q = 1.486/n * A * R^2/3 * S^1/2$

Regulated Q_{recc} (1.5-year return interval, hydro). Use known impaired or regulated Q1.5 to back out d, depth and

compare to what we saw in the field.

In Manning's, velocity is dependent on roughness (n) and slope (S). assumptions: assuming d approximates R (R may be more equivalent to d as width/depth ratio is greater than 20), all assumptions related to estimating n using Cowan's (1956) method, w and S from field data, Q determined with data directly from the USGS and the technical report on hydrology. Methods for estimating Q were either taken from hydrology report or from recommendations from Margaret Hannaford, primary author of the hydrology technical report for SMUD.

equation : Q = 1.486/n * w * d^5/3 * S^1/2

Unregulated Q_{recc} (1.5-year return interval, hydro). Use known unimpaired or unregulated Q1.5 to back out d, depth

and compare to what we saw in the field.

assumptions : assuming d approximates R (R may be more equivalent to d as width/depth ratio is greater than 20), all assumptions related to estimating n using Cowan's (1956) method, w and S from field data, Q determined with data directly from the USGS and the technical report on hydrology. Methods for estimating Q were either taken from hydrology report or from recommendations from Margaret Hannaford, primary author of the hydrology technical report for SMUD.

equation: Q = 1.486/n * w * d^5/3 * S^1/2

NOTE: Caution should be taken with calculations. They are "order-of-magnitude" estimates, and an adjustment for the appropriate number of significant figures has not been made.

Appendix Q. Q Calculations Eight response reaches, three calculations each: <u>Rubicon Dam</u>

									velocity check using continuity (V = Q/A,
Calculation	XS	Q (cfs)	n	A (sqft)	R (ft)	S (ft/ft)	w (ft)	dmean (ft)	ft/s)
Field Q _{bf}	1	630	0.037	129.14	1.75	0.007	73	1.8	4.9
	2	317	0.036	77.86	1.28	0.007	60	1.3	4.1
	3	124	0.035	41.65	0.77	0.007	75	0.6	3.0
Regulated Q _{recc}	1	665	0.037 I	NA AV	NA	0.007	73	1.82	
	2	665	0.036 I	NA N	NA	0.007	60	2.01	
	3	665	0.035 I	NA AV	A	0.007	75	1.73	
	Unregulated data	a is a range, 1660-2	2460 cfs						
UnRegulated Q _{recc}	1	1386	0.037 I	NA N	NA	0.007	73	2.83	
	2	1386	0.036 I	NA N	NA	0.007	60	3.13	
	3	1386	0.035 I	NA I	NA	0.007	75	2.69	

Appendix Q. Q Calculations Eight response reaches, three calculations each:

Loon Lake Dam Upper

Calculation	XS		Q (cfs)	n	A (caff)	R (ft)	S (ft/ft)	w (ft)	dmean (ft)	velocity check using continuity (V = Q/A, ft/s)
	73			n	A (sqft)		. ,		. ,	4.5
Field Q _{bf}		1	219	0.044	48.19	2.04	0.007	22		
		2 3	620	0.063	131.06	3.71	0.007	34	3.9	4.7 3.4
		3	228	0.066	66.68	2.44	0.007	33	2.9	3.4
Regulated Q _{recc}		1	40	0.044	NA I	NA	0.007	22	0.77	
		2	40	0.063		NA	0.007	34		
		2 3	40	0.066		NA	0.007	23		
		-								
UnRegulated Q _{recc}		1	208	0.044	NA I	NA	0.007	22	2.07	
			208	0.063		NA	0.007	34		
		2 3	208	0.066		NA	0.007	23		
									L	
Loon Lake Dam Middle										
Loon Lake Dam Middle										velocity check using continuity (V = Q/A,
Calculation	XS		Q (cfs)	n	A (sqft)	R (ft)	S (ft/ft)	w (ft)	dmean (ft)	, ,
Calculation	XS	1	Q (cfs) 399	n 0.047	A (sqft) 84.41	R (ft) 1.5	S (ft/ft) 0.013	w (ft) 54	dmean (ft) 1.6	continuity (V = Q/A ,
	XS	1 2	399					54	1.6	continuity (V = Q/A, ft/s) 4.7
Calculation	XS	1 2 3		0.047	84.41	1.5	0.013		1.6 1.3	continuity (V = Q/A, ft/s)
Calculation	XS	1 2 3	399 206	0.047 0.051	84.41 50.67	1.5 1.35	0.013 0.013	54 38	1.6 1.3	continuity (V = Q/A, ft/s) 4.7 4.1
Calculation	XS	1 2 3 1	399 206	0.047 0.051	84.41 50.67 56	1.5 1.35	0.013 0.013	54 38	1.6 1.3	continuity (V = Q/A, ft/s) 4.7 4.1
Calculation Field Q _{bf}	XS	1	399 206 259	0.047 0.051 0.043	84.41 50.67 56	1.5 1.35 1.27	0.013 0.013 0.013	54 38 51	1.6 1.3 1.1 0.94	continuity (V = Q/A, ft/s) 4.7 4.1
Calculation Field Q _{bf}	XS	_	399 206 259 174	0.047 0.051 0.043 0.047	84.41 50.67 56 NA I	1.5 1.35 1.27 NA	0.013 0.013 0.013 0.013	54 38 51 54	1.6 1.3 1.1 0.94 1.21	continuity (V = Q/A, ft/s) 4.7 4.1
Calculation Field Q _{bf}	XS	1	399 206 259 174 174	0.047 0.051 0.043 0.047 0.047	84.41 50.67 56 NA I	1.5 1.35 1.27 NA NA	0.013 0.013 0.013 0.013 0.013	54 38 51 54 38	1.6 1.3 1.1 0.94 1.21	continuity (V = Q/A, ft/s) 4.7 4.1
Calculation Field Q _{bf}	XS	1 2 3 1	399 206 259 174 174	0.047 0.051 0.043 0.047 0.047	84.41 50.67 56 NA NA	1.5 1.35 1.27 NA NA	0.013 0.013 0.013 0.013 0.013	54 38 51 54 38	1.6 1.3 1.1 0.94 1.21 0.92	continuity (V = Q/A, ft/s) 4.7 4.1
Calculation Field Q _{bf} Regulated Q _{recc}	XS	1 2 3 1	399 206 259 174 174 174	0.047 0.051 0.043 0.047 0.051 0.043	84.41 50.67 56 NA NA NA	1.5 1.35 1.27 NA NA NA	0.013 0.013 0.013 0.013 0.013 0.013	54 38 51 54 38 51	1.6 1.3 1.1 0.94 1.21 0.92	continuity (V = Q/A, ft/s) 4.7 4.1
Calculation Field Q _{bf} Regulated Q _{recc}	XS	1 2 3	399 206 259 174 174 174 343	0.047 0.051 0.043 0.047 0.051 0.043	84.41 50.67 56 NA NA NA NA	1.5 1.35 1.27 NA NA NA	0.013 0.013 0.013 0.013 0.013 0.013 0.013	54 38 51 54 38 51 54	1.6 1.3 1.1 0.94 1.21 0.92 1.40 1.82	continuity (V = Q/A, ft/s) 4.7 4.1

Appendix Q. Q Calculations Eight response reaches, three calculations each:

Loon Lake Dam Lower

Calculation	XS	Q (cfs)	n	A (sqft)	R (ft)	S (ft/ft)	w (ft)	dmean (ft)	velocity check using continuity (V = Q/A, ft/s)
Field Q _{bf}	1	329	0.068	133.26	2.02	0.005	97	1.4	2.5
5.	2	326	0.04	90.68	1.6	0.005	56	1.6	3.6
	3	409	0.042	99.65	2.1	0.005	45	2.2	4.1
Regulated Q _{recc}	1	510	0.068 N	IA N	١A	0.005	97	2.09	
	2	510	0.04 N	IA N	١A	0.005	56	2.11	
	3	510	0.042 N	IA N	NA .	0.005	45	2.48	
UnRegulated Q _{recc}	1	678	0.068 N	IA N	١A	0.005	97	2.47	
	2	678	0.04 N	IA N	JA	0.005	56	2.50	
	3	678	0.042 N	IA N	A	0.005	45		

Appendix Q. Q Calculations

Eight response reaches, three calculations each:

Robbs Peak Dam

Calculation	XS	Q (cfs)	n	A (sqft)	R (ft)	S (ft/ft)	w (ft)	dmean (ft)	velocity check using continuity (V = Q/A, ft/s)
Calculation	70	Q (CIS)	11	A (Sqit)	K (II)	3 (1011)	w (IL)	unican (it)	100)
Field Q _{bf}		1 98	0.041	44.63	1.58	0.002	28	1.6	2.2
		2 89	0.039	46.66	1.18	0.002	39	1.2	1.9
		3 342	0.03	92.39	2.16	0.002	39	2.4	3.7

Range of data due to hydrologic analysis in technical report on hydrology. Please see notes regarding the calculations for regulated Q2 at the Robbs Peak Site.

Regulated Q _{recc}	1	116	0.041 NA	NA	0.002	28	1.75
	2	116	0.039 NA	NA	0.002	39	1.39
	3	116	0.03 NA	NA	0.002	39	1.19
UnRegulated Q _{recc}	1	395	0.041 NA	NA	0.002	28	3.66
	2	395	0.039 NA	NA	0.002	39	2.91
	3	395	0.03 NA	NA	0.002	39	2.49

Appendix Q. Q Calculations Eight response reaches, three calculations each: Ice House Dam Upper

Calculation Field Q _{bf}	XS 1 2	Q (cfs) 250 334	n 0.028 0.028	A (sqft) 80.63 107.78	R (ft) 1.49 1.49	S (ft/ft) 0.002 0.002	w (ft) 53 64		velocity check using continuity (V = Q/A, ft/s) 3.1 3.1
	- 3	566	0.03	137.95	2.52	0.002	51	2.7	4.1
					-		-		
		comes in ranges for				UD UARP b	uilt dam		
	· · ·	when Jones Fork P	owerplant we	ent in (1984))				
Regulated Q _{recc}	SMUD UARP								
	1	559	0.028 N		IA	0.002	53	2.45	
	2	559	0.028 N	NA N	IA	0.002	64		
	3	559	0.03 N	NA N	IA	0.002	51	2.61	
	JFPH								
	1	176	0.028 N	NA N	IA	0.002	53	1.22	
	2	176	0.028 N	NA N	IA	0.002	64	1.09	
	3	176	0.03 N	NA N	IA	0.002	51	1.30	
UnRegulated Q _{recc}	1	674	0.028 N	ΙΔ Ν	JA	0.002	53	2.74	
Onnegulated Grecc	2	674	0.028 N		IA	0.002	64		
	2	674	0.028 N 0.03 N		IA IA	0.002	51		
	5	074	0.05 1			0.002	51	2.92	

Appendix Q. Q Calculations Eight response reaches, three calculations each:

	Ice H	ouse	Dam	Lower
--	-------	------	-----	-------

Calculation	XS	Q (cfs)	n	A (sqft)	R (ft)	S (ft/ft)	w (ft)	dmean (ft)	velocity check using continuity (V = Q/A, ft/s)
	1	2783			3	. ,			6.8
Field Q _{bf}	1		0.035	406.85	-	0.006	124		
	2	564	0.041	131.02	1.9	0.006	62		4.3
	3	1125	0.034	166.86	2.81	0.006	57	2.9	6.7
Regulated Q _{recc}	-	comes in ranges for n when Jones Fork P	•	-		UD UARP b	uilt dam		
	1	871	0.035		١A	0.006	124	1.58	
	1								
	2	871	0.041		NA IA	0.006	62		
	3	871	0.034	NA P	NA .	0.006	57	2.47	
	JFPH								
	1	488	0.035	NA N	JA	0.006	124		
	2	488	0.041	NA N	1A	0.006	62	1.86	
	3	488	0.034	NA N	JA	0.006	57	1.74	
UnRegulated Q _{recc}	1	986	0.035	NA N	١A	0.006	124	1.70	
	2	986	0.041	NA N	JA	0.006	62	2.83	
	3	986	0.034	NA N	١A	0.006	57		

Appendix Q. Q Calculations

Eight response reaches, three calculations each: Chili Bar - Upper Coloma Site

velocity check using continuity (V = Q/A, XS Q (cfs) R (ft) S (ft/ft) w (ft) ft/s) Calculation A (sqft) dmean (ft) n 9.7 1277.68 265 4.8 Field Q_{bf} 0.036 0.007 12434 4.73 5495 0.037 742.34 205 3.6 7.4 2 3.27 0.007 8.6 3 5069 0.037 590.86 4.08 0.007 143 4.1 Regulated Q_{recc} 5667 0.036 NA 265 2.99 1 NA 0.007 2 5667 NA 205 3.54 0.037 NA 0.007 3 5667 0.037 NA 0.007 143 NA 4.40 UnRegulated Q_{recc} 1 5813 0.036 NA NA 0.007 265 3.03 2 205 5813 0.037 NA NA 0.007 3.60 3 0.037 NA 0.007 4.46 5813 NA 143

Appendix Q. Roughness "n" Comparisons.

							n							
		Mean											average	Average (Cowan vs. average of
		Local					Limerinos		Griffiths	Bathurst	Jarrett		(except	empirical
Site	XS	Slope	D ₈₄ (mm)	D ₅₀ (mm)	R (ft)	R/D84	(1970)	Bray (1979)	(1981)	(1985)	(1987)	Cowan	Cowan)	relations)
Rubicon Dam Reach	Upper		60	30	1.75	8.9	0.033	0.032	0.029	0.031	0.044	0.041	0.034	0.037
(RD-G1)	Middle		93	34	1.28	4.2	0.040	0.039	0.029	0.036	0.047	0.034	0.038	0.036
	Lower	0.007	67	31	0.77	3.5	0.039	0.039	0.029	0.036	0.051	0.032	0.039	0.035
Upper Loon Lake Dam														
Reach	Upper		3.5	3.5	2.04	177.7	0.018	0.017	0.021	0.018	0.043	0.044	0.024	0.034
(LL-G1)	Middle		0.3	0.3	3.71	3769.4	0.014	0.013	0.017	0.014	0.039	0.063	0.019	0.041
	Lower	0.007	3	3	2.44	247.9	0.018	0.017	0.021	0.017	0.042	0.066	0.023	0.045
Middle Loon Lake														
Dam Reach	Upper		148	40	1.5	3.1	0.046	0.046	0.030	0.041	0.058	0.049	0.044	0.047
(LL-G2)	Middle		172	74	1.35	2.4	0.051	0.051	0.034	0.045	0.059	0.054	0.048	0.051
	Lower	0.013	170	90	1.27	2.3	0.051	0.051	0.035	0.045	0.059	0.037	0.049	0.043
Lower Loon Lake Dam														
Reach	Upper		95	50	2.02	6.5	0.037	0.036	0.031	0.034	0.038	0.068	0.035	0.052
(LL-G3)	Middle		135	68	1.6	3.6	0.044	0.043	0.033	0.040	0.040	0.040	0.040	0.040
	Lower	0.005	205	125	2.1	3.1	0.049	0.048	0.037	0.044	0.038	0.041	0.043	0.042
Robbs Peak Dam														
Reach	Upper	_	79	39	1.58	6.1	0.037	0.036	0.030	0.034	0.028	0.041	0.033	0.037
(RPD-G1)	Middle		63	40	1.18	5.7	0.036	0.035	0.030	0.033	0.029	0.039	0.032	0.036
	Lower	0.002	78	28	2.16	8.4	0.035	0.034	0.028	0.032	0.027	0.030	0.031	0.031
Upper Ice House Dam														
Reach	Upper	-	29	16	1.49	15.7	0.028	0.027	0.026	0.026	0.028	0.029	0.027	0.028
(IH-G1)	Middle	_	19	9	1.49	23.9	0.025	0.024	0.024	0.024	0.028	0.030	0.025	0.028
	Lower	0.002	25	10	2.52	30.7	0.026	0.025	0.025	0.025	0.026	0.035	0.025	0.030
Lower Ice House Dam														
Reach	Upper	-	145	40	3	6.3	0.040	0.039	0.030	0.037	0.038	0.034	0.037	0.035
(IH-G2)	Middle	_	265	85	1.9	2.2	0.056	0.056	0.034	0.049	0.041	0.035	0.047	0.041
	Lower	0.006	130	40	2.81	6.6	0.039	0.038	0.030	0.036	0.039	0.031	0.036	0.034
Upper Coloma	Upper		243	104	4.73	5.9	0.044	0.043	0.035	0.041	0.038	0.032	0.040	0.036
(CB-G2)	Middle		246	122	3.27	4.1	0.048	0.047	0.036	0.043	0.040	0.031	0.043	0.037
	Lower	0.007	284	158	4.08	4.4	0.048	0.047	0.038	0.044	0.039	0.031	0.043	0.037

CHILI BAR

Appendix Q. Roughness "n" Comparisons.

Empirical methods based on grain size and hydraulic radius presented in Wohl 2000.

Limerinos	-	top end
slope range	0.00068	1
D84 size range (mm)	20	750 small gravel to medium sized boulders
discharge range (m ³ /second)	5.62	427
R/D84 range	0.9	47.2
Bray		top end
slope range	0.00022	
D84 size range (mm)		gravel bed rivers
discharge range (m ³ /second)	5.5	
R/D84 range	11	85
Griffiths	low end	top end
slope range	0.000085	5 0.011
D50 size range (mm)	13	
discharge range (m ³ /second)	0.05	
R/D84 range	3	53
Bathurst	low end	top end
slope range	0.004	0.04
D84 size range (mm)	113	740
discharge range (m ³ /second)	0.14	195
R/D84 range		<10
Jarrett	low end	top end
slope range	0.002	0.052
D84 size range (mm)	100	800
discharge range (m ³ /second)	0.34	
R/D84 range	0.19	
Range of R (m)	0.15	
Range of R (ft)	0.49	7.22

Appendix Q. Roughness "n" values based on Cowan (1956)

Rubico	on Dam								
XS1		• n1 + n2 + n3 + n4)m	0.041 XS2	n = (nb +	- n1 + n2 + n3 + n4)m	0.034 XS3	n = (nb +	n1 + n2 + n3 + n4)m	0.032
	nb	0.03		nb	0.03		nb	0.03	
	n1	0.002		n1	0		n1	0	
	n2	0.003		n2	0		n2	0	
	n3	0.001		n3	0.002		n3	0.001	
	n4	0.005		n4	0.002		n4	0.001	
	m	1		m	1		m	1	
Loon L	.ake Dam Up	oper							
XS1	n = (nb +	• n1 + n2 + n3 + n4)m	0.0437 XS2	n = (nb +	• n1 + n2 + n3 + n4)m	0.06325 XS3	n = (nb +	n1 + n2 + n3 + n4)m	0.06555
	nb	0.027		nb	0.027		nb	0.027	
	n1	0.002		n1	0.002		n1	0.002	
	n2	0		n2	0		n2	0	
	n3	0.001		n3	0.018		n3	0.02	
	n4	0.008		n4	0.008		n4	0.008	
	m	1.15		m	1.15		m	1.15	
<u>Loon L</u>	ake Dam Mi	ddle							
XS1	n = (nb +	• n1 + n2 + n3 + n4)m	0.049 XS2	n = (nb +	• n1 + n2 + n3 + n4)m	0.054 XS3	n = (nb +	n1 + n2 + n3 + n4)m	0.037
	nb	0.032		nb	0.032		nb	0.032	
	n1	0.003		n1	0		n1	0	
	n2	0.001		n2	0.001		n2	0	
	n3	0.003		n3	0.001		n3	0	
	n4	0.01		n4	0.02		n4	0.005	
	m	1		m	1		m	1	
Loon L	ake Dam Lo	wer							
XS1	n = (nb +	• n1 + n2 + n3 + n4)m	0.068 XS2	n = (nb +	• n1 + n2 + n3 + n4)m	0.04 XS3	n = (nb +	n1 + n2 + n3 + n4)m	0.041
	nb	0.034		nb	0.034		nb	0.034	
	n1	0.001		n1	0.001		n1	0.001	
	n2	0		n2	0		n2	0	
	n3	0.023		n3	0.002		n3	0.004	
	n4	0.01		n4	0.003		n4	0.002	
	m	1		m	1		m	1	

Appendix Q. Roughness "n" values based on Cowan (1956)

	Peak Dam								
XS1	•	n1 + n2 + n3 + n4)m	0.041 XS2	•	+ n1 + n2 + n3 + n4)m	0.039 XS3	•	n1 + n2 + n3 + n4)m	0.03
	nb	0.028		nb	0.028		nb	0.028	
	n1	0.004		n1	0.004		n1	0	
	n2	0.001		n2	0.001		n2	0	
	n3	0.003		n3	0.002		n3	0.001	
	n4	0.005		n4	0.004		n4	0.001	
	m	1		m	1		m	1	
Ice Hou	ise Dam Up	per							
XS1	n = (nb +	n1 + n2 + n3 + n4)m	0.029 XS2	n = (nb +	+ n1 + n2 + n3 + n4)m	0.03 XS3	n = (nb +	n1 + n2 + n3 + n4)m	0.035
	nb	0.027		nb	0.027		nb	0.027	
	n1	0		n1	0		n1	0.001	
	n2	0		n2	0		n2	0.001	
	n3	0		n3	0.001		n3	0.001	
	n4	0.002		n4	0.002		n4	0.005	
	m	1		m	1		m	1	
Ice Hou	ise Dam Lov	wer							
XS1		• n1 + n2 + n3 + n4)m	0.034 XS2	n = (nb +	+ n1 + n2 + n3 + n4)m	0.035 XS3	n = (nb +	n1 + n2 + n3 + n4)m	0.031
	nb	0.03		nb	0.03		nb	0.03	
	n1	0		n1	0.002		n1	0	
	n2	0		n2	0		n2	0	
	n3	0.002		n3	0.002		n3	0	
	n4	0.002		n4	0.001		n4	0.001	
	m	1		m	1		m	1	
Chili Ba	ar - Upper C	oloma Site							
XS1		n1 + n2 + n3 + n4)m	0.032 XS2	n = (nb +	+ n1 + n2 + n3 + n4)m	0.031 XS3	n = (nb +	n1 + n2 + n3 + n4)m	0.031
	nb	0.03		nb	0.03		nb	0.03	
	n1	0		n1	0		n1	0	
	n2	0		n2	0		n2	0	
	n3	0.001		n3	0		n3	0	
	n4	0.001		n4	0.001		n4	0.001	
	m	1		m	1		m	1	
		·			•			•	

Appendix Q. 1.5 Regulated

Rubicon Dam

Gauge # 11428000 Record Drainage Area Q1.5 (events with 1.5-year return period) cfs/square mile elevation

Loon Lake Dam Upper

Gauge # 11429500 Record Drainage Area Q1.5 (events with 1.5-year return period) cfs/square mile elevation

Loon Lake Dam Middle

No gauge Node Identification from Hydro Report Loon Drainage Area 13.18 square miles Use USGS Gauge # 11429500 and adjust for drainage area and climate Adjustment is from pers. comm. with Margaret Hannaford, hydrologist for SMUD who recommended using nearby unregulated watersheds to adjust for unregulated flow below Loon Lake Dam Q1.5 for gauge is 40 cfs. 40 + (26*(13.18-8.01)) Q1.5 (events with 1.5-year return period) 174 cfs cfs/square mile 13.2 cfs/square mile elevation 5900 ft

1964 to 1986

1964 to 2001

31.4 square miles

21.2 cfs/square mile

8.01 square miles

5.0 cfs/square mile

4

7

40 cfs

6150 ft

665 cfs

6140 ft

Loon Lake Dam Lower No gauge

Node Identification from Hydro ReportLoonDrainage Area26.09 square milesUse USGS Gauge # 11429500 and adjust for drainage area and climateAdjustment is from pers. comm. with Margaret Hannaford, hydrologist forSMUD who recommended using nearby unregulated watersheds to adjustfor unregulated flow below Loon Lake DamQ1.5 for gauge is 40 cfs. 40 + (26*(26.09-8.01))510 cfsQ1.5 (events with 1.5-year return period)510 cfscfs/square mile19.6 cfs/square mileelevation5340 ft

Robbs Peak Dam

No gauge Node Identification from Hydro Report none none Drainage Area 15.2 square miles Problematic because USGS Gauge # 11430000, South Fork Rubicon River below Gerle Creek near Georgetown, CA, is nearest gauge and is located below the confluence of Gerle Creek, a regulated drainage. Flow/drainage area was used for the gauge during the regulated period, which represents the spill of Robbs Peak Diversion Dam and Gerle Reservoir, and multiplied by the drainage area above Robbs Peak Diversion Dam. Record 1964 to 2001 Solution: Flow/Drainage Area for Gerle and South Fork Rubicon River drainages will be used to calculate Q1.5 for this location Flow/Area for Gerle/South Fork Rubicon drainages is 7.6 cfs/sqmi, thus multiply 7.6*15.2 for solution Q1.5 (events with 1.5-year return period) 116 cfs cfs/square mile 7.6 cfs/square mile elevation 5130 ft

Appendix Q. 1.5 Regulated

Ice House Dam Upper			
No gauge Node Identification from Hydro Report Drainage Area	Ice Hou 30	se 0.69 square miles	4
Use USGS gauge #11441500 and adjust for drainage area and climate Adjustment is from pers. comm. with Margaret Hannaford, hydrologist for SMUD who recommended using nearby unregulated watersheds to adjust for unregulated flow below Ice House Dam			
Record		1985 to 2001	
Q1.5 for gauge is a range 476 (and 93) cfs. 476 as example. 476 + (26*(30.69-27.5)) Q1.5 (events with 1.5-year return period, subsequent to SMUD UARP) Q1.5 (events with 1.5-year return period, subsequent to JFPH) cfs/square mile cfs/square mile elevation	1	559 cfs 176 cfs 8.2 cfs/square mile 5.7 cfs/square mile 190 ft	
<u>Ice House Dam Lower</u> No gauge			
Node Identification from Hydro Report Drainage Area Use USGS gauge #11441500 and adjust for drainage area and climate Adjustment is from pers. comm. with Margaret Hannaford, hydrologist for SMUD who recommended using nearby unregulated watersheds to adjust for unregulated flow below Ice House Dam Q1.5 for gauge is a range 476 (and 93) cfs. 476 as example. 476 + (26*(42.69-27.5))	Ice Hou: 42	se .69 square miles	6
Q1.5 (events with 1.5-year return period, subsequent to SMUD UARP) Q1.5 (events with 1.5-year return period, subsequent to JFPH) cfs/square mile cfs/square mile elevation	2 1	871 cfs 488 cfs 0.4 cfs/square mile 1.4 cfs/square mile 665 ft	
<u>Chili Bar Upper Coloma Site</u> Gauge # 11444500, South Fork of the American near Placerville.			
Node Identification from Hydro Report	none	none	
Record Adjustment is made to values given location of site, estimated drainage area of 27 square miles greater than that at gauge (598 square miles), thus drainage area estimated at 625 square miles. To adjust for unregulated flow below Chili Bar Dam, use unregulated flow records from Placerville, Lotus, and Coloma gages Q1.5 for gauge is 5416 cfs. 5416+(9.3*(625-598))	1965 to	2001	
Drainage Area Q1.5 (events with 1.5-year return period) cfs/square mile elevation	56	625 square miles 667 cfs 9.1 cfs/square mile 764 ft	9

Appendix Q. 1.5 Unregulated

<u>Rubicon Dam Reach</u> Gauge # 11428000 Record Drainage Area	1956 to 1963	31.4 square miles
Q1.5 (events with 1.5-year return period) cfs/square mile elevation		1386 cfs 44.1 cfs/square mile 6140 ft
Loon Lake Dam Upper no unregulated data available, therefore used gauge records "from nearby watershed with similar characteristics (e.g., watershed elevation and basin geology)" Technical Report on Hydrology		
Adjustment is from pers. comm. with Margaret Hannaford, hydrologist for SMUD Calculation: 8.01 sqmi*26 cfs/sqmi Drainage Area Q1.5 (events with 1.5-year return period) cfs/square mile elevation		8.01 square miles 208 cfs 26.0 cfs/square mile 6150 ft
Loon Lake Dam Middle no unregulated data available, therefore used gauge records "from nearby watershed with similar characteristics (e.g., watershed elevation and basin geology)" Technical Report on Hydrology		
Adjustment is from pers. comm. with Margaret Hannaford, hydrologist for SMUD Calculation: 11.2 sqmi*26 cfs/sqmi Node Identification from Hydro Report Drainage Area Q1.5 (events with 1.5-year return period) cfs/square mile elevation	Loon	4 13.18 square miles 343 cfs 26.0 cfs/square mile 5900 ft
Loon Lake Dam Lower no unregulated data available, therefore used gauge records "from nearby watershed with similar characteristics (e.g., watershed elevation and basin geology)" Technical Report on Hydrology Node Identification from Hydro Report Drainage Area Q1.5 (events with 1.5-year return period) cfs/square mile elevation	Loon	7 26.09 square miles 678 cfs 26.0 cfs/square mile 5340 ft
Robbs Peak Dam no unregulated data available, therefore used gauge records "from nearby watershed with similar characteristics (e.g., watershed elevation and basin geology)" Technical Report on Hydrology No gauge Node Identification from Hydro Report Drainage Area Q1.5 (events with 1.5-year return period) cfs/square mile elevation	none	none 15.2 square miles 395 cfs 26.0 cfs/square mile 5130 ft

Appendix Q. 1.5 Unregulated

Node Identification from Hydro Report	Ice House
Use USGS gauge #11441500 and adjust for drainage area	
Record	1925 to 1959
Q1.5 is 591. Adjustment = 591+(26*(30.69-27.5))	
Drainage Area	
Q1.5 (events with 1.5-year return period)	
cfs/square mile	
elevation	

Ice House Dam Lower

Node Identification from Hydro Report Use USGS gauge #11441500 and adjust for drainage area Q1.5 is 591. Adjustment = 591+(26*(42.69-27.5)) Drainage Area Q1.5 (events with 1.5-year return period) cfs/square mile elevation

Chili Bar Upper Coloma Site

3 gauges on SFAR in this section have unregulated data, SFAR nr Placerville, SFAR @ Coloma, SFAR @ Lotus

Record Average of discharge/area calculations for all 3 gauges = 9.3 cfs/sqmi Drainage Area Calculation: 625 sqmi * 9.3 cfs/sqmi Q1.5 (events with 1.5-year return period) cfs/square mile elevation From available data (No flow adjustment) SFAR nr Placerville (1912 to 1920) SFAR @ Coloma (1930-1941) and SFAR @ Lotus (1951-1962)

625 square miles

4

6

30.69 square miles 674 cfs

42.69 square miles

23.1 cfs/square mile

986 cfs

4665 ft

5190 ft

Ice House

22.0 cfs/square mile

5813 cfs 9.3 cfs/square mile 764 ft

Appendix Q. 1.5 Unregulated Gages Outside.

Unregulated	Cole Creek	Duncan Creek	Blackwood Creek	Ward creek	Pilot Creek	Rock Creek
Drainage Area (sqmi)	21	9.9	11.2	9.7	11.7	73
Q1.5 (cfs)	798	369	274	190	201	1433
flow/area (cfs/sqmi)	38	37	24	20	17	20
elevation (ft)	5920	5270	6240	6230	4280	1305
period of record (years)	1928-2001	1961-2001	1964-2001	1972-2001	1961-2001	1993-2001
	excluding 1976					

Adjustments:

For calculations of unregulated flows and accretions where records are not available in UARP.

Average Drainage Area (sqmi)	23
Average Q1.5 (cfs)	544
Average flow/area (cfs/sqmi)	26
Average elevation (ft)	4874

Appendix Q. 1.5 Gages Inside

Pre-regulation Drainage Area (sqmi) Q1.5 (cfs) flow/area (cfs/sqmi) elevation (ft)	13	Gerle Creek @ Loon Lake Dam 1.4 NA 386 NA 44 NA 953 NA	South Fork Rubicon below Gerle Creek NA NA NA NA	
period of record (years)	1956-1963	NA	NA	
Regulation	Rubicon R @ Rubicon Springs	Gerle Creek @ Loon Lake Dam	South Fork Rubicon below Gerle Creek	
Drainage Area (sqmi)	3	1.4 8.	01 47.	.6
Q1.5 (cfs)	6	65	40 36	31
flow/area (cfs/sqmi)		21 5	5.0 7.	.6
elevation (ft)	60	053 62	50 497	70
period of record (years)	1964-1986	1964-2001	1964-2001	

Adjustments: For accretion adjustments in the SFAR drainage in the Reach Downstream of Chili Bar Average flow/area (cfs/sqmi) 9.3 Average drainage area (sqmi) 634

Appendix Q. 1.5 Gages Inside

Pre-regulation	South Fork Silver Cree	ek near Ice Hous South Fork Americar	nr Placerville South Fork Am	erican nr Colom:South Fork America	an nr Lotus
Drainage Area (sqmi)		27.5	598	631	673
Q1.5 (cfs)		591	6083	5141	6492
flow/area (cfs/sqmi)		21	10	8.1	9.6
elevation (ft)		5290	931	731	635
period of record (years)	1925-1959	1912-1920	1930-1941	1951-1962	
Regulation	South Fork Silver Cree	ek near Ice Hous South Fork Americar	nr Placerville South Fork Am	erican nr Colom;South Fork America	an nr Lotus
Drainage Area (sqmi)		27.5	598 NA	NA	
Q1.5 (cfs)		476	5416 NA	NA	
flow/area (cfs/sqmi)		17	9.1 NA	NA	
elevation (ft)		5290	931 NA	NA	
period of record (years)	1961-2001	1965-2001	NA	NA	
	South Fork Silver Cree	ek near Ice House subsequent to JFPI	1		
		27.5			
		93			
		3.4			
		5290			
	1961-2001				
Adjustments:					
For accretion adjustments in the SFAR					
drainage in the Reach Downstream of Chili B	ar				
Average flow/erea (ofe/egmi)	0.2				

Average flow/area (cfs/sqmi)9.3Average drainage area (sqmi)634