Sacramento Municipal Utility District Headquarters Building and Site Rehabilitation Project

Final Initial Study and Mitigated Negative Declaration • March 2015

Lead Agency:
SMUD–Environmental Management
6201 S Street, MS B203
Sacramento, CA 95817-1899

or

P.O. Box 15830 MS B203
Sacramento, CA 95852-1830
Attn: Rob Ferrera
(916) 732-6676 or rob.ferrera@smud.org

Prepared by:
AECOM
2020 L Street, Suite 400
Sacramento, CA 95811
Contact: Petra Unger
petra.unger@aecom.com
Introduction

This draft initial study (IS) and mitigated negative declaration (MND) have been prepared to evaluate Sacramento Municipal Utility District’s (SMUD’s) proposed project for compliance under the California Environmental Quality Act (CEQA). SMUD is the lead agency responsible for complying with the provisions of CEQA. SMUD proposes the Sacramento Municipal Utility District Headquarters Building and Site Rehabilitation Project (also referred to as “the proposed project”).

Project Description

SMUD proposes to undertake a rehabilitation of its Headquarters Building and a 13.66-acre portion of the headquarters site located at 6201 S Street in Sacramento, California. The Headquarters Building and site have served as SMUD’s district headquarters since construction was completed in 1960. The Headquarters Building was listed in the National Register of Historic Places in 2010 as an excellent example of Modern International Style design. SMUD considers the Headquarters Building and site to be a necessary facility to meet current and future business needs and provide a more functional facility, and as significant to its brand and image. Therefore, SMUD desires to rehabilitate the Headquarters Building and a 13.66-acre portion of the headquarters site to support continued use for the foreseeable future. A more detailed description of the project can be found in Chapter 2.

Findings

As the CEQA lead agency, SMUD finds that the proposed project would be implemented without causing a significant adverse impact on the environment. Mitigation measures would be implemented to reduce potentially significant impacts to a less-than-significant level.

Cumulative Impacts

CEQA requires that SMUD assess whether its proposed project’s incremental effects are significant when viewed in connection with the effects of other projects. Based on the analysis presented in this IS/MND, the proposed project would not contribute incrementally to considerable environmental changes when considered in combination with other projects in the area. Therefore, the potential environmental effects of the proposed project were determined to be less than significant. All identified potentially significant impacts would be mitigated to a less-than-significant level.

One other project is currently proposed in the vicinity of the SMUD Headquarters rehabilitation project. This project proposes a new development at 1817 65th Street, across from the SMUD campus and adjacent to the 65th Street light rail station. The project site is bounded by 65th Street to the west, the light rail tracks and Q Street to the north, Redding Avenue to the east, and U.S. Highway 50 (U.S. 50) to the south. The project would involve construction of one or two new four-story hotels and approximately 10,000 square feet of retail space on 5.67 acres. A 117-room Hampton Inn and Suites would be built on the east end of the site, and either a second hotel or an office building would be built on the west side of the site. The retail space would be a separate, third building fronting 65th Street. In addition to the proposed structures,
the development would include tree removal, new fencing, new signs, plantings along U.S. 50 and near the 65th Street light rail station, installation of a 48-inch water main, transit area improvements, widening of the off-ramp at 65th Street, a tie-in to the Redding Street combined-sewer line, new transformers for existing power lines, and construction of 124 new parking spaces on the project site. The project is currently under review with the City of Sacramento, but a CEQA document has not been released to date.

Growth-Inducing Impacts

The proposed project is the rehabilitation of an existing building and the surrounding property. It would not implicate the provision of any service or planning effort that could affect future growth.

Determination

On the basis of this evaluation, SMUD concludes:

- The proposed project does not have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered species, or eliminate important examples of the major periods of California history or prehistory.

- The proposed project would not achieve short-term environmental goals to the disadvantage of long-term environmental goals.

- The proposed project would not have impacts that are individually limited, but cumulatively considerable.

- The proposed project would not have environmental effects that would cause substantial adverse effects on human beings, either directly or indirectly.

- No substantial evidence exists to demonstrate that the proposed project would have a substantive negative effect on the environment.

This IS/MND has been prepared to provide the opportunity for interested agencies and the public to provide comment. Pending public review and SMUD Board of Directors approval, this MND will be filed pursuant to State CEQA Guidelines Section 15075. Written comments should be requested to be submitted to SMUD at the address previously identified by 5:00 p.m. on February 16, 2015.

Signature
Rob Ferrera
Environmental Specialist

Date
3/15/15
TABLE OF CONTENTS

ACRONYMS AND OTHER ABBREVIATIONS .. 5

1.0 INTRODUCTION .. 9
1.1 Project Overview .. 9
1.2 Purpose of This Document ... 9
1.3 Public Review Process ... 10
1.4 SMUD Board Approval Process ... 10
1.5 Organization of the Initial Study and Mitigated Negative Declaration 10
1.6 Environmental Factors Potentially Affected ... 11

2.0 PROJECT DESCRIPTION .. 13
2.1 Introduction ... 13
2.2 Project Location .. 13
2.3 Existing Conditions ... 13
2.4 Project Objectives .. 17
2.5 Proposed Project .. 19
2.6 Permits and Approvals ... 46

3.0 ENVIRONMENTAL CHECKLIST ... 49
3.1 Aesthetics .. 50
3.2 Agriculture and Forestry Resources .. 54
3.3 Air Quality ... 58
3.4 Biological Resources ... 67
3.5 Cultural Resources ... 78
3.6 Geology and Soils ... 97
3.7 Greenhouse Gas Emissions ... 107
3.8 Hazards and Hazardous Materials .. 112
3.9 Hydrology and Water Quality ... 125
3.10 Land Use and Planning ... 143
3.11 Mineral Resources .. 146
3.12 Noise ... 148
3.13 Population and Housing ... 157
3.14 Public Services ... 159
3.15 Recreation ... 164
3.16 Transportation and Circulation .. 166
3.17 Utilities and Service Systems ... 175
3.18 Mandatory Findings of Significance ... 185

4.0 LIST OF PREPARERS ... 187
4.1 Sacramento Municipal Utility District—Lead Agency .. 187
4.2 Environmental Consultants .. 187

5.0 REFERENCES ... 188
APPENDICES
Appendix A – Notice of Intent
Appendix B – Historic Structure Report
Appendix C – Cultural Landscape Report
Appendix D – Air Quality Modeling Data

EXHIBITS
Figure 2-1. Regional Location ... 14
Figure 2-2. Project Site and Vicinity .. 15
Figure 2-3. SMUD Employees Eligible for Retirement within 5 Years 17
Figure 2-4. Proposed Plan Depicting Proposed Central Core Additions 24
Figure 2-5. Overview Diagram—Proposed New Stairway Plan 25
Figure 2-6. Existing Paths on the Project Site .. 26
Figure 2-7. Drawing of Site Concepts and Relocated Entrances 27
Figure 2-8. Conceptual Treatment of West Parking Zone 32
Figure 2-9. Conceptual Treatment of East Parking Zone 34
Figure 2-10. Site Fencing Concept ... 37
Figure 2-11. Existing Headquarters Building Parking Structure 39
Figure 2-12. Existing Parking on the West Side of the Headquarters Building 39
Figure 3.1-1. Existing View of Headquarters Building from the South 51
Figure 3.4-1. CNDDB Records within 3 Miles of the Project Site 69
Figure 3.5-1. Historic Images of the SMUD Headquarters Building and SMUD Campus 82
Figure 3.5-2. SMUD Headquarters Building, 2009, as Shown in the National Register of Historic Places Nomination ... 83
Figure 3.9-1. Flood Zone Map ... 127

TABLES
Table 2-1. Compatible Historic Plants on the Project Site 30
Table 2-2. Existing Parking Space Count at the SMUD Campus, Excluding the Corporate Yard at 59th Street ... 36
Table 2-3. Project Phasing ... 44
Table 3.3-1. Daily Construction Emissions .. 62
Table 3.4-1. Special-Status Plant and Wildlife Species with Potential to Occur in the Vicinity of the Project Site .. 70
Table 3.6-1. Project Site Soil Characteristics .. 98
Table 3.9-1. Current and Proposed Square Footage at the Project Site 138
Table 3.11-1. California Geological Survey Mineral Land Classification System .. 146
Table 3.12-1. Traffic Noise Contours—Existing Conditions 149
Table 3.12-2. City of Sacramento Exterior Noise Compatibility Standards for Various Land Uses ... 151
Table 3.12-3. Representative Vibration Source Levels for Construction Equipment 155
Table 3.17-1. Maximum Diversion Schedule, 2010–2035, in the Settlement Contract 176
ACRONYMS AND OTHER ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Assembly Bill</td>
</tr>
<tr>
<td>ACM</td>
<td>asbestos-containing materials</td>
</tr>
<tr>
<td>ADA</td>
<td>Americans with Disabilities Act</td>
</tr>
<tr>
<td>afy</td>
<td>acre-feet per year</td>
</tr>
<tr>
<td>Alquist-Priolo Act</td>
<td>Alquist-Priolo Earthquake Fault Zoning Act</td>
</tr>
<tr>
<td>ARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>BMP</td>
<td>best management practice</td>
</tr>
<tr>
<td>Board</td>
<td>Board of Directors</td>
</tr>
<tr>
<td>B.P.</td>
<td>Before Present</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CAAQS</td>
<td>California Ambient Air Quality Standards</td>
</tr>
<tr>
<td>CalEEmod</td>
<td>California Emissions Estimator Model</td>
</tr>
<tr>
<td>CAL FIRE</td>
<td>California Department of Forestry and Fire Protection</td>
</tr>
<tr>
<td>CALGreen Code</td>
<td>California Green Building Standards Code</td>
</tr>
<tr>
<td>Cal/OSHA</td>
<td>California Department of Industrial Relations, Division of Occupational Safety and Health</td>
</tr>
<tr>
<td>CalRecycle</td>
<td>California Department of Resources Recycling and Recovery</td>
</tr>
<tr>
<td>Caltrans</td>
<td>California Department of Transportation</td>
</tr>
<tr>
<td>CAP</td>
<td>climate action plan</td>
</tr>
<tr>
<td>CBC</td>
<td>California Building Standards Code</td>
</tr>
<tr>
<td>CCR</td>
<td>California Code of Regulations</td>
</tr>
<tr>
<td>CDFW</td>
<td>California Department of Fish and Wildlife</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act of 1980</td>
</tr>
<tr>
<td>CESA</td>
<td>California Endangered Species Act</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>cfs</td>
<td>cubic feet per second</td>
</tr>
<tr>
<td>CHBC</td>
<td>California Historical Building Code</td>
</tr>
<tr>
<td>CHRIS</td>
<td>California Historical Resources Information System</td>
</tr>
<tr>
<td>City</td>
<td>City of Sacramento</td>
</tr>
<tr>
<td>CIWMA</td>
<td>California Integrated Waste Management Act</td>
</tr>
<tr>
<td>CLR</td>
<td>cultural landscape report</td>
</tr>
<tr>
<td>CNDDB</td>
<td>California Natural Diversity Database</td>
</tr>
<tr>
<td>CNEL</td>
<td>community noise equivalent level</td>
</tr>
<tr>
<td>CO₂e</td>
<td>carbon dioxide equivalents</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CRHR</td>
<td>California Register of Historical Resources</td>
</tr>
<tr>
<td>CSUS</td>
<td>California State University, Sacramento</td>
</tr>
<tr>
<td>dB</td>
<td>decibel(s)</td>
</tr>
<tr>
<td>dBA</td>
<td>A-weighted decibel(s)</td>
</tr>
<tr>
<td>Delta</td>
<td>Sacramento–San Joaquin Delta</td>
</tr>
<tr>
<td>DTSC</td>
<td>California Department of Toxic Substances Control</td>
</tr>
<tr>
<td>Ebasco</td>
<td>Ebasco Services, Inc.</td>
</tr>
<tr>
<td>EC-OC</td>
<td>East Campus-Operations Center</td>
</tr>
<tr>
<td>EIR</td>
<td>environmental impact report</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>ESA</td>
<td>Environmental Site Assessment</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FTA</td>
<td>Federal Transit Administration</td>
</tr>
<tr>
<td>FWTP</td>
<td>E. A. Fairbairn Water Treatment Plant</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>HSR</td>
<td>historic structure report</td>
</tr>
<tr>
<td>IS/MND</td>
<td>initial study/mitigated negative declaration</td>
</tr>
<tr>
<td>kW</td>
<td>kilovolt</td>
</tr>
<tr>
<td>lb/day</td>
<td>pounds per day</td>
</tr>
<tr>
<td>LED</td>
<td>light-emitting diode</td>
</tr>
<tr>
<td>L<sub>eq</sub></td>
<td>energy-equivalent noise level</td>
</tr>
<tr>
<td>LIR</td>
<td>landscape inventory report</td>
</tr>
<tr>
<td>MBTA</td>
<td>Migratory Bird Treaty Act</td>
</tr>
<tr>
<td>mgd</td>
<td>million gallons per day</td>
</tr>
<tr>
<td>MLD</td>
<td>Most Likely Descendant</td>
</tr>
<tr>
<td>MT</td>
<td>metric ton(s)</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NAHC</td>
<td>Native American Heritage Commission</td>
</tr>
<tr>
<td>ND</td>
<td>negative declaration</td>
</tr>
<tr>
<td>NEHRPA</td>
<td>National Earthquake Hazards Reduction Program Act</td>
</tr>
<tr>
<td>NOI</td>
<td>notice of intent</td>
</tr>
<tr>
<td>NO<sub>x</sub></td>
<td>oxides of nitrogen</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NRCS</td>
<td>U.S. Natural Resources Conservation Service</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>PCE</td>
<td>tetrachloroethylene</td>
</tr>
</tbody>
</table>
Sacramento Municipal Utility District Headquarters Building and Site Rehabilitation Project
March, 2015

PG&E Pacific Gas and Electric Company
PM particulate matter
PM$_{2.5}$ particulate matter equal to or less than 2.5 micrometers in aerodynamic diameter
PM$_{10}$ particulate matter equal to or less than 10 micrometers in aerodynamic diameter
PRC California Public Resources Code
RCRA Resource Conservation and Recovery Act of 1976
ROG reactive organic gases
RT Sacramento Regional Transit District
RWQCB regional water quality control board
Scoping Plan *Climate Change Scoping Plan*
Secretary of the Interior's Rehabilitation Standards

SFD Sacramento Fire Department
SIP state implementation plan
SMAQMD Sacramento Metropolitan Air Quality Management District
SMUD Sacramento Municipal Utility District
SPD Sacramento Police Department
SRCSD Sacramento Regional County Sanitation District
SRWTP Sacramento River Water Treatment Plant
SRWWTP Sacramento Regional Wastewater Treatment Plant
SVP Society of Vertebrate Paleontology
SWA Sacramento Regional Solid Waste Authority
SWPPP storm water pollution prevention plan
SWRCB State Water Resources Control Board
TAC toxic air contaminant
TCE trichloroethylene
the site 13.66-acre property surrounding the SMUD Headquarters Building
tpd tons per day
UCMP University of California Museum of Paleontology
USC U.S. Code
USFWS U.S. Fish and Wildlife Service
UST underground storage tank
VdB vibration decibel(s)
1.0 INTRODUCTION

1.1 Project Overview

The proposed project is Sacramento Municipal Utility District’s (SMUD’s) rehabilitation of its Headquarters Building on 13.66 acres of the surrounding property (the site) at 6201 S Street in Sacramento, California. The Headquarters Building and site have served as SMUD’s district headquarters since construction was completed in 1960. The Headquarters Building and site were listed in the National Register of Historic Places in 2010 as an excellent example of Modern International Style design.

1.2 Purpose of This Document

The purpose of this initial study/mitigated negative declaration (IS/MND) is to disclose environmental impacts that may result from the proposed project. This IS/MND assesses the environmental effects of the proposed project, as required by the California Environmental Quality Act (CEQA). The IS/MND has been prepared in compliance with the State CEQA Guidelines (14 California Code of Regulations Section 15000 et seq.), which require that all state and local government agencies consider the environmental consequences of projects over which they have discretionary authority before acting on those projects.

As CEQA lead agency for the proposed project, SMUD has prepared this IS/MND to determine if the proposed project may have a significant impact on the environment. In accordance with State CEQA Guidelines Sections 15063 and 15074, an environmental impact report (EIR) must be prepared if there is substantial evidence supporting a fair argument that the proposed project under review may have a potentially significant impact on the environment. A negative declaration (ND) or MND is a written statement prepared by the lead agency describing the reasons why the proposed project would not have a significant impact on the environment, and therefore, would not require preparation of an EIR (State CEQA Guidelines Section 15371).

According to State CEQA Guidelines Section 15070, an ND or MND for a project subject to CEQA should be prepared when either:

- the IS shows that there is no substantial evidence, in light of the whole record before the lead agency, that the project may have a significant impact on the environment; or

- the IS identifies potentially significant impacts, but:
 - revisions in the project plans or proposals made by or agreed to by the applicant [in this case, SMUD] before the proposed MND and IS are released for public review would avoid the impacts or mitigate the impacts to a point where clearly no significant impacts would occur; and
 - there is no substantial evidence, in light of the whole record before the agency, that the proposed project as revised may have a significant impact on the environment.

As stated below, SMUD has analyzed the potential environmental impacts created by the proposed project, determined that proposed project impacts are less than significant or can be
reduced to a less-than-significant level with the implementation of mitigation measures, and has prepared this MND.

1.3 Public Review Process

This draft IS/MND is being circulated for a 30-day public review period to all individuals who have requested a copy, local libraries, and appropriate agencies. A notice of intent (NOI) is also being distributed to all property owners on record identified by the Sacramento County Assessor’s office as having property within 500 feet of the project boundaries. The NOI identifieds where the document is available for public review and inviteds interested parties to provide written comments for incorporation into the final IS/MND. The NOI also inviteds interested parties to attend a public meeting on the proposed project, which has been scheduled for January 27, 2015. A copy of the NOI is included as Appendix A of this document.

A final IS/MND, including written responses to comments received on significant environmental issues, will be prepared. Before SMUD’s Board of Directors (Board) makes a decision on the proposed project, the final IS/MND will be provided to all parties commenting on the IS/MND.

1.4 SMUD Board Approval Process

The SMUD Board must adopt the IS/MND and approve the mitigation monitoring plan before it can approve the proposed project. The project and environmental documentation pertaining thereto will be formally presented to the SMUD Board for information and discussion at an Energy Resources and Customer Services Committee meeting. The SMUD Board will then consider adopting the final IS/MND at the next regular Board meeting. Meetings of the Energy Resources and Customer Services Committee and Board of Directors are held at SMUD’s headquarters (6201 S Street, Sacramento, CA 95817-1899) and are open to the public. The public may comment at both meetings.

Once the IS/MND has been adopted, the SMUD Board typically renders a decision on project approval on the same date.

1.5 Organization of the Initial Study and Mitigated Negative Declaration

This IS/MND is organized into the following chapters:

Chapter 1, “Introduction,” provides summary information about the proposed project, describes the public review process for the IS/MND, and includes the CEQA determination for the proposed project.

Chapter 2, “Project Description,” contains a detailed description of the proposed project.

Chapter 3, “Environmental Checklist,” provides an assessment of proposed project impacts by resource topic. The Environmental Checklist form, from Appendix G of the State CEQA
Guidelines, is used to make one of the following conclusions for impacts from the proposed project:

- A conclusion of no impact is used when it is determined that the proposed project would have no impact on the resource area under evaluation.

- A conclusion of less-than-significant impact is used when it is determined that the proposed project’s adverse impacts on a resource area would not exceed established thresholds of significance.

- A conclusion of less-than-significant impact with mitigation is used when it is determined that proposed mitigation measures would reduce the proposed project’s adverse impacts to below established thresholds of significance.

Mitigation measures, as appropriate, are noted following each impact discussion.

Chapter 4, “List of Preparers,” identifies the individuals who contributed to the environmental document.

Chapter 5, “References,” identifies the information sources used in preparing this document.

Appendices contain technical reports and other information to supplement the IS/MND.

1.6 Environmental Factors Potentially Affected

Impacts on the environmental factors below are evaluated using the checklist included in Chapter 3. SMUD determined that the environmental factors checked below would be less than significant with implementation of mitigation measures. It was determined that the unchecked factors would have a less-than-significant impact or no impact.

- [] Aesthetics
- [X] Biological Resources
- [] Greenhouse Gas Emissions
- [] Land Use/Planning
- [] Population/Housing
- [X] Transportation/Traffic
- [] Agriculture and Forestry Resources
- [] Cultural Resources
- [] Hazards & Hazardous Materials
- [] Mineral Resources
- [] Public Services
- [] Utilities/Service Systems
- [X] Air Quality
- [] Geology/Soils
- [X] Hydrology/Water Quality
- [X] Noise
- [] Recreation
- [] Mandatory Findings of Significance
Determination: On the basis of this initial evaluation:

☐ I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

☒ I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because proposed mitigation measures would reduce the proposed project's adverse impacts to below established thresholds of significance. A MITIGATED NEGATIVE DECLARATION will be prepared.

☐ I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

☐ I find that the proposed project MAY have a “potentially significant impact” or “potentially significant unless mitigated” impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

☐ I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

_________________________ 3/15/15
Signature Date

Rob Ferrera __________________________ Sacramento Municipal Utility District
Printed Name Lead Agency
2.0 PROJECT DESCRIPTION

2.1 Introduction

The proposed project includes the rehabilitation of the SMUD Headquarters Building and 13.66 acres of the surrounding property (the site). SMUD has occupied the building and site since 1960, and the proposed project would rehabilitate the building and site for continued use over the next 50 years. Because the Headquarters Building and site are listed in the National Register of Historic Places, the rehabilitation would be performed in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties.

2.2 Project Location

The project building and the 13.66 acres of the site are located in Sacramento, California within the approximately 50-acre SMUD campus (Figure 2-1). The project site is bordered by 61st Street to the west, light rail tracks to the north, SMUD’s Customer Service Center to the east, and S Street to the south. The project also includes two temporary trailer location sites where SMUD employees would be housed in approximately 54 modules during project construction. Restroom trailers would be provided at each trailer location. These modules would be located to the north of the light rail tracks and would be equipped with electricity and phone service from existing on-site lines. The project site and surrounding uses are shown in Figure 2-2.

2.3 Existing Conditions

The Headquarters Building is divided into three sections: south wing, central core, and north wing. The south wing comprises four levels above grade and a full floor below grade; the central core comprises five levels above grade and one floor below grade. The north wing has three parking levels and a two-story office portion above the parking garage. The building includes 120,000 square feet of office space and 45,000 square feet of parking.

The Headquarters Building houses SMUD’s headquarters and supports SMUD operations. Because the building is more than 50 years old, it is not up to Americans with Disabilities Act (ADA) and current code standards with regard to access and safety, and the building is currently energy inefficient. It contains some materials that are considered hazardous and are no longer used in building construction and need to be remediated. Additional meeting space and more collaborative work spaces are required to meet SMUD’s current business operation needs. The site is characterized by an aging landscape comprising many mature trees and shrubs, interspersed with lawns with relatively high water consumption. Travel and access paths throughout the site do not meet current ADA and fire standards, and the site experiences localized flooding during rain events. Existing parking and access to the garage are inefficiently configured and additional parking is needed to allow the site to function more effectively. The two trailer location sites are currently used as SMUD parking lots.
Source: Data provided by Sacramento County in 2013 and compiled by AECOM in 2014

Figure 2-1. Regional Location
Source: Data provided by Sacramento County in 2013 and compiled by AECOM in 2014

Figure 2-2. Project Site and Vicinity
2.3.1 Growth and Expansion

SMUD currently provides workstation sizes that are consistent and competitive with industry standards (220 square feet per person). As the workforce has grown, valuable conference and support spaces have been replaced with more workstations. This change has resulted in a densely populated building with insufficient teamwork space (less than 25 square feet per person) and a noisy office environment. Although the number of employees at SMUD has not increased significantly in the last 10 years, there has been steady growth (5%) in some departments, especially Information Technology, Customer Services, and Strategic Operations. Slow growth will continue as SMUD strategically focuses on becoming a more customer service–oriented company that seeks innovative solutions to providing sustainable, energy-efficient, reliable power.

There is currently not enough area in the existing Headquarters Building to expand departments for future growth. The rehabilitated Headquarters Building would use the existing space more effectively by optimizing underutilized areas (like the auditorium) and providing more convenient, smaller meeting spaces closer to the open offices. Use of private offices would be very limited. Expanding the building’s central core would more conveniently locate larger conference/meeting areas between the north and south wings. This would have several benefits: it would minimize disruptions to the work environment, improve departmental collaboration, create better flow through the building, and provide greater flexibility for workstation configurations in the open office areas. Incorporating these meeting spaces and other support spaces in addition to department growth would exceed the current building footprint. Moving departments out of the existing Headquarters Building in lieu of expansion is not operationally efficient or feasible because of critical adjacency requirements and frequent interactions that would be impaired by being in separate or remote locations.

Because of the historic significance of the auditorium, modification of this space would be limited. It is currently used for public meetings of the SMUD Board of Directors (Board), but lacks proper security access and separation from other publicly accessible areas for board members. The Board also needs additional support space to facilitate its duties such as a private conference room, private restrooms, an office, and a small break/coffee area. There is not enough space behind the existing stage to provide these spaces adjacent to the auditorium. As described below under “Auditorium Reconfiguration,” the area behind the dais would be reconfigured to provide conference space, ADA-compliant toilets, and small private one- to two-person office spaces for use by Board members.

2.3.2 Generational Shift

SMUD is acutely aware that as the Baby Boomer generation retires from the workforce, it will need to respond to the work style of the Millennials. Figure 2-3 shows the number of SMUD employees eligible for retirement over the next 5 years. Open, collaborative space combined with quiet areas and varied work station opportunities will be necessary to maintain a healthy and productive environment for the Millennial generation. They will still need work spaces to focus and be intensely productive, but their day will also include short, strategic meetings with colleagues to resolve problems, clarify direction, make decisions, and move projects forward. These meetings cannot take place in the open office environment where they are disruptive to
others. The rehabilitation and expansion of the Headquarters Building would pull most of the “hard-walled” or permanent spaces toward the central core, leaving flexible, quiet open office areas where people can work with minimal visual and acoustical distractions. Noisy areas near conference rooms, coffee lounges, and vertical circulation areas would be designed to be separate from the active working areas such as the offices and cubicles, much like a main street in a small town. This is where conversations, spontaneous and planned, happen without disrupting others. People can huddle, laugh, and banter in lively and creative conversations without concern. Pulling these areas into an expanded central core forms a creative hub to the building that generates innovative ideas and inspired employees.

Figure 2-3. SMUD Employees Eligible for Retirement within 5 Years

2.4 Project Objectives

The overall objective of the proposed project is to address building and site efficiency issues and to rehabilitate the Headquarters Building and site to support their continued use as SMUD’s headquarters. Specific project objectives include:

- Rehabilitate the Headquarters Building and site for continued use and future business needs.
- Reallocate existing and provide additional functional spaces for improved conferencing capabilities, to allow for more meeting and work spaces for employees and to meet current and future space needs. This objective would be accomplished by adding on to and altering the central core of the building and redesigning the internal work spaces.
• Provide secure and nonpublic pathways for use by the Board and staff members to access the auditorium by enclosing the existing northeast walkway and connecting through the central core addition to the parking garage. This will be achieved by enclosing the existing northwest walkway to provide an internal pathway from the offices on the west side of the south wing to the main lobby that does not require passing through the Headquarters Building’s conference center.

• Clean, repair, and preserve the historical features of the Headquarters Building and site.

• Remediate hazardous materials (e.g., asbestos, lead paint, polychlorinated biphenyls [PCBs]).

• Upgrade the Headquarters Building to current seismic standards, including utilization of the California Historical Building Code (CHBC).

• Meet current fire and life safety codes and standards, including utilization of the CHBC.

• Meet ADA requirements, including utilization of the CHBC.

• Upgrade building mechanical, electrical, and plumbing systems to allow efficient use into the future.

• Increase building performance and energy efficiency of electrical and mechanical systems.

• Upgrade the existing stormwater drainage system and provide stormwater quality measures. Update parking, roadways, and pathways to meet parking needs and facilitate access and circulation flow between buildings and to public transit.

• Replace site lighting and provide vehicle charging stations.

• Update landscaping to replace aging plants and reduce water consumption while maintaining historical landscape elements and meeting safety and aesthetic needs.

• Maintain connectivity between the Headquarters Building, the Customer Service Center, and the Field Reporting Facility.

• Improve site and building security.

• Meet SMUD’s strategic directive for environmental leadership. (See Policy Number SD-7 on SMUD’s Web site, https://www.smud.org/en/Corporate/About-us/Company-Information/Strategic-Direction.)
2.5 Proposed Project

2.5.1 Headquarters Building Rehabilitation

Because the building and site are listed in the National Register of Historic Places, “rehabilitation,” as defined by the Secretary of the Interior’s Standards for Rehabilitation and Guidelines for Rehabilitating Historic Buildings (Secretary of the Interior’s Rehabilitation Standards), was chosen as the process for upgrades. The proposed building rehabilitation includes the elements described below.

Exterior Rehabilitation

The objective of the exterior rehabilitation is to clean, repair, and preserve the historically significant features of the Headquarters Building. Specific activities would include:

- assessment of the existing exterior wall and exterior glazing system to determine whether repair or reglazing is necessary;
- replacement of existing glazing that is broken or otherwise damaged;
- cleaning and repair as necessary of the existing exterior wall;
- cleaning and repair of the existing window louver system;
- cleaning and repair of the existing metal spandrel panels;
- cleaning of precast exposed-aggregate concrete panels;
- cleaning, restoration, and replacement (where missing) of the glazed mosaic tiles on exterior columns;
- cleaning and restoration, based on the Secretary of the Interior’s Rehabilitation Standards, of the tiled Wayne Thiebaud mural on the exterior of the first floor of the Headquarters Building;
- repair of the exterior wall and glass entry doors and upgrade of these elements to comply with ADA and safety and security requirements;
- replacement of existing roof materials to meet drainage, remediation, mechanical, and environmental sustainability objectives while maintaining the historic flat roof design, including replacement of the existing built-up roof with cap sheet with insulation board and sheet membrane roofing (no tar);
- compliance with ADA accessibility standards for features such as travel paths and handrails; and
• restoration, repair, or replacement of window glazing to meet safety glazing requirements while restoring the natural lighting intended by the original design.

Interior Rehabilitation: General

Interior rehabilitation includes remediation of hazardous materials (e.g., asbestos, lead paint, PCBs) and renewal of interior space configurations and finishes incorporating historically significant features consistent with the Secretary of the Interior's Rehabilitation Standards. Altering the central core would also allow more light into the building and create more, and more flexible, meeting spaces with the addition of conference rooms/meeting space. Following selective interior deconstruction/salvage and demolition, the building shell would remain with exposed structural columns, beams, decking, exterior wall systems, and those select building elements identified to be protected in place and free of hazardous materials. Items determined to be historically significant as described in the HSR (Appendix B) would be cataloged, deconstructed, and stored for reinstallation or repurposing as required to meet the Secretary of the Interior’s Rehabilitation Standards.

Structural Improvements: South-Wing First-Floor Alterations

An evaluation, completed in 1999 by Buehler & Buehler Structural Engineers in conjunction with Vitello & Associates, found two areas of significant hazard for the SMUD Headquarters Building. The most significant hazard was in the north wing, with a potential for shear failure in the existing concrete columns at the lower floors of the garage areas; this hazard was addressed in the early 2000s with the addition of concrete shear walls. The second area of significant hazard is in the south wing, where existing steel moment frames in both the north-south and east-west directions have deficient connections that require seismic retrofitting. In addition, the frames in the north-south direction have the potential to exhibit excessive seismic drift, which could jeopardize the stability of the structure. The Headquarters Building rehabilitation would address the stability of the south wing by retrofitting the building to meet the substantial life-safety performance objectives proposed by the American Society of Civil Engineers.

The proposed strengthening scheme for stabilization of the south wing would involve adding four viscous damping devices in the north-south direction connected to chevron braces between the first and second floors. These structures would all be concealed within existing walls. In some cases, walls would be relocated to better serve structural upgrades. New steel columns at the basement and new grouted pin pile foundations would be provided to support the damper braces. Also, steel drag ties at the second floor would be added just below the floor level to attach the dampers to the structure. For the east-west direction, existing moment frames would require localized retrofitting at all beam/column connections. All new structural elements would be concealed within the walls to maintain the clear span open feel of the existing lobby.

Mechanical System

The existing mechanical system consists of a dual duct (hot and cold) forced-air system with built-up air-handling units located on each floor and a fan system located in the mechanical penthouse. The air-handling units are supplied with chilled and heated water via a distribution system originating from SMUD’s central plant, which is located north of the light rail tracks that
run along the north side of the Headquarters Building. The mechanical system within the building would be demolished. A new mechanical system would be installed and would continue to utilize the central plant to heat and cool the building. The new mechanical system would incorporate a combination of forced-air, radiant, and induction systems (ceiling-mounted chilled beams). New controls and a new chilled and hot water distribution piping system would be installed within the building.

Plumbing System

Plumbing fixtures and supporting water, waste, and vent piping would be demolished for central core-section restrooms, single-occupancy restrooms, break rooms, and drinking fountains. Upgrades would include new piping and new low-flow fixtures.

Fire Suppression

The existing fire sprinkler system and chemical fire suppression system would be replaced by a new wet sprinkler system throughout the building.

Electrical System

The existing electrical system would be demolished. The project would include replacement of the two main transformers fed from overhead power lines running parallel to the light rail tracks on the north side of the building. New electrical distribution and low-voltage systems would be installed and would incorporate energy-efficient technologies for lighting and controls.

Natural Gas

The Headquarters Building has no existing natural gas service and no gas facilities are proposed for the project.

Building Additions and Alterations

The rehabilitation would include the additions and alterations described below.

South-Wing First-Floor Alterations

Access Compliance

The floor of the existing auditorium is sloped with fixed theater-style seating. The aisles along the outside walls, used to enter and exit the space, are sloped at approximately 11.2% and the slope at the center of the seating area is approximately 13.2%. There is currently no accessible route, as defined by the California Building Code or ADA, to the seating area or from the auditorium seating to the dais or stage. The slope of the floor in the auditorium would be leveled to bring it into compliance with current accessibility standards, and utilizing the CHBC.
Auditorium Reconfiguration

A new entrance to the auditorium would be created through the north wall near the existing stairway. The northeast walkway entrance to the lobby would be enclosed with glass and connected to the parking garage through the central core addition to create secure nonpublic access to the auditorium for members of the Board and staff members. The framing/facades of the glass enclosure would be compatible with the historic appearance of the existing building.

The area behind the dais would be reconfigured to provide conference space, ADA-compliant toilets, and small private one- to two-person office spaces for use by Board members. The location of the existing projector booth would be reconfigured to create a new conference space that can easily open to the auditorium when needed for larger audiences. The new walls behind the dais and between the new conference space and the lobby would conceal the new structural brace frame dampers for the east end of the south wing.

Public Restrooms

No restrooms are currently available to the public in the main lobby, the auditorium, or the Headquarters Building’s conference center. Members of the public must be allowed past the security desk and turnstiles to use the existing restrooms in the core. To correct this condition, new public restrooms would be created to serve the auditorium and the Headquarters Building’s conference center without requiring members of the public to cross into the secured space intended only for SMUD staff members. The walls of the new restrooms and the new western wall of the Headquarters Building’s conference center would contain the new structural brace frame dampers for the west end of the south wing. The northwest walkway entrance to the lobby would be enclosed with glass in the same manner as the northeast walkway, thus forming an indoor passageway from the offices at the west end to the lobby without affecting the Headquarters Building’s conference center.

Central Core Alteration

To enhance the connection between the north and south wings, a proposed open core alteration would remove partition walls between the core stairwell and the elevators. Adjacent mechanical spaces would be converted to open space, and a new open stairway would open the core from floor to floor as an atrium. The stairway would be open from the first floor to the fourth floor. The existing elevator, mechanical shafts, and restrooms would remain in their current locations.

The existing air handling systems would be removed from the core and penthouse mechanical rooms. A new built-up air handling system would be constructed in the existing penthouse structure, utilizing the existing air intake and exhaust openings to the greatest extent possible. The existing return and exhaust shafts through the core would be reused as pathways for ducted return and exhaust air back to the roof. New supply air shaft(s) would be provided along the interior west side of the central core to supply primary cooled and dehumidified air out to the individual floor distribution systems, feeding a combination of forced air and induction systems (chilled beams).
Central Core Addition

Two additions in the form of conference rooms would be constructed on the east and west facades of the central core, respectively, to address programmatic needs for more office space within the footprint of the north and south wings, and to keep disruptive conference functions separate from the open offices. The additions on the east and west sides of the central core would extend 20 feet and connect to both the north and south wings. The height of the central core additions would match the overall height of the existing central core. The transparent and solar shaded facades of the additions would be compatible with the historic appearance of the existing building, yet they would be differentiated through the types of materials used.

Figure 2-4 provides a visual simulation of the proposed core additions.

North Wing Exit Stairway

A new exit stairway would be created from the third floor of the north wing down to the upper level of the parking garage to comply with code requirements for exiting. People would be able to exit from the upper level of the parking garage via a new site stairway down to grade level between the upper and mid-level parking ramps.

Figure 2-5 provides a plan depicting the proposed new exit stairway.

2.5.2 Headquarters Site Rehabilitation

Rehabilitation activities would upgrade the site for continued use by SMUD. Site features to be rehabilitated include paths of travel, utilities, landscaping and irrigation, site lighting, security, and parking areas. Parking would be reconfigured to make use of the space more efficiently and include site circulation and access. Parking spaces would also be provided with electric conduit to enable future charging of electric vehicles. In addition, the underground storm drain pipes underneath affected pavement areas would be replaced and upsized per current City of Sacramento (City) standards. Because of existing pipe capacity issues along S Street, on-site detention may be required by the City. Aging landscape elements would be replaced, and the irrigation system would be upgraded to improve efficiency and decrease water use. All paths would be brought up to ADA code. Rehabilitation of some of the non-accessible pedestrian walks that cross existing berms could include small retaining walls or curbs, which could bring those walks into compliance.

Paths of Travel

The project would include replacement of existing noncompliant sidewalks and introduction of new sidewalks with ADA-compliant pathways and ramps (as required) between buildings, parking, and access points, utilizing the CHBC. New sidewalks and bicycle and pedestrian pathways would be designed to promote exercise and interconnectivity of buildings and spaces and to facilitate improved access to nearby transit facilities, including the University/65th Street light rail station adjacent to the project site. New pathways in the historic portion of the site would be designed and constructed to be compatible with the historic design and system of paths. Figure 2-6 shows existing paths on the site at the west side of the Headquarters Building.
Figure 2-4. Proposed Plan Depicting Proposed Central Core Additions
New Floor Opening with Stair Connects Levels 2 & 3 to Top Level of Garage

New Exterior Open Stair from Upper Parking Garage to Grade to Continue Exit

Landscape forms simplified for purposes of illustration

Source: Diagram provided by Dreyfuss & Blackford in 2014

Figure 2-5. Overview Diagram—Proposed New Stairway Plan
Transportation and Circulation

Entrances, gates, and internal roadways would be modified to provide improved traffic circulation within the site and to reduce congestion on public streets caused by queuing at entrances. Specifically, the gates off of S Street would be moved north and the access to the west parking lot would be relocated to the north. Access roads and parking lots would be modified to facilitate improved fire department access to the Headquarters Building. The fire truck access path and turning radii on-site would be improved, balancing the current Sacramento Fire Department code and CHBC and the need to meet the Secretary of the Interior’s Rehabilitation Standards. Figure 2-7 is a conceptual drawing of the site and its relocated entrances; it also shows current and proposed emergency access points.

The parking lot drive aisles west and east of the Headquarters Building and the parking stalls, including new ADA handicap parking stalls, would also be analyzed and brought up to current City standards, utilizing the CHBC or guidance offered in the cultural landscape report (CLR) (Appendix C).
Source: Drawing completed by Callander and Associates in 2014

Figure 2-7. Drawing of Site Concepts and Relocated Entrances

Site Plan, Landscape Plan, and Irrigation Improvements

General

The project would include site and landscape improvements designed to maintain historically significant site/landscape features.

SMUD commissioned a cultural landscape report for use by the SMUD Headquarters Building and Site Rehabilitation Project design teams. The CLR is included in Appendix C. A detailed landscape inventory report (LIR) was also prepared in support of the project. See the CLR for a description of the historical landscape architecture. The goal of the project is to provide for SMUD’s needs and bring the site up to current code, utilizing the CHBC and protecting and enhancing the historically significant landscape features and characteristics. Heritage Trees and other significant plant material as indicated in the LIR would be evaluated and responded to in the site design. Improvements include the removal of elements that are noncontributing or incompatible, and replacement of missing items as described in the CLR (Appendix C) where appropriate and feasible. The site has been broken down into different zones to describe the various landscape area treatments (Figure 2-7). Proposed general landscape improvements are as follows:

- Protect the trees and planting areas that are to remain. Establish a tree preservation plan to protect trees during project implementation.

- Remove trees, shrubs, and ground cover determined to be of poor health or structure or in conflict with new site improvements. The improvements are intended to restore the appearance and health of the trees, shrubs, and ground cover remaining with completion of the project. Some improvements may trigger the need to remove Heritage Trees and significant landscape elements. The impact of potential Heritage Tree removal and mitigation is addressed in Section 3.4, “Biological Resources.”

- To open historic sight lines to the building, remove more recently planted trees that are not historically significant.

- Install new trees and other plantings where appropriate for rehabilitation of the historic site/landscape plan.

- Restore the landscape to its historic design; remove plantings that are past their useful life or in irreparable poor health or have been damaged by invasive species, and replace them with plants that meet Sacramento City Code recommendations and are compatible with the original landscape design.

- Promote the use of native and acclimated low-water-use plant species, where appropriate.

- Reduce water consumption by limiting turf areas and strategically integrating low-water-use plantings that maintain the site’s character using low, tight ground cover that emulates grass, in compliance with historic Rehabilitation Standards.
• Complete irrigation improvements that include rehabilitating existing water wells and replacing the existing irrigation system to improve water efficiency. Install a weather-based irrigation controller and weather station. Also remove the asbestos cement transite pipe to make sure that hazardous materials are removed from the site.

Small-Scale Features

The historic boulders, perimeter fencing, site furnishings, freestanding wall, memorial monuments, and lights would be retained and rehabilitated where appropriate. Noncontributing items like fencing and furnishings would be considered for removal and replacement with historically compatible elements.

Historic Plants

The plants listed in Table 2-1 were identified on the as-built drawings (circa 1961), and then compared to the plant list in the University of California Cooperative Extension’s Water Use Classification of Landscape Species, Fourth Edition, 2014 (i.e., WUCOLS IV) for low-water-use requirements. This list is an example of some of the species that may be incorporated into the project’s potential planting list. Care would be taken to ensure that plants are used in the proper locations to both meet goals for historic landscape appearance and comply with applicable Sacramento City Code requirements, including parking lot tree-shading design and maintenance guidelines.

<table>
<thead>
<tr>
<th>Botanical Name in 1959</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albizia julibrissin</td>
<td>Silk tree</td>
</tr>
<tr>
<td>Arbutus unedo</td>
<td>Strawberry tree</td>
</tr>
<tr>
<td>Eucalyptus polyanthesmos</td>
<td>Silver dollar gum</td>
</tr>
<tr>
<td>Eucalyptus viminalis</td>
<td>Ribbon gum</td>
</tr>
<tr>
<td>Gleditsia triacanthos inermis</td>
<td>Thornless honey locust</td>
</tr>
<tr>
<td>Juniperus horizontalis</td>
<td>Creeping juniper</td>
</tr>
<tr>
<td>Lagerstroemia indica</td>
<td>Crape myrtle</td>
</tr>
<tr>
<td>Lugustrum lucidum</td>
<td>Glossy privet</td>
</tr>
<tr>
<td>Olea europea</td>
<td>Olive tree</td>
</tr>
<tr>
<td>Pinus mugo mughus</td>
<td>Mugo pine</td>
</tr>
<tr>
<td>Pinus pinea</td>
<td>Italian stone pine</td>
</tr>
<tr>
<td>Pistacia chinensis</td>
<td>Chinese pistache</td>
</tr>
<tr>
<td>Quercus suber</td>
<td>Cork oak</td>
</tr>
<tr>
<td>Robinia pseudoacacia</td>
<td>Black locust</td>
</tr>
</tbody>
</table>

Source: Data provided by SMUD in 2014
Historic Site Portion

The historic portion of the site area is broken down into three areas: the South Building Frontage, the West Parking Zone, and the Building Zone. Landscape improvements in each of these areas are described separately below.

South Building Frontage

Site and landscape improvements in this area would maintain the rolling lawn at the front of the Headquarters Building and remove nonhistoric trees and shrubs to open views to the south façade, restoring the designers’ intended effect. This zone is envisioned to retain and enhance historic integrity through rehabilitation. Other proposed site/landscape improvements along the south building frontage are as follows:

- Establish appropriate vegetation on eroded, exposed, and heavily shaded slopes.
- Remove irrigation that sprays onto historic tile on the building frontage.
- Remove inappropriate, nonhistoric shrubs and install low-water-use, compact ground covers.
- Select site and landscape improvements to establish more consistency to the landscape frontage of the SMUD campus along S Street.
- Remove the noncontributing low wall and replace it with a berm or new wall matching the older wall hidden by shrubs farther to the west.

West Parking Zone

Site and landscape improvements in this area (see conceptual treatment shown in Figure 2-8) would include the complete demolition and rehabilitation of the parking area to meet programming needs and maintain the historic character. Trees in this zone that are in poor health, or have poor structure, would be removed and would be replaced with appropriate trees that maintain the historic character and alignment. Other proposed site and landscape improvements in the west parking zone are as follows:

- Create vegetated stormwater treatment swales within appropriate portions of the site.
- Remove portions of turf and replace with appropriate low water-use ground cover.
- Establish appropriate vegetation in areas of exposed soil.
Figure 2-8. Conceptual Treatment of West Parking Zone
Building Zone

Site and landscape improvements in this area would include rehabilitating the plantings around the building, improving accessibility, and opening views. Other proposed site and landscape improvements in the building zone are as follows:

- Maintain the sunken terrace off the existing cafeteria at the northwest side of the south wing.
- Remove noncontributing invasive plant species
- Adjust or replace irrigation such that it does not spray onto the building façade.

East Parking Zone

Site and landscape improvements in this area (see conceptual treatment shown in Figure 2-9) would include the complete demolition and rehabilitation of the parking area to meet the needs of SMUD and to reconstruct a lot with compatible design and character to the historic parking lot removed during construction of the Customer Service Center. The affected topography, hardscape, and plantings near the historic site area would require further modification to reestablish a new parking area that is larger and consistent with the alignment of the historic condition. Proposed site and landscape improvements in the east parking zone are as follows:

- Establish historically compatible site and landscape treatments.
- Create vegetated stormwater treatment swales within appropriate portions of the site.
- Remove turf and install appropriate low-water-use ground covers that emulate grass.

Northern Perimeter

The northern perimeter road would be modified and rehabilitated and would maintain the historic character. Extra soil generated during construction would be incorporated as fill along this edge, as appropriate. Proposed site and landscape improvements along the northern perimeter are as follows;

- Maintain plantings and topography that visually buffer the site from the adjacent light rail line.
- Strengthen the functional connection to the northern parking lot.
- Remove noncontributing shrubs and large shrubs that require heavy maintenance and replace them with appropriate low-water-use shrubs and, where appropriate, ground covers.
Figure 2-9. Conceptual Treatment of East Parking Zone
Topography

The character-defining sculpted landforms would be protected and enhanced throughout the site. Some of the paths have slopes exceeding 5%, are not accessible, and require regrading and reconstruction to bring them into compliance. Grading would be accomplished utilizing the CHBC to retain the significant character of the site.

Security Improvements

Security improvements would include replacement of existing noncontributing security gates at main entry points to the headquarters site and installation of new security cameras throughout the site. Sight lines would be opened up and trees trimmed up, where appropriate, to increase visibility across the site. Barriers such as bollards and boulders would be maintained along the building frontage.

To address the need for increased on-site security and SMUD employee safety, fencing would be added between the Customer Service Center and the Headquarters Building and between the Headquarters Building and the western site boundary (Figure 2-10). Fencing would be sited behind existing landscape berms where possible, or would be screened with compatible landscaping, to minimize visibility from the S Street frontage. Sections of existing chain-link fencing along the western and northern site boundaries would also be replaced and amended to better serve site safety and security needs. Fencing design (type, aesthetics, and materials) would be compatible with the historic character of the SMUD Headquarters Building and site.

Lighting and Signage

Existing parking lot lighting and path-of-travel lighting would be replaced with new light-emitting diode (LED) light sources. Lighting fixtures would complement the existing historic appearance of the landscape in accordance with other site improvements, where appropriate. The project would include replacement of existing signage for traffic control, way finding, and safety.

Parking

Existing parking for the entire SMUD campus, excluding the Corporate Yard at 59th Street, consists of approximately 1,515 spaces (Table 2-2). Parking areas include the Headquarters Building parking structure and surface parking lots (Figure 2-11 and Figure 2-12). Additional parking is available at the Corporate Yard at 59th Street (approximately 675 spaces total), and along S Street. Site rehabilitation would add up to 250 employee spaces on the 13.66-acre headquarters site by enlarging and/or reconfiguring the west and east parking lots. The parking layouts, if reconfigured, would retain or restore the historical appearance. Additional parking at the headquarters site is needed to provide more flexibility in parking scenarios, enable better circulation throughout the site, and enable employees and customers to park within reasonable distances of their destinations on the SMUD campus. Landscape berm areas that would be affected by the parking expansion and are part of the character-defining features of the site as described in the CLR (Appendix C) would be rehabilitated to preserve the historic appearance of the site. During construction, sufficient parking for employees and visitors would be available on the SMUD campus (especially the 59th Street Corporation Yard for employees temporarily...
relocating there) and adjacent streets and would be accessed from Folsom Boulevard, 59th Street or S Street, as under existing conditions.

Table 2-2. Existing Parking Space Count at the SMUD Campus, Excluding the Corporate Yard at 59th Street

<table>
<thead>
<tr>
<th>Facility</th>
<th>Employee</th>
<th>Customers/Visitors</th>
<th>District Vehicle</th>
<th>Carpool</th>
<th>Vanpool</th>
<th>ADA</th>
<th>Limited Term</th>
<th>Electric Vehicle</th>
<th>Employee/Visitors</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headquarters</td>
<td>267</td>
<td>25</td>
<td>86</td>
<td>41</td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>15 along fence</td>
</tr>
<tr>
<td>Customer Service Center</td>
<td>179</td>
<td>69</td>
<td>27</td>
<td>22</td>
<td>7</td>
<td>16</td>
<td>4</td>
<td>15</td>
<td></td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>19 along fence/4 motorcycle</td>
</tr>
<tr>
<td>Energy Management Center</td>
<td>230</td>
<td>8</td>
<td>11</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td>19</td>
<td></td>
<td></td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>3 motorcycle</td>
</tr>
<tr>
<td>Field Reporting Facility</td>
<td>229</td>
<td>218</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>3 motorcycle</td>
</tr>
<tr>
<td>Total All Parking</td>
<td>905</td>
<td>102</td>
<td>342</td>
<td>79</td>
<td>11</td>
<td>29</td>
<td>7</td>
<td>40</td>
<td>0</td>
<td>1,515</td>
</tr>
</tbody>
</table>

Source: Data provided by SMUD in 2014

Headquarters Building Parking Structure Entry/Exit Ramp (Basement Level)

The project would include improvements to the existing parking structure’s basement-level entry/exit ramp, which in its current configuration is a safety concern because of its steep slope.

Design considerations include reducing the slope of the entry/exit ramp by providing a more gradual transition to the basement-level parking area. This ramp is intended for use primarily by industrial trucks (i.e., forklifts) and other vehicles, but pedestrian access to the basement-level parking area also would be analyzed to see how overall safety and circulation by pedestrians may also be improved.

Because the elevation of the existing entry/exit ramp is already fixed at the parking basement level, the project would involve analyzing several ramp-pavement configurations to ensure that the final geometric alignment would meet requirements for both vehicular traffic and sight distance.

Reconfiguring the entry/exit ramp has the potential to affect adjacent trees and planting areas. If the ramp is lowered to reduce the pavement’s slope, low retaining walls may be needed on both sides of the ramp to conform to existing adjacent grades. Any reconfiguration needed would be implemented consistent with the Secretary of the Interior’s Rehabilitation Standards.
Figure 2-10. Site Fencing Concept
Figure 2-11. Existing Headquarters Building Parking Structure

Figure 2-12. Existing Parking on the West Side of the Headquarters Building
Utilities Improvements

Water

Domestic water supply service to the headquarters site is provided via a direct tap to the existing 12-inch water main in S Street. The existing water service line size would need to be field verified. Note that there is also a water line that enters the east side of the building and that is fed from two on-site water wells. This also must be field verified. The existing domestic water service line would be replaced in kind if it is determined during rehabilitation activities to be incapable of supporting reliable service for the next 50 years.

An existing 4-inch fire suppression line feeds the Headquarters Building from a separate connection to the same 12-inch water line along S Street. This line would likely be abandoned because it would be of insufficient size to provide the necessary full-building fire service. Fire suppression water would be provided by fire sprinkler line and connection to the City water main on S Street or a connection to a 12-inch fire suppression water loop that was installed around the Headquarters Building in the 2008–2009 timeframe, where both ends of the loop connect to the 12-inch main along S Street. SMUD would work closely with the City of Sacramento to coordinate on these upgrades and obtain the necessary permits. The existing fire suppression water system that serves fire hydrants on the headquarters site is anticipated to remain largely unchanged. The system would be evaluated for continued reliable service and replaced in kind if necessary. Slight modifications would occur to accommodate configuration changes in parking lots and paths.

Stormwater

Stormwater for the project site is collected via an existing on-site underground storm drain system with three separate connections to the existing 15-inch storm drain main line along S Street. Unless otherwise instructed by the City Department of Utilities, the project does not intend to modify its already existing storm drain connection points to the City drainage system. Stormwater is then conveyed in the 15-inch pipe easterly to 65th Street where it connects to a 60-inch pipe and flows northerly to Sump Pump Station #31. Stormwater is then pumped across the California State University, Sacramento campus and into the American River.

The on-site pipe network has relatively flat slopes, which limits pipe capacity. Under existing conditions and using City standards, the site has a 10-year peak discharge of 12 cubic feet per second (cfs). The capacity of the 15-inch pipe in S Street with a slope of 0.2% is 2.9 cfs under full-flow conditions. Given the relatively flat slopes (close to 0.30%), on-site pipes also have very little capacity when compared to the peak discharge on even a portion of the site. Localized flooding is an issue after large storm events.

As a result, the City may require implementation of on-site detention so that stormwater flows entering the City system would not exceed its existing capacity. The proposed project could include surface and subsurface detention basin options to help mitigate existing deficiencies in the storm drain pipe system by increasing the storage volume of the basin and metering the outflow to the capacity of the downstream system. This could include underground pipe storage within the rehabilitated parking areas. This concept can also be used in combination with
improving the 15-inch pipe in S Street that is owned by the City. In areas where the site and landscape design has been deemed historical and designated to be retained, other treatment methods could be incorporated including infiltration trenches, sand filters, stormwater planters, and/or vegetative swales. In addition, reconstruction of the 15-inch pipe in S Street could be considered as part of the downstream design solution, as acceptable to the City.

Because of the reconfiguration of access roads and the anticipated increase in surface parking areas, some existing landscaped areas would be converted to impervious pavement areas. Any increases in stormwater runoff that would result from project site improvements would need to be managed on-site via on-site detention or flood control, vegetative swales, and/or other water quality treatment measures to ensure that no net increase in storm flows would result.

Sewer

Wastewater service for the headquarters site is provided by the City via an existing 8-inch sewer service line at the southwest corner of the existing Headquarters Building. The 8-inch line currently runs west underneath the landscape berm and eventually ties into the City’s existing 12-inch sewer main on S Street at the southwest corner of the site. Existing on-site site sewer infrastructure would be evaluated for capacity and replaced in kind if found to be damaged or incapable of supporting projected sewer demands.

Heating and Cooling Piping

Heating and cooling for the Headquarters Building (and other facilities on-site) are provided from a central utility plant located north of the light rail tracks. The utility plant is outside of the project scope, but it provides chilled and heated water to the campus via underground piping. New branch heating and chilled water lines would be extended to the west border of the project boundary and capped for possible future expansions of the campus westward. Sizing of these lines would be based on anticipated future load values yet to be determined.

Electrical

Power for the Headquarters Building and site is provided by SMUD from 21-kilovolt (kV) overhead lines running parallel to the light rail tracks to the north side of the Headquarters Building with a riser and continued underground feed to the Headquarters Building utility vault. The entire headquarters electrical system would be replaced. New transformers, switchgear, and distribution would be designed and installed incorporating energy-efficient technologies, including LED lighting, which would reduce the current overall building load. New transformers would be located in an underground vault or located at grade and screened from existing views.

Electrical improvements would include a new feed from the existing 21 kV overhead power lines to a dedicated transformer serving vehicle charging stations in the parking lots. The transformer and distribution would be sized to support electric vehicle charging stations at each parking stall within the project boundary. The project would outfit 50 parking spaces with active electric vehicle charging, with all remaining parking spaces containing the infrastructure necessary to establish electric vehicle charging in the future without damaging existing improvements.
Telecommunications

Voice and data services are provided throughout the SMUD campus via copper and fiber cables within underground conduit originating from SMUD’s Energy Management Center located at 6001 S Street. Copper, cable, and other telecommunications equipment within the project site would be replaced as necessary.

2.5.3 Removal and Remediation of Hazardous Materials

The project includes removal and remediation of hazardous materials within the Headquarters Building and on the site. Existing hazardous materials include but are not limited to sprayed fireproofing, cement plaster finishes, floor tiles and adhesives, pipe insulation, and roofing materials, all of which contain asbestos; lead-based paints; PCBs in window case sealants, oil-type transformers; an underground hydraulic oil tank from an abandoned vehicle lift; and asbestos concrete transite pipe used for the existing irrigation system.

Demolition and abatement of hazardous materials would leave the building shell (e.g., structural columns, beams, decking, exterior wall systems) and selected building elements identified for deconstruction and storage for reuse in the building, or for protection in place, and free of hazardous materials. Lead-based paints and asbestos in some nonoccupied areas may be left in place, if determined to not pose a threat to employees and customers. All existing hazardous materials (with the exception of the aforementioned lead-based paint, and asbestos and PCBs) that are detected would be removed and disposed of in accordance with applicable federal, state, and local laws and regulations.

2.5.4 Historic Preservation

Because the Headquarters Building and site are listed in the National Register of Historic Places, the rehabilitation would be performed in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties. Performing the work in accordance with these standards would ensure that the proposed project would not compromise the listing status of the building and site, and ensure that the project would not involve significant impacts on the historic resource. Historically significant architectural elements, features, and characteristics involving the exterior of the building would be retained and repaired, or replaced in-kind in accordance with the Secretary of the Interior’s Rehabilitation Standards as recommended in the project’s HSR (Appendix B). Interior architectural elements, features, and characteristics determined to be contributing elements to the historic significance of the property that cannot be preserved in place would be cataloged, salvaged, and preserved for possible reinstallation or repurposing in the rehabilitated building in accordance with the Secretary of the Interior’s Rehabilitation Standards. Similarly, character-defining features of the historic landscape would be treated in accordance with the Secretary of the Interior’s Rehabilitation Standards as recommended in the project’s CLR (Appendix C). The historic preservation program is described in more detail in Section 3.5, “Cultural Resources,” of this IS/MND.
2.5.5 Relocation of SMUD Employees

The Headquarters Building would be completely vacated before rehabilitation activities. Employees currently located in the Headquarters Building would be relocated on a temporary or permanent basis. Relocation sites include the following SMUD facilities:

- Field Reporting Facility
- Customer Service Center
- Corporate Yard at 59th Street
- Field Reporting Facility temporary trailer location
- 59th Street temporary trailer location
- East Campus-Operations Center (EC-OC)

With the exception of the EC-OC, the above relocation sites are shown in Figure 2-2. The EC-OC is located at 4401 Bradshaw Road, Sacramento, approximately 11 miles east of the project site and has ample capacity to house additional employees.

Temporary water, power, and sewer utilities would be installed to support the temporary trailers from existing on-site services. Domestic water, fire water, and sanitary sewer would be provided via provision of underground laterals from trailer connection points to existing underground services. The trailer locations would include separate restroom trailers. The FRF temporary trailer location will be serviced by two restroom trailers while the 59th Street temporary trailer will be serviced by one restroom trailer. Temporary power and telecom would likewise be provided from existing services to trailer connection points via underground conduit. The parking area to the north of the FRF trailer location adjacent to Folsom Boulevard will serve as a temporary staging area and access path for the trailers during the trailer construction process. Once construction of the trailers has been completed the staging area will be returned to its previous use as parking and the area adjacent to Folsom Boulevard as an equipment laydown area.

A breakdown of anticipated employee relocations is provided below.

Relocations:

There are currently 498 employees in the Headquarter Building. To allow SMUD staff to work efficiently during project construction, temporary relocations also involved some staff from the Customer Service Center. The exact numbers at each location are still to be determined, but are expected to be approximately as follows:

- 93 approximately 90 employees from the Headquarters Building to the Customer Service Center
Sacramento Municipal Utility District Headquarters Building and Site Rehabilitation Project

March, 2015

- **approximately 75** employees from the Headquarters Building to the Field Reporting Facility
- **approximately 130** employees from the Headquarters Building to Field Reporting Facility temporary trailers
- **approximately 25** employees from the Field Reporting Facility to the Field Reporting Facility Temporary Trailers
- **91-approximately 100** employees from the Headquarters Building to the existing 59th Street Corporate Yard buildings
- **approximately 35** employees from the Headquarters Building to 59th Street temporary trailers
- **approximately 95-100** employees from the Customer Service Center to the existing 59th Street Corporate Yard buildings
- **65-approximately 20** employees from the Headquarters Building to the EC-OC

While the employees relocated to the EC-OC are expected to stay there permanently, ultimate long-term building occupancy at the Headquarters Building is expected to be similar to current numbers (approximately 498 employees) as staff grows over time. The 59th Street Corporate Yard has approximately 675 parking spaces, and therefore has ample capacity to accommodate existing employees reporting there and temporarily relocated employees.

2.5.6 Project Schedule and Construction

The project is anticipated to take approximately 27 months to complete and would be phased generally as illustrated in Table 2-3.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Activity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Employee relocations</td>
<td>March 2015 through August 2015</td>
</tr>
<tr>
<td>2</td>
<td>Headquarters Building demolition component</td>
<td>December 2015 through April 2016</td>
</tr>
<tr>
<td>3</td>
<td>Headquarters Building and site rehabilitation</td>
<td>January 2016 through May 2017</td>
</tr>
<tr>
<td>4</td>
<td>Employees’ move-in to the Headquarters Building</td>
<td>May 2017 through September 2017</td>
</tr>
</tbody>
</table>

Source: Data compiled by AECOM in 2014

Headquarters Building demolition work and hazardous-material abatement (Phase 2) would proceed following completion of Phase 1. SMUD would provide containers for hazardous materials generated during demolition and abatement activities and would be responsible for transporting and properly disposing hazardous materials at a SMUD-approved facility that is legally permitted to receive such waste. The construction contractor’s waste management plan would be required to address hazardous materials packaging and labeling, contractor and
subcontractor training, spill notification, containment, and cleanup. For nonhazardous construction waste, the waste management plan would address the City’s 50% recycling criterion. The waste management plan would specify how construction waste would be segregated, stored, and containerized; list the names of recyclers and landfills where the waste would be disposed; include a program for tracking materials that are recycled and disposed of at landfill for submittal to the City; and provide for construction contractor and subcontractor training.

The Headquarters Building rehabilitation and site rehabilitation would occur concurrently during Phase 3. Portions of the project area within the site boundary may be stripped to grade; exceptions include the existing building and those landscape elements identified for retention in the completed project to comply with The Secretary of the Interior’s Standards for the Treatment of Historic Properties. To identify the elements of the landscape that should be retained to comply with the Secretary of the Interior’s Standards, a cultural landscape report was prepared for the SMUD Headquarters site (AECOM 2014a). Site rehabilitation design is being developed consistent with the CLR (Appendix C).

Up to 50,000 cubic yards of earthen material could be moved as part of the project and a number of mature trees and other landscape elements such as lawns and shrubs may also be affected. Attempts would be made to reuse earthen material on-site to minimize off-haul. Soil requiring off-haul from the site would be limited to a destination radius of 25 miles.

During rehabilitation activities, the project site would be regraded and new utilities and site improvements would be introduced. All equipment and construction vehicles would be staged within the rehabilitation project footprint. Anticipated construction equipment includes front loaders, backhoes, graders, scrapers, dump trucks, water trucks, asphalt pavers, aerial lifts, scissor lifts, truck-mounted cranes, welders, and cutting torches.

It is anticipated that an average of 150 construction workers would be on-site each day during project construction.

Construction intensity and hours would be in accordance with the City’s Noise Ordinance contained in Title 8, Chapter 8.68 of the Sacramento City Code. Construction would be limited to the hours of 7 a.m. and 6 p.m. Monday through Saturday, and between the hours of 9 a.m. and 6 p.m. on Sunday.

2.5.7 Project Operation

Operation of the rehabilitated Headquarters Building and site would be largely the same as existing operation. The completed project would result in more efficient use of energy and resources, enhanced safety, and vehicular and pedestrian access to the site and circulation within the site would be improved. Using a 2017 opening date, SMUD anticipates that approximately 375 employees would be located at the Headquarters Building at the time of reoccupation. With a slight increases in headquarters employees anticipated over the ensuing 10-year period, the ultimate number of employees at the building over a 10-year period following move-in would be expected to be about the same number currently housed there (approximately 498).
2.6 Permits and Approvals

2.6.1 Federal

No federal permits or approvals are required for the project.

2.6.2 State

The State Water Resources Control Board/Central Valley Regional Water Quality Control Board issues Construction Storm Water Discharge Permits.

This permit would be obtained before project initiation, and the project would be executed in compliance with all permit conditions.

The California Department of Transportation issues permits for movement of oversized or excessive loads on State Highways.

If this permit would be required, the construction contractor would obtain it prior to project implementation.

2.6.3 Local

SMUD is the lead agency for the proposed project and its Board would adopt an MND and the mitigation monitoring and reporting program before making a project approval.

The Sacramento Metropolitan Air Quality Management District (SMAQMD) issues the Authority to Construct/Permit to Operate pursuant to SMAQMD Regulation 2 (Rule 201 et seq.).

City of Sacramento approvals and entitlements needed to implement the project would include the following:

Temporary Site Improvements (trailers):

- Planning entitlements: site plan and design review
- Building permits for temporary trailers

Headquarters Building and Site Renovation:

- Planning entitlements: site plan and design review—to comply with various City codes and ordinances including the Planning and Development Code, Title 17 of the Sacramento City Code
- Tree removal permit—to comply with the City Tree Ordinance
- Building permits—to comply with Sacramento City Code requirements
• Encroachment permit (potentially S Street pipe improvement)

• Off-site improvement plans (potentially S Street pipe improvement, curb cuts, and entrances)

• Potential need for variances

The exact actions triggering the need for all permits are discussed in the various technical resources sections of the environmental analysis in Chapter 3 of this IS/MND.
3.0 ENVIRONMENTAL CHECKLIST

Pursuant to State CEQA Guidelines Section 15063, an initial study (IS) should provide the lead agency with sufficient information to determine whether to prepare an environmental impact report (EIR), a mitigated negative declaration (MND), or negative declaration (ND) for a proposed project. The State CEQA Guidelines state that an IS may identify environmental impacts by use of a checklist, matrix, or other method, provided that conclusions are briefly explained and supported by relevant evidence. If it is determined that a particular physical impact on the environment could occur, then the checklist must indicate whether the impact is Potentially Significant, Less than Significant with Mitigation, or Less than Significant. Findings of No Impact for issues that can be demonstrated not to apply to a proposed project do not require further discussion.
3.1 AESTHETICS

Would the project:

- a) Have a substantial adverse effect on a scenic vista? □ □ □ □ □
- b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway? □ □ □ □ □
- c) Substantially degrade the existing visual character or quality of the site and its surroundings? □ □ □ □ □
- d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area? □ □ □ □ □

Environmental Setting

The project site and vicinity are generally flat. Elevations on the project site range from approximately 30 to 44 feet above mean sea level. The project site includes the SMUD Headquarters Building (Figure 3.1-1) and a 13.66-acre portion of the headquarters site. The project site is bordered by 61st Street to the west, light rail tracks to the north, SMUD’s Customer Service Center to the east, and S Street to the south. The project site also includes two temporary trailer location sites where SMUD employees would be temporarily relocated during project construction. Primary views of the building and site to passers-by are from the south, from either S Street or U.S. Highway 50 (U.S. 50). The building and site are not visible to passers-by from the north and west.

The visual character of the project site and the surrounding area is typical of the Sacramento metropolitan area, which includes commercial and industrial buildings, residences, roads, utility lines, trees, and landscaping. Distant views consist of the Sierra Nevada foothills, but buildings, trees, and other city infrastructure obstruct these views in many locations.

The Headquarters Building dominates the center of the property and faces due south onto S Street. However, views are obscured from raised and undulating berms of lawn, trees, boulders, and other landscaping elements. A substantial portion of the building façade is obscured by mature trees and shrubs, or by sheltered parking areas. The dense and mature vegetation surrounding the SMUD property creates an insular landscape, limiting views from the ground level into the surrounding area. The upper stories of the building are visible above the dense canopy of trees.
U.S. 50 separates the SMUD Headquarters Building from the other low-lying buildings to the south; therefore, its main exposure of the building is to high-speed traffic passing by on U.S. 50. U.S. 50 is not classified as a scenic highway by the California Department of Transportation (Caltrans).

Regulatory Setting

Federal

No federal regulations related to aesthetics are applicable to the proposed project.

State

No state regulations related to aesthetics are applicable to the proposed project.

Local

The following goal and policies from the Environmental Resources Element of the *Sacramento 2030 General Plan* (City of Sacramento 2009) are applicable to the proposed project.

- **Policy ER 7.1.5 Lighting.** The City shall minimize obtrusive light by limiting outdoor lighting that is misdirected, excessive, or unnecessary.
- **Policy ER 7.1.6 Glare.** The City shall require that new development avoid the creation of incompatible glare through development design features.

Impacts and Mitigation Measures

a) **Have a substantial adverse effect on a scenic vista?**

No Impact. A scenic vista is generally defined as a distant public view along or through an opening or corridor that is recognized and valued for its scenic quality, or a natural or cultural resource that is indigenous to the area. The Sacramento 2030 General Plan designates the Sacramento and American Rivers and adjacent greenways, downtown skyline, and the State Capitol along Capitol Mall as scenic resources (City of Sacramento 2009). Views of and from the project area include commercial, industrial, and residential development many miles from the State Capitol building or waterways, and thus, these views are not considered scenic vistas. Therefore, the proposed project would have **no impact** related to a substantial adverse effect on a scenic vista.

b) **Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?**

No Impact. The project site is not located on or near a state scenic highway; therefore, the proposed project would have **no impact** on resources within a state scenic highway (Caltrans 2010).

c) **Substantially degrade the existing visual character or quality of the site and its surroundings?**

Less-than-Significant Impact. The presence of temporary trailers and heavy equipment during construction activities and the reconstruction activities for the Headquarters Building would temporarily change the visual character of the site. However, these activities would be temporary, and the site’s mature vegetation would partially shield visibility of the activities from neighbors and passers-by. The proposed project could change the long-term visual character of the project site through removal of a limited number of trees and other mature vegetation, and through the addition of a security fence.

Slight alteration to the outside appearance of the Headquarters Building may also occur with the core expansion and installation of the security fence. As discussed in Chapter 2, “Project Description,” because the Headquarters Building and site are listed in the National Register of Historic Places (NRHP), the proposed project would be designed and implemented to comply with The Secretary of the Interior's Standards for the Treatment of Historic Properties. These standards would ensure that historically significant architectural and site elements, features, and
characteristics are not significantly affected by the project. See Section 3.5, “Cultural Resources,” for the list of standards with which the proposed project would comply. With adherence to these standards, the Headquarters Building and site would be rehabilitated to avoid significant impacts on their historical features and characteristics. These standards also apply to the design and installation of the security fence. Although the fence would slightly change the site’s existing visual character by its presence, it is not expected to substantially degrade the visual character of the site. Thus, the proposed project would not substantially degrade the existing visual character of the site or its surroundings. This impact would be less than significant.

d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

Less-than-Significant Impact. Construction activities would occur during daylight hours and would not require lighting. The indoor-lighting plan for the proposed project would comply with the Sacramento 2030 General Plan policy for lighting. The exterior outdoor-lighting plan would be similar to existing conditions, while using modern energy-efficient light fixtures and shield coverings. All proposed street, security, and landscape lighting would also be installed according to City of Sacramento standards. No new elevated lighted signage would be a part of the proposed project.

The Headquarters Building in its current state does not feature reflective glass windows that cause substantial glare. Because the proposed project would comply with the Secretary of the Interior’s Rehabilitation Standards, new windows that are proposed to be installed (if replacement is deemed necessary) would be visually similar to the existing ones. In addition, where new glazing is proposed, the proposed project would incorporate low-emission glass to reduce glare and reflection impacts. The proposed project would also comply with the Sacramento 2030 General Plan policy for glare.

Because the project would comply with Sacramento 2030 General Plan policies regarding light and glare and with The Secretary of the Interior’s Standards for the Treatment of Historic Properties, the proposed project would not create temporary or permanent sources of substantial light or glare that would adversely affect day or nighttime views in the area. This impact would be less than significant.
3.2 AGRICULTURE AND FORESTRY RESOURCES

Would the project:

a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural uses?

b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?

c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?

d) Result in the loss of forest land or conversion of forest land to non-forest use?

e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland to non-agricultural use or conversion of forest land to non-forest use?

Environmental Setting

The project site consists of the SMUD Headquarters Building, a 13.66-acre portion of the headquarters site, and two temporary trailer locations that would house employees during construction. The project site is developed with SMUD infrastructure that includes the Headquarters Building, various roads and parking lots, pedestrian paths, and extensive landscaped areas. The landscape includes many mature trees and a variety of other medium and large trees, shrubs, and lawn areas. It is located in an urban area of Sacramento. Additional information about land uses within and adjacent to the project site is provided in Section 3.10, “Land Use and Planning,” and additional information about the vegetation can be found in Section 3.4, “Biological Resources.”

The California Department of Conservation’s (DOC’s) Important Farmland classifications (see below) recognize the land’s suitability for agricultural production by considering physical and chemical characteristics of the soil, such as soil temperature range, depth of the groundwater table, flooding potential, rock fragment content, and rooting depth. The classifications also consider location, growing season, and moisture available to sustain high-yield crops. Together,
Importantly Farmland and Grazing Land are defined by DOC as “Agricultural Land” (California Public Resources Code [PRC] Sections 21060.1 and 21095).

According to the Sacramento County Important Farmland map, published by DOC’s Division of Land Resource Protection, the project site is designated as Urban Built-Up Land, which is defined as land that generally includes residential, industrial, commercial, institutional facilities, cemeteries, airports, golf courses, sanitary landfills, sewage treatments, and water control structures (DOC 2012).

Under the California Land Conservation Act of 1965, also known as the Williamson Act, local governments can enter into contracts with private property owners to protect land (within agricultural preserves) for agricultural and open space purposes. No portions of the project site or adjacent parcels are held under Williamson Act contracts (DOC 2013). The nearest property currently under an active Williamson Act contract is located east of the intersection of Power Line Road and Garden Highway, approximately 10 miles northwest of the project site (DOC 2013).

Regulatory Setting

Federal

No federal regulations related to agriculture and forestry resources are applicable to the proposed project.

State Regulations

Farmland Mapping and Monitoring Program

The Farmland Mapping and Monitoring Program was established by the State of California in 1982 to continue the Important Farmland mapping efforts begun in 1975 by the U.S. Soil Conservation Service (now called the U.S. Natural Resources Conservation Service, under the U.S. Department of Agriculture). The intent of the U.S. Soil Conservation Service was to produce agricultural resource maps based on soil quality and land use across the nation. DOC sponsors the Farmland Mapping and Monitoring Program and also is responsible for establishing agricultural easements in accordance with PRC Sections 10250–10255.

Important Farmland is classified by DOC as Prime Farmland, Farmland of Statewide Importance, Unique Farmland, and Farmland of Local Importance. As stated previously, Important Farmland and Grazing Land are defined by DOC as “Agricultural Land.” The following list provides a comprehensive description of these categories mapped by DOC.

- **Prime Farmland**—Land that has the best combination of physical and chemical features able to sustain long-term agricultural production. This land has the soil quality, growing season, and moisture supply needed to produce sustained high yields. This land must have been used for irrigated agricultural production at some time during the 4 years before the mapping date.
• **Farmland of Statewide Importance**—Land that is similar to Prime Farmland but with minor shortcomings, such as greater slopes or less ability to store soil moisture. This land must have been used for irrigated agricultural production at some time during the 4 years before the mapping date.

• **Unique Farmland**—Land of lesser quality soils used for the production of the state’s leading agricultural cash crops. This land is usually irrigated, but may include nonirrigated orchards or vineyards, such as those found in some climatic zones in California. This land must have been used for the production of specific high-value crops at some time during the 4 years before the mapping date.

• **Farmland of Local Importance**—Land that is of importance to the local agricultural economy, as defined by each county’s local advisory committee and adopted by its Board of Supervisors. Farmland of Local Importance either currently is producing or has the capability to produce, but does not meet the definition of Prime Farmland, Farmland of Statewide Importance, or Unique Farmland.

• **Grazing Land**—Land with existing vegetation that is suitable for grazing.

CEQA defines Prime Farmland, Farmland of Statewide Importance, and Unique Farmland together under the term "Agricultural Land" (PRC Sections 21060.1 and 21095; State CEQA Guidelines, Appendix G). The conversion of these types of farmland can be considered an environmental impact.

Local

No local regulations related to agriculture and forestry resources are applicable to the proposed project.

Impacts and Mitigation Measures

a, b, c, Would the project convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural uses; conflict with existing zoning for agricultural use, or a Williamson Act contract; conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g)); result in the loss of forest land or conversion of forest land to non-forest use; or involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland to non-agricultural use or conversion of forest land to non-forest use?

No Impact. The project site does not contain any lands designated as Important Farmland (i.e., Prime Farmland, Unique Farmland, or Farmland of Statewide Importance). The project site is not zoned for agricultural uses, and there are no Williamson Act contracts associated with the
project site. No existing agricultural or timber-harvest uses are located on or near the project site. Therefore, the proposed project would have *no impact* on agriculture or forest land.
3.3 AIR QUALITY

Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:

- a) Conflict with or obstruct implementation of the applicable air quality plan?
 - Potentially Significant Impact
 - Less-Than-Significant Impact with Mitigation Incorporation
 - Less-Than-Significant Impact
 - No Impact

- b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?
 - Potentially Significant Impact
 - Less-Than-Significant Impact with Mitigation Incorporation
 - Less-Than-Significant Impact
 - No Impact

- c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable Federal or State ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors)?
 - Potentially Significant Impact
 - Less-Than-Significant Impact with Mitigation Incorporation
 - Less-Than-Significant Impact
 - No Impact

- d) Expose sensitive receptors to substantial pollutant concentrations?
 - Potentially Significant Impact
 - Less-Than-Significant Impact with Mitigation Incorporation
 - Less-Than-Significant Impact
 - No Impact

- e) Create objectionable odors affecting a substantial number of people?
 - Potentially Significant Impact
 - Less-Than-Significant Impact with Mitigation Incorporation
 - Less-Than-Significant Impact
 - No Impact

Environmental Setting

Air quality is defined by the concentration of pollutants related to human health. Concentrations of air pollutants are determined by the rate and location of pollutant emissions released by pollution sources, and by the atmosphere’s ability to transport and dilute such emissions. Natural factors that affect transport and dilution include terrain, wind, and sunlight. Therefore, ambient air quality conditions in the local air basin are influenced by such natural factors as topography, meteorology, and climate, in addition to the amount of air pollutant emissions released by existing air pollutant sources.

The project site is located in the city of Sacramento, which is in the Sacramento Valley Air Basin. The Sacramento Valley Air Basin encompasses Butte, Colusa, Glenn, Tehama, Shasta, Yolo, Sacramento, Yuba, and Sutter Counties and parts of Placer, El Dorado, and Solano Counties. The Sacramento Valley Air Basin is bounded on the north and west by the Coast Ranges, on the east by the southern portion of the Cascade Range and the northern portion of the Sierra Nevada, and on the south by the San Joaquin Valley Air Basin. Summer conditions are typically characterized by high temperatures and low humidity. Rainstorms occur occasionally during winter, and are interspersed by stagnant and sometimes foggy weather. Rain falls mainly from late October to early May, in amounts that vary substantially each year.
Regulatory Setting

Federal

The Clean Air Act (CAA) requires the adoption of the National Ambient Air Quality Standards (NAAQS) to protect the public health and welfare from the effects of air pollution. The U.S. Environmental Protection Agency (EPA) has identified six air pollutants as being of nationwide concern: ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, lead, and particulate matter (PM). PM is subdivided into two classes based on particle size: PM equal to or less than 10 micrometers in aerodynamic diameter (PM$_{10}$) and PM equal to or less than 2.5 micrometers in aerodynamic diameter (PM$_{2.5}$). EPA established primary and secondary NAAQS that specify allowable ambient concentrations for criteria pollutants. Primary NAAQS are established at levels necessary, with an adequate margin of safety, to protect the public health, including the health of sensitive populations such as asthmatics, children, and the elderly. Similarly, secondary NAAQS specify the levels of air quality determined appropriate to protect the public welfare from any known or anticipated adverse effects associated with air contaminants.

EPA, under the provisions of the CAA, requires each state with regions that have not attained the NAAQS to prepare a state implementation plan (SIP), detailing how these standards are to be met in each local area. The SIP is a legal agreement between each state and the federal government to commit resources to improving air quality. It serves as the template for conducting regional and project-level air quality analyses. The SIP is not a single document, but a compilation of new and previously submitted attainment plans, emissions reduction programs, district rules, state regulations, and federal controls. The California Air Resources Board (ARB) is the lead agency for developing the SIP in California. Local air districts and other agencies prepare air quality attainment plans or air quality management plans and submit them to ARB for review, approval, and incorporation into the applicable SIP.

State

ARB is the agency responsible for coordination and oversight of state and local air pollution control programs in California and for implementing the California Clean Air Act. The California Clean Air Act was adopted in 1988 and required ARB to establish the California Ambient Air Quality Standards (CAAQS). The CAAQS are, in general, more restrictive than the NAAQS. California has also established standards for sulfates, visibility-reducing particles, hydrogen sulfide, and vinyl chloride. The California Clean Air Act requires that all local air districts in the state endeavor to achieve and maintain the CAAQS by the earliest practical date. California’s adopted 2007 State Strategy was submitted to EPA as a revision to the SIP in November 2007. The 2007 State Strategy was designed to attain federal ozone and PM$_{2.5}$ air quality standards through a combination of technically feasible, cost-effective measures, and new technologies. ARB adopted revisions to the 2007 State Strategy in 2012.

Local

The Sacramento Metropolitan Air Quality Management District (SMAQMD) is the local agency responsible for air quality planning and development of the air quality plan in the project area. The air quality plan establishes the strategies used to achieve compliance with the NAAQS and
CAAQS in all areas within SMAQMD’s jurisdiction. SMAQMD develops rules and regulations and emission reduction programs to control emissions of criteria air pollutants, ozone precursors, toxic air contaminants (TACs), and odors within its jurisdiction.

SMAQMD regulates air quality through its planning and review activities. All projects within SMAQMD’s jurisdictional area are also subject to adopted rules and regulations in effect at the time of construction and operation. The analysis of the proposed project’s air quality impacts is consistent with SMAQMD’s CEQA Guide to Air Quality Assessment in Sacramento County (SMAQMD 2014a).

Impacts and Mitigation Measures

a) Conflict with or obstruct implementation of the applicable air quality plan?

Less-than-Significant Impact. Air quality plans describe air pollution control strategies to be implemented by an air district, city, county, or region. The primary purpose of an air quality plan is to maintain and/or achieve attainment of a NAAQS or CAAQS. The Sacramento Regional 8-Hour Ozone Attainment and Reasonable Further Progress Plan (known as the 2013 SIP Revisions) and the 2009 Triennial Report and Plan Revision are the latest plans issued by SMAQMD. These plans address attainment of the federal 8-hour ozone standard and the state ozone standard, respectively.

Two criteria are applicable to determine whether the proposed project would conflict with or obstruct implementation of the air quality plan. The first criterion is whether the project would exceed the estimated air basin emissions used as the basis of the air quality plans, which are based in part on projections of population and vehicle miles traveled. The second criterion is whether the project would increase the frequency or severity of existing air quality violations, contribute to new violations, or delay the timely attainment of air quality standards.

Construction of the proposed project would involve the use of off-road equipment, haul trucks, and worker commute trips. The use of construction equipment in the air quality plan is estimated for the region on an annual basis, and the proposed project would not increase the assumptions for off-road equipment use.

Because the proposed project is consistent with the zoning designation and no increase in employees is anticipated beyond what would have occurred with SMUD’s existing facilities, the intensity of operational emissions would have been accounted for in the air quality plan. In addition, the rehabilitated building would be more energy efficient than the existing building on the project site than under current conditions. Therefore, long-term operational emissions associated with the proposed project are not anticipated to exceed the emissions budgeted for the project site in the air quality plan. Some of the reallocated employees would commute to the East Campus-Operations Center (EC-OC). The EC-OC has capacity to house these additional employees. The EIR prepared for the EC-OC (SMUD 2010a) analyzed impacts on air quality at full occupancy of the building. Therefore, the additional trips to the EC-OC by the relocated employees would not result in new impacts on air quality and are not analyzed further.
SMAQMD has established thresholds of significance that are designed to identify significant levels of air pollution. As shown in Table 3.3-1 below and discussed in more detail under Question b), construction and operational emissions associated with the proposed project are not anticipated to exceed the emissions budgeted for the project site in the air quality plan. Accordingly, implementation of the proposed project would not exceed the assumptions used to develop the current plan and would not obstruct or conflict with the air quality plan. Therefore, this impact would be less than significant.

b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?

Less-than-Significant Impact with Mitigation Incorporated. Construction emissions are described as “short-term” or temporary in duration, but have the potential to represent a significant impact with respect to air quality. Construction of the proposed project would result in the temporary generation of reactive organic gases (ROG), oxides of nitrogen (NOX), PM10, and PM2.5 emissions from construction work associated with the building and site rehabilitation. Construction-related emissions of ozone precursors, ROG and NOX, are associated primarily with exhaust from heavy-duty construction equipment, material delivery/haul trucks, and construction worker vehicles. Fugitive dust emissions (PM10 and PM2.5) are associated primarily with site preparation and vary as a function of such parameters as soil silt content, soil moisture, wind speed, acreage of disturbance area, and vehicle miles traveled by construction vehicles on- and off-site.

Project construction would begin in 2015 and continue through 2017. The estimated construction workforce would be a maximum of approximately 150 workers per day during building construction, resulting in a total of 300 one-way commute trips per day. The proposed project’s construction emissions were modeled based on a worst-case scenario representing an intensive day of construction to conservatively estimate the maximum daily emissions.

Emissions generated by typical construction activities were modeled using the California Emissions Estimator Model (CalEEMod), Version 2013.2.2. CalEEMod allows the user to enter project-specific construction information, such as the types, number, and horsepower of construction equipment, and the number and length of off-site motor vehicle trips. Project construction emissions were estimated for construction worker commutes, haul trucks, and the use of off-road equipment.

As shown in Table 3.3-1, construction emissions for the proposed project would result in maximum daily emissions of approximately 68 pounds of ROG, 72 pounds of NOX, 7 pounds of PM10 (combined exhaust and fugitive dust), and 4 pounds of PM2.5. Additional modeling assumptions and details are provided in Appendix D.

As shown in Table 3.3-1, although SMAQMD has not established a construction-related threshold of significance for ROG emissions, the table includes the estimated ROG emissions for the proposed project. The listed ROG emissions are in line with and based on the emissions of approved projects with a similar scope and size (see Appendix D). Moreover, NOX and ROG interact with each other to produce regional ozone, and because the Sacramento Valley Air Basin is a NOX limited area, minimizing emissions of NOX is the most critical step to reducing ozone generation in the region. Therefore, given the fact that estimated NOX emissions are
below the SMAQMD-established threshold of significance, the proposed project would not generate a significant amount of ozone precursors that would substantially contribute to the region’s ozone nonattainment status.

As shown in Table 3.3-1, the estimate of maximum daily construction-related NO\textsubscript{X} emissions for the proposed project would not exceed any of SMAQMD’s construction thresholds of significance. However, all projects that would involve construction activities, regardless of the significance determination, are required to implement SMAQMD’s Basic Construction Emission Control Practices. Lead agencies may add these emission control practices as a condition of approval for the proposed project or include the practices as a mitigation measure (SMAQMD 2013). Without implementation of SMAQMD’s Basic Construction Emission Control Practices, the construction-related impact of the proposed project would be potentially significant.

Table 3.3-1. Daily Construction Emissions

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>ROG</th>
<th>NO\textsubscript{X}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>31.54</td>
<td>55.31</td>
<td>6.18</td>
<td>3.72</td>
</tr>
<tr>
<td>2016</td>
<td>30.74</td>
<td>51.62</td>
<td>5.80</td>
<td>3.51</td>
</tr>
<tr>
<td>2017</td>
<td>67.76</td>
<td>71.77</td>
<td>6.78</td>
<td>4.33</td>
</tr>
<tr>
<td>Maximum Daily Emissions</td>
<td>67.76</td>
<td>71.77</td>
<td>6.78</td>
<td>4.33</td>
</tr>
</tbody>
</table>

SMAQMD Significance Threshold\(^1\)

- 85

Notes: lb/day = pounds per day; NO\textsubscript{X} = oxides of nitrogen; PM\textsubscript{10} = particulate matter with aerodynamic diameter less than 10 microns; PM\textsubscript{2.5} = particulate matter with aerodynamic diameter less than 2.5 microns; ROG = reactive organic gases; SMAQMD = Sacramento Metropolitan Air Quality Management District.

\(^1\) SMAQMD has developed a significance threshold only for NO\textsubscript{X}. Other ozone precursors (i.e., ROG), PM\textsubscript{2.5}, and PM\textsubscript{10} are shown for informational purposes and because the region is currently designated as nonattainment for the pollutants. Source: Data compiled by AECOM in 2014

As discussed in Chapter 2, “Project Description,” operation of the rehabilitated Headquarters Building and site would be very similar to existing operations. The completed project would result in more efficient use of energy and resources, and vehicular and pedestrian access to the site and circulation within the site would be improved. The number of employees at the building over a 10-year period following move-in would be 3/16 similar to the number of employees currently housed at the headquarters site. As a result, the air quality analysis assumed the same level of on-road vehicle activity for existing conditions and the proposed project. In addition, criteria pollutant emissions would decrease in future years based on improvements to vehicle emission standards resulting from the phase-out of older, higher emitting vehicles and the penetration of electric vehicles into the marketplace. Therefore, operation of the proposed project would not violate an air quality standard or contribute substantially to an existing or projected air quality violation, and the operational impact of the proposed project would be less than significant.

SMAQMD recommends that lead agencies model the PM\textsubscript{10} emission concentrations generated by construction activity for all projects except those that meet the following conditions: (1) the project will implement all Basic Construction Emission Control Practices, and (2) the maximum daily disturbed area (i.e., grading, excavation, cut and fill) will not exceed 15 acres. Projects that meet the above two conditions are considered by SMAQMD to not have the potential to exceed...
or contribute to SMAQMD’s concentration-based threshold of significance for PM\textsubscript{10} at an off-site location. The total disturbed acreage for all phases and project components would be approximately 13 acres. It is anticipated that the proposed project, even assuming overlapping construction within each phase, would disturb less than 3 acres per day. SMUD would implement the following mitigation measure to address the potential for construction-related emissions of PM\textsubscript{10} and PM\textsubscript{2.5} to exceed or contribute to SMAQMD’s concentration-based thresholds of significance.

Mitigation Measure AQ-1. Implement Applicable SMAQMD Basic Construction Emission Control Practices.

SMUD or its designated construction contractors shall comply with the following measures to reduce fugitive dust and construction equipment exhaust emissions:

- **Water all exposed surfaces two times daily.** Exposed surfaces include but are not limited to soil piles, graded areas, unpaved parking areas, staging areas, and access roads.

- **Cover or maintain at least 2 feet of free board space on haul trucks transporting soil, sand, or other loose material on the site.** Cover any haul trucks that will be traveling along freeways or major roadways.

- **Use wet power vacuum street sweepers to remove any visible trackout mud or dirt onto adjacent public roads at least once a day. Use of dry power sweeping is prohibited.**

- **Limit vehicle speed on unpaved roads to 15 miles per hour.**

- **Minimize idling time either by shutting equipment off when not in use or reducing the time of idling to 5 minutes** (required by California Code of Regulations [CCR] Title 13, Sections 2449[d][3] and 2485). Provide clear signage that posts this requirement for workers at the entrances to the site.

- **Maintain all construction equipment in proper working condition according to manufacturer’s specifications.** Equipment shall be checked by a certified mechanic and determined to be running in proper condition before it is operated.

Implementation of this mitigation measure would ensure that construction activities would not exceed or contribute to SMAQMD’s concentration-based thresholds of significance for PM\textsubscript{10} and PM\textsubscript{2.5}, and thus would not violate air quality standards or contribute substantially to an existing or projected air quality violation. Therefore, implementation of Mitigation Measure AQ-1 would reduce this construction-related impact to a **less-than-significant** level.

c) **Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?**
Less-than-Significant Impact with Mitigation Incorporated. The cumulative analysis focuses on whether a specific project would result in a cumulatively considerable incremental contribution in pollutant emissions to an existing significant cumulative impact. By its very nature, air pollution is largely a cumulative impact. The nonattainment status of regional pollutants is a result of past and present development within the air basin, and this regional impact is cumulative rather than being attributable to any one source. A project’s emissions may be individually limited but cumulatively considerable when taken in combination with past, present, and future development projects.

SMAQMD’s thresholds of significance are relevant to whether a project’s individual emissions would result in a cumulatively considerable incremental contribution to existing cumulatively significant air quality conditions. As discussed earlier, the proposed project would result in the generation of criteria air pollutant emissions, but at levels that do not exceed any of the SMAQMD thresholds for construction activities. These thresholds are designed to identify those projects that would result in significant levels of air pollution on a project level, and to assist the region in attaining the applicable CAAQS and NAAQS. Projects that would exceed these thresholds would be considered significant on a project level and would also be considered to contribute a cumulatively considerable amount of pollutants to regional emissions.

Because the proposed project would not exceed the SMAQMD significance thresholds, the proposed project’s emissions would also not have a cumulatively considerable contribution to the region’s air quality. Implementation of Mitigation Measure AQ-1 would ensure that the construction activities do not exceed or contribute to SMAQMD’s concentration-based thresholds of significance for PM$_{10}$ and PM$_{2.5}$. Therefore, the impact of the proposed project associated with a cumulatively considerable net increase of criteria pollutants would be less than significant with mitigation incorporated.

d) Expose sensitive receptors to substantial pollutant concentrations?

Less-than-Significant Impact. Some members of the population are especially sensitive to emissions of air pollutants and should be given special consideration during the evaluation of a project’s air quality impacts. These people include children, older adults, persons with preexisting respiratory or cardiovascular illness, and athletes and others who engage in frequent exercise. Sensitive receptors include residences, schools, playgrounds, childcare centers, athletic facilities, long-term health care facilities, rehabilitation centers, convalescent centers, and retirement homes.

The nearest sensitive receptors to the project site are the California State University, Sacramento (CSUS) Upper Eastside Lofts located approximately 100 feet to the north of the proposed construction site. The Lighthouse Childhood Development Center is also located 500 feet west of the project site. The residential units and childcare center represent the nearest off-site land uses with the potential to be affected by the proposed project.

The greatest potential for TAC emissions would be related to diesel PM emissions associated with activity by heavy-duty construction equipment. Construction of the proposed project would generate diesel exhaust PM emissions from the use of off-road diesel construction equipment. Most diesel exhaust PM emissions associated with material delivery trucks would occur off-site.
ARB has developed the *Air Quality and Land Use Handbook: A Community Health Perspective* to provide guidance on land use compatibility with sources of TACs (ARB 2005). The handbook is not a law or adopted policy, but offers advisory recommendations for the siting of sensitive receptors near uses associated with TACs. ARB states that PM levels drop by 70% at a distance of 500 feet from a roadway (ARB 2005). Because construction activity would occur at various locations around the project site, TAC emissions from project construction would be less concentrated than those from a typical roadway. Construction emissions would also occur intermittently throughout the day and would not occur as a constant plume of emissions from the project site. Although construction activities could include generator sets that could operate throughout the day, these types of sources generate relatively low TAC emissions compared with heavy-duty construction equipment. In addition, the majority of construction activity would occur at the SMUD Headquarters Building, which is located approximately 400 feet from the lofts and 1,000 feet from the childcare center. Therefore, it is anticipated that diesel PM concentrations would decrease substantially before reaching, and therefore affecting, the nearest sensitive receptor.

The dose to which receptors are exposed is the primary factor used to determine health risk. Dose is a function of the concentration of a substance or substances in the environment and the extent to which a person is exposed to the substance. Dose is positively correlated with time, meaning that a longer exposure period would result in a higher exposure level for the maximally exposed individual. Thus, the risks estimated for such an individual are higher if a fixed exposure occurs over a longer period of time. Health effects from carcinogenic TACs are usually described in terms of individual cancer risk, which is based on a 70-year lifetime exposure to TACs.

The most intense levels of construction activities for the proposed project are anticipated to last approximately 19 months and would cease following completion of the proposed project. It is not anticipated that individual receptors would be exposed to substantial TAC emissions from the proposed project for longer than 19 months. If the duration of potentially harmful construction activities near a sensitive receptor was 19 months, then the exposure would be approximately 2% of the total exposure period used for typical health risk calculations (i.e., 70 years). Thus, it is not anticipated that short-term construction activities would expose sensitive receptors to prolonged TAC concentrations.

Operation of the proposed project would involve primarily gasoline-fueled vehicles associated with worker commutes. The project would not substantially affect these commutes; therefore, it is not anticipated that individual receptors would be exposed to TAC emissions as a result of project operation.

Because of the temporary and intermittent use of off-road construction equipment, the distance between construction activities and the nearest sensitive receptor, the dispersive properties of diesel PM, and the relatively low exposure period, the proposed project would not expose sensitive receptors to substantial pollutant concentrations. Therefore, this impact would be *less than significant*.

Page 65 of 207
e) Create objectionable odors affecting a substantial number of people?

Less-than-Significant Impact. The occurrence and severity of odor impacts depend on numerous factors such as the nature, frequency, and intensity of the source; wind speed and direction; and the sensitivity of the receptors. Offensive odors rarely cause any physical harm, but they can be very unpleasant, leading to considerable distress among the public and often generating citizen complaints to local governments and regulatory agencies.

Construction of the proposed project is not anticipated to expose nearby off-site receptors to objectionable odors. Sources that may emit odors during construction activities include exhaust from diesel construction equipment and heavy-duty trucks, which could be considered offensive to some individuals. Odors from these sources would be localized and generally confined to the immediate area surrounding the project site. The proposed project would use typical construction techniques, and the odors would be typical of most construction sites and temporary in nature. After construction of the proposed project, all construction-related odors would cease.

Operation of the proposed project would not add any new odor sources. The land use associated with the proposed project is primarily commercial, and does not include the use of large generators of other odor emissions. As a result, the proposed project would not create objectionable odors affecting a substantial number of people. This impact would be **less than significant**.
3.4 BIOLOGICAL RESOURCES

Would the project:

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the DFG or USFWS?

b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, and regulations or by the DFG or USFWS?

c) Have a substantial adverse effect on federally-protected wetlands as defined by Section 404 of the federal Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption or other means?

d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory corridors, or impede the use of native wildlife nursery sites?

e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

Environmental Setting

The project site includes the existing Headquarters Building and a 13.66-acre portion of the headquarters site. The project site is bordered by 61st Street to the west, light rail tracks to the north, SMUD’s Customer Service Center to the east, and S Street to the south. The project site also includes two temporary trailer location sites where SMUD employees would be temporarily relocated during project construction.

The project site is composed of developed areas including the existing Headquarters Building, the surrounding site, and parking lots. The surrounding site’s plant materials consist of ornamental trees, shrubs, and turf grass areas. A detailed landscape inventory report (LIR) was
prepared in support of the project and all trees inventoried were tagged in the field (SMUD 2014). As documented in the LIR, there are 453 trees and mature shrubs in the project area, including 38 trees that meet the size criteria to be classified as Heritage Trees by the City of Sacramento according to the current Tree Ordinance (City of Sacramento 1999).

To assess the potential of the proposed project to affect special-status plant or wildlife species or sensitive natural communities, the California Department of Fish and Wildlife’s (CDFW’s) California Natural Diversity Database (CNDDB) (2014), the U.S. Fish and Wildlife Service (USFWS) species list for the Sacramento East U.S. Geological Survey quadrangle (USFWS 2014), and the California Native Plant Society’s Inventory of Rare and Endangered Plants of California for the Sacramento East U.S. Geological Survey quadrangle (CNPS 2014) were consulted regarding special-status plant and wildlife species known to occur in the vicinity of the project site. An AECOM biologist also performed a reconnaissance-level survey of the project site and surrounding areas on August 13, 2014, and an AECOM certified arborist prepared a detailed LIR of the project site, as described above.

Figure 3.4-1 shows CNDDB records previously documented within 3 miles of the project site. Table 3.4-1 lists special-status plant and wildlife species known or expected to occur in the vicinity of the project site. No aquatic habitat is present on or adjacent to the project site. Because they lack the potential to occur within the project site, fish species are not included or analyzed in Table 3.4-1. Most of the species listed in Table 3.4-1 are not expected to occur on the project site because of the lack of suitable habitat.

The urban tree landscape within the project site provides potential nesting habitat for a variety of bird species covered by the federal Migratory Bird Treaty Act (MBTA), and the potential exists for raptor species protected by the California Fish and Game Code and other regulations to nest on-site. Special-status species with the potential to occur on the project site include Swainson’s hawk (Buteo swainsonii) and white-tailed kite (Elanus leucurus). These species could be affected during project construction and project operation.

Species observed during the reconnaissance survey included house finch (Carpodacus mexicanus), house sparrow (Passer domesticus), American robin (Turdus migratorius), rock pigeon (Columba livia), northern mockingbird (Mimus polyglottos), American goldfinch (Carduelis tristis), and gray squirrel (Sciurus griseus).
Figure 3.4-1. CNDDDB Records within 3 Miles of the Project Site
<table>
<thead>
<tr>
<th>Species</th>
<th>Federal Status</th>
<th>State Status</th>
<th>Habitat</th>
<th>Potential to Occur On-site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanford’s arrowhead Sagittaria sanfordii</td>
<td>–</td>
<td>CRPR 1B.2</td>
<td>Marshes, canals, and ditches with reliable water sources.</td>
<td>None. No suitable habitat for this species on-site.</td>
</tr>
<tr>
<td>Vernal pool fairy shrimp Branchinecta lynchii</td>
<td>T</td>
<td>–</td>
<td>Inhabits primarily vernal pools, but also occurs in other seasonal wetlands such as alkaline rain pools, ephemeral drainages, rock outcrop pools, ditches, stream oxbows, stock ponds, and vernal swales.</td>
<td>None. No suitable habitat for this species on-site.</td>
</tr>
<tr>
<td>Vernal pool tadpole shrimp Lepidurus packardi</td>
<td>E</td>
<td>–</td>
<td>Occurs in a variety of seasonal habitats: vernal pools, ponded clay flats, alkaline pools, ephemeral stock tanks, and roadside ditches.</td>
<td>None. No suitable habitat for this species on-site.</td>
</tr>
<tr>
<td>Valley elderberry longhorn beetle Desmocerus californicus dimorphus</td>
<td>T</td>
<td>–</td>
<td>Associated with elderberry shrubs for completion of life cycle. Elderberry shrubs often, but not always, associated with riparian habitats.</td>
<td>None. No suitable habitat for this species on-site.</td>
</tr>
<tr>
<td>California tiger salamander Ambystoma californiense</td>
<td>T</td>
<td>T</td>
<td>Breeds within vernal pools and other seasonal wetlands. Spends most of life cycle within burrows in annual grassland and potentially some agricultural habitats.</td>
<td>None. No suitable aquatic habitat on-site. Known populations of this species cannot reach the project site due to existing development and dispersal barriers.</td>
</tr>
<tr>
<td>California red-legged frog Rana draytonii</td>
<td>T</td>
<td>CSC</td>
<td>Breeds in ponds and slow-moving channels with permanent or semipermanent water sources. Can disperse through upland habitats up to 1 mile from aquatic habitats.</td>
<td>None. No suitable aquatic habitat on-site. Known populations of this species cannot reach the project site due to existing development and dispersal barriers.</td>
</tr>
<tr>
<td>Burrowing owl Athene cunicularia</td>
<td>–</td>
<td>CSC</td>
<td>Open dry grasslands and desert habitat; nests and dens in underground burrows, especially those of ground squirrels.</td>
<td>None. No suitable habitat for this species on-site.</td>
</tr>
<tr>
<td>Cooper’s hawk Accipiter cooperii</td>
<td>–</td>
<td>WL</td>
<td>Inhabits oak savanna, woodlands, and open grassland habitats, especially near water.</td>
<td>Possible. Trees on-site provide suitable nesting habitat for this species.</td>
</tr>
<tr>
<td>Swainson’s hawk Buteo swainsoni</td>
<td>–</td>
<td>T</td>
<td>Nests in oak savanna, woodlands, and riparian habitats. Will nest in large trees in urban landscapes. Forages in open grassland and agricultural habitats.</td>
<td>Possible. Trees on-site provide suitable nesting habitat for this species.</td>
</tr>
</tbody>
</table>
Table 3.4-1. Special-Status Plant and Wildlife Species with Potential to Occur in the Vicinity of the Project Site

<table>
<thead>
<tr>
<th>Species</th>
<th>Federal Status</th>
<th>State Status</th>
<th>Habitat</th>
<th>Potential to Occur On-site</th>
</tr>
</thead>
<tbody>
<tr>
<td>White-tailed kite</td>
<td></td>
<td>FP (nesting)</td>
<td>Prefers coastal and lowland valleys; often associated with farmlands,</td>
<td>Possible. Trees on-site provide suitable nesting habitat for this</td>
</tr>
<tr>
<td>Elanus leucurus</td>
<td></td>
<td></td>
<td>meadows with emergent vegetation, grasslands.</td>
<td>species.</td>
</tr>
<tr>
<td>Purple martin</td>
<td></td>
<td>CSC</td>
<td>Nests in caves or other overhanging structures such as freeway overpasses.</td>
<td>None. No suitable habitat for this species on-site.</td>
</tr>
<tr>
<td>Progne subis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American badger</td>
<td>-</td>
<td>CSC</td>
<td></td>
<td>None. No suitable habitat for this species on-site.</td>
</tr>
<tr>
<td>Taxidea taxus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:

Federal Status:
E: Endangered
T: Threatened

State Status:
CSC: California Species of Special Concern
E: Endangered
FP: Fully Protected
T: Threatened
WL: Watch list

California Rare Plant Rank (CRPR):
1B.2 Rare or Endangered in California and elsewhere

Sources: CNDDB 2014; CNPS 2014; USFWS 2014

Regulatory Setting

Federal

The Migratory Bird Treaty Act enacts the provisions of treaties between the United States, Great Britain, Mexico, Japan, and the then–Soviet Union and authorizes the U.S. Secretary of the Interior to protect and regulate the taking of migratory birds. It establishes seasons and bag limits for hunted species and protects migratory birds, their occupied nests, and their eggs. Most actions that result in a taking or in permanent or temporary possession of a protected species constitute violations of the MBTA. Examples of permitted actions that do not violate the MBTA are the possession of a hunting license to pursue specific game birds, legitimate research activities, display in zoological gardens, bird banding, and other similar activities. USFWS is responsible for overseeing compliance with the MBTA.
California Endangered Species Act

Under the California Endangered Species Act (CESA), CDFW is responsible for maintaining a list of endangered and threatened species (California Fish and Game Code Section 2070). Sections 2050–2098 of the California Fish and Game Code outline the protection provided to California’s rare, endangered, and threatened species. Section 2080 prohibits the taking of plants and animals listed under the CESA. Section 2081 establishes an incidental take permit program for state-listed species. CDFW maintains a list of “candidate species,” which are species that CDFW formally notices as being under review for addition to the list of endangered or threatened species.

Pursuant to CESA requirements, an agency reviewing a proposed project within its jurisdiction must determine whether any state-listed endangered or threatened species may be present in the project study area and whether the proposed project would have a potentially significant impact on such species. In addition, CDFW encourages informal consultation on any proposed project that may affect a candidate species.

Project-related impacts on species on the CESA endangered or threatened list would be considered significant. State-listed species are fully protected under the mandates of the CESA. “Take” of protected species incidental to otherwise lawful management activities may be authorized under California Fish and Game Code Section 206.591. Authorization from CDFW would be in the form of an incidental take permit.

California Fish and Game Code

Fully Protected Species

Certain species are considered fully protected, meaning that the California Fish and Game Code explicitly prohibits all take of individuals of these species except take permitted for scientific research. Section 5050 lists fully protected amphibians and reptiles, Section 5515 lists fully protected fish, Section 3511 lists fully protected birds, and Section 4700 lists fully protected mammals.

Protection of Birds and Their Nests

Under Section 3503 of the California Fish and Game Code, it is unlawful to take, possess, or needlessly destroy the nest or eggs of any bird, except as otherwise provided by the California Fish and Game Code or any regulation made pursuant thereto. Section 3503.5 prohibits take, possession, or destruction of any birds in the orders Falconiformes (hawks) or Strigiformes (owls), or of their nests and eggs. Migratory nongame birds are protected under Section 3800, while other specified birds are protected under Section 3505.
Local

The following goal and policy from the Environmental Resources Element of the Sacramento 2030 General Plan (City of Sacramento 2009) are applicable to the proposed project.

Goal ER 3.1. Urban Forest. Manage the city's urban forest as an environmental, economic, and aesthetic resource to improve Sacramento residents’ quality of life.

• Policy ER 3.1.3 Trees of Significance. The City shall require the retention of trees of significance (such as heritage trees) by promoting stewardship of such trees and ensuring that the design of development projects provides for the retention of these trees wherever possible. Where removal cannot be avoided, the City shall require tree replacement or suitable mitigation.

Sacramento City Code

The City of Sacramento requires a permit for the removal of City Street Trees or trees designated as Heritage Trees, based on Chapters 12.56 and 12.64 of the Sacramento City Code (City of Sacramento 1999). (Note: The City is revising the tree ordinance; existing definitions and the jurisdiction the City exercises are subject to change, and new definitions and requirements may be created. At this time the nature and extent of any changes are not available to the public and it is unknown when the new ordinance may be adopted.)

Definitions of these tree types are provided below.

City Street Trees

The City recognizes that the planting and preservation of trees enhances the natural scenic beauty; increases life-giving oxygen; promotes ecological balance; provides natural ventilation, air filtration, and temperature, erosion, and acoustical controls; increases property values; improves the lifestyle of residents; and enhances the identity of the city. Title 12, Chapter 12.56 of the Sacramento City Code includes provisions to protect City Street Trees. All removal, trimming, pruning, cutting, or other maintenance activities on any City Street Tree requires a permit from the director of the Department of Transportation pursuant to Section 12.56.070 of the City Code. A City Street Tree is defined as any tree growing on a public street right-of-way that is maintained by the City. Where appropriate, the director may require the replacement of City Street Trees proposed for removal. The project site does not contain any trees planted in a public street right-of-way.

Heritage Trees

Heritage Trees promote scenic beauty, enhance property values, reduce soil erosion, improve air quality, abate noise, and provide shade to reduce energy consumption. Title 12, Chapter 12.64 of the Sacramento City Code sets forth provisions to protect significant specimen trees existing in the city known as “Heritage Trees.” The City Code defines “Heritage Trees” as follows:
Any tree of any species with a trunk circumference of one hundred (100) inches or more, which is of good quality in terms of health, vigor of growth and conformity to generally accepted horticultural standards of shape and location for its species.

Any native oak, sycamore, or buckeye or riparian tree, having a circumference of thirty-six (36) inches or greater when a single trunk, or a cumulative circumference of thirty-six (36) inches or greater when a multi-trunk, which is of good quality in terms of health, vigor of growth, and conformity to generally accepted horticultural standards of shape and location for its species.

Any tree thirty-six (36) inches in circumference or greater in a riparian zone. The riparian zone is measured from the centerline of the water course to thirty (30) feet beyond the high water line.

Any tree, grove of trees, or woodland trees designated by resolution of the city council to be of special historical or environmental value or of significant community benefit.

The project site contains a total of 38 trees of Heritage Tree size. Notes on the health and structure of each of these trees may be found in the detailed LIR prepared in support of the project (SMUD 2015).

Impacts and Mitigation Measures

a) Would the project have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the DFG or USFWS?

Less-than-Significant Impact with Mitigation Incorporated. The trees within the project area provide potential nesting habitat for a variety of bird species, including some special-status bird species. Most nesting birds are protected by the MBTA and Section 3503 of the California Fish and Game Code. Construction activities could result in removal of trees that contain active bird nests. Construction noise and increased human activity may also result in nest abandonment if such activity occurs near active nests. Because of the potential for loss of or other impacts on active bird nests during construction, this impact would be potentially significant.

Mitigation Measure BIO-1. Avoid and Minimize Impacts on Nesting Birds Protected by the Migratory Bird Treaty Act and California Fish and Game Code.

SMUD shall schedule construction activity including tree removal and tree pruning or trimming required during construction outside of the typical nesting season (February 15–September 15) to the extent feasible. A preconstruction survey for nesting birds shall be conducted no more than 10 days before any tree removal or tree trimming or other construction activity that occurs between February 15 and September 15. The nesting bird survey shall include the designated construction area and a 500-foot buffer. If no active nests are found, no further mitigation is required. If an active nest is found in the construction area or within a tree subject to removal or pruning, a 500-foot nest buffer...
shall be established around the active nest. No construction activity shall occur within the buffer area of a particular nest until the qualified biologist confirms that the chicks have fledged or until it is determined that the nest is no longer active. An alternative nest buffer distance may be authorized in conversations with CDFW if it is determined that the alternative buffer is sufficient to ensure the nest is not adversely affected by construction activity. A qualified biologist shall monitor the status of any active nests within 500 feet of the construction area at least weekly during the nesting season.

Mitigation Measure BIO-1 requires SMUD to remove trees outside of the nesting season to the extent feasible. For tree removals that cannot be performed outside of the nesting season, a nesting bird survey would be required and a nest buffer would be implemented for any active nests found within or directly adjacent to the project area. This measure would avoid impacts on active bird nests. Therefore, implementation of Mitigation Measure BIO-1 would reduce impacts on nesting bird species on the project site to a less-than-significant level.

b) Would the project have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, and regulations or by the DFG or USFWS?

No Impact. The project area does not contain any riparian habitat or other sensitive natural communities because it is located within a developed urban landscape characterized by ornamental plantings. Therefore, the proposed project would have no impact on riparian habitat or other sensitive natural communities.

c) Would the project have a substantial adverse effect on federally-protected wetlands as defined by Section 404 of the federal Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption or other means?

No Impact. The project area does not contain any federally protected wetlands including marsh, vernal pool, or other wetland habitats as defined by Section 404 of the Clean Water Act. Therefore, the proposed project would have no impact on federally protected wetlands.

d) Would the project interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory corridors, or impede the use of native wildlife nursery sites?

No Impact. The project area does not contain any movement corridors or nursery sites for native resident or migratory fish or wildlife species. The project site is located within an urban landscape that provides limited opportunities for local wildlife movement through the landscape and does not provide significant nursery site opportunities. There is no aquatic habitat within the project site that could be utilized by migratory fish species. Some wildlife species adapted to urban environments may occasionally utilize the project site for localized movements. The proposed project would have no impact on the movement of wildlife species, wildlife corridors, or native wildlife nursery sites.
e) Would the project conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

Less-than-Significant Impact with Mitigation Incorporated. The project site contains 453 ornamental trees and shrubs (SMUD 2014). Thirty-eight of these trees meet the size criteria for Heritage Trees. Construction of the project could result in the removal of some of the potential Heritage Trees within the project site. Removal or pruning of these trees requires a permit from the City. Removal or pruning of Heritage Trees regulated by the City of Sacramento would be a potentially significant impact.

Mitigation Measure BIO-2. Avoid and Minimize Impacts on Protected Trees.

SMUD shall submit a tree permit application to the City Department of Transportation (Urban Forestry Services Division). The tree permit application shall identify all tree removals or tree impacts that are expected to occur as a result of project construction. The application shall also identify mitigation to be implemented for these impacts. Mitigation for impacts on or removal of any Heritage Trees shall be consistent with the replacement ratio required by the City of Sacramento Tree Ordinance (City of Sacramento 1999, or subsequent version if adopted prior to project implementation) and Sacramento 2030 General Plan. Replacement trees shall be planted on-site and incorporated into the landscape plan for the project. Tree planting shall comply with the City’s landscaping requirements (Sacramento City Code Sections 17.612.010 and 17.612.040).

Protective fencing with tree protection signs shall be erected around all trees (or tree groups) to be preserved during construction activities. The protective fence should be installed at the limits of the tree protection zone as defined in consultation with the City arborist during the permit application process. This will delineate the tree protection area and prevent unwanted activity in and around the trees and will reduce soil compaction in the root zones of the trees and other damage from heavy equipment. The contractor shall maintain the fence to keep it upright, taut, and aligned at all times. Fencing shall be removed only after all construction activities are complete. Canopy or root pruning of any retained Heritage Trees to accommodate construction and/or fire lane access shall conform to the techniques and standards in the current edition of ANSI A300 (Tree, Shrub and Other Woody Plant Maintenance—Standard Practices) or International Society of Arboriculture Best Management Practices. Heritage Trees to be retained on-site shall be protected from construction-related impacts pursuant to Sacramento City Code Section 12.64.040 (Heritage Trees).

Implementation of this mitigation measure would require SMUD to mitigate all impacts on Heritage Trees according to existing guidelines within the City of Sacramento Tree Ordinance and to protect regulated trees to be retained during construction. Therefore, implementation of Mitigation Measure BIO-2 would reduce project-related impacts on Heritage Trees to a less-than-significant level.
f) **Would the project conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?**

No Impact. The project area is not within an area designated under a habitat conservation plan, natural community conservation plan, or other approved local, regional, or state habitat conservation plan. Therefore, the proposed project would have *no impact* on adopted habitat conservation plans.
3.5 CULTURAL RESOURCES

Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?</td>
<td>❌</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>Cause a substantial adverse change in the significance of an archaeological resource as defined in §15064.5?</td>
<td>❌</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?</td>
<td>❌</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>Disturb any human remains, including those interred outside of formal cemeteries?</td>
<td>❌</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environmental Setting

Prehistoric

The prehistory of the Sacramento region is divided into three periods: the Windmiller Pattern between approximately 5000 and 2500 years Before Present (B.P.), the Berkeley Pattern between approximately 2500 and 1500–1000 B.P., and the Augustine Pattern between 1500–1000 B.P. and the historic period. The Windmiller Pattern (Early Period; circa [ca.] 5000–2500 B.P.) represents the oldest permanent, known occupation in the Sacramento–San Joaquin Delta (Delta) region. Sites were located on knolls near or within riverine floodplains.

The Berkeley Pattern (Middle Period; ca. 2500 to 1500 or 1000 B.P.) varies greatly from the preceding Windmiller Pattern. People supplemented the stone tool kit with a variety of bone tools. Shell beads were commonly imported from the coast and made into a variety of elaborate forms. People lived at one location for a greater amount of time, a practice known as sedentism. The Augustine Pattern (Late Period; ca. 1500 or 1000 B.P. to the historic era) is marked by what archaeologists believe to be an influx of new groups into the Central Valley from the north. Changes occurred in artifact assemblages, trade networks, and ceremonial affiliations. One of the most important changes was a shift in technology from dart and atlatl to the bow and arrow.

The project site is located in the traditional Native American territory of the Nisenan. Nisenan territory once extended from the city of Oroville to south of the American River and from a few miles west of Lake Tahoe to the Sacramento River (Kroeber 1976; Shipley 1978; Wilson and Towne 1978). Most Valley Nisenan lived in villages comprising several hundred individuals along the Sacramento River. The Nisenan were organized into “tribelets,” which were made up of politically independent primary villages with one or more surrounding subordinate, smaller villages (Kroeber 1976; Wilson and Towne 1978). Villages usually contained family dwellings,
Sacramento Municipal Utility District Headquarters Building
and Site Rehabilitation Project
March, 2015

acorn granaries, a sweathouse, and a dance house that was owned by the chief (Wilson and Towne 1978). Subsistence activities focused on gathering acorns, seeds, and other plant resources (Wilson and Towne 1978). Berries and other fruits and nuts were also gathered. Deer, rabbit, and large predators such as mountain lion and wildcat were among the animals that were hunted. The Nisenan also fished for a variety of fish species (Wilson and Towne 1978). Nisenan were involved in a trade network that extended from the coast to the east side of the Sierra Nevada (Wilson and Towne 1978).

By 1808 Gabriel Moraga crossed into Nisenan territory. The Nisenan were greatly affected by introduced diseases. An epidemic, likely malaria, entered the Sacramento Valley in 1833 and killed approximately 75% of the Native American population. The discovery of gold at Sutter’s Mill near the Nisenan village of Colluma, modern-day Coloma, brought thousands of Europeans to the area, which led to widespread killing and massive disruption of traditional Nisenan culture (Wilson and Towne 1978).

Historic

In 1849, Sacramento, named after the river that ran beside it, incorporated and served as an important gateway to California’s gold fields. The Central Pacific Railroad of California was formed in 1861, and groundbreaking commenced in 1863 at Front and K Streets. The railroad had a tremendous impact on Sacramento and enabled easier transport of materials and goods in and out of the growing city (McGowan and Willis 1983:59). Outside the city, agriculture eventually supplanted gold mining as the main industry in the area. Fruit became a major cash crop and a land boom drew immigrants in large numbers in the late 19th century. Large Mexican land grants around the city were eventually sold to the public for county developments and new areas around the city were annexed in the early 1900s (Sandul 2013:166).

Sacramento continued to grow and prosper in the 20th century. Sacramento’s population increased dramatically after World War II. Developers enacted large building programs in the north and east areas outside the city limits and subdivisions, shopping centers, and grocery stores were constructed. By 1963, Sacramento could be approached from every direction by a freeway (McGowan and Willis 1983:88–89).

As the suburban areas of Sacramento expanded, the west end of the city’s downtown was rapidly declining. In 1950, the city established the Sacramento Redevelopment Agency, which started proposing redevelopment plans for the west end of Sacramento’s downtown. By 1961, 15 blocks of buildings were demolished. Government office buildings were constructed on Capitol Mall in downtown in the early 1950s. State government buildings continued to be built in downtown and on Capitol Mall through the late 1970s (McGowan and Willis 1983:94–101).

Sacramento grew again in the 21st century, attracting new residents and businesses. By 2010, Sacramento encompassed more than 92 square miles and had more than 466,000 residents (U.S. Census Bureau 2014).
SMUD Corporate History

SMUD was formed in 1923. At that time its service area encompassed an area of approximately 75 square miles. The cost to build a new distribution system was deemed to be too expensive, so SMUD proceeded with efforts to purchase Pacific Gas and Electric Company’s (PG&E’s) local system through condemnation. This sparked 23 years of lawsuits between SMUD and PG&E (Ward 1973:37). During that period, SMUD was forced to purchase electricity from other companies and agencies because it did not produce any power on its own (SMUD 2012a). Litigation between the two companies ended in 1946 when the courts ruled against PG&E, forcing PG&E to finally sell its distribution system to SMUD (Ward 1973:44–47).

The tremendous population boom in the Sacramento region after World War II strained SMUD’s system and SMUD needed to expand its programs. In 1955, voters approved a revenue bond needed to finance the Upper American River Project. When the Upper American River Project was completed, it generated power for 250,000 customers (Miller 1971:A1).

Also in 1955, SMUD hired the New York consulting firm Ebasco Services, Inc. (Ebasco) to conduct an extensive study of SMUD’s space requirements for its present use and future growth. SMUD had the operations yard at 59th and R Streets and an office at 21st and K Streets, but Ebasco recommended consolidating SMUD’s facilities into one location. Ebasco estimated that 35 acres of land would be needed for both the operations yard and an office building (The Sacramento Bee 1957; Shaad, pers. comm., 1960).

In 1956, SMUD hired the local architectural firm Dreyfuss & Blackford to design its Headquarters Building. SMUD directed the architects to visit new corporate campuses constructed in the Midwest and East Coast, particularly works by Mies Van der Rohe, Victor Gruen, and Skidmore, Owings & Merrill (Dreyfuss, pers. comm., 1956). In December 1956, SMUD purchased the land for the site of the new campus. The first concrete footings were laid on June 5, 1958 (SMUD 1960).

The Headquarters Building was designed in the International/Miesian style of post–World War II Modernism (Roland 2009:8-5). The building is centered on a large, heavily planted site with winding pedestrian paths and heavily landscaped parking. The building is roughly T-shaped in plan, with a long wing facing south and connected to a square-shaped north wing in the back, connected by a central core. It has a clear-span steel frame, a flat roof, and precast concrete and glass exterior walls that extend from the second through fourth floors (Roland 2009:7-1). The entry is centered on a recessed plinth, which is clad in a mosaic tile mural designed by renowned artist Wayne Thiebaud. The mural, entitled Water City, is an abstract mural alluding to Sacramento’s two major rivers. This mural is the only piece of public art and only ceramic work created by Thiebaud and is one of the few surviving examples of his experimentation with Abstract Expressionism (Roland 2009:8-11; McGuigan 2011).

The building is sited on a landscaped campus and set well back from the public street. The building is approached via a curving circular drive. Groupings of trees, shrubs, and rock outcrops are scattered around the rolling lawn, with strolling paths and benches laid out for use by employees or the public. A large sunken patio is located near the central core of the building on its western side. The patio is heavily landscaped and large low wooden slab benches are
scattered around the terrace. The patio extends from the employee cafeteria and provides relatively unobstructed views from the interior and an outdoor space for eating. Large landscaped parking lots are located on either side of the Headquarters Building at the edge of campus. The eastern parking lot was modified in the 1980s to accommodate a new SMUD office building that now sits on the lot next to the 1959 administrative headquarters (Roland 2009:7-4). The site and landscape plan, completed as part of the headquarters project development, was designed by Ralph Jones as the landscape architect working for Dreyfuss & Blackford (Roland 2009:8-13).

The Headquarters Building is an exceptional example of the International/Miesian style of architecture, and with its iconic aluminum louvers, exhibits significant innovations in energy-efficient design. It was listed in the NRHP in 2010 under Criterion C, as an exceptional example of an architectural style. The boundary of the listed property was delineated to include the original plot plan, which included the building, designed landscape, and parking lots as they existed in 1959 (Roland 2009:10-1). Figure 3.5-1 and Figure 3.5-2 show the SMUD Headquarters Building and campus.

By the early 1960s, SMUD was serving 170,000 customers in Sacramento County (SMUD 2012b). In 1969, SMUD started construction of its first nuclear power plant, Rancho Seco, in southeastern Sacramento County (Ward 1973:78–79). The plant became operational in 1974, but it suffered from continual challenges. In 1989, voters voted to close the plant and SMUD formally shut down the facility. SMUD diversified its power sources in the 1990s and was serving more than 500,000 customers by the end of the 20th century (SMUD 2012b). SMUD continues to enhance its services and explores new options for energy sources for the greater Sacramento region.

Paleontological Resources

Geologic Setting

The project site is located within the Riverbank Formation (Helley and Harwood 1985; Wagner et al. 1987). This formation is Pleistocene in age; estimates place the age between 130,000 and 450,000 B.P. (Marchand and Allwardt 1981). In the project vicinity, the Riverbank Formation forms higher alluvial fans and terraces of major rivers and can be divided into upper and lower members. Sediments in the Riverbank Formation consist of weathered reddish gravel, sand, and silt that form alluvial terraces and fans. In the Sacramento Valley, this formation contains more mafic rock fragments than the San Joaquin Valley and thus tends toward stronger soil-profile developments that are more easily distinguishable from the younger Modesto Formation (Helley and Harwood 1985).

Paleontological Resources Inventory

To develop a baseline paleontological resource inventory of the study area and establish the paleontological sensitivity of each geologic unit present in the study area, background research was conducted. Each geologic formation exposed within the study area was assigned a paleontological sensitivity based on the number of previously recorded fossil sites from that unit and the scientific importance of the fossil remains recorded. These methods are consistent with
Figure 3.5-1. Historic Images of the SMUD Headquarters Building and SMUD Campus

Source: Photos provided by SMUD in 2014 (Taken circa 1959)
Society of Vertebrate Paleontology (SVP) 1995 guidelines for assessing the importance of paleontological resources.

Geologic maps and available published and unpublished geological and paleontological literature covering the bedrock and surficial geology of the study area were reviewed to determine the exposed and subsurface rock units, to assess the potential paleontological productivity of each rock unit, and to delineate their respective areal distribution in the study area. The number and location of previously recorded fossil sites from rock units exposed within the study area and the types of fossil remains each rock unit has produced were evaluated based on published and unpublished geological and paleontological literature.

The literature review was supplemented by a records search from the University of California, Berkeley Museum of Paleontology (UCMP) on August 8, 2014.

Because the project site has been developed with commercial uses and associated landscaping since 1960, most of the ground surface is not visible. Therefore, a field survey was not conducted.
Riverbank Formation

Pleistocene-age alluvial deposits are sedimentary in nature; sedimentary alluvial deposits frequently contain fossils. The Pleistocene epoch, known as the “great ice age,” began approximately 1.8 million years ago. Based on his survey of vertebrate fauna from the nonmarine late Cenozoic deposits of the San Francisco Bay region, Savage (1951) concluded that two major divisions of Pleistocene-age fossils could be recognized: the Irvingtonian (older Pleistocene fauna) and the Rancholabrean (younger Pleistocene fauna).

These two divisions of Quaternary Cenozoic vertebrate fossils are widely recognized today in the field of paleontology. The age of the Rancholabrean fauna was based on the presence of bison and of many mammalian species that inhabit the same area today. In addition to bison, larger land mammals identified as part of the Rancholabrean fauna include mammoths, mastodons, camels, horses, and ground sloths. The Irvingtonian fauna is more scarce, and is represented by *Borophagus* (bone-crushing dogs), hyenas, saber-toothed cats, rabbits, giant marmots, horses, mammoths, and mastodons.

Remains of land mammals have been found at several localities in alluvial deposits referable to the Riverbank Formation. Jefferson (1991a, 1991b) compiled a database of California Late Pleistocene vertebrate fossils from published records, technical reports, unpublished manuscripts, information from colleagues, and inspection of paleontological collections at more than 40 public and private museums. Jefferson lists six different localities in Sacramento, all referable to the Riverbank Formation. For example, the Teichert Gravel Pit, approximately 2.5 miles southeast of the project site along State Route 16, yielded specimens of broad-footed mole, Harlan’s ground sloth, rabbit, California ground squirrel, Botta’s pocket gopher, pocket mouse, groove-toothed harvest mouse, woodrat, vole, coyote, dire wolf, mammoth, horse, western camel, deer, antique bison, fish (carps and minnows), frog, snake, Pacific pond turtle, and the family Anatidae (ducks, geese, and swans).

There are at least nine recorded Rancholabrean-age vertebrate fossil sites from the Riverbank Formation in Sacramento County. Most recently, Pleistocene-age mammoth remains were discovered on July 2, 2004, during excavation of a SMUD trench in Elk Grove (Kolber 2004). Mammoth remains recovered from that site consisted of a tusk, ribs, teeth, and portions of a shoulder blade. UCMP locality V-74086, located in south Sacramento at Ehrhardt Avenue, also contained fossilized Rancholabrean-age mammoth remains. The other UCMP sites in Sacramento—localities V-6747, V-6846, V-68141, V-69129, and V-75126—contained remains of Rancholabrean-age bison, camel, coyote, horse, Harlan’s ground sloth, mammoth, woodrat, fish, mole, snake, and gopher. Pleistocene-age fossils were recovered from the Riverbank Formation at the Arco Arena site (Hilton et al. 2000); those fossils included remains of Harlan’s ground sloth, bison, coyote, horse, camel, squirrel, antelope or deer, and mammoth. Finally, San Diego Society of Natural History locality 0663 (Jefferson 1991a, 1991b) included fossil specimens of Rancholabrean-age horse and camel recovered from sediments in Sacramento.

Several localities near the cities of Davis and Woodland have yielded the remains of Rancholabrean-age rodents, snakes, horses, antelope, Harlan’s ground sloth, mammoth, and...
saber-toothed tiger from sediments referable to the Riverbank Formation (Hay 1927; UCMP 2014). Three sites in Sutter County have yielded Rancholabrean vertebrate fossils recovered from Pleistocene-age sediments (UCMP 2014). UCMP locality V-4043 in the Sutter Buttes yielded remains from a Pleistocene-age horse in sediments referable to the Riverbank Formation.

Fossil specimens from the Riverbank Formation have been reported by Marchand and Allwardt (1981) near the type locality in the city of Riverbank. Fossil specimens from sediments referable to the Riverbank Formation have been reported at numerous other locations throughout the Central Valley (UCMP 2014), including Lathrop, Modesto, Stockton, Tracy (along the Delta-Mendota Canal), Manteca, and Merced.

The results of the UCMP paleontological records search (UCMP 2014) indicated that no fossil remains have been recovered from the project site. However, the occurrence of Pleistocene vertebrate fossil remains in sediments referable to the Riverbank Formation in Sacramento and throughout the Central Valley indicates that this rock formation is paleontologically sensitive.

Regulatory Setting

Federal

National Historic Preservation Act

The National Historic Preservation Act of 1966 (as amended) requires federal agencies to take into consideration the potential effects of a project and to allow the Advisory Council on Historic Preservation the opportunity to comment on the project. The Secretary of the Interior promulgated the regulations implementing Section 106, as codified in Title 36, Part 800 of the Code of Federal Regulations (CFR). The proposed project does not require any federal funding, approvals, or licensing; therefore, Section 106 of the National Historic Preservation Act does not apply.

The Secretary of the Interior’s Standards for the Treatment of Historic Properties

The Secretary of the Interior’s Standards for the Treatment of Historic Properties provide guidelines for preserving, rehabilitating, restoring, and reconstructing historic buildings. Four treatment approaches are identified in the standards: preservation, rehabilitation, restoration, and reconstruction. For architectural resources such as the proposed project, maintenance, repair, stabilization, restoration, preservation, conservation, or reconstruction in a manner consistent with the Secretary’s Standards and Guidelines generally will constitute mitigation of impacts to a less-than-significant level.

The Secretary’s Standards identify four distinct approaches to the treatment of historic properties—preservation, rehabilitation, restoration, and reconstruction:

- **Preservation** focuses on the maintenance and repair of existing historic materials and retention of a property’s form as it has evolved over time.
• Rehabilitation acknowledges the need to alter or add to a historic property to meet continuing or changing uses while retaining the property’s historic character.

• Restoration depicts a property at a particular period of time in its history, while removing evidence of other periods.

• Reconstruction recreates vanished or nonsurviving portions of a property for interpretive purposes.

The Secretary’s Standards, revised in 1992, were codified as 36 CFR Part 68 in the July 12, 1995 Federal Register (Vol. 60, No. 133). They pertain to all historic resource types included in the NRHP—buildings, sites, structures, districts, and objects.

State

Public Resources Code, Section 21084.1

Cultural resources are defined as buildings, sites, structures, or objects, each of which may have historical, architectural, archaeological, cultural, or scientific importance. A cultural resource may be eligible for inclusion in the California Register of Historical Resources (CRHR) if it:

(1) is associated with events that have made a significant contribution to the broad patterns of California’s history and cultural heritage;

(2) is associated with the lives of persons important in our past;

(3) embodies the distinctive characteristics of a type, period, region, or method of construction, represents the work of an important creative individual, or possesses high artistic values; or

(4) has yielded, or may be likely to yield, information important in prehistory or history.

Properties that are listed in or eligible for listing in the NRHP are automatically listed in the CRHR, and thus are significant historical resources for the purpose of CEQA (PRC Section 5024.1[d][1]).

California Environmental Quality Act

For the purpose of this analysis, the following applicable thresholds of significance have been used to determine whether implementing the SMUD Headquarters Building and Site Rehabilitation Project would result in a significant impact. The State CEQA Guidelines identify significance criteria that establish whether a particular impact would have a significant effect on a resource. For cultural resources, these criteria are that an impact of the project would be significant if the project would:
cause a substantial adverse change in the significance of a unique archaeological resource or a historical resource as defined in PRC Section 21083.2 and Section 15064.5 of the State CEQA Guidelines, respectively;

directly or indirectly destroy a unique paleontological resource or site or unique geological feature; or

disturb any human remains, including those interred outside of formal cemeteries.

Section 15064.5 of the State CEQA Guidelines defines “substantial adverse change” as physical demolition, destruction, relocation, or alteration of the resource or its immediate surroundings. Actions that would materially impair the significance of a historic resource are any actions that would demolish or adversely alter those physical characteristics that convey its historical significance and qualify it for inclusion in the CRHR or in a local register or survey that meet the requirements of PRC Sections 5020.1(k) and 5024.1(g).

Impact indicators would be any aspect of the project that results in any of the aforementioned impacts.

However, Section 15064.5(b)(3) of the State CEQA Guidelines states:

Generally, a project that follows The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitation, Restoring, and Reconstructing Historic Buildings or The Secretary of the Interior’s Standards for Rehabilitation and Guidelines for Rehabilitating Historic Buildings (1995), Weeks and Grimmer, shall be considered as mitigated to a level of less-than-significant impact on the historical resource. It should also be noted that the Secretary of the Interior has developed guidelines for the rehabilitation of cultural landscapes as well (National Park Service 1996).

According to the State CEQA Guidelines, effects on important or unique archaeological resources must be addressed as well. To be considered important or unique, an archaeological resource must meet one of the following criteria:

association with an event or person of recognized significance in California or American history, or recognized scientific importance in prehistory;

ability to provide information that is of demonstrable public interest and is useful in addressing scientifically consequential and reasonable research questions;

possession of a special or particular quality, such as oldest, best example, largest, or last surviving example of its kind;

age of at least 100 years, and possession of substantial stratigraphic integrity; or

ability to address important research questions that historical research has shown can be answered only with archaeological methods.
Sacramento 2030 General Plan

The following goal and policies from the Historic and Cultural Resources Element of the Sacramento 2030 General Plan (City of Sacramento 2009) are applicable to the proposed project.

Goal HCR 2.1. Identification and Preservation of Historic and Cultural Resources. Identify and preserve the city’s historic and cultural resources to enrich our sense of place and our understanding of the City’s prehistory and history.

- **Policy HCR 2.1.1 Identification.** The City shall identify historic and cultural resources including individual properties, districts, and sites (e.g., archaeological sites) to provide adequate protection of these resources.

- **Policy HCR 2.1.3 Consultation.** The City shall consult with the appropriate organizations and individuals (e.g., Information Centers of the California Historical Resources Information System [CHRIS], the Native American Heritage Commission [NAHC], and Native American groups and individuals) to minimize potential impacts to historic and cultural resources.

- **Policy HCR 2.1.12 Contextual Elements.** The City shall promote the preservation, rehabilitation, restoration, and/or reconstruction, as appropriate, of contextual elements (e.g., structures, landscapes, street lamps, signs) related to the historic resource.

- **Policy HCR 2.1.15 Archaeological Resources.** The City shall develop or ensure compliance with protocols that protect or mitigate impacts to archaeological, historic, and cultural resources including prehistoric resources.

- **Policy HCR 2.1.14 Demolition.** The City shall consider demolition of historic resources as a last resort, to be permitted only if rehabilitation of the resource is not feasible, demolition is necessary to protect the health, safety, and welfare of its residents, or the public benefits outweigh the loss of the historic resource.

- **Policy HCR 2.1.15 Archaeological Resources.** The City shall develop or ensure compliance with protocols that protect or mitigate impacts to archaeological, historic, and cultural resources including prehistoric resources.

City of Sacramento Historic Preservation Program

The City's historic preservation program began in 1975 with the enactment of the City’s first historic preservation ordinance. Amendments to the original preservation ordinance, under Ordinance No. 2006-063, were enacted in October 2006, amending Historic Preservation Chapter 17.134 of Title 17 of the Sacramento City Code. On September 30, 2013, these sections of the code, under Chapter 17.134 related to historic preservation, were included in a comprehensive update of Title 17 under its new name “Planning & Development Code,” formerly known as the Zoning Code. Under the new Title 17, the Historic Preservation Chapter
was generally relocated to Chapter 17.604; however, the substance of the preservation sections was generally not materially changed. Changes related to procedure were also relatively minor.

The Sacramento City Code provides for the compilation of the ordinances adopting designations and deletions of Landmarks, Contributing Resources, and Historic Districts into the Sacramento Register (Landmark Eligibility Criteria [17.604.210(A)]).

Professional Paleontological Standards

The Society of Vertebrate Paleontology (SVP 1995, 1996), a national scientific organization of professional vertebrate paleontologists, has established standard guidelines that outline acceptable professional practices in the conduct of paleontological resource assessments and surveys, monitoring and mitigation, data and fossil recovery, sampling procedures, specimen preparation, analysis, and curation. Most practicing professional paleontologists in the nation adhere to the SVP assessment, mitigation, and monitoring requirements, as specifically spelled out in its standard guidelines.

Methods

Cultural Resources

Cultural resources staff conducted a records search at the North Central Information Center of the CHRIS on July 17, 2014. The results of the records search are discussed below. An architectural historian conducted a visit of the project site to record the Headquarters Building and site.

A contact letter was sent on October 1, 2014, to the NAHC and on January 15, 2015, to currently known Native American groups that may have information pertaining to the project area, and local historical societies and preservation groups. Meetings with representatives from the City of Sacramento’s Preservation Department were also conducted and the results are discussed below.

SMUD also commissioned a CLR (Appendix C) and a HSR (Appendix B) for use by the SMUD Headquarters Building and Site Rehabilitation Project design teams. Information from the CLR and HSR was used to complete this analysis.

Meetings with the City of Sacramento Preservation Director

SMUD held several meetings between the City of Sacramento preservation staff, representatives of the State Office of Historic Preservation, the Dreyfuss & Blackford design team (including a Historic Architect from Wiss, Janney, Elstner Associates, Inc.), an AECOM Historic Landscape Architect, and the AECOM CEQA compliance team to allow for comments on protection methods for the SMUD Headquarters Building and Site Rehabilitation Project. Highlights from those meetings are described below.

The State Office of Historic Preservation representatives noted the importance of adhering to the Secretary of the Interior’s Standards. The design team noted its inclusion of Alan Dreyfuss
Sacramento Municipal Utility District Headquarters Building
and Site Rehabilitation Project
March, 2015

(Wiss, Janney, Elstner Associates, Inc.) to assist with all plans to be sure that design plans were in keeping with the Secretary’s Standards. It was noted that these standards would be reiterated in the CEQA analysis and that relevant sections would be highlighted and addressed, as applicable.

All CEQA compliance and evaluation work for the SMUD Headquarters Building is being conducted by teams with qualified professionals who meet one or more of the Secretary of the Interior’s qualifications for work in archaeology, history, architectural history, historical landscape architecture, and historic architecture. The proposed project will be designed to have a minimal impact on character-defining features of the headquarters building and site. Dreyfuss & Blackford, which is both the original architectural firm and the architectural firm providing the rehabilitation design and specifications for the building, includes both in-house preservation architects and teamed preservation architecture staff members from Wiss, Janney, Elstner Associates, Inc. It was noted that Dreyfuss & Blackford has prepared all building design documentation throughout the course of the project, and would remain intimately involved through project completion. Callander Associates Landscape Architecture has been retained for design of the site renovation and is being assisted by Page & Turnbull.

SMUD agreed that all prudent and feasible measures would be undertaken to ensure that all procedures described under the proposed project would avoid alterations of character-defining features of the SMUD Headquarters Building and site as per the Secretary of the Interior’s standards for rehabilitation. Under the proposed project, rehabilitation work would result in few changes that would be visually perceptible to employees and visitors to the building. Important proposed project work, such as the improvements needed for the core expansion and addition of the security fence, would be designed to be incorporated with less-than-significant impacts on the building and site’s historically significant features and characteristics, and its visual and physical fabric.

It is also anticipated that preservation professionals qualified under the Secretary’s Standards may provide further guidance on protection of the historic features of the SMUD Headquarters Building and site during rehabilitation activities within the time frame of the circulation of the IS/MND.

Paleontological Resources

The project’s potential impacts on paleontological resources were evaluated using the significance criteria set forth in Appendix G of the State CEQA Guidelines, which state that a project would have a significant impact on paleontological resources if it would directly or indirectly destroy a unique paleontological resource or site. For the purposes of this analysis, a unique resource or site is one that is considered significant under the following professional paleontological standards.

A paleontologically important rock unit is one that (1) has a high potential paleontological productivity rating and (2) is known to have produced unique, scientifically important fossils. The potential paleontological productivity rating of a rock unit exposed at the project site refers to the abundance/densities of fossil specimens and/or previously recorded fossil sites in exposures of the unit. Exposures of a specific rock unit at the project site are most likely to yield fossil
remains representing particular species in quantities or densities similar to those previously recorded from the unit in other locations.

An individual vertebrate fossil specimen may be considered unique or significant if it is identifiable and well preserved, and it meets one of the following criteria:

- a type specimen (i.e., the individual from which a species or subspecies has been described);
- a member of a rare species;
- a species that is part of a diverse assemblage (i.e., a site where more than one fossil has been discovered) wherein other species are also identifiable, and important information regarding life history of individuals can be drawn;
- a skeletal element different from, or a specimen more complete than, those now available for its species; or
- a complete specimen (i.e., all or substantially all of the entire skeleton is present).

The value or importance of different fossil groups varies depending on the age and depositional environment of the rock unit that contains the fossils, their rarity, the extent to which they have already been identified and documented, and the ability to recover similar materials under more controlled conditions (such as for a research project). Marine invertebrates are generally common; the fossil record is well developed and well documented, and they would generally not be considered a unique paleontological resource. Identifiable vertebrate marine and terrestrial fossils are generally considered scientifically important because they are relatively rare.

Impacts and Mitigation Measures

a) **Cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5?**

Less-than-Significant Impact with Mitigation Incorporated. The SMUD Headquarters Building and surrounding landscape/site was listed in the NRHP in 2010 and automatically listed in the CRHR, and is therefore a historical resource for the purpose of CEQA. No other historical resources would be affected by the proposed project. The SMUD Headquarters Building and Site Rehabilitation Project would include the in-kind replacement of severely deteriorated significant features, removal of hazardous materials such as asbestos and lead paint, and necessary modernization of infrastructure for the historic building to perform its functions efficiently by 2015 technological standards for the next 50 years. Updates to the site would include the reconfiguration of parking, upgrades to infrastructure, replanting/replacement of trees, and installation of a security fence. Proposed changes to the historic building and site work would be performed according to *The Secretary of the Interior’s Standards for the Treatment of Historic Properties*. The rehabilitation plans are being prepared by an architect and site design team experienced in historic preservation work. However, the SMUD Headquarters Building is listed in the NRHP and CRHR and therefore is a historical resource for CEQA.
purposes, and finalization of the proposed design work to meet the Secretary of the Interior’s Rehabilitation Standards has not been completed. Thus, absent appropriate mitigation, this impact would be potentially significant.

Mitigation Measure CUL-1. Ensure Appropriate Protection Measures for SMUD Headquarters and Site.

To ensure the protection and maintenance of the historic integrity of the historically significant Headquarters Building and associated landscape throughout the construction period, specific protection measures and recommendations developed by the staff of Wiss, Janney, Elstner Associates, Inc. (HSR) and AECOM (CLR) shall be implemented and/or followed during project design, as appropriate. The Headquarters Building treatment measures include those outlined in the HSR (Appendix B), as appropriate given the proposed project components and goals (Wiss, Janney, Elstner Associates, Inc. 2014). The landscape treatment measures include those outlined in the CLR (Appendix C), as appropriate given the proposed project components and goals (AECOM 2014a). Protection measures for the proposed project include but are not limited to, the following:

1. Qualified conservators shall be consulted to develop protection measures for the Wayne Thiebaud mural and other artwork. Appropriate preservation staff shall be made available to review all phases of work for consistency with resource protection.

2. Appropriate contributing historic light or other contributing fixtures or features shall be cataloged, salvaged, and taken off-site for refurbishment as necessary.

3. Historic finishes and materials shall be protected with appropriate methods.

4. Where no work will take place, areas of the building and landscape shall be barricaded to maintain a physical space between active construction work and protected features.

5. Contractor activities shall require preparation of “means and methods” procedures ensuring that no protected features are disturbed.

6. Training on protection of historical features shall be provided for all construction workers before the beginning of work on-site.

7. Infrastructure upgrades (e.g., conduit in walls) shall be installed where they will not affect significant historic fabric.

8. In addition to the protective measures, above, cleaning of historic finishes using “the gentlest means possible” as directed by the Standards for Rehabilitation shall be used.

9. When features are to be removed for restoration or repair, all items designated to be retained and reinstalled shall be recorded, labeled, and stored.
(10) Active site protection administration shall be available from the staff of Wiss, Janney, Elstner Associates, Inc. and AECOM, as needed to ensure that protective measures have been satisfactorily implemented.

Mitigation Measure CUL-2. Conduct Peer Review of Design Plans.

A qualified historic preservation specialist shall conduct a third-party review of the proposed design plans (at least 60% design) for both the building and site before the start of construction to ensure that the plans meet the Secretary of the Interior’s Rehabilitation Standards. Reviewers shall meet The Secretary of the Interior’s Professional Qualifications Standards for Historic Architects [Headquarters Building] and Historic Landscape Architects [the site]. If the review results in a finding that the proposed plans do not meet the standards, design plans for those elements found to be noncompliant shall be updated before the start of construction on those specific elements.

According to Section 15064.5(b)(3) of the State CEQA Guidelines, “…generally, a project that follows the [Secretary’s Standards]…shall be considered as mitigated to a level of less-than-significant impact on the historical resource.” Therefore, rehabilitation of the SMUD Headquarters Building would involve physical upgrades to the historic building’s interior, exterior, and site in compliance with the Secretary of the Interior’s Rehabilitation Standards, and Mitigation Measures CUL-1 and CUL-2 would ensure that this compliance is followed through construction. Thus, the impact would be reduced to a less-than-significant level.

b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5?

Less-than-Significant Impact with Mitigation Incorporated. To determine whether a substantial adverse change to the significance of archaeological resources would occur, an investigation of the project area was conducted. A records search was completed at the North Central Information Center on July 17, 2014. The records search revealed that four cultural resource studies have been conducted within the general geographic area of the project. The records search further revealed that no previously recorded archaeological sites are located in or within 0.25 mile of the project area.

An aerial review of the project area indicated that it is developed, paved, landscaped, or highly disturbed, suggesting that intact archaeological deposits within these areas are unlikely to be present. Given the high level of disturbance, an intact archaeological deposit is unlikely to exist within the project area.

Based on the lack of archaeological resources observed during the survey, the high level of ground surface disturbance, and the absence of previously recorded sites within the project area, it is unlikely that archaeological resources would be encountered during project construction. However, the potential remains for unanticipated buried cultural deposits to be encountered during construction. Therefore, this impact would be potentially significant.
Mitigation Measure CUL-3. Halt Ground-Disturbing Construction Activities if Cultural Materials Are Discovered.

The following measures shall be implemented to avoid or minimize potential impacts on cultural materials:

- In the event that any unanticipated buried cultural deposits are encountered during any phase of project construction, SMUD shall be contacted, all construction work shall be halted within 100 feet of the discovery, and the cultural deposits shall be assessed for significance by a qualified archaeologist. If, through consultation, the discovery is determined to not be significant, work shall be allowed to continue.

- If a discovery is determined to be significant, a mitigation plan shall be prepared and carried out in accordance with state guidelines. If the resource cannot be avoided, a data recovery plan shall be developed to ensure collection of sufficient information to address archaeological and historical research questions, and the results shall be presented in a technical report that describes field methods, materials collected, and conclusions. Any cultural material collected as part of an assessment or data recovery effort shall be curated at a qualified facility. Field notes and other pertinent materials shall be curated along with the archaeological collection.

Implementation of Mitigation Measure CUL-3 would reduce this construction-related impact to a less-than-significant level.

c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?

Less-than-Significant Impact with Mitigation Incorporated. Project-related earthmoving activities would occur in the Pleistocene-age Riverbank Formation. Because numerous vertebrate fossils have been recovered from the Riverbank Formation in northern and central California, including localities that are close to the project site, this formation is considered to be paleontologically sensitive. Therefore, earthmoving activities in the Riverbank Formation could result in accidental damage to or destruction of unique paleontological resources. This impact would be potentially significant.

Mitigation Measure PALEO-1. Conduct Construction Personnel Education, Stop Work If Paleontological Resources Are Discovered, Assess the Significance of the Find, and Prepare and Implement a Recovery Plan, as Required.

To minimize the potential for destruction of or damage to previously unknown potentially unique, scientifically important paleontological resources during earthmoving activities at the project site, SMUD shall do the following:

- Before the start of any earthmoving activities, SMUD shall retain a qualified paleontologist to train all construction personnel involved with earthmoving activities, including the site superintendent, regarding the possibility of encountering fossils, the appearance and types of fossils likely to be seen during construction, and proper notification procedures should fossils be encountered.
If paleontological resources are discovered during earthmoving activities, the construction crew shall immediately cease work in the vicinity of the find and notify SMUD. SMUD shall retain a qualified paleontologist to evaluate the resource and prepare a recovery plan in accordance with Society of Vertebrate Paleontology guidelines (SVP 1996). The recovery plan may include but is not limited to a field survey, construction monitoring, sampling and data recovery procedures, museum storage coordination for any specimen recovered, and a report of findings. The recovery plan shall be submitted to the City of Sacramento for review. Recommendations in the recovery plan that are determined by the City of Sacramento to be necessary and feasible shall be implemented by SMUD or its contractors before construction activities can resume at the site where the paleontological resources were discovered.

Implementation of Mitigation Measure PALEO-1 would reduce the potentially significant impact related to damage or destruction of unique paleontological resources to a less-than-significant level because construction workers would be alerted to the possibility of encountering paleontological resources and, in the event that resources were discovered, fossil specimens would be recovered and recorded and would undergo appropriate curation.

d) Disturb any human remains, including those interred outside of formal cemeteries?

Less-than-Significant Impact with Mitigation Incorporated. Based on the results of the investigation described above under Question b), no cemeteries, Native American burials, or any other human remains have been identified within the project area. If previously unknown human remains were discovered on the project site during construction, this impact would be potentially significant.

To minimize the potential for destruction of or damage to previously unknown human remains during earthmoving activities at the project site, SMUD shall implement the following measures:

- In accordance with the California Health and Safety Code, if human remains are uncovered during ground-disturbing activities, the contractor(s) shall immediately halt potentially damaging excavation in the area of the burial and notify the Sacramento County Coroner and a professional archaeologist to determine the nature of the remains. The coroner is required to examine all discoveries of human remains within 48 hours of receiving notice of a discovery on private or state lands (Health and Safety Code Section 7050.5[b]). If the coroner determines that the remains are those of a Native American, he or she must contact the NAHC by phone within 24 hours of making that determination (Health and Safety Code Section 7050[c]). After the coroner's findings have been made, the archaeologist and the NAHC-designated Most Likely Descendant (MLD) shall determine the ultimate treatment and disposition
of the remains. The responsibilities of SMUD and the City for acting upon notification of a discovery of Native American human remains are identified in PRC Section 5097.9 et seq.

- **Upon the discovery of Native American remains, SMUD shall ensure that the all construction work will stop within 100 feet of the discovery until consultation with the MLD has taken place. The MLD shall have 48 hours to complete a site inspection and make recommendations after being granted access to the site. A range of possible treatments for the remains, including nondestructive removal and analysis, preservation in place, relinquishment of the remains and associated items to the descendants, or other culturally appropriate treatment may be discussed. PRC Section 5097.98(b)(2) suggests that the concerned parties may mutually agree to extend discussions beyond the initial 48 hours to allow for the discovery of additional remains. The following is a list of site protection measures that SMUD shall employ:**

 1. Record the site with the NAHC or the appropriate Information Center.

 2. Use an open-space or conservation zoning designation or easement.

 3. Record a document with the county in which the property is located.

- **SMUD or SMUD’s authorized representative shall rebury the Native American human remains and associated grave goods with appropriate dignity on the property in a location not subject to further subsurface disturbance if the NAHC is unable to identify an MLD, or if the MLD fails to make a recommendation within 48 hours after being granted access to the site. SMUD or SMUD’s authorized representative may also reinter the remains in a location not subject to further disturbance if he or she rejects the recommendation of the MLD and mediation by the NAHC fails to provide measures acceptable to the landowner. SMUD shall implement mitigation for the protection of the burial remains. Construction work in the vicinity of the burials shall not resume until the mitigation is completed.**

Implementation of Mitigation Measure CUL-4 would reduce the potentially significant impact related to damage or destruction of human remains to a less-than-significant level because construction workers would be alerted to the possibility of encountering human remains and, in the event that human remains were discovered, and would be treated in accordance with California Health and Safety Code Sections 7050.5 and 7052 and PRC Section 5097.
3.6 GEOLOGY AND SOILS

Would the project:

a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:

 i) Rupture of a known earthquake fault, as delineated in the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines & Geology Special Publication 42.

 ii) Strong seismic ground shaking?

 iii) Seismic-related ground failure, including liquefaction?

 iv) Landslides?

b) Result in substantial soil erosion or the loss of topsoil?

c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?

d) Be located on expansive soils, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?

e) Have soils incapable of adequately supporting the use of septic tanks or alternate wastewater disposal systems where sewers are not available for the disposal of wastewater?

Environmental Setting

The project site is located in the Sacramento Valley, which forms the northern portion of the Great Valley geomorphic province of California. The Great Valley is a northwest-trending asymmetrical depression (formed by intersecting, downward-sloping folds of bedrock) approximately 50 miles wide and 400 miles long. It lies between the mountains of the Sierra
Nevada to the east, the Cascade Range and Klamath Mountains to the north, and the Coast Ranges to the west.

Most of the surface of the Great Valley is covered with Holocene (11,700 B.P. to Present Day) and Pleistocene age (1.8 million to 11,700 B.P.) alluvium, composed primarily of sediments from the Sierra Nevada and the Coast Ranges, which were carried by rivers and deposited on the valley floor. As discussed in detail in Section 3.5, “Cultural Resources,” the headquarters site and the temporary trailer locations at the Field Reporting Facility and 59th Street sites are underlain by the Pleistocene-age Riverbank Formation (Helley and Harwood 1985; Wagner et al. 1987).

The Great Valley is bounded on the west by the Great Valley fault zone and the Coast Ranges and on the east by the Sierra Nevada and the Foothills fault zone. Relatively few faults in the Great Valley have been active during the last 11,700 years. The closest faults to the project site with evidence of displacement during Holocene time are the Dunnigan Hills Fault (approximately 35 miles to the northwest) and the Cleveland Hills Fault (approximately 60 miles to the north). In general, active faults are located along the western margin of the Central Valley (e.g., the Great Valley Fault) and within the Coast Ranges. (Jennings 1994.)

A review of U.S. Natural Resources Conservation Service (NRCS) (2013) soil survey data indicates that the Headquarters Building project site is composed of the Americanos–Urban Land Complex, San Joaquin–Urban Land Complex, and Urban Land. The Field Reporting Facility and 59th Street trailer locations, within which additional earthmoving activities could occur, are both composed of Urban Land. Because the SMUD facilities were constructed in the early 1960s, the Urban Land at these locations presumably consists of compacted artificial fill. Table 3.6-1 shows the relevant characteristics of these soil types.

Table 3.6-1. Project Site Soil Characteristics

<table>
<thead>
<tr>
<th>Soil Map Unit</th>
<th>Water Erosion Hazard</th>
<th>Wind Erosion Hazard</th>
<th>Shrink-Swell Potential</th>
<th>Permeability</th>
<th>Drainage Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americanos–Urban Land Complex</td>
<td>Moderate</td>
<td>5</td>
<td>Low</td>
<td>Moderately high</td>
<td>Well drained</td>
</tr>
<tr>
<td>San Joaquin–Urban Land Complex</td>
<td>Moderate</td>
<td>6</td>
<td>Low</td>
<td>Moderately high</td>
<td>Moderately well drained</td>
</tr>
<tr>
<td>Urban Land</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Notes: NR = not rated

1. Based on the erosion factor “Kw whole soil,” which is a measurement of relative soil susceptibility to sheet and rill erosion by water.
2. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible.
3. Based on percentage of linear extensibility. Shrink-swell potential ratings of “moderate” to “very high” can result in damage to buildings, roads, and other structures.
4. Based on standard U.S. Natural Resources Conservation Service saturated hydraulic conductivity (Ksat) class limits; Ksat refers to the ease with which pores in a saturated soil transmit water.

Source: NRCS 2013
Regulatory Setting

Federal

In October 1977, the U.S. Congress passed the Earthquake Hazards Reduction Act to reduce the risks to life and property from future earthquakes in the United States through the establishment and maintenance of an effective earthquake hazards reduction program. To accomplish this goal, the act established the National Earthquake Hazards Reduction Program. This program was substantially amended in November 1990 by the National Earthquake Hazards Reduction Program Act (NEHRPA), which refined the description of agency responsibilities, program goals, and objectives. The NEHRPA applies to the project because it sets federal standards for building codes, and design and construction techniques to reduce earthquake hazards.

The mission of the National Earthquake Hazards Reduction Program includes improved understanding, characterization, and prediction of hazards and vulnerabilities; improved building codes and land use practices; risk reduction through post-earthquake investigations and education; development and improvement of design and construction techniques; improved mitigation capacity; and accelerated application of research results. The NEHRPA designates the Federal Emergency Management Agency (FEMA) as the lead agency of the program and assigns several planning, coordinating, and reporting responsibilities. Other NEHRPA agencies include the National Institute of Standards and Technology, the National Science Foundation, and the U.S. Geological Survey.

State

Alquist-Priolo Earthquake Fault Zoning Act

In 1972, California enacted the Alquist-Priolo Special Studies Zones Act, which was renamed the Alquist-Priolo Earthquake Fault Zoning Act (Alquist-Priolo Act) in 1994 (PRC Sections 2621–2630). The Alquist-Priolo Act requires the establishment of “earthquake fault zones” along known active faults in California. Regulations on development within these zones are enforced to reduce the potential for damage resulting from fault displacement. The main purpose of the law is to prevent the construction of buildings used for human occupancy on the surface trace of active faults. The law addresses only the hazard of surface fault rupture and is not directed toward other earthquake hazards. Before a project can be permitted in a designated Alquist-Priolo Earthquake Fault Zone, cities and counties must require a geologic investigation to demonstrate that proposed buildings would not be constructed across active faults.

Seismic Hazards Mapping Act

The Seismic Hazards Mapping Act of 1990 (PRC Sections 2690–2699.6) addresses earthquake hazards from nonsurface fault rupture, including liquefaction and seismically induced landslides. The act established a mapping program for areas that have the potential for liquefaction, landslide, strong ground shaking, or other earthquake and geologic hazards. The act also specifies that the lead agency for a project may withhold development permits until geologic or
soils investigations are conducted for specific sites and mitigation measures are incorporated into plans to reduce hazards associated with seismicity and unstable soils.

California Building Standards Code

The California Building Standards Commission is responsible for coordinating, managing, adopting, and approving building codes in California. The State of California provides minimum standards for building design through the California Building Standards Code (CBC) (CCR Title 24). The CBC applies to building design and construction in the state and is based on the federal Uniform Building Code used widely throughout the country (generally adopted on a state-by-state or district-by-district basis). The CBC has been modified for California conditions with numerous more detailed or more stringent regulations. Structures constructed as part of the project must comply with the CBC.

The state earthquake protection law (California Health and Safety Code Section 19100 et seq.) requires that structures be designed to resist stresses produced by lateral forces caused by wind and earthquakes. The CBC requires an evaluation of seismic design that falls into Categories A through F (where F requires the most earthquake-resistant design) for structures designed for a project site. The CBC philosophy focuses on “collapse prevention,” meaning that structures are designed for prevention of collapse for the maximum level of ground shaking that could reasonably be expected to occur at a site. Chapter 16 of the CBC specifies exactly how each seismic design category is to be determined on a site-specific basis through the site-specific soil characteristics and proximity to potential seismic hazards.

Chapter 18 of the CBC regulates the excavation of foundations and retaining walls. This chapter regulates the preparation of a preliminary soil report, engineering geologic report, geotechnical report, and supplemental ground-response report. Chapter 18 also regulates analysis of expansive soils and the determination of the depth to groundwater table. For Seismic Design Category C, Chapter 18 requires analysis of slope instability, liquefaction, and surface rupture attributable to faulting or lateral spreading. For Seismic Design Categories D, E, and F, Chapter 18 requires these same analyses plus an evaluation of lateral pressures on basement and retaining walls, liquefaction and soil strength loss, and lateral movement or reduction in foundation soil-bearing capacity. It also requires that mitigation measures be considered in structural design. Mitigation measures may include ground stabilization, selection of appropriate foundation type and depths, selection of appropriate structural systems to accommodate anticipated displacements, or any combination of these measures. The potential for liquefaction and soil strength loss must be evaluated for site-specific peak ground acceleration magnitudes and source characteristics consistent with the design earthquake ground motions. Peak ground acceleration must be determined from a site-specific study, the contents of which are specified in CBC Chapter 18.

Where no other building codes apply, Chapter 29 of the CBC regulates excavation, foundations, and retaining walls. Appendix J of the CBC regulates grading activities, including drainage and erosion control and construction on unstable soils, such as expansive soils and areas subject to liquefaction.
The California Historical Building Code (CHBC) (CCR Title 24, Part 8) is part of the CBC. The CHBC provides regulations for preservation, restoration, rehabilitation, relocation, or reconstruction of buildings or properties designated as qualified historical buildings or properties. The CHBC is intended to provide solutions for the preservation of qualified historical buildings or properties, to promote sustainability, to provide access for persons with disabilities, to provide a cost-effective approach to preservation, and to provide for the reasonable safety of the occupants or users. The CHBC requires enforcing agencies to accept solutions that are reasonably equivalent to, but may be different from, the requirements in the CBC’s regular code when dealing with qualified historic buildings or properties. Because the Headquarters Building and site is listed in the NRHP, the CHBC would apply to the proposed project.

National Pollutant Discharge Elimination System and Storm Water Pollution Prevention Plans

As discussed in detail in Section 3.9, “Hydrology and Water Quality,” the State Water Resources Control Board (SWRCB) and Central Valley Regional Water Quality Control Board (RWQCB) have adopted specific National Pollutant Discharge Elimination System (NPDES) permits for a variety of activities that have the potential to discharge wastes (including sediment) to waters of the state. The SWRCB’s statewide stormwater general permit for construction activity (Order 2009-0009-DWQ) is applicable to all land-disturbing construction activities that would disturb 1 acre or more. Compliance with the NPDES permit requires submittal to the Central Valley RWQCB of notices of intent (NOIs) to discharge, and implementation of storm water pollution prevention plans (SWPPPs) that include best management practices (BMPs) to minimize water quality degradation during construction activities.

Local

City of Sacramento General Plan

The following goals and policies from the Environmental Resources Element of the Sacramento 2030 General Plan (City of Sacramento 2009) are applicable to the proposed project.

Goal ER 1.1 Water Quality Protection. Protect local watersheds, water bodies and groundwater resources, including creeks, reservoirs, the Sacramento and American rivers, and their shorelines.

- **Policy ER.1.1.3 Stormwater Quality.** The City shall control sources of pollutants and improve and maintain urban runoff water quality through storm water protection measures consistent with the City’s National Pollution Discharge Elimination System (NPDES) Permit.

- **Policy ER 1.1.7 Construction Site Impacts.** The City shall minimize disturbances of natural water bodies and natural drainage systems caused by development, implement measures to protect areas from erosion and sediment loss, and continue to require construction contractors to comply with the City’s erosion and sediment control ordinance and stormwater management and discharge control ordinance.
Goal EC 1.1 Hazards Risk Reduction. Protect lives and property from seismic and geologic hazards and adverse soil conditions.

- **Policy EC 1.1.1 Review Standards.** The City shall regularly review and enforce all seismic and geologic safety standards and require the use of best management practices (BMPs) in site design and building construction methods.

- **Policy EC 1.1.2 Geotechnical Investigations.** The City shall require geotechnical investigations to determine the potential for ground rupture, ground-shaking, and liquefaction due to seismic events, as well as expansive soils and subsidence problems on sites where these hazards are potentially present.

- **Policy EC 1.1.3 Retrofit Critical Facilities.** The City shall promote the upgrade, retrofitting, and/or relocation of all existing critical facilities (e.g., hospitals, schools, police stations, and fire stations) and other important public facilities that do not meet current building code standards and are within areas susceptible to seismic or geologic hazards.

City of Sacramento Grading, Erosion, and Sediment Control Ordinance

The City’s Grading, Erosion, and Sediment Control Ordinance (Sacramento City Code, Title 15, Chapter 15.88) includes specific standards for project construction related to erosion control. This ordinance requires preparation and submittal of a grading plan along with erosion and sediment control plans that would be implemented both during and following the completion of construction activities. The plans must contain a list of all BMPs that would be used to reduce erosion and control stormwater runoff.

Impacts and Mitigation Measures

a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:

i. **Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault?** (Refer to California Geological Survey Special Publication 42.)

Less-than-Significant Impact. Surface ground rupture along faults is generally limited to a linear zone a few yards wide. Because no active faults are mapped across the project site and the project site is not located within an Alquist-Priolo Earthquake Fault Zone, fault ground rupture is unlikely (CGS 2012; Jennings 1994). Therefore, this impact would be *less than significant.*

ii. **Strong seismic ground shaking?**

Less-than-Significant Impact. The project site is located in the center of the Sacramento Valley, which has historically experienced a low level of seismic ground shaking. The nearest
faults that have exhibited evidence of displacement during the last 11,700 years are the
Dunnigan Hills and Great Valley Faults, which are approximately 35 miles northwest and west,
respectively, from the project site. Other active faults, such as the Green Valley and Concord
Faults, are located approximately 45–50 miles to the west in the Coast Ranges.

The intensity of ground shaking depends on the distance from the earthquake epicenter to the
site, the magnitude of the earthquake, site soil conditions, and the characteristics of the source.
Ground motions from seismic activity can be estimated by probabilistic method at specified
hazard levels and by site-specific design calculations using a computer model. Because a site-
specific geotechnical report has not yet been prepared as required by the 2013 CBC, the
California Geological Survey’s probabilistic seismic hazards ground-motion calculator (CGS
2008) was used to obtain an estimate of the anticipated level of ground shaking as a basis for
this environmental assessment. Use of this calculator indicates that a minimum horizontal
acceleration of 0.188g (where g is the percentage of gravity) could be anticipated at the project
site with a 10% probability of earthquake occurrence in a 50-year time frame (also known as the
“Design Basis Earthquake”) for use in earthquake-resistant design (CGS 2008). Stated another
way, these calculations indicated that there is a 1-in-10 probability that an earthquake will occur
within 50 years that would result in a peak horizontal ground acceleration exceeding 0.188g.
This result indicates that a very low level of seismic ground shaking would be anticipated at the
project site.

Because the Headquarters Building was constructed in 1960, it does not meet the requirements
of the current CBC for earthquake-resistant design; however, one of the project goals is to
retrofit the building to meet the current seismic design standards using methodologies permitted
under the CHBC. Therefore, the impact of the project related to strong seismic ground shaking
would be **beneficial** and **less than significant**.

iii. Seismic-related ground failure, including liquefaction?

Less-than-Significant Impact. Soil liquefaction most commonly occurs when ground shaking
from an earthquake causes a sediment layer saturated with groundwater to lose strength and
take on the characteristics of a fluid, thus becoming similar to quicksand. Liquefaction may also
occur in the absence of a seismic event, when unconsolidated soil above a hardpan becomes
saturated with water. Factors determining liquefaction potential are the soil type, the level and
duration of seismic ground motions, the type and consistency of soils, and the depth to
groundwater. Loose sands, peat deposits, and unconsolidated Holocene-age sediments are the
most susceptible to liquefaction, while clayey silts, silty clays, and clays deposited in freshwater
environments are generally stable under the influence of seismic ground shaking.

Although the water table in Sacramento is generally shallow, the Headquarters Building project
site and the Field Reporting Facility and 59th Street trailer locations are underlain by stable,
Pleistocene-age sediments of the Riverbank Formation (see Section 3.5, “Cultural Resources”) along
with compacted artificial fill, and active seismic sources are a relatively long distance
away. Therefore, liquefaction is unlikely to occur and this impact would be **less than significant**.
iv. Landslides?

No Impact. The Headquarters Building project site and the Field Reporting Facility and 59th Street trailer sites are located on nearly level ground, and are not located adjacent to any steep slopes where landslides could occur. Thus, the proposed project would have no impact related to landslides.

b) Result in substantial soil erosion or the loss of topsoil?

Less-than-Significant Impact with Mitigation Incorporated. As shown in Table 3.6-1, NRCS soil survey data indicate that project site soils are moderately susceptible to wind and water erosion hazards. Construction activities would involve grading, excavating, trenching, moving, filling, and temporary stockpiling of soil within the project site. Construction activities would remove vegetative cover and existing paving and would expose site soils to erosion via wind in the summer months, and to surface water runoff during storm events. Sediment from construction activities could be transported within stormwater runoff and could drain to off-site areas and degrade local water quality. Therefore, this impact would be potentially significant.

Mitigation Measure GEO-1: Implement Mitigation Measure HYDRO-1, “Prepare and Implement a Storm Water Pollution Prevention Plan and an Erosion and Sediment Control Plan, and Implement Best Management Practices.”

The proposed project shall comply with applicable regulations designed to reduce or eliminate construction-related water quality effects, including the NPDES Construction General Permit, stormwater quality improvement plan, and Grading, Erosion, and Sediment Control Ordinance. Before development and issuance of the grading permits, an application for coverage under the Construction General Permit (Order No. 2009-0009-DWQ, as amended by 2010-0014-DWQ and 2012-006-DWQ) and an erosion and sediment control plan shall be submitted to the City. Before construction may begin, a NOI shall be filed with the Central Valley RWQCB and a project-specific SWPPP shall be developed to minimize erosion and transport of sediment, meet water quality objectives identified in the Water Quality Control Plan for the Sacramento and San Joaquin River Basins, and protect beneficial uses. BMPs included in the SWPPP shall include measures such as installing silt fences, covering stockpiled soils, and locating stockpiled soils away from storm drain inlets. Through the stormwater quality improvement plan, City staff will provide guidance on BMPs to reduce sediment in construction site runoff and reduce other pollutants such as litter and concrete wastes through good-housekeeping procedures and proper waste management. The City’s process includes having City staff complete inspections to verify that the erosion and sediment control plan and SWPPP are implemented correctly.

An erosion and sediment control plan shall be developed that includes a site map and a description of BMPs designed to control dust and stabilize the construction site road and entrance, and a description of the methods of storage and disposal of construction materials. Appropriate BMPs for the erosion and sediment control plan may include but are not limited to the following:
• Schedule work to minimize soil-disturbing activities during the rainy season and schedule major grading operations for the dry season when practical.

• Cover exposed soil to reduce its exposure to rainfall, reserve existing vegetation where feasible, and apply mulch or hydrosed areas until permanent stabilization is established.

• Apply water or other dust palliatives to prevent dust nuisance; prevent overwatering that can cause erosion. Alternatively, cover small stockpiles.

• Install silt fences, sediment basins, sediment traps, check dams, fiber rolls, sand or gravel bag barriers, straw bale barriers, vegetated swales, approved chemical treatment, storm drain inlet protection, or other low impact development measures to minimize the discharge of sediment. Cover all stockpiled soil until it is needed. Cover all soil in haul trucks.

• Stabilize the construction site entrance to prevent tracking of sediment onto public roads by construction vehicles. Stabilize on-site vehicle transportation routes immediately after grading to prevent erosion and control dust.

Remove litter from the construction site at least once daily. Dispose of packing materials immediately in an enclosed container.

This mitigation measure would require preparation of grading and erosion and sediment control plans and implementation of BMPs to reduce erosion and contain stormwater runoff during construction activities. Implementation of this mitigation measure would also help to reduce construction-related erosion by requiring preparation of a SWPPP and associated BMPs. Therefore, implementation of Mitigation Measure GEO-1 would reduce this impact to a less-than-significant level.

c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?

Less-than-Significant Impact. As described previously, project site soils consist of stable Pleistocene-age sediments of the Riverbank formation and compacted artificial fill, and there are no known areas of unstable soils such as steep slopes or creek banks that would represent a building hazard. Therefore, this impact would be less than significant.

d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994, as updated), creating substantial risks to life or property?

Less-than-Significant Impact. Expansive soils shrink and swell as a result of moisture change. These volume changes can result in damage over time to building foundations, underground utilities, and other subsurface facilities and infrastructure if they are not designed and constructed appropriately to resist the damage associated with changing soil conditions. A review of NRCS (2013) soil survey data indicates that the locations where project-related
earthmoving activities would occur are composed of soil types with a low shrink-swell potential (see Table 3.6-1). Therefore, this impact would be less than significant.

e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?

No Impact. Wastewater treatment for the proposed project would continue to be provided by the City of Sacramento via underground sewer pipelines. Thus, the proposed project would have no impact related to soil suitability for use of septic tanks or alternative wastewater disposal systems.
3.7 GREENHOUSE GAS EMISSIONS

Would the project:

a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant effect on the environment?

b) Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

Environmental Setting

Certain gases in the earth’s atmosphere, classified as greenhouse gases (GHGs), play a critical role in determining the earth’s surface temperature. A portion of the solar radiation that enters the earth’s atmosphere is absorbed by the earth’s surface, and a smaller portion of this radiation is reflected back toward space. This infrared radiation (i.e., thermal heat) is absorbed by GHGs within the earth’s atmosphere. As a result, infrared radiation released from the earth that otherwise would have escaped back into space is instead “trapped,” resulting in a warming of the atmosphere. This phenomenon, known as the “greenhouse effect,” is responsible for maintaining a habitable climate on the earth.

GHGs are present in the atmosphere naturally, are released by natural and anthropogenic sources, and are formed from secondary reactions taking place in the atmosphere. Natural sources of GHGs include the respiration of humans, animals and plants, decomposition of organic matter, and evaporation from the oceans. Anthropogenic sources include the combustion of fossil fuels, waste treatment, and agricultural processes.

GHG emissions related to human activities have been determined as “extremely likely” responsible (indicating 95% certainty) for intensifying the greenhouse effect and leading to a trend of unnatural warming of the earth’s atmosphere and oceans, with corresponding effects on global circulation patterns and climate (ARB 2014). The quantity of GHGs that it takes to ultimately result in climate change is not precisely known; however, no single project alone is expected to measurably contribute to a noticeable incremental change in the global average temperature, or to a global, local, or micro climate.

Regulatory Setting

Federal

The U.S. Supreme Court held that EPA must consider regulation of motor vehicle GHG emissions. In Massachusetts v. Environmental Protection Agency (2007) 549 U.S. 497, 12
states (including California) and cities along with several environmental organizations sued to require EPA to regulate GHGs as pollutants under the CAA (127 S. Ct. 1438 [2007]). The Supreme Court ruled that GHGs fit within the CAA’s definition of a pollutant and that EPA had the authority to regulate GHGs. On December 7, 2009, the EPA Administrator signed two distinct findings regarding GHGs under Section 202(a) of the CAA:

- **Endangerment Finding:** The current and projected concentrations of the six key GHGs—carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride—in the atmosphere threaten the public health and welfare of current and future generations.

- **Cause or Contribute Finding:** The combined emissions of these GHGs from new motor vehicles and new motor vehicle engines contribute to the GHG pollution that threatens public health and welfare.

State

In 2006, California passed the California Global Warming Solutions Act of 2006 (Assembly Bill [AB] 32; California Health and Safety Code Section 38500 et seq.). AB 32 further details and puts into law the mid-term GHG reduction target established in Executive Order S-3-05: reduce GHG emissions to 1990 levels by 2020. AB 32 also identifies ARB as the state agency responsible for the design and implementation of emissions limits, regulations, and other measures to meet the target.

In December 2008, ARB adopted its *Climate Change Scoping Plan* (Scoping Plan), which contains the main strategies California will implement to achieve the required GHG reductions required by AB 32 (ARB 2008). The Scoping Plan also includes ARB-recommended GHG reductions for each emissions sector of California’s GHG inventory. ARB further acknowledges that decisions about how land is used will have large impacts on the GHG emissions that will result from the transportation, housing, industry, forestry, water, agriculture, electricity, and natural gas emissions sectors.

ARB is required to update the Scoping Plan at least once every 5 years to evaluate progress and develop future inventories that may guide this process. ARB approved the *First Update to the Climate Change Scoping Plan: Building on the Framework* in June 2014 (ARB 2014). The Scoping Plan update includes a status of the 2008 Scoping Plan measures and other state, federal, and local efforts to reduce GHG emissions in California and potential actions to further reduce GHG emissions by 2020.

Local

On February 14, 2012, to directly address the issue of climate change and GHG emissions, the City of Sacramento adopted its climate action plan (CAP). The intent of the CAP is to identify the nature of GHG emissions in the city and to implement policies, actions, and measures to reduce existing and future GHG emissions.
In addition, in November 2014, SMAQMD adopted quantitative thresholds of significance for construction and operational GHG emissions (SMAQMD 2014a). These adopted GHG thresholds of significance are used in this analysis to evaluate the proposed project's GHG emissions.

The CAP established GHG emissions reduction goals of 15% below 2005 levels by the year 2020, 38% below 2005 levels by the year 2030, and 83% below 2005 levels by the year 2050. The CAP outlines seven strategies to meet these goals (City of Sacramento 2012). The City of Sacramento's CAP meets the requirements of State CEQA Guidelines Section 15183.5. Therefore, it is a “qualified CAP” that can be used to streamline CEQA review when projects are determined to be consistent with the CAP. With respect to this analysis, the proposed project will be evaluated for its consistency with the CAP’s strategies and measures.

Impacts and Mitigation Measures

a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?

Less-than-Significant Impact. Construction-related GHG exhaust emissions would be generated by sources such as heavy-duty off-road equipment, trucks hauling materials to the project site, and worker commute vehicles. Operational emissions would be associated with worker commutes (i.e., mobile sources), energy consumption (i.e., electricity and natural gas), water consumption, and waste disposal. GHG emissions were estimated using the same methodology discussed earlier in Section 3.3, “Air Quality.” CalEEMod Version 2012.2.2 can estimate GHG emissions from construction and operational activities in units of carbon dioxide equivalents (CO₂e).

SMAQMD has established quantitative significance thresholds for evaluating GHG emissions in CEQA analyses. The screening level is 1,100 metric tons (MT) CO₂e per year for construction or operation of a land use development project (SMAQMD 2014b). Any residential, commercial, or industrial project that would generate more than 1,100 MT CO₂e per year would make a cumulatively considerable incremental contribution to climate change.

The maximum annual emissions during construction of the proposed project would occur in 2016 and were estimated at 944 MT CO₂e per year. The total construction-related GHG emissions for the proposed project were estimated at 1,540 MT CO₂e.

Operation of the rehabilitated Headquarters Building and site would be largely the same as existing operation. Therefore, the net change in operational GHG emissions is anticipated to be nominal and this GHG analysis assumes the same level of on-road vehicle activity for existing conditions and the proposed project. It should be noted that the rehabilitated SMUD Headquarters Building would be more energy and water efficient than the existing building, and thus, the proposed project would likely result in a net decrease in operational GHG emissions.

The total construction and operational GHG emissions associated with the proposed project would be less than the threshold of 1,100 MT CO₂e per year. Therefore, the proposed project
would not generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment. The impact would be **less than significant**.

b) **Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?**

Less-than-Significant Impact. ARB’s *First Update to the Climate Change Scoping Plan: Building on the Framework* includes measures to meet California’s goal of reducing emissions to 1990 levels by 2020 and reiterates the state’s role in the long-term goal established in Executive Order S-3-05, which is to reduce GHG emissions to 80% below 1990 levels by 2050.

The Scoping Plan update provides discussions of sector-specific (e.g., transportation) issues, technologies, needs, and ongoing state activities to significantly reduce emissions through 2050. Achieving California’s long-term goal will require improved vehicle efficiency, reduced carbon content of fuels, planning and building of communities to reduce vehicular GHG emissions and provide more transportation options, and improved efficiency throughout the existing transportation systems (ARB 2014).

ARB’s Scoping Plan update includes measures that would indirectly address GHG emissions from construction activities, including the phasing-in of cleaner technology for diesel engine fleets and the development of a Low Carbon Fuel Standard. Policies formulated under the mandate of AB 32 that apply to construction-related activity, either directly or indirectly, are assumed to be implemented statewide and would affect the proposed project if those policies are implemented before construction begins. The proposed project would comply with any mandate or standards set forth by the Scoping Plan update.

The City’s Construction and Demolition Ordinance became effective on January 1, 2011, and requires that a minimum 50% of construction wastes generated by the demolition and remodeling of buildings be recycled or reused. No additional measures for reducing GHG emissions that would apply to the proposed project’s construction activities are included in the CAP or other applicable plans.

The completed project would result in more efficient use of energy and resources, and vehicular and pedestrian access to the site and circulation within the site would be improved. The number of employees at the building over a 10-year period following move-in would be similar to the number of employees currently housed at the headquarters site. Thus, long-term operational activities would not conflict with GHG reduction measures from the Scoping Plan or CAP.

Some of the reallocated employees would commute to the EC-OC. The EC-OC has capacity to house these additional employees. The EIR prepared for the EC-OC (SMUD 2010a) previously analyzed and addressed (i.e., in Mitigation Measure Air-2 from EC-OC draft EIR) impacts of GHG emissions at full occupancy of the building. Therefore, the additional trips to the EC-OC by the relocated employees would not result in any new impacts related to GHGs not already addressed in the EC-OC draft EIR and therefore are not evaluated further in this analysis.

As discussed earlier, the proposed project does not exceed the threshold of significance for GHG emissions. The approach to developing a threshold of significance for GHG emissions is to identify the level of emissions for which a project would not be expected to substantially
conflict with existing California legislation that has been adopted to reduce statewide GHG emissions. Therefore, the project would not conflict with any applicable plan, policy, or regulation for the purpose of reducing GHG emissions. This impact would be less than significant.
3.8 HAZARDS AND HAZARDOUS MATERIALS

Would the project:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials? ☐ ☐ ☒ ☐

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment? ☐ ☒ ☐ ☐

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within ¼ mile of an existing or proposed school? ☐ ☐ ☒ ☐

d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code §65962.5 and, as a result, would it create a significant hazard to the public or to the environment? ☐ ☐ ☐ ☒

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or a public use airport, would the project result in a safety hazard for people residing or working in the project area? ☐ ☐ ☐ ☒

f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area? ☐ ☐ ☐ ☒

g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan? ☐ ☒ ☐ ☐

h) Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands? ☐ ☐ ☒ ☐

Environmental Setting

AECOM performed a Limited Phase I Environmental Site Assessment (ESA) at the SMUD Headquarters Building located at 6201 S Street (including 13.66 acres of the surrounding headquarters grounds), the 59th Street trailer location located at 1708 59th Street, and the Field Reporting Facility trailer location at 6100 Folsom Boulevard (AECOM 2014b). The Limited Phase I ESA included a review of local, state, and federal environmental record sources;
historical records review; aerial photographs; Sanborn Maps; and physical setting sources. AECOM conducted a site reconnaissance of accessible areas on August 14, 2014, to determine current conditions; to check for the storage, use, production, or disposal of hazardous or potentially hazardous materials; and to interview persons knowledgeable about current and past site use. Specific findings of the Limited Phase I ESA are discussed below.

Results of Records Search for Hazardous Materials

As part of the Limited Phase I ESA, AECOM searched several publicly available databases maintained by the State of California and EPA, to ascertain whether any known hazardous materials are present.

A total of eight sites are listed in the leaking underground storage tank (UST) incident reports and are adjacent to the subject property. Leaking UST tank cases for seven of the eight sites have been completed and are considered closed. The eighth site (A-A Auto Services, located at 6101 Folsom Boulevard) is eligible for closure.

The SWRCB’s GeoTracker Web site, which provides data relating to leaking USTs and other types of soil and groundwater contamination, along with associated cleanup activities, identified the following contaminated sites located along the contiguous property boundary:

- Open site assessments are being conducted at the former locations of the Mission Laundry facility and Community Linen Rental Service facility, both reportedly steam laundry businesses. Currently, the parcel is a parking lot used by SMUD employees and is the location of SMUD’s former hydrogen vehicle fueling facility. The contaminants could potentially migrate onto the project site.

- An open site assessment at the former Kramer Carton Company for tetrachloroethylene (PCE) and trichloroethylene (TCE) is currently listed. The contaminants could potentially migrate onto the project site. Currently no cleanup action exists for this site.

These sites have been identified as recognized environmental conditions, which are defined as the presence or likely presence of any hazardous substances or petroleum products in, on or at a property.

Oil and Hazardous Materials

Approximately 490 gallons of diesel fuel are stored in the tank generator northeast of the Headquarters Building. No leaks or noticeable staining have been reported from the use of the generator.

Hydraulic Equipment

One hydraulic lift station is located in the former transportation department located in the basement of the SMUD Headquarters Building. The hydraulic lift station contains one hydraulic fluid tank (of unknown volume), an oil-water skimmer, and associated hoses. The current integrity of the UST and its content have not been determined. No records of hydraulic fluid
releases at the subject property related to the lift station have been found or are known to exist. The hydraulic lift has been identified as a recognized environmental condition.

Water Wells

Two closed-loop cooling-water injection wells are located in the northern grounds of the SMUD Headquarters Building. These wells have been out of commission for more than 20 years and as of November 2014 were capped and decommissioned.

Asbestos and Lead-Based Paint

Asbestos-containing materials (ACMs), including sprayed fireproofing, cement plaster finishes, floor tiles and adhesives, pipe insulation, and roofing materials, are present in the Headquarters Building. Asbestos is designated as a hazardous substance when the fibers have the potential to become airborne because the fibers are small enough to lodge in lung tissues and adversely affect human health. The presence of ACMs in existing buildings poses an inhalation threat only if the ACMs are found to be in a friable state. If the ACMs are not friable, there is no inhalation hazard because asbestos fibers remain bound in the material matrix. Emissions of asbestos fiber to the ambient air can occur during activities such as rehabilitation or demolition of structures made with ACMs (e.g., insulation).

Lead-based paints are also present in the Headquarters Building. Lead is a highly toxic metal that was used until the late 1970s in a number of products, most notably paint. Human exposure to lead has been determined by EPA and the U.S. Department of Labor, Occupational Safety and Health Administration (OSHA) to be an adverse health risk. Primary sources of lead exposure are deteriorating lead-based paint, lead-contaminated dust, and lead-contaminated soil.

Polychlorinated Biphenyls

Dielectric fluids containing polychlorinated biphenyls (PCBstrails) have been widely used as coolants and lubricants in transformers, capacitors, and other electric equipment because of their insulating and nonflammable properties. Limited sampling of PCBs has been conducted in the Headquarters Building. A preliminary PCB survey detected PCBs in concentrations up to 22,000 milligrams per kilogram in the bulk sample of cast panel and window casing sealants. The window casing sealants are still in place and may be removed during rehabilitation or left behind if sealed and not posing threats to employee safety.

In general, transformers older than from 1978 are suspected of containing PCB-containing fluids. Two electrical transformers are located in the basement of the SMUD Headquarters Building. The transformer area and adjacent ground could not be visually inspected at the time of the site reconnaissance.

Wildfire Risk

PRC Sections 4201–4204 and Government Code Sections 51175–51189 require identification of fire hazard severity zones within the state of California. The California Department of Forestry
and Fire Protection (CAL FIRE) has established a fire hazard severity classification system. Fire prevention areas considered to be under state jurisdiction are referred to as “state responsibility areas.” In state responsibility areas, CAL FIRE is required to delineate three hazard ranges: moderate, high, and very high. “Local responsibility areas,” which are under the jurisdiction of local entities (e.g., cities, counties), are required only to identify very high fire hazard severity zones.

The project site is not located within a state responsibility area as identified by CAL FIRE (CAL FIRE 2007). In addition, the project site is not identified by the City as susceptible to an urban wildfire (City of Sacramento 2009:6.10-18).

Regulatory Setting

Federal

Hazardous Materials Handling

EPA is primarily responsible for enforcing and implementing federal laws and regulations pertaining to hazardous materials. Applicable regulations are contained mainly in CFR Titles 29, 40, and 49. Hazardous materials, as defined in the CFR, are listed in 49 CFR 172.101. Management of hazardous materials is governed by the following laws:

- **Resource Conservation and Recovery Act of 1976 (RCRA):** The RCRA (42 U.S. Code [USC] 6901 et seq.) established an all-encompassing federal regulatory program for hazardous substances. Under the RCRA, EPA regulates the generation, transportation, treatment, storage, and disposal of hazardous substances. The RCRA was amended in 1984 by the Hazardous and Solid Waste Amendments of 1984, which specifically prohibits the use of certain techniques to dispose of various hazardous substances. EPA has delegated many of the RCRA requirements to the California Department of Toxic Substances Control (DTSC).

- **Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA):** CERCLA, also called the Superfund Act (42 USC 9601 et seq.), created a trust fund to provide broad federal authority for releases or threatened releases of hazardous substances that could endanger public health or the environment.

- **Superfund Amendments and Reauthorization Act of 1986:** CERCLA created the Superfund hazardous substance cleanup program (Public Law 96-510, enacted December 11, 1980). The program was enlarged and reauthorized by the Superfund Amendments and Reauthorization Act of 1986 (Public Law 99-499).

These laws and associated regulations include specific requirements for facilities that generate, use, store, treat, and/or dispose of hazardous materials. EPA compiles a list of national priorities among the known or threatened releases of hazardous substances, pollutants, or contaminants throughout the United States and its territories, known as the National Priorities List. These locations are commonly referred to as “Superfund sites.” EPA provides oversight and
supervision for federal Superfund investigation/remediation projects, evaluates remediation technologies, and develops hazardous materials disposal restrictions and treatment standards.

In addition, the federal Emergency Planning and Community Right-to-Know Act of 1986 imposes planning requirements for hazardous materials to help protect local communities in the event of accidental release of hazardous substances. OSHA regulates use and safety considerations related to blasting activities. The Bureau of Alcohol, Tobacco, Firearms and Explosives of the U.S. Department of Justice regulates storage of explosives and blasting agents (27 CFR 55, “Commerce in Explosives”).

Regulation of Polychlorinated Biphenyls

The Toxic Substances Control Act of 1976 (15 USC 2605) banned the manufacture, processing, distribution, and use of PCBs in totally enclosed systems. PCBs are considered hazardous materials because of their toxicity. They have been shown to cause cancer in animals, along with effects on the immune, reproductive, nervous, and endocrine systems, and studies have shown evidence of similar effects in humans. The EPA Region 9 PCB Program regulates remediation of PCBs in several states, including California. Title 40 of the CFR, Section 761.30(a)(1)(vi)(A) states that all owners of electrical transformers containing PCBs must register their transformers with EPA. Specified electrical equipment manufactured between July 1, 1978, and July 1, 1998, that does not contain PCBs must be marked by the manufacturer with the statement “No PCBs” (Section 761.40(g)). Transformers and other items manufactured before July 1, 1978, and containing PCBs must be marked as such.

Asbestos

The federal Clean Air Act was enacted in 1970. The most recent major amendments by Congress were made in 1990. The CAA required EPA to establish primary and secondary national ambient air quality standards. The CAA also required each state to prepare an air quality control plan, referred to as a SIP. Section 112 of the CAA defines “hazardous air pollutants” and sets threshold limits. Asbestos-containing substances are regulated by EPA under the CAA. Additional information about the CAA is contained in Section 3.3, “Air Quality.”

Worker Safety Requirements

OSHA is responsible at the federal level for ensuring worker safety. OSHA sets federal standards for implementation of workplace training, exposure limits, and safety procedures for the handling of hazardous substances and addressing other potential hazards. OSHA also establishes criteria by which each state can implement its own health and safety program.

State

Hazardous Materials Handling

The California Hazardous Materials Release Response Plans and Inventory Law of 1985 requires preparation of hazardous materials business plans and disclosure of hazardous materials inventories. A business plan includes an inventory of hazardous materials handled,
facility floor plans showing where hazardous materials are stored, an emergency response plan, and provisions for employee training in safety and emergency response procedures (California Health and Safety Code, Division 20, Chapter 6.95, Article 1). The business plan program is administered by the California Emergency Management Agency. A business plan is required if a hazardous substance would be stored for more than 30 days in any of the following quantities:

- 500 gallons or more of any solid,
- 55 gallons or more of any liquid,
- 200 cubic feet or more of any compressed gas, or
- any acutely hazardous substance or radiological material that meets the federal threshold planning quantities listed in 40 CFR Part 355, Subpart A.

Cleanup of Contaminated Sites

Several state regulatory structures govern cleanup of contaminated sites in California. Many of these programs are regulated by DTSC: RCRA corrective actions, state Superfund sites, brownfields programs, and voluntary cleanups. The SWRCB (through RWQCBs and some local agencies) regulates releases with the potential to affect water resources under programs such as the UST Program and the Spills, Leaks, Investigations, and Cleanups Program. Regulatory authority for these programs may be delegated by the federal government (as with RCRA corrective actions directed by DTSC) or may be found in the California Health and Safety Code. The specifics of these regulations vary, but generally they require that sites where hazardous materials have been released be reported, investigated, and remediated, and that any hazardous materials be disposed of appropriately. These programs govern a range of pollutants, such as solvents, petroleum fuels, heavy metals, and pesticides in surface water, groundwater, soil, sediment, and air.

Worker Safety Requirements

The California Department of Industrial Relations, Division of Occupational Safety and Health (Cal/OSHA) assumes primary responsibility for developing and enforcing workplace safety regulations in California. Cal/OSHA regulations pertaining to the use of hazardous materials in the workplace (CCR Title 8) include requirements for safety training, availability of safety equipment, accident and illness prevention programs, hazardous substance exposure warnings, and preparation of emergency action and fire prevention plans. Cal/OSHA enforces hazard communication program regulations that contain training and information requirements. These requirements include procedures for identifying and labeling hazardous substances, communicating hazard information related to hazardous substances and their handling, and preparing health and safety plans to protect workers and employees at hazardous waste sites. The hazard communication program requires that employers make material safety data sheets available to employees and document employee information and training programs.
Unified Program

The California Environmental Protection Agency grants to qualifying local agencies oversight and permitting responsibility for certain state programs pertaining to hazardous waste and hazardous materials. This is achieved through the Unified Program, created by state legislation in 1993 to consolidate, coordinate, and make consistent the administrative requirements, permits, inspections, and enforcement activities for the following emergency and management programs:

- Hazardous materials release response plans and inventories (business plans)
- California Accidental Release Prevention Program
- UST Program
- Aboveground Petroleum Storage Act Requirements for Spill Prevention, Control, and Countermeasure plans
- Hazardous Waste Generator and On-site Hazardous Waste Treatment (tiered permitting) Programs
- California Uniform Fire Code: Hazardous material management plans and hazardous material inventory statements

California Accidental Release Prevention Program

The goal of the California Accidental Release Prevention Program, overseen by the California Emergency Management Agency, is to reduce the likelihood and severity of the consequences of releases of extremely hazardous materials. Any business that handles regulated substances is required to prepare a risk management plan. Regulated substances are chemicals that pose a major threat to public health and safety or the environment because they are highly toxic, flammable, or explosive, such as ammonia, chlorine gas, hydrogen, nitric acid, and propane. The risk management plan is a detailed engineering analysis of the potential accident factors present at a business and the measures that can be implemented to reduce this accident potential. The risk management plan must provide safety information, hazard data, operating procedures, and training and maintenance requirements.

Public Resources Code Section 65962.5 (Cortese List)

The provisions of PRC Section 65962.5 are commonly referred to as the “Cortese List” (after the legislator who authored the legislation that enacted it). The Cortese List is a planning document used by state and local agencies to comply with CEQA requirements in providing information about the location of hazardous materials release sites. PRC Section 65962.5 requires Cal/EPA to develop an updated Cortese List annually, at minimum. DTSC is responsible for a portion of the information contained in the Cortese List. Other state and local government agencies in California are required to provide additional information about releases of hazardous materials for the Cortese List.
Asbestos Abatement

The ARB Asbestos Program oversees implementation of, and compliance with the National Emission Standard for Hazardous Air Pollutants for Asbestos, and investigates all related complaints, as specified by California Health and Safety Code Section 39658(b)(1). For areas in “nondelegated” districts without asbestos programs, ARB reviews and investigates notifications of demolition or rehabilitation for compliance with the National Emission Standard for Hazardous Air Pollutants for Asbestos as established in Rule 902. The project site is located within a “nondelegated” district (ARB 2010).

Local

Sacramento County Environmental Management Department, Hazardous Materials Division

The Hazardous Materials Division of the Sacramento County Environmental Management Department is the designated Certified Unified Program Agency for the City of Sacramento and Sacramento County. As the Certified Unified Program Agency, the Hazardous Materials Division is responsible for implementing six statewide environmental programs for Sacramento County:

- Underground storage of hazardous substances (USTs)
- Hazardous materials business plan requirements
- Hazardous waste generator requirements
- California Accidental Release Prevention Program
- Uniform Fire Code hazardous materials management plan
- Aboveground storage tanks (spill prevention control and countermeasures plan)

Sacramento 2030 General Plan

The following policies from the Public Health and Safety Element of the Sacramento 2030 General Plan (City of Sacramento 2009) are applicable to the proposed project.

- **Policy PHS 3.1.1 Investigate Sites for Contamination.** The City shall ensure buildings and sites are investigated for the presence of hazardous materials and/or waste contamination before development for which City discretionary approval is required. The City shall ensure appropriate measures are taken to protect the health and safety of all possible users and adjacent properties.

- **Policy PHS 3.1.2 Hazardous Material Contamination Management Plan.** The City shall require that property owners of known contaminated sites work with Sacramento County, the State, and/or Federal agencies to develop and implement a plan to investigate and manage sites that contain or have the potential to contain hazardous
Impacts and Mitigation Measures

a) **Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?**

Less-than-Significant Impact. Construction of the proposed project would involve the storage, use, and transport of hazardous materials (e.g., asphalt, fuel, lubricants, paint) during construction activities. Operation of the proposed project would involve the use of small quantities of common hazardous materials such as cleaning solvents as well as fertilizers, herbicides, and pesticides that are currently applied as a part of landscape operations.

The California Highway Patrol and Caltrans are responsible for enforcing regulations related to the transportation of hazardous materials on local roadways, and the use of these materials is regulated by DTSC, as outlined in CCR Title 22. SMUD and its construction contractors would be required to comply with the California Environmental Protection Agency’s Unified Program. Regulated activities would be managed by the Sacramento County Environmental Management Department, which is the designated Certified Unified Program Agency, and in accordance with the regulations included in the Unified Program (e.g., hazardous materials release response plans and inventories, California Uniform Fire Code hazardous material management plans and inventories). Such compliance would reduce the potential for accidental release of hazardous materials during construction and operation of the proposed project.

The proposed project would be required to implement and comply with existing hazardous material regulations. These regulations are specifically designed to protect the public health through improved procedures for the handling of hazardous materials, better technology in the equipment used to transport these materials, and a more coordinated and rapid response to emergencies. Therefore, this impact would be **less than significant**.

b) **Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?**

Less-than-Significant Impact with Mitigation Incorporated. As discussed previously under “Environmental Setting,” existing hazardous materials in the Headquarters Building include but are not limited to asbestos-containing sprayed fireproofing, cement plaster finishes, floor tiles and adhesives, pipe insulation, and roofing materials; lead-based paints; potential PCBs associated with window casing sealants and electrical transformers; and an underground hydraulic oil tank from an abandoned vehicle lift. Two surface features resembling fill ports were observed outside the Headquarters Building, and soil and grass around these areas has been disturbed. In addition, two closed-loop cooling-water injection wells are located in the northern grounds of the SMUD Headquarters Building. These wells were capped and decommissioned as of November 2014. Open site assessments are being conducted at properties adjacent to the project site. Contaminants from the former Mission Laundry facility, Community Linen Rental Service facility, and Kramer Carton Company have been identified as...
recognized environmental conditions. Migration of contaminants from these facilities could have the potential to contaminate groundwater on the project site. During exterior and interior rehabilitation of the Headquarters Building and construction of building additions and alterations, construction workers could come in contact with and be exposed to the hazardous materials listed above that are present within the Headquarters Building and on the project site. Further, the presence of hazardous materials could create a significant environmental or health hazard for employees or visitors, if left in place. Because construction workers and the general public could be exposed to hazardous materials present on-site during construction and operation of the proposed project and hazardous materials on-site could create an environmental or health hazard if left in place, this impact would be potentially significant.

Mitigation Measure HAZ-1: Retain a Licensed Professional to Investigate Known or Unknown Hazards and Hazardous Materials and Implement Required Measures, as Necessary.

To reduce health hazards associated with potential exposure to hazardous substances, SMUD and/or its construction contractors shall implement the following measures before the start of exterior and interior rehabilitation of the Headquarters Building and construction of building additions and alterations:

- SMUD shall retain a licensed contractor to remove the UST, oil-water skimmer, and other equipment associated with the hydraulic lift located in the basement of the SMUD Headquarters Building. Such removal shall occur in accordance with Sacramento County Environmental Management Department and RWQCB regulations, including SWRCB regulations outlined in CCR Title 23, Division 3, Chapter 16. These regulations establish separate monitoring requirements for existing USTs; establish uniform requirements for unauthorized release reporting and for repair, upgrade, and closure of USTs; and specify variance request procedures. The appropriate federal, state, and local agencies shall be notified if evidence of previously undiscovered soil or groundwater contamination (e.g., stained soil, odorous groundwater) is encountered during construction activities. SMUD shall retain a qualified environmental professional to conduct follow-up sampling to characterize the contamination and to identify any required remediation that shall be conducted consistent with applicable regulations. The environmental professional shall prepare a report that includes but is not limited to activities performed for the assessment, a summary of anticipated contaminants and contaminant concentrations at the project site, and recommendations for appropriate handling of any contaminated materials during construction. Any contaminated areas shall be remediated in accordance with recommendations made by the Sacramento County Environmental Management Department, Central Valley RWQCB, DTSC, or other appropriate federal, state, or local regulatory agencies.

- SMUD shall conduct an assessment to identify the contents of the existing electrical transformer located in the basement of the SMUD Headquarters Building. The assessment shall determine whether the existing on-site electrical transformer contains PCBs and whether there are any records of spills from such equipment. If PCBs are identified, the maintenance and/or disposal of the electrical transformer
shall be subject to the regulations of the Toxic Substances Control Act under the authority of the Sacramento County Environmental Management Department.

Mitigation Measure HAZ-2: Remove and Dispose of On-Site Asbestos-Containing Materials.

Before and during exterior and interior rehabilitation of the Headquarters Building, SMUD shall ensure that asbestos-containing materials are properly removed by a licensed abatement contractor in accordance with EPA and Cal/OSHA standards and ARB SMAQMD Asbestos Rule 902. The licensed abatement contractor shall develop and implement a worker protection program in accordance with OSHA’s regulations pertaining to asbestos to minimize worker risk of asbestos exposure. The plan may include but is not limited to the following components:

- the use of engineering controls and work practices, where feasible, designed to reduce exposure (for example, washing hands before eating and providing shower facilities for use before employees leave the work site);
- the provision of protective clothing and, where necessary, respiratory protection in accordance with 29 CFR 1910.134; and
- disposal of wastes from abatement and demolition activities at a landfill(s) licensed to accept such waste.

Once all abatement measures have been implemented, a Certified Asbestos Consultant shall conduct a clearance examination and provide written documentation to the Sacramento County Environmental Management Department and SMAQMD that testing and abatement have been completed in accordance with all federal, state, and local laws and regulations.

Implementation of Mitigation Measures HAZ-1 and HAZ-2 would reduce the impact related to exposure to hazardous substances to a **less-than-significant** level because previously undiscovered and known hazardous substances would be removed and properly disposed of by a licensed contractor in accordance with federal, state, and local regulations.

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

Less-than-Significant Impact. No K-12 schools exist or are proposed within one-quarter mile of the project site. Phoebe Hearst Elementary School and Saint Mary’s School are both located more than one-quarter mile from the project site (approximately 0.4 mile and 0.5 mile, respectively).

However, the Lighthouse Child Development Center and Preschool is located approximately 0.2 mile west of the project site. As discussed previously under Question a), small quantities of hazardous materials such as fuels, oils, and lubricants would be used in construction of the proposed project. Operation of the proposed project would involve the use of small quantities of common hazardous materials such as cleaning solvents, as well as fertilizers, herbicides, and
pesticides that are currently applied as a part of landscape operations. None of these materials are classified as acutely hazardous. The proposed project would be required to implement and comply with existing regulations associated with the transport, use, and disposal of hazardous materials. Potential exposure to existing hazardous materials within the Headquarters Building and groundwater containments during construction would be localized to the project site and would not affect off-site land uses. Therefore, this impact would be **less than significant.**

d) **Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code §65962.5 and, as a result, would it create a significant hazard to the public or the environment?**

No Impact. Based on a search of hazardous waste databases maintained by the SWRCB, DTSC, and EPA, the project site is not included on a list of hazardous materials sites compiled under the requirements of the Cortese List. Therefore, the proposed project would have **no impact** associated with creating a hazard to the public or environment.

e, f) **For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area; or for a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?**

No Impact. The project site is not located within the boundaries of an airport land use plan, nor is it located within 2 miles of a public airport or within the vicinity of a private airstrip. Therefore, the proposed project would have **no impact** on public airports or private airstrips.

g) **Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?**

Less-than-Significant Impact with Mitigation Incorporated. S Street and 61st Street provide off-site access to the project site and are used for emergency response and evacuation in the project area. Entrances, gates, and internal roadways would be modified to provide improved traffic circulation within the site and to facilitate improved fire department access to the Headquarters Building (see Figure 2-7). However, S Street could be affected intermittently during construction of proposed improvements to the 15-inch storm drain pipeline or connections to the 12-inch water line located within the S Street right-of-way. Because construction activities could result in temporary lane closures, increased truck traffic, and other roadway effects that could interfere with or slow down emergency vehicles, temporarily increasing response times and impeding existing services, this impact would be **potentially significant.**

Mitigation Measure HAZ-3: Prepare and Implement a Construction Traffic Control Plan.

SMUD and/or its construction contractors shall prepare and implement a traffic control plan for construction activities that may affect road rights-of-way, to facilitate travel of emergency vehicles on affected roadways. The traffic control plan shall follow applicable City of Sacramento standards and shall be approved and signed by a professional
engineer. Measures typically used in traffic control plans include advertising of planned lane closures, warning signage, a flag person to direct traffic flows when needed, and methods to ensure continued access by emergency vehicles. During project construction, access to the existing surrounding land uses shall be maintained at all times, with detours used as necessary during road closures. The traffic control plan shall be submitted to the City of Sacramento Public Works Department for review and approval before the approval of improvement plans.

Implementation of Mitigation Measure HAZ-3 would reduce the potentially significant impact associated with decreased emergency response times during construction to a less-than-significant level by requiring preparation and implementation of a construction traffic control plan that would provide for adequate emergency access during construction activities.

h) Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

No Impact. Because the project site is not within or near an area of high or extremely high fire hazard severity, implementation of the proposed project would not expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas. Therefore, the proposed project would have no impact associated with wildland fire hazards.
3.9 HYDROLOGY AND WATER QUALITY

Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Violate any water quality standards or waste discharge requirements?</td>
<td>❌</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?</td>
<td></td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?</td>
<td></td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>Substantially alter the existing drainage pattern of a site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?</td>
<td></td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>e)</td>
<td>Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?</td>
<td></td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>f)</td>
<td>Otherwise substantially degrade water quality?</td>
<td></td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>g)</td>
<td>Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</td>
<td></td>
<td></td>
<td>❌</td>
</tr>
<tr>
<td>h)</td>
<td>Place within a 100-year flood hazard area structures which would impede or redirect flood flows?</td>
<td></td>
<td></td>
<td>❌</td>
</tr>
<tr>
<td>i)</td>
<td>Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?</td>
<td></td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>j)</td>
<td>Inundation by seiche, tsunami, or mudflow?</td>
<td></td>
<td></td>
<td>❌</td>
</tr>
</tbody>
</table>

Page 125 of 207
Environmental Setting

This section evaluates potential environmental effects related to hydrology and water quality that would result with implementation of the proposed project. The analysis addresses surface water, groundwater, stormwater, flooding, and water quality.

Surface Water Hydrology

The city of Sacramento is located at the confluence of the Sacramento and American Rivers within the Sacramento River Basin. The Sacramento River Basin encompasses about 27,000 square miles and is bounded by the Sierra Nevada to the east, the Coast Ranges to the west, the Cascade Range and Trinity Mountains to the north, and the Delta to the southeast. The three forks of the upper American River originate high in the Sierra Nevada and drain approximately 1,875 square miles of mountainous terrain before converging at Folsom Reservoir. Folsom Dam and Reservoir were constructed to regulate water releases for power generation. Nimbus Dam, which forms Lake Natoma, regulates water released from the Folsom Reservoir hydroelectric facility. The lower American River runs from below Nimbus Dam downstream 23 miles to its confluence with the Sacramento River, and is designated as “Recreational” under both the California Wild and Scenic Rivers Act and the National Wild and Scenic Rivers Act. This highly regulated river system is contained by natural bluffs and terraces, and by constructed levees. The project site is located approximately 0.75 mile southwest of the American River, which at that location is protected by federal levees on both sides.

Flow in the lower American River varies throughout the year and is controlled primarily by water releases at Folsom Dam to reduce flooding or to meet downstream water demands. The mean annual flow in the lower American River (1968 to 1998) is 3,300 cubic feet per second (cfs) and the design capacity of the American River channel (for flood flows) is 115,000 cfs (SCWA et al. 2006:2-4).

Flooding

The American River Flood Control System includes Folsom Dam, Nimbus Dam, an auxiliary dam at Mormon Island, and eight earth-filled dikes. A river corridor management plan was developed in 2002 to achieve long-term solutions to the many flood control, environmental protection, and recreation issues in the lower American River. The goal of the river corridor management plan with regard to flood management is to improve the reliability of the existing flood-control system along the lower American River.

According to the most recent Flood Insurance Rate Map (FIRM) prepared by FEMA’s National Flood Insurance Program, the project site is located outside of the 100- and 500-year floodplains (FEMA 2013) (Figure 3.9-1).

The project site is located within the Folsom Dam inundation area (Sacramento County 2011: Figure III-4).
Figure 3.9-1. Flood Zone Map
Stormwater

Stormwater for the project site is collected through a series of inlets in the parking lots and landscape areas and conveyed through 8-inch, 10-inch, and 12-inch pipes. Stormwater is conveyed southerly with three points of connection to the City’s storm drain system in a 15-inch pipe in S Street. Stormwater is then carried in the 15-inch pipe easterly to 65th Street where it connects to a 60-inch pipe and flows northerly to Sump Pump Station #31. Stormwater is then pumped across the CSUS campus through a drainage system and discharged into the American River.

The on-site pipe network has relatively flat slopes, which limits pipe capacity. Under existing conditions and using the City of Sacramento standards, the site has a 10-year peak discharge of 12 cfs. The capacity of the 15-inch pipe in S Street with a slope of 0.2% is 2.9 cfs under full-flow conditions. Given the relatively flat slopes (close to 0.30%), on-site pipes also have very little capacity when compared to the peak discharge on even a portion of the site. The project site is currently subject to localized flooding as a result of existing deficiencies in the storm drain pipe system. Please see Section 3.17, “Utilities and Service Systems,” for additional discussion of storm drainage infrastructure.

Surface Water Quality

The American River system supports a number of beneficial uses along its three main forks and many tributaries and is generally considered an excellent source of high-quality water. Water from the upper watershed above Folsom Dam generally is of excellent quality regarding mineral and nutrient content and has low concentrations of total dissolved solids. Ambient water quality in the American River is influenced by numerous natural and artificial sources, including soil erosion, discharges from industrial and residential wastewater plants, stormwater runoff, agriculture, recreation activities, mining, timber harvesting, and flora and fauna.

Water from the American River watershed between Folsom Dam and the Sacramento River is suitable for beneficial uses such as municipal and domestic supply, agricultural (irrigation) and industrial supply, hydropower generation, contact and noncontact recreation, warm-water and cold-water fish habitat (including fish migration and spawning habitat), and wildlife habitat (Central Valley RWQCB 2011:II-6.00).

The Section 303(d) impaired waters list for California, issued by the Central Valley RWQCB, identifies the lower American River as being impaired by mercury, PCBs, and unknown toxicity (SWRCB and EPA 2011). The total maximum daily load (TMDL) for PCBs and unknown toxicity is expected to be completed by the Central Valley RWQCB and approved by EPA by 2021. The TMDL for mercury was expected to be finished by 2010; however, it has not yet been completed.

Groundwater Hydrology

The project site is located within the Sacramento Valley Groundwater Basin, within the South American Subbasin. The South American Subbasin is defined as the area bounded on the west by the Sacramento River, on the north by the American River, and on the south by the
Cosumnes and Mokelumne Rivers. The Sierra Nevada represents the approximate eastern edge of the alluvial basin, where little groundwater flows into or out of the groundwater basin from the Sierra Nevada foothills. However, groundwater does interact with adjacent subbasins at greater depths (DWR 2004:1).

Groundwater under the project site is contained within a shallow aquifer (Modesto Formation) and in a deep aquifer (Mehrten Formation) (SCWA et al. 2006:ES-4). The Modesto (formerly known as the Laguna) Formation consists of older alluvial deposits of loosely to moderately compacted sand, silt, and gravel deposited in alluvial fans. These deposits are moderately permeable and are about 100–650 feet thick (DWR 2004:2). The shallow aquifer is typically used for private domestic wells. The Mehrten Formation is between 200 and 1,200 feet thick. The base of the potable water portion of the deep aquifer averages approximately 1,400 feet below ground surface.

Groundwater elevations around the South American Subbasin generally declined consistently from the 1950s and 1960s to about 1980 on the order of 20–30 feet (SCWA et al. 2006:2-27). In general, groundwater levels in the vicinity of the city of Sacramento are now reported to be stable, between 20 feet above and 40 feet below mean sea level, and have fluctuated by no more than 5 feet since 1997 (Sacramento Groundwater Authority 2011:14-15). According to the groundwater elevation contour map included in the Central Sacramento County Groundwater Management Plan, groundwater elevations at the project site are approximately 10–20 feet below mean sea level (SCWA et al. 2006:Figure 2-17).

Recharge of the aquifer system occurs along active river and stream channels where extensive sand and gravel deposits exist, particularly along the American, Cosumnes, and Sacramento River channels. Additional recharge occurs along the eastern boundary of Sacramento County at the transition point from the consolidated rocks of the Sierra Nevada to the alluvial-deposited basin sediments (SCWA et al. 2006:2-26). This recharge is classified as subsurface recharge with underground flow into and out of the South American Subbasin with adjacent groundwater basins. Other sources of recharge include deep percolation from applied surface water and precipitation.

Groundwater Quality

Groundwater in the basin is typically described as calcium magnesium bicarbonate, with minor fractions of sodium magnesium bicarbonate (DWR 2004:3; City of Sacramento 2014:6.2-9). Water quality of the upper aquifer is regarded as superior to that of the lower aquifer, as the lower aquifer contains higher concentrations of iron, manganese, and total dissolved solids. Water from the upper aquifer generally does not require treatment other than disinfection (City of Sacramento 2014:6.2-10). There are no known groundwater contaminant plumes in the project area (SCWA et al. 2006:ES-7).
Regulatory Setting

Federal

Clean Water Act

Water quality objectives for all waters of the United States are established under applicable provisions of Section 303 of the federal Clean Water Act. Under Section 303(d) of the Clean Water Act, states are required to develop lists of water bodies that would not attain water quality objectives after implementation of required levels of treatment by point-source dischargers (municipalities and industries). Section 303(d) requires that the state develop a TMDL for each of the listed pollutants. The TMDL is the amount of loading that the water body can receive and still be in compliance with water quality objectives. The TMDL can also act as a plan to reduce loading of a specific pollutant from various sources to achieve compliance with water quality objectives.

National Pollutant Discharge Elimination System Permits

The NPDES permit program was established in the Clean Water Act to regulate municipal and industrial discharges to surface waters of the United States. Federal NPDES permit regulations have been established for broad categories of discharges, including point-source municipal waste discharges and nonpoint-source stormwater runoff. NPDES permits generally identify effluent and receiving water limits on allowable concentrations and/or mass emissions of pollutants contained in the discharge; prohibitions on discharges not specifically allowed under the permit; and provisions that describe required actions by the discharger, including industrial pretreatment, pollution prevention, self-monitoring, and other activities. The goal of NPDES stormwater regulations is to improve the quality of stormwater discharged to receiving waters to the “maximum extent practicable” through the use of structural and nonstructural BMPs. NPDES permit limits for 303(d) listed pollutants must be consistent with the waste load allocation prescribed in the TMDL.

Federal Emergency Management Agency

FEMA administers the National Flood Insurance Program to provide subsidized flood insurance to communities that comply with FEMA regulations that limit development in floodplains. FEMA also issues FIRMs that identify which land areas are subject to flooding. These maps provide flood information and identify flood hazard zones in the community. The design standard for flood protection covered by the FIRMs is established by FEMA, with the minimum level of flood protection for new development determined to be the 1-in-100 (0.01) annual exceedance probability (AEP) (i.e., the 100-year flood event) (Figure 3.9-1).

State

The Porter-Cologne Water Quality Control Act (Porter-Cologne Act) is California’s statutory authority for the protection of water quality. Under the act, the state must adopt water quality policies, plans, and objectives that protect the state’s waters for the use and enjoyment of the people. The act sets forth the obligations of the SWRCB and RWQCBs to adopt and periodically
update water quality control plans (basin plans). Basin plans are the regional water quality control plans required by both the Clean Water Act and Porter-Cologne Act in which beneficial uses, water quality objectives, and implementation programs are established for each of the nine regions in California. The local applicable basin plan is the Water Quality Control Plan for the Sacramento and San Joaquin River Basins.

The Porter-Cologne Act also requires waste dischargers to notify the RWQCBs of their activities by filing reports of waste discharge and authorizes the SWRCB and RWQCBs to issue and enforce waste discharge requirements (WDRs), NPDES permits, Section 401 water quality certifications, or other approvals. The RWQCBs also have authority to issue waivers to reports of waste discharge and/or WDRs for broad categories of “low threat” discharge activities that have minimal potential for adverse water quality effects when implemented according to prescribed terms and conditions.

Local

NPDES Permit System and Waste Discharge Requirements for Construction

The SWRCB and Central Valley RWQCB have adopted specific NPDES permits for a variety of activities that have potential to discharge wastes to waters of the state. On September 2, 2009, the SWRCB approved a new Construction General Permit (Order 2009-0009-DWQ, as amended by 2010-0014-DWQ and 2012-006-DWQ). The Construction General Permit applies to all land-disturbing construction activities that would disturb 1 acre or more. All of the NPDES permits involve similar processes, including submitting to the Central Valley RWQCB notices of intent to discharge, and implementing SWPPPs that include BMPs to minimize those discharges. As mentioned above, the Central Valley RWQCB may also issue site-specific WDRs, or waivers to WDRs, for certain waste discharges to land or waters of the state.

Construction activities subject to the Construction General Permit include clearing, grading, stockpiling, and excavating. Dischargers must eliminate or reduce nonstormwater discharges to storm sewer systems and other waters. The permit also requires dischargers to consider the use of permanent postconstruction BMPs that would remain in service to protect water quality throughout the life of the project. All NPDES permits also have inspection, monitoring, and reporting requirements. In response to a court decision, the Central Valley RWQCB also implemented mandatory water quality sampling requirements in Resolution 2001-046 for visible and nonvisible contaminants in discharges from construction activities.

Construction Dewatering

Where groundwater levels tend to be shallow, dewatering during construction is sometimes necessary to keep trenches or excavations free of standing water when improvements or foundations/footings are installed. Clean or relatively pollutant-free water that poses little or no risk to water quality may be discharged directly to surface water under certain conditions. The Central Valley RWQCB has adopted a general NPDES permit for short-term discharges of small volumes of wastewater from certain construction-related activities. Permit conditions for the discharge of these types of wastewaters to surface waters are specified in the General Order for Dewatering and Other Low-Threat Discharges to Surface Waters (General Dewatering Permit),
adopted on May 31, 2013 (Order No. 5-00-175, NPDES No. CAG995001). Discharges may be covered by the General Dewatering Permit provided that either (1) they are 4 months or less in duration or (2) the average dry-weather discharge does not exceed 0.25 million gallons per day. The General Dewatering Permit also specifies standards for testing, monitoring, and reporting, receiving-water limitations, and discharge prohibitions. When project construction would exceed 4 months in duration or 0.25 million gallons per day, a project-specific permit from the Central Valley RWQCB is required.

All groundwater discharges to the combined sewer system or separated sewer system are regulated by the City of Sacramento Department of Utilities pursuant to Department of Utilities Engineering Services Policy No. 0001, adopted as Resolution No. 92-439 by the Sacramento City Council. In addition to the state requirements described above, the City requires that any short-term discharge be permitted, or that an approved memorandum of understanding (MOU) for long-term discharges be established, between the discharger and the City. Short-term, limited discharges of 7 days or less must be approved by the City Department of Utilities through an approval letter. Long-term discharges of greater than 7 days must be approved by the City Department of Utilities and the Director of the Department of Utilities through an MOU process. The MOU must specify the type of groundwater discharge, flow rates, and discharge system design, and must include a City-approved contaminant assessment of the proposed groundwater discharge indicating tested levels of constituents, and a City-approved effluent monitoring plan to ensure that contaminant levels remain in compliance with state standards or Central Valley RWQCB–approved levels.

NPDES Municipal Stormwater Permit Program

The SWRCB's Municipal Storm Water Permitting Program regulates stormwater discharges from Municipal Separate Storm Sewer Systems (MS4s). The County of Sacramento and the Cities of Sacramento, Folsom, Citrus Heights, Elk Grove, Rancho Cordova, and Galt are co-permitees to the Sacramento Areawide NPDES MS4 Permit (Sacramento MS4 Permit) (NPDES Permit No. CAS082597, WDR Order No. R5-2008-0142). The intent of the permit is to develop, achieve, and implement a timely, comprehensive, cost-effective stormwater pollution control program to reduce the discharge of pollutants in stormwater runoff to the maximum extent practicable. “Maximum extent practicable” is the performance standard specified in Section 402(p) of the Clean Water Act.

Sacramento Region Stormwater Quality Design Manual

The Sacramento MS4 permittees formed the Sacramento Stormwater Quality Partnership and collaborated and published the *Stormwater Quality Design Manual for the Sacramento and South Placer Regions* in May 2007 to meet the regulatory requirements of their respective municipal stormwater NPDES permits. An updated version of this manual, the *Sacramento Region Stormwater Quality Design Manual*, was completed in May 2014. The manual provides locally adapted information for design and selection of stormwater quality control measures and now incorporates hydromodification management and low impact development design standards.
City of Sacramento Stormwater Quality Improvement Plan

The City prepared a stormwater quality improvement plan in 2007 to reduce the pollution carried by stormwater into local creeks and rivers to the maximum extent practicable. The comprehensive plan includes pollution reduction activities for construction sites, industrial sites, illegal discharges and illicit connections, new development, and municipal operations. The program also includes an extensive public education effort, target pollutant reduction strategy, and monitoring program. The stormwater quality improvement plan includes a wide range of BMPs, control measures, and performance standards.

Central Sacramento County Groundwater Management Plan

The Central Sacramento County Groundwater Management Plan (CSCGMP) was completed in 2006 by Central Sacramento County Groundwater Basin stakeholders, in coordination with the Sacramento County Water Agency. The purpose of the CSCGMP is to establish a framework for maintaining a sustainable groundwater resource for the various users of the Sacramento County Groundwater Basin between the American and Cosumnes Rivers (SCWA et al. 2006:ES-1). The CSCGMP helps overlying water users to maintain a safe, sustainable, and high-quality groundwater resource within a given groundwater basin.

Sacramento City Code

The City’s Grading, Erosion, and Sediment Control Ordinance (Sacramento City Code Chapter 15.88) requires project applicants to prepare erosion and sediment control plans for both project construction and the postconstruction period, as well as preliminary and final grading plans. The ordinance applies to projects where 50 cubic yards or more of soil is excavated and/or disposed and requires BMPs that must be approved by the City’s Department of Utilities.

In addition, the City’s Stormwater Management and Discharge Control Ordinance (Sacramento City Code Chapter 13.16) serves to minimize or eliminate sediment and pollutants in nonstormwater discharges to the stormwater conveyance system and to reduce pollutants in urban stormwater discharges to the maximum extent practicable. Specific control measures must be developed to reduce the risk of nonstormwater discharge and/or pollutant discharge into the City’s drainage system or receiving waters from business-related activities.

Sacramento 2030 General Plan

The following goals and policies from the Utilities, Environmental Resources, and Environmental Constraints Elements of the Sacramento 2030 General Plan (City of Sacramento 2009) are applicable to the proposed project.

Utilities Element

Goal U 4.1 Adequate Stormwater Drainage. Provide adequate stormwater drainage facilities and services that are environmentally sensitive, accommodate growth, and protect residents and property.
• **Policy U 4.1.1 Adequate Drainage Facilities.** The City shall ensure that all new drainage facilities are adequately sized and constructed to accommodate stormwater runoff in urbanized areas.

Environmental Resources Element

Goal ER 1.1 Water Quality Protection. Protect local watersheds, water bodies and groundwater resources, including creeks, reservoirs, the Sacramento and American rivers, and their shorelines.

• **Policy ER 1.1.3 Stormwater Quality.** The City shall control sources of pollutants and improve and maintain urban runoff water quality through storm water protection measures consistent with the City’s National Pollutant Discharge Elimination System (NPDES) Permit.

• **Policy ER 1.1.6 Post-Development Runoff.** The City shall impose requirements to control the volume, frequency, duration, and peak flow rates and velocities of runoff from development projects to prevent or reduce downstream erosion and protect stream habitat.

• **Policy ER 1.1.7 Construction Site Impacts.** The City shall minimize disturbances of natural water bodies and natural drainage systems caused by development, implement measures to protect areas from erosion and sediment loss, and continue to require construction contractors to comply with the City’s erosion and sediment control ordinance and stormwater management and discharge control ordinance.

Environmental Constraints Element

Goal EC 2.1 Flood Protection. Protect life and property from flooding.

• **Policy EC 2.1.19 Dam Failure.** The City shall plan for the evacuation of people from areas subject to inundation from Folsom, Nimbus, or an Oroville dam failure.

Impacts and Mitigation Measures

According to the Sacramento Stormwater Quality Partnership’s *Stormwater Quality Design Manual*, the project site is in an exempt area and therefore is not subject to the hydromodification requirements (SSQP 2014:Figure 5-2). Therefore, the topic of hydromodification, or changes to the hydrologic and geomorphic processes in a watershed as a result of impervious surfaces and drainage infrastructure from urbanization, is not discussed further.

a, f) **Would the project violate any water quality standards or waste discharge requirements; or otherwise substantially degrade water quality?**

Less-than-Significant Impact with Mitigation Incorporated. Project construction would require vegetation removal, excavation, grading, material stockpiling, and staging at the project
site that would temporarily disturb surface soils. These activities would expose soil to the erosive forces of wind and water. The soil could ultimately be transported via the storm drainage system to the American River, increasing turbidity and degrading water quality. If construction dewatering is required, sediment impairment of receiving waters could result if the dewatering discharge is sediment laden. Portions of the project site that require utilities upgrades and improved circulation would be stripped to grade; portions of the project site that would not be stripped include the existing building to be refurbished and landscape elements identified for retention in the completed project. Up to 50,000 cubic yards of earthen material could be moved as part of the project and may be reused on-site. Further, heavy equipment used on-site during construction could compact soils and may further reduce the infiltration capacity of soils and increase the potential for runoff and erosion. As described in Section 3.6, “Geology and Soils,” project site soils consist of stable Pleistocene-age alluvial soils and compacted artificial fill, and there are no known areas of unstable soils such as steep slopes; however, the potential for erosion during construction remains, as project site soils are moderately susceptible to wind and water erosion.

The proposed project would require construction over an approximately 13.66-acre site, including areas for the reconstructed Headquarters Building, parking areas, and other site improvements such as installation of a security fence. Project construction for the Headquarters Building is estimated to take approximately 20 months and would be completed in four phases. The greatest likelihood for water quality impacts would occur during Phases 2 and 3, because these phases would involve demolition (Phase 2) and building and site rehabilitation (Phase 3). Site rehabilitation would take approximately 12 months and would occur concurrently with building construction.

The potential for accidental releases of chemicals would also be present at the construction site. Once released, substances such as fuels, oils, paints, concrete, and solvents could be transported to the storm drain system and/or groundwater in stormwater runoff, wash water, and dust-control water, potentially reducing the quality of the receiving waters. Erosion and construction-related wastes have the potential to degrade water quality and beneficial uses if they enter runoff and flow into waterways, potentially altering the dissolved oxygen content, temperature, pH, suspended sediment and turbidity levels, and/or nutrient content of receiving waters or causing toxic effects in the aquatic environment. Therefore, project-related construction activities could violate water quality standards or otherwise substantially degrade water quality. This impact would be potentially significant.

Phase 2 of the proposed project specifically includes removal and remediation of hazardous materials within the Headquarters Building, including but not limited to asbestos-containing materials, lead-based paints, oil-type transformers, and an underground hydraulic oil tank from an abandoned vehicle lift. Removal of these hazardous materials, if not properly handled and disposed of, would have the potential to affect water quality. However, existing hazardous materials must be removed and disposed of in accordance with applicable federal, state, and local laws and regulations. Please see Section 3.8, “Hazards and Hazardous Materials,” for additional discussion of hazardous materials removal, including Mitigation Measures HAZ-1 and HAZ-2.
The following mitigation measures would be implemented to reduce impacts on water quality resulting from the proposed project.

Mitigation Measure HYDRO-1. Prepare and Implement a Storm Water Pollution Prevention Plan and an Erosion and Sediment Control Plan, and Implement Best Management Practices.

The proposed project shall comply with applicable regulations designed to reduce or eliminate construction-related water quality effects, including the NPDES Construction General Permit, stormwater quality improvement plan, and Grading, Erosion, and Sediment Control Ordinance. Before development and issuance of the grading permits, an application for coverage under the Construction General Permit (Order No. 2009-0009-DWQ, as amended by 2010-0014-DWQ and 2012-006-DWQ) and an erosion and sediment control plan shall be submitted to the City. Before construction may begin, a NOI shall be filed with the Central Valley RWQCB and a project-specific SWPPP shall be developed to minimize erosion and transport of sediment, meet water quality objectives identified in the Water Quality Control Plan for the Sacramento and San Joaquin River Basins, and protect beneficial uses. BMPs included in the SWPPP shall include measures such as installing silt fences, covering stockpiled soils, and locating stockpiled soils away from storm drain inlets. Through the stormwater quality improvement plan, City staff will provide guidance on BMPs to reduce sediment in construction site runoff and reduce other pollutants such as litter and concrete wastes through good-housekeeping procedures and proper waste management. The City’s process includes having City staff complete inspections to verify that the erosion and sediment control plan and SWPPP are implemented correctly.

An erosion and sediment control plan shall be developed that includes a site map and a description of BMPs designed to control dust and stabilize the construction site road and entrance, and a description of the methods of storage and disposal of construction materials. Appropriate BMPs for the erosion and sediment control plan may include but are not limited to the following:

- Schedule work to minimize soil-disturbing activities during the rainy season and schedule major grading operations for the dry season when practical.

- Cover exposed soil to reduce its exposure to rainfall, reserve existing vegetation where feasible, and apply mulch or hydroteed areas until permanent stabilization is established.

- Apply water or other dust palliatives to prevent dust nuisance; prevent overwatering that can cause erosion. Alternatively, cover small stockpiles.

- Install silt fences, sediment basins, sediment traps, check dams, fiber rolls, sand or gravel bag barriers, straw bale barriers, vegetated swales, approved chemical treatment, storm drain inlet protection, or other low impact development measures to minimize the discharge of sediment. Cover all stockpiled soil until it is needed. Cover all soil in haul trucks.
• Stabilize the construction site entrance to prevent tracking of sediment onto public roads by construction vehicles. Stabilize on-site vehicle transportation routes immediately after grading to prevent erosion and control dust.

• Remove litter from the construction site at least once daily. Dispose of packing materials immediately in an enclosed container.

Mitigation Measure HYDRO-2. Obtain Coverage under the General Dewatering Permit or Obtain a Project-Specific Dewatering Discharge Permit and Implement Associated Requirements to Meet Discharge Limits.

If dewatering is required as part of project construction, SMUD shall obtain coverage for the proposed project under the General Dewatering Permit (Order No. 5-00-175) or obtain a project-specific dewatering discharge permit from the Central Valley RWQCB before construction, depending on the discharge volume and duration of dewatering activities. Discharges may be covered by the General Dewatering Permit provided that either (1) they are 4 months or less in duration or (2) the average dry-weather discharge does not exceed 0.25 million gallons per day. The General Dewatering Permit specifies standards for testing, monitoring, and reporting; receiving-water limitations; and discharge prohibitions. If a project-specific dewatering discharge permit is required from the Central Valley RWQCB, it shall include specific requirements and establish discharge limits.

Mitigation Measure HYDRO-3. Establish a Memorandum of Understanding or Permit for Groundwater Discharges with the City’s Department of Utilities.

If dewatering is required during construction, the proposed project shall receive approval from the City of Sacramento Department of Utilities before construction. Any long-term discharges of greater than 7 days must be approved by the City Department of Utilities and the Director of the Department of Utilities through an MOU process. The MOU will specify the type of groundwater discharge, flow rates, and discharge system design, and will include a City-approved contaminant assessment of the proposed groundwater discharge indicating tested levels of constituents and a City-approved effluent monitoring plan to ensure that contaminant levels remain in compliance with state standards or Central Valley RWQCB–approved levels.

Implementation of Mitigation Measures HYDRO-1, HYDRO-2, and HYDRO-3 would reduce this water quality impact to a **less-than-significant** level.

b) **Would the project substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?**

Less-than-Significant Impact. If dewatering activities are conducted during construction, they would be temporary and the volume of groundwater withdrawn would be very small relative to
the groundwater storage capacity of the South American River Subbasin, which is estimated to be 4,816,000 acre-feet (DWR 2004:2). During operation of the project, an on-site well would be used to provide landscape irrigation water, similar to current operations. Therefore, the amount of groundwater pumped for on-site irrigation uses would not increase with implementation of the proposed project. Rather, the amount pumped would likely decrease with refurbishment or replacement of the existing irrigation system, which would serve to improve water efficiency.

Implementation of the proposed project would result in a net increase of up to 90,600 square feet (2.08 acres) of impervious surface. Impervious areas at the site would consist of the footprint areas to be covered by building additions, paved pathways, and paved parking. Site soils are characterized as having moderately high permeability, as described in Table 3.6-1 in Section 3.6, “Geology and Soils.” Table 3.9-1 compares current and proposed square footage of various elements at the site.

<table>
<thead>
<tr>
<th>Table 3.9-1. Current and Proposed Square Footage at the Project Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>Overall CEQA Site</td>
</tr>
<tr>
<td>Parking Areas and Driveways</td>
</tr>
<tr>
<td>Headquarters Building and Patio</td>
</tr>
<tr>
<td>Total Site Landscape Areas</td>
</tr>
</tbody>
</table>

Source: Data compiled by SMUD in 2014

Although the proposed project would result in an increase in impervious surfaces, it would result in a small decrease in the amount of water that percolates to underlying aquifers. The majority of the site that is currently unpaved would remain as pervious area. With implementation of low impact development techniques for stormwater management (e.g., stormwater planters, vegetated swales), additional rainwater would infiltrate into the subsurface instead of running off into the storm drainage system. Any potential decrease in groundwater infiltration would not be of a sufficient magnitude to result in a net deficit in the aquifer volume or lowering of the groundwater table. Therefore, this impact would be **less than significant**.

Although the proposed project would result in an increase in impervious surfaces, it would result in a small decrease in the amount of water that percolates to underlying aquifers. The majority of the site that is currently unpaved would remain as pervious area. With implementation of low impact development techniques for stormwater management (e.g., stormwater planters, vegetated swales), additional rainwater would infiltrate into the subsurface instead of running off into the storm drainage system. Any potential decrease in groundwater infiltration would not be of a sufficient magnitude to result in a net deficit in the aquifer volume or lowering of the groundwater table. Therefore, this impact would be **less than significant**.

c, d, e) Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site; or
would the project substantially alter the existing drainage pattern of a site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site; or would the project create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

Less-than-Significant Impact with Mitigation Incorporated. Building additions, in conjunction with additional parking and paved pathways, would replace some of the existing permeable open space with impervious surfaces. Implementing the proposed project would increase the amount of impervious surface at the project site by 2.08 acres. Without implementation of stormwater management controls, the net increase in impervious area would result in an associated increase in both the total volume and the peak discharge rate of stormwater runoff. Therefore, this increase could result in greater potential for on- and off-site flooding, greater potential to exceed the capacity of existing or planned stormwater drainage systems, and the need for construction of new or expanded stormwater drainage facilities. The site is already subject to occasional flooding during storm events.

During operation, runoff from the project site would contain pollutants common in urban runoff including metals, oils and grease, pesticides, herbicides, nutrients, and garbage/litter. Although operation of the proposed project would be similar to existing operations at the project site, the proposed project would result in an increase in square footage of buildings and impervious parking spaces. In addition, reconstruction of the pipe in S Street may be required. Please see Section 3.17, “Utilities and Service Systems,” for additional discussion of storm drainage infrastructure.

Without BMPs to remove pollutants, stormwater leaving the project site could degrade the quality of receiving waters. Therefore, the impact of the proposed project on stormwater quality would be potentially significant.

BMPs implemented in compliance with the stormwater quality improvement plan; Grading, Erosion, and Sediment Control Ordinance; Stormwater Management and Discharge Control Ordinance; and Sacramento MS4 Permit must also control the rate or amount of surface runoff from the project site such that flooding on or off-site would not occur. Because the total area of the developed impervious surfaces (e.g., building rooftop and parking areas) exceeds the 1-acre threshold specified in the Sacramento MS4 Permit (CAS082597), the project would be required to incorporate permanent stormwater quality treatment measures to conform with applicable City of Sacramento ordinances and state and federal law. To eliminate any flow increase and exceedances of the capacity of existing or planned stormwater drainage systems, stormwater detention facilities may be required to maintain peak storm flows at no greater than the level existing before development as described below in Mitigation Measure HYDRO-4. As required by the Sacramento MS4 Permit, detention basins, stormwater planters, vegetated swales, and other stormwater quality treatment techniques (BMPs) would involve treatment methodologies as described in the Sacramento Region Stormwater Quality Design Manual (SSQP 2014). Runoff reduction measures would be required to infiltrate, filter, store, evaporate, and detain runoff close to its source, where possible. The Sacramento City/County Drainage Manual
Volume 2: Hydrology Standards includes drainage design standards to meet local drainage regulations.

The proposed project would include detention basins to help mitigate existing deficiencies in the storm drain pipe system by increasing the on-site storage volume available and metering the outflow to the capacity of the downstream system. In areas where landscaping has been deemed historical and designated for retention, other treatment methods could be incorporated including infiltration trenches, sand filters, stormwater planters and/or vegetative swales.

Mitigation Measure HYDRO-4. Prepare, Submit, and Implement a Final Drainage Plan.

Before the approval of the grading plan and building permit, SMUD shall submit a final drainage plan to the City demonstrating that project-related on-site runoff will be appropriately contained in detention basins or managed through other improvements (e.g., source controls using low impact development techniques such as vegetated swales) to reduce flooding. The plans shall include but not be limited to the following items:

- an accurate calculation of preproject and postproject runoff for the final design scenario, obtained using appropriate engineering methods, that accurately evaluate potential changes to runoff, including increased surface runoff;
- runoff calculations for the 100-year (0.01-AEP) storm event (and other, smaller storm events as required) and the drainage pipeline sizes based on alignments and finalized detention facility locations;
- a description of the proposed maintenance program for the on-site drainage system;
- a detailed description of the pipe improvements on S Street and required coordination with the City; and
- project-specific standards for installing drainage systems.

Source control BMPs may include the use of low impact development techniques such as surface swales; replacement of conventional impervious surfaces with pervious surfaces (e.g., porous pavement); disconnection of impervious surfaces; green roofs; and trees planted to intercept stormwater.

The final drainage plan shall demonstrate to the satisfaction of the City of Sacramento Department of Utilities that 100-year (0.01-AEP) flood flows would be appropriately channeled and contained, such that the risk to people or damage to structures within or downgradient of the project site would not occur and the capacity of the stormwater drainage system would not be exceeded or require expansion.
Mitigation Measure HYDRO-5: Incorporate Stormwater Quality Control Measures to Satisfy the Requirements of the Sacramento MS4 Permit, Including Long-Term Maintenance Requirements.

Before the approval of the grading plan and building permit, SMUD shall utilize the Sacramento Region Stormwater Quality Design Manual (May 2014) to identify source-control measures, low impact development development measures, and treatment control measures to satisfy the regulatory requirements of the Sacramento MS4 Permit and thereby reduce runoff pollution associated with the proposed project to the maximum extent practicable. A long-term maintenance agreement or covenant for selected control measures shall be established to ensure ongoing maintenance of facilities.

Implementation of Mitigation Measures HYDRO-4 and HYDRO-5 would reduce this impact to a less-than-significant level.

g) Would the project place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?

No Impact. No new housing is proposed as part of the proposed project. Therefore, the proposed project would have no impact related to housing within a 100-year flood hazard area.

h) Would the project place within a 100-year flood hazard area structures which would impede or redirect flood flows?

No Impact. The project area is not located within the 100-year flood hazard area (FEMA 2013). Therefore, the proposed project would have no impact related to structures that would impede or redirect flood flows.

i) Would the project expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?

Less-than-Significant Impact. The project site is located within the dam inundation area of Folsom Dam. Dam or levee failures can create flash floods that are catastrophic to life and property. The proposed project would not increase the potential for dam or levee failure, because the project site is not located close to levees or dams that would physically affect these structures. Because of adherence to federal and state dam safety and structural requirements, the likelihood of dam failure is considered extremely remote (City of Sacramento 2014:7-23). In addition, in response to the risk, the FloodSAFE California program is guiding development of regional flood management plans to improve integrated flood management systems.

American River in the vicinity of the project area are of lower concern; however, some isolated segments are of higher concern (DWR 2011:ES-10; City of Sacramento 2014:App. C p. 7-24). In partnership with the County of Sacramento, the City of Sacramento has prepared a series of detailed maps of inundation patterns following hypothetical levee breaks. These maps include flood depths, rescue areas, evacuation areas, and potential evacuation routes. The proposed project would result in the addition of 2.08 net acres of new impervious surface that could contribute stormwater runoff to the American River; however, this quantity would be undetectable in relation to American River flows. Therefore, this impact would be less than significant.

j) Would the project result in inundation by seiche, tsunami, or mudflow?

No Impact. The project area is not within an area subject to seiche, tsunami, or mudflows (City of Sacramento 2014:4.5-2). Therefore, the proposed project would have no impact related to inundation by seiche, tsunami, or mudflow.
3.10 LAND USE AND PLANNING

Would the project:

<table>
<thead>
<tr>
<th>Would the project:</th>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Physically divide an established community?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to, the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Conflict with any applicable habitat conservation plan or natural community conservation plan?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environmental Setting

The project site is located within the city of Sacramento in Sacramento County. The project site, which includes the existing Headquarters Building and a 13.66-acre portion of the headquarters site, is bordered by 61st Street to the west, light rail tracks to the north, SMUD’s Customer Service Center to the east, and S Street to the south. The project also includes two temporary trailer location sites where SMUD employees would be located during project construction. The project site and surrounding uses are shown in Figure 2-1.

The Sacramento 2030 General Plan designates the project site as Public/Quasi-Public. This designation provides for governmental, utility, institutional, educational, cultural, religious, and social facilities and services that are located and designed to complement Sacramento’s neighborhoods, centers, and corridors and to minimize incompatibility with neighborhoods and other sensitive uses (City of Sacramento 2009).

The zoning classification for the project is Heavy Commercial Zone (C-4). The purpose of the C-4 zone is to provide for warehousing, distribution activities, and commercial uses that have minimal undesirable impact on nearby residential areas. Minimal light manufacturing and processing are permitted. The maximum building height is 75 feet. The maximum density is 60 dwelling units per net acre.

Regulatory Setting

Federal

No federal regulations related to land use and planning are applicable to the proposed project.
State

No state regulations related to land use and planning are applicable to the proposed project.

Local

The following goal and policy from the Land Use and Urban Design Element of the Sacramento 2030 General Plan (City of Sacramento 2009) are applicable to the proposed project.

Goal LU 8.1. Public/Quasi-Public. Provide for governmental, utility, institutional, educational, cultural, religious, and social facilities and services that are located and designed to complement Sacramento’s neighborhoods, centers, and corridors and to minimize incompatibility with neighborhoods and other sensitive uses.

- Policy LU 8.1.7 Compatibility of Non-City Public Uses. The City shall encourage school and utility districts and other government agencies that may be exempt from City land use control and approval to plan their properties and design buildings at a high level of visual and architectural quality that maintains the character of the district or neighborhood in which they are located.

Impacts and Mitigation Measures

a) Physically divide an established community?

No Impact. The proposed project includes the rehabilitation of the SMUD Headquarters Building and a 13.66-acre portion of the headquarters site. SMUD has occupied the building and site since its completion in 1960, and the proposed project would rehabilitate the building and site for continued use into the future. The project comprises rehabilitation of an existing facility for a continuation of existing uses. A security fence would be installed on the headquarters site; however, this fence would be sited behind existing landscape berms where possible to minimize visibility from the S Street frontage, and it would not physically divide an established community. Construction and operation of the project would have no impact related to physical division of an established community.

b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to, the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?

No Impact. The proposed project consists of rehabilitation of an existing facility for a continuation of existing uses. The proposed project does not conflict with any applicable land use plan, policy, or regulation, or any agency with jurisdiction over the project, and the proposed project would have no impact related to a conflict with an applicable land use plan, policy, or regulation.
c) Conflict with any applicable habitat conservation plan or natural community conservation plan?

No Impact. No habitat conservation plans or natural community conservation plans have been adopted by SMUD or the City of Sacramento that could affect the proposed project site. Therefore, the proposed project would have no impact related to a conflict with an applicable habitat conservation plan or natural community conservation plan.
3.11 MINERAL RESOURCES

Would the project:

a) Result in the loss of availability of a known mineral resource that would be of future value to the region and the residents of the State?

b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?

Environmental Setting

Under the Surface Mining and Reclamation Act, the State Mining and Geology Board may designate certain mineral deposits as being regionally significant to satisfy future needs. The board’s decision to designate an area is based on a classification report prepared by the California Geological Survey (formerly California Division of Mines and Geology) and on input from agencies and the public. The project site is located within the designated Sacramento-Fairfield Production-Consumption Region for aggregate materials, which includes all designated lands within the marketing area of the active aggregate operations supplying the Sacramento-Fairfield urban area (Dupras 1988).

In compliance with the Surface Mining and Reclamation Act, the California Geological Survey has established the classification system shown in Table 3.11-1 to denote both the location and significance of key extractive resources.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRZ-1</td>
<td>Areas where adequate information indicates that no significant mineral deposits are present or where it is judged that little likelihood exists for their presence</td>
</tr>
<tr>
<td>MRZ-2</td>
<td>Areas where adequate information indicates that significant mineral deposits are present or where it is judged that a high likelihood for their presence exists</td>
</tr>
<tr>
<td>MRZ-3</td>
<td>Areas containing mineral deposits, the significance of which cannot be evaluated from available data</td>
</tr>
<tr>
<td>MRZ-4</td>
<td>Areas where available information is inadequate for assignment to any other mineral resource zone</td>
</tr>
</tbody>
</table>

Notes: MRZ = Mineral Resource Zone

The California Geological Survey was known as the California Division of Mines and Geology at the time this mineral land classification system was established.

Source: Dupras 1988
The locations where project-related activities would occur, along with most of the developed areas of the city of Sacramento, are classified as MRZ-3—areas containing mineral deposits, the significance of which cannot be evaluated from available data (Dupras 1988:Plate 21). Mining activities in the Sacramento area are generally located along State Route 16, or farther east in the vicinity of Grant Line and White Rock Roads, along ancestral channels of the American River. The closest aggregate mining operation is located approximately 2.5 miles southeast of the project site. The project site is not designated as a locally important mineral resource recovery site in the Sacramento 2030 General Plan (City of Sacramento 2009: Environmental Resources Element).

Regulatory Setting

Federal

No federal regulations related to mineral resources are applicable to the proposed project.

State

No state regulations related to mineral resources are applicable to the proposed project.

Local

No local regulations related to mineral resources are applicable to the proposed project.

Impacts and Mitigation Measures

a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?

Less-than-Significant Impact. The project site is classified as MRZ-3—areas containing mineral deposits, the significance of which cannot be evaluated from available data. The project site is located in an urbanized area of Sacramento that has been developed with existing commercial uses since 1960, and the continuation of commercial uses is consistent with the City’s land use and general plan designations (see Section 3.10, “Land Use and Planning”). No known mineral deposits are present on the project site. Therefore, this impact would be less than significant.

b) Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?

No Impact. The project site is not designated as a locally important mineral resource recovery site in the Sacramento 2030 General Plan (City of Sacramento 2009:Environmental Resources Element). Thus, project implementation would not result in a loss of availability of locally important mineral resources, and the proposed project would have no impact related to the loss of availability of a locally important mineral resource discovery site.
3.12 NOISE

Would the project:

a) Exposure of persons to, or generation of, noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

b) Exposure of persons to, or generation of, excessive groundborne vibration or groundborne noise levels?

c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?

d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing in or working in the project area to excessive noise levels?

f) For a project within the vicinity of a private airstrip, would the project expose people residing in or working in the project area to excessive noise levels?

Environmental Setting

Noise-sensitive land uses generally include those where exposure to noise would result in adverse effects, as well as uses where quiet is an essential element of their intended purpose. Noise-sensitive land uses in the vicinity of the project site consist of the CSUS Upper Eastside Lofts, which is an apartment complex about 400 feet northeast of the SMUD Headquarters Building, just across the light rail tracks and about 175–200 feet from 65th Street, and the Lighthouse Childhood Development Center on S Street, approximately 500 feet west of the western edge of the project site. The remaining land uses surrounding the project area consist of industrial facilities and office buildings (predominantly belonging to SMUD), surface streets, a major freeway (U.S. 50), two-way light rail tracks, and a shopping center, which are all existing noise sources.

Existing Traffic Noise

Table 3.12-1 summarizes existing traffic noise levels as of 2013 along U.S. 50 south of the SMUD Headquarters Building. As shown, the location of the 70-decibel (dB) community noise
Sacramento Municipal Utility District Headquarters Building
and Site Rehabilitation Project
March, 2015

Equivalent level (CNEL) contour for both annual average and peak traffic volumes would be approximately one-third mile from the centerline of the freeway, or roughly to Folsom Boulevard (about 700 feet north of the project area). Up to 60 dB CNEL is typically considered acceptable in residential environments; therefore, existing noise levels in the vicinity of the two sensitive receptors near the SMUD facilities are significantly louder than levels normally found in residential/school areas.

Table 3.12-1. Traffic Noise Contours—Existing Conditions

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Segment</th>
<th>Traffic Volume</th>
<th>Noise Levels, dB Ldn @ 100 Feet</th>
<th>Distance to Traffic Noise Contours, Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From</td>
<td>To</td>
<td>From</td>
<td>To</td>
</tr>
<tr>
<td>U.S. 50</td>
<td>59th Street</td>
<td>65th Street</td>
<td>192,000<sup>b</sup></td>
<td>82.0</td>
</tr>
<tr>
<td>U.S. 50</td>
<td>59th Street</td>
<td>65th Street</td>
<td>213,000<sup>c</sup></td>
<td>82.5</td>
</tr>
</tbody>
</table>

Notes: ADT = average daily traffic; dB = decibels; Ldn = day-night average noise level; U.S. 50 = U.S. Highway 50
^a 2013 volumes, California Department of Transportation traffic data.
^b Annual average daily traffic volume.
^c Peak-month average daily traffic volume.

Source: Data compiled by AECOM in 2014

With regard to local street noise, Appendix D of the Sacramento 2030 General Plan contains contours for existing noise levels as of March 2009. The contours show that 65th Street to the east of the project area produces 65 dB CNEL approximately 350 feet from the center of the roadway, which would extend the contour westward to the middle of the CSUS apartment complex. S Street, on the southern border of the project site, is a minor road with limited use and impact on ambient noise levels. Most other streets in the project vicinity are more than 500 feet away and have little to no impact on noise in the project area.

Existing Light Rail Train Noise

Appendix D of the Sacramento 2030 General Plan contains noise contours for existing railways and shows a 65 dB CNEL contour extending approximately 200 feet away from the two-way light rail line that runs along the entire length of the north side of the project area. This distance encompasses the CSUS sensitive receptor identified near the project site, and the childcare facility would still be within the 60 dB CNEL contour. The light rail noise, combined with noise levels from the freeway and nearby streets, indicates that both the CSUS apartments and the childcare center are currently exposed to noise levels that are elevated significantly above levels typically found in residential and school/daycare areas.

Existing Vibration

The existing vibration environment, similar to that of the noise environment, is dominated by transportation-related vibration from roadways and light rail trains in the vicinity of the project site. Heavy truck traffic observed throughout each day on U.S. 50 generates groundborne vibration, which varies considerably depending on vehicle type, weight, speed, and pavement conditions. However, groundborne vibration levels generated from vehicular traffic are not typically perceptible outside of the road right-of-way. Like the freeway, the two-way light rail train...
activity adjacent to the north side of the project site produces groundborne vibration that depends on the train speed, passenger load, and rail conditions.

Regulatory Setting

Federal

U.S. Environmental Protection Agency

EPA’s Office of Noise Abatement and Control was originally established to coordinate federal noise control activities. The federal Noise Control Act of 1972 subsequently established programs and guidelines to identify and address the effects of noise on public health, welfare, and the environment (EPA 1974). In 1981, EPA administrators determined that noise would be better addressed by state and local governments. Consequently, in 1982, responsibilities for regulating noise control policies were transferred to state and local governments.¹

Federal Transit Administration

To address human response to groundborne vibration, the Federal Transit Administration (FTA) has maximum-acceptable vibration criteria for different land uses. These guidelines recommend 65 vibration decibels (VdB) for land uses where low ambient vibration is essential for interior operations (e.g., hospitals, high-tech manufacturing, laboratory facilities), 80 VdB for residential uses and buildings where people normally sleep, and 83 VdB for institutional land uses with primarily daytime operations (e.g., schools, churches, clinics, offices). These levels are calculated based on the measured root mean square velocity amplitude relative to a reference velocity amplitude of 1 microinch per second (FTA 2006:8-3).

State

California Building Standards Code

CCR Title 24, also known as the California Building Standards Code, establishes building standards applicable to all occupancies throughout the state. The code provides acoustical regulations for both exterior-to-interior sound insulation, as well as sound and impact insulation between adjacent spaces of various occupied units. Title 24 regulations state that interior noise levels generated by exterior noise sources shall not exceed 45 dB day-night average noise level (i.e., L_{dn}), with windows closed, in any habitable room for residential uses.

¹ However, noise control guidelines and regulations contained in EPA rulings in prior years continue to be enforced by designated federal agencies, allowing more individualized control for specific issues by designated federal, state, and local government agencies.
California Department of Transportation

For the protection of fragile, historic, and residential structures, Caltrans recommends a threshold of 0.2 inch per second peak particle velocity for normal residential buildings and 0.08 inch per second peak particle velocity for old or historically significant (as defined under CEQA) structures (Caltrans 2004:17). These standards are more stringent than the recommended guidelines established by FTA, presented above.

Local

City of Sacramento Environmental Constraints Element

The Environmental Constraints Element of the Sacramento 2030 General Plan (City of Sacramento 2009) presents a noise compatibility matrix. The matrix provided in Table 3.12-2 presents noise exposure guidelines for different land uses.

<table>
<thead>
<tr>
<th>Land Use Type</th>
<th>Highest Level of Noise Exposure that is Regarded as “Normally Acceptable”(^a) (L_{dn}) or CNEL(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential—Low Density, Single-Family, Duplex, Mobile Homes</td>
<td>60 dBA(^d,e)</td>
</tr>
<tr>
<td>Residential—Multi-Family</td>
<td>65 dBA</td>
</tr>
<tr>
<td>Urban Residential Infill(^f) and Mixed-Use Projects(^g)</td>
<td>70 dBA</td>
</tr>
<tr>
<td>Transient Lodging—Motel, Hotels</td>
<td>65 dBA</td>
</tr>
<tr>
<td>Schools, Libraries, Churches, Hospitals, Nursing Homes</td>
<td>70 dBA</td>
</tr>
<tr>
<td>Auditoriums, Concert Halls, Amphitheaters</td>
<td>Mitigation based on site-specific study</td>
</tr>
<tr>
<td>Sports Arenas, Outdoor Spectator Sports</td>
<td>Mitigation based on site-specific study</td>
</tr>
<tr>
<td>Playgrounds, Neighborhood Parks</td>
<td>70 dBA</td>
</tr>
<tr>
<td>Golf Courses, Riding Stables, Water Recreation, Cemeteries</td>
<td>75 dBA</td>
</tr>
<tr>
<td>Office Buildings—Business Commercial and Professional</td>
<td>70 dBA</td>
</tr>
<tr>
<td>Industrial, Manufacturing, Utilities, Agriculture</td>
<td>75 dBA</td>
</tr>
</tbody>
</table>

Notes:

\(^a\) As defined in the Guidelines, “Normally Acceptable” means that the “specified land use is satisfactory, based upon the assumption that any building involved is of normal conventional construction, without any special noise insulation requirements.”

\(^b\) \(L_{dn}\) or day-night average level is an average 24-hour noise measurement that factors in day and night noise levels.

\(^c\) CNEL or community noise equivalent level measurements are a weighted average of sound levels gathered throughout a 24-hour period.

\(^d\) dBA or A-weighted decibel scale is a measurement of noise levels.

\(^e\) The exterior noise standard for the residential area west of McClellan Airport known as McClellan Heights/Parker Homes is 65 A-weighted decibels (dBA).

\(^f\) With land use designations of Central Business District, Urban Neighborhood (Low, Medium, or High) Urban Center (Low or High), Urban Corridor (Low or High).

\(^g\) All mixed-use projects located anywhere in the City of Sacramento.

Source: City of Sacramento 2009: Table EC 1
The City’s Environmental Constraints Element, like the County of Sacramento’s Noise Element, also contains details on existing noise sources and levels within the city boundaries that were used to perform the analysis discussed in this IS/MND.

City of Sacramento Noise Ordinance

The City of Sacramento Noise Ordinance is contained in the Sacramento City Code, Title 8, Chapter 8.68—Noise Control, and reads as follows:

8.68.060 Exterior Noise Standards

A. The following noise standards unless otherwise specifically indicated in this article shall apply to all agricultural and residential properties.

1. From seven a.m. to ten p.m. the exterior noise standard shall be fifty-five (55) dBA.
2. From ten p.m. to seven a.m. the exterior noise standard shall be fifty (50) dBA.

B. It is unlawful for any person at any location to create any noise which causes the noise levels when measured on agricultural or residential property to exceed for the duration of time set forth following, the specified exterior noise standards in any one hour by:

1. The noise standard for a cumulative period of more than thirty minutes in any hour;
2. The noise standard plus five dB(A) for a cumulative period of more than fifteen minutes in any hour;
3. The noise standard plus ten dB(A) for a cumulative period of more than five minutes in any hour;
4. The noise standard plus fifteen dB(A) for a cumulative period of more than one minute in any hour; or
5. The noise standard plus twenty dB(A) for any period of time.

C. Each of the noise limits specified in subsection B of this section shall be reduced by five dBA for impulsive or simple tone noises, or for noises consisting of speech or music.

D. If the ambient noise level exceeds that permitted by any of the first four noise limit categories specified in subsection B of this section, the allowable noise limit shall be increased in five dBA increments in each category to encompass the ambient noise level. If the ambient noise level exceeds the fifth noise level category, the maximum ambient noise level shall be the noise limit for that category.

8.68.060 Interior Noise Standards

A. In any apartment, condominium, townhouse, duplex or multiple dwelling unit it is unlawful for any person to create any noise from inside his or her unit that causes the noise level when measured in a neighboring unit during the periods ten p.m. to seven a.m. to exceed:

1. Forty-five (45) dBA for a cumulative period of more than five minutes in any hour;
2. Fifty (50) dBA for a cumulative period of more than one minute in any hour;
3. Fifty-five (55) dBA for any period of time.
B. If the ambient noise level exceeds that permitted by any of the noise level categories specified in subsection A of this section, the allowable noise limit shall be increased in five dBA increments in each category to encompass the ambient noise level.

In addition, Section 8.68.080 of the City Noise Ordinance exempts noise from construction between 7:00 a.m. and 6:00 p.m., Monday through Saturday and between 9:00 a.m. and 6:00 p.m. on Sunday, with a limitation on internal combustion engines that do not have “suitable exhaust and intake silencers which are in good working order.”

Impacts and Mitigation Measures

a, c, d) Will the project lead to exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or other standards of other agencies; a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project; or a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

Less-than-Significant Impact with Mitigation Incorporated. Construction noise would be short term and temporary, and operation of heavy-duty construction equipment would be intermittent throughout the day during construction. Impacts of noise from construction worker vehicles and from construction equipment are addressed separately below. Operational noise, once the project is completed, is expected to be similar to current conditions, and no impact is anticipated.

Construction Worker Vehicle Noise

Based on the project description, construction would involve an average of 150 workers per day, resulting in approximately 300 additional vehicle trips on the local roadways from workers commuting to and from the site. The transport of equipment and materials would also produce additional vehicle trips each day, including large trucks hauling materials and equipment. Approximately 65 employees would be relocated during the project, leading to a reduction of 130 vehicle trips per day. As a result, there would be a net increase of about 200 vehicle trips per day from the workers and equipment and material trucks. The surrounding surface streets see between 13,000 and 23,000 vehicles per day, on average, and Table 3.12-1 showed nearly 200,000 vehicles per day on the nearby highway, so the projected increase of 200 vehicles per day would be a small percentage of the existing traffic and the contribution to existing noise levels would be minimal. Therefore, the noise impact from construction worker vehicles would be *less than significant.*

Construction Equipment Noise

Construction activities associated with the proposed project would temporarily increase noise in the project vicinity. Noise would be generated by equipment such as front-end loaders, graders, backhoes, scrapers, dump trucks, water trucks, asphalt pavers, an aerial lift, scissor lifts, truck-mounted cranes, welders, and cutting torches. During construction, worst-case noise impacts on sensitive receptors in the project vicinity, as well as SMUD’s Customer Service Center, Field
Reporting Facility, Energy Management Center, and 59th Street buildings, would involve the removal and repaving of the parking spot and driveway along the north side of the project site, which would occur within approximately 75–100 feet of the CSUS apartments at the nearest points. All other buildings are more than 250 feet away from the Headquarters Building and would have minimal construction noise impacts because of the decrease in noise levels with distance from the sources and the high existing noise levels in the project area. Assuming a worst-case scenario, a front-end loader, grader, paver, and dump truck would be used in the on-site location closest to any nearby sensitive receptor during the same time period. A conservative but reasonable assumption is that these pieces of equipment would operate simultaneously and continuously over a period of at least 1 hour at the on-site location closest to the CSUS sensitive receptor. The resulting hourly noise exposure was calculated (FHWA 2006) to be 83 dB energy-equivalent noise level (L_{eq}) at a distance of 75 feet from the equipment, or at the location of the closest noise-sensitive receptor. This level of noise would be more than 10 dB L_{eq} above the existing ambient noise level; therefore, noise impact from construction equipment would be potentially significant.

Mitigation Measure NOISE-1. Implement Best Management Practices to Control Construction Noise.

SMUD and its construction contractor shall implement the following BMPs to control noise associated with project construction equipment:

- **Fixed/stationary equipment** (e.g., generators, compressors, cement mixers) shall be operated in locations that are as far away as possible from existing noise-sensitive receptors. All impact tools shall be shrouded or shielded, and all intake and exhaust ports on powered construction equipment shall be muffled or shielded.

- **All construction equipment** shall be properly maintained and equipped with noise-reduction intake and exhaust mufflers and engine shrouds, in accordance with manufacturers’ recommendations.

- **Equipment engine shrouds** will be closed during equipment operation.

- **All motorized construction equipment** shall be shut down when not in use.

- **Written notification of heavy construction activities** (i.e., heavy earthmoving, building demolition) shall be provided to all noise-sensitive receptor properties located within 500 feet of the project site. Notification shall include the dates and hours during which construction activities are anticipated to occur and contact information, including a daytime telephone number, for the project representative to be contacted in the event that noise levels are deemed excessive. Recommendations to assist noise-sensitive land uses in reducing interior noise levels (e.g., closing windows and doors) shall be included in the notification.

- **Major construction activities** (grading, paving, and any other use of heavy equipment) shall be limited to the hours between 7:00 a.m. and 6:00 p.m., Monday through Saturday, and 9:00 a.m. and 6:00 p.m. on Sundays.
Implementation of this mitigation measure would minimize noise near the closest sensitive receptor and limit activities to noise ordinance exemption periods. Therefore, implementation of Mitigation Measure NOISE-1 would reduce this impact to a less-than-significant level.

b) Would the project lead to exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?

Less-than-Significant Impact. Vibration related to operation of the Headquarter Building and site are expected to be similar to current conditions, once the project is complete; therefore no impacts related to operational vibration would occur. Evaluation of construction vibration impacts associated with the proposed project is based on the methodology developed by FTA (2006). Construction activities on the project site may result in varying degrees of temporary ground vibration, depending on the specific construction equipment used and operations involved. Groundborne vibration levels caused by various types of construction equipment are summarized in Table 3.12-3. Based on the representative vibration levels identified for various construction equipment types, sensitive receptors located near construction activities could be exposed to groundborne vibration levels exceeding the recommended FTA threshold of 80 VdB.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>PPV at 25 Feet (in/sec)</th>
<th>Approximate Lv (VdB) at 25 Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Bulldozer</td>
<td>0.089</td>
<td>87</td>
</tr>
<tr>
<td>Jackhammer</td>
<td>0.035</td>
<td>79</td>
</tr>
<tr>
<td>Trucks</td>
<td>0.076</td>
<td>86</td>
</tr>
<tr>
<td>Small Bulldozer</td>
<td>0.003</td>
<td>58</td>
</tr>
</tbody>
</table>

Notes: in/sec = inches per second; VdB = vibration decibels
1 Where PPV is the peak particle velocity.
2 Where L vibration is the root mean square velocity expressed in VdB, assuming a crest factor of 4.
Source: FTA 2006

The vibration threshold for human perception is approximately 65 VdB. Vibration levels in the range of 70 to 75 VdB are often noticeable, but acceptable. Beyond 80 VdB, vibration levels are often considered unacceptable by building occupants (FTA 2006:7-5). Based on the highest reference vibration levels presented in Table 3.12-3 (i.e., large bulldozer, similar to other large earthmoving equipment such as graders, pavers, and scrapers), groundborne vibration—sensitive receptors would need to be located within 40 feet of vibration-producing construction activities to perceive unacceptable groundborne vibration levels (greater than 80 VdB). Based on SMUD’s proposed site plan, heavy earthmoving construction equipment would operate at a minimum of 75 feet from existing, acoustically sensitive uses and all SMUD-owned buildings, namely the Customer Service Center, Field Reporting Facility, Energy Management Center, and 59th Street facilities; therefore, this impact would be less than significant.

e, f) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise.
levels; or for a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

No Impact. The project site is located approximately 3.7 miles from Sacramento Executive Airport and 6 miles from Mather Air Force Base, and there are no other airports or airstrips, public or private, in the area. Therefore, the proposed project would have *no impact* related to exposure of residents or workers to excessive noise levels.
3.13 POPULATION AND HOUSING

Would the project:

a) Induce substantial population growth in an area either directly (e.g., by proposing new homes and businesses) or indirectly (e.g., through extension of roads or other infrastructure)?

b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?

c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?

Environmental Setting

The project site is located within the city of Sacramento in Sacramento County. The project site, which includes the existing Headquarters Building and a 13.66-acre portion of the headquarters site, is bordered by 61st Street to the west, light rail tracks to the north, SMUD’s Customer Service Center to the east, and S Street to the south. The project also includes two temporary trailer location sites where SMUD employees would be located during project construction. The Sacramento 2030 General Plan designates the project site as Public/Quasi-Public, and the zoning classification is Heavy Commercial Zone (C-4). The project site and surrounding uses are shown in Figure 2-1.

Regulatory Setting

Federal

No federal regulations related to population and housing are applicable to the proposed project.

State

No state regulations related to population and housing are applicable to the proposed project.

Local

No local regulations related to population and housing are applicable to the proposed project.
Impacts and Mitigation Measures

a) Induce substantial population growth in an area either directly (e.g., by proposing new homes and businesses) or indirectly (e.g., through extension of roads or other infrastructure)?

No Impact. The proposed project includes the rehabilitation of the SMUD Headquarters Building and a 13.66-acre portion of the headquarters site. SMUD has occupied the building and site since their completion in 1960, and the proposed project would rehabilitate the building and site for continued use over the next 50 years. The proposed project does not include a residential component. No new houses would be built as a result of the project. The project would replace or improve existing utility and circulation elements that serve the project site. The proposed project does not include an extension of roads or other infrastructure that would induce population growth, would not increase the population in the area, and would not contribute to population growth in the area. Therefore, the proposed project would have no impact on population growth.

b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?

No Impact. No homes would be displaced as a result of construction or operation of the proposed project. Therefore, the proposed project would have no impact related to displacement of housing.

c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?

No Impact. The proposed project would not displace any homes. Because no homes would be displaced, a substantial number of people would not be displaced and the proposed project would have no impact related to displacement of people.
3.14 PUBLIC SERVICES

Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service rations, response times or other performance objectives for any of the public services:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Fire protection?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Police protection?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Schools?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Parks?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) Other public facilities?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

Environmental Setting

As stated below under "Impacts and Mitigation Measures," implementation of the proposed project would not affect schools, parks, or other public services. Therefore, the following discussion focuses on fire and police protection providers that would serve the project site.

Fire Protection Services

The Sacramento Fire Department (SFD) provides fire protection services to the entire city, which encompasses approximately 98 square miles within the existing city limits. In addition, SFD serves three contract areas that occupy 47 square miles in the unincorporated county immediately adjacent to the city boundaries. SFD is staffed by more than 500 firefighters and administrative staff. On a daily basis, the department staffs 24 fire engines, eight ladder trucks, one heavy rescue, and 13 medic units at 24 fire stations, which are divided into three battalions (SFD 2014). The department also has one swift-water rescue team, three rescue-boat companies, two hazardous-materials response teams, and support vehicles such as wildland fire engines and air compressor units that are cross-staffed with fire engine/truck personnel.

The project site is within Fire District 3 and first-response service to the project site is provided by Fire Station #8, which is located at 5990 H Street, approximately 2 miles north of the project site (SFD 2012).
Police Protection Services

The Sacramento Police Department (SPD) is principally responsible for providing police protection services in the city of Sacramento. In addition, the Sacramento County Sheriff’s Department, California Highway Patrol, University of California Davis Medical Center Police Department, and Sacramento Regional Transit District (RT) Police Services support SPD to provide police protection in the greater Sacramento area.

Patrol and specialized teams are deployed from three substations serving four command areas: North, Central, East, and South. The project site is located within Police District 3 and beat 3C (SPD 2013:6). First response to the project site is provided by Central Command, which is located at 300 Richards Boulevard, approximately 7 miles northwest of the project site.

Regulatory Setting

Federal

No federal regulations related to public services are applicable to the proposed project.

State

California Occupational Safety and Health Administration

In accordance with CCR Title 8, Section 1270, “Fire Prevention,” and Section 6773, “Fire Protection and Fire Equipment,” Cal/OSHA has established minimum standards for fire suppression and emergency medical services. The standards include but are not limited to guidelines on the handling of highly combustible materials; fire hose sizing requirements; restrictions on the use of compressed air; access roads; and the testing, maintenance, and use of all firefighting and emergency medical equipment.

Fire Codes and Guidelines

The California Fire Code contains regulations relating to construction, maintenance, and use of buildings. Topics addressed in the code include fire department access, fire hydrants, automatic sprinkler systems, fire alarm systems, fire and explosion hazards, hazardous materials storage and use, provisions intended to protect and assist fire responders, industrial processes, and many other general and specialized fire-safety requirements for new and existing buildings and the surrounding premises. The California Fire Code contains specialized technical regulations related to fire and life safety.

California Health and Safety Code

State fire regulations are set forth in Section 13000 et seq. of the California Health and Safety Code. The code includes regulations for building standards (as set forth in the California Building Code), fire protection and notification systems, fire protection devices such as extinguishers, smoke alarms, high-rise buildings, childcare facility standards, and fire suppression training.
California Historical Building Code

The California Historical Building Code provides for fire protection of qualified historical buildings or properties. It is intended to preserve the integrity of qualified historical buildings or properties while maintaining a reasonable degree of fire protection based primarily on the life safety of the occupants and firefighting personnel (Chapter 8-4). The CHBC identifies specifications for fire-resistant and roofing materials, automatic sprinkler systems, fire alarm systems, smoke and heat detection systems, occupant notification and annunciation systems, and smoke control systems.

Local

The following goal and policies from the Public Health and Safety Element of the Sacramento 2030 General Plan (City of Sacramento 2009) are applicable to the proposed project.

Goal PHS 2.2 Fire Prevention Programs and Suppression. The City shall deliver fire prevention programs that protect the public through education, adequate inspection of existing development, and incorporation of fire safety features in new development.

- Policy PHS 2.2.3 Fire Sprinkler Systems. The City shall promote installation of fire sprinkler systems for both commercial and residential use and in structures where sprinkler systems are not currently required by the City Municipal Code or Uniform Fire Code.

- Policy PHS 2.2.4 Water Supplied for Fire Suppression. The City shall ensure that adequate water supplies are available for fire-suppression throughout the city, and shall require development to construct all necessary fire suppression infrastructure and equipment.

Impacts and Mitigation Measures

a, b, c, Would the project result in substantial adverse physical impacts associated with d, e) the provision of new or physically altered governmental facilities, or the need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the public services:

Fire Protection Services

No Impact. Implementation of the proposed project would not increase demand for SFD fire protection services such that the construction of new or expansion of existing fire service facilities would be required. Rehabilitation of the Headquarters Building would include upgrades to the buildings and site to meet current fire and life safety codes. SMUD would incorporate California Fire Code and CHBC requirements into project designs. The existing fire sprinkler system and chemical fire suppression system would be replaced by a new wet sprinkler system throughout the building. In addition, the existing fire suppression water system would be evaluated for continued reliable service and replaced in kind if necessary. In the event of a fire
requiring emergency response, improved access would facilitate fire department response to the Headquarters Building. Therefore, the proposed project would have no impact on fire protection services.

Police Protection Services

No Impact. Implementation of the proposed project would not increase demand for SPD police protection services such that the construction of new or expansion of existing police service facilities are required. SMUD Security officers would continue to patrol SMUD property and facilities by both foot and vehicle as part of their regular duties. They would also continue to be stationed at security kiosks within facilities that serve the public. These locations are currently the SMUD Headquarters Building lobby and the Customer Service Center lobby. For the duration of the Headquarters Building rehabilitation, SMUD Security would be relocated to trailers in the Field Reporting Facility parking lot.

Existing security measures would continue to be implemented. These include secure vehicle points (electronic badges to activate cross arms), a 24-hour security force including routine site and building patrols, electronic locks at badged-personnel entrances, building cameras in lobbies and corridors, a manned security kiosk at the front entrance, and implementation of Crime Prevention Through Environmental Design practices. The Sacramento County Sheriff’s Department provides additional manned security during scheduled board meetings.

Security improvements would include replacement of existing security gates at main entry points to the headquarters site and installation of new security cameras throughout the site and Headquarters Building. In addition, a security fence would be installed between the Customer Service Center and the Headquarters Building and between the Headquarters Building and the western site boundary.

Because the project would not increase demand for SPD police protection services and would include security improvements, the proposed project would have no impact on police protection services.

Schools

No Impact. The proposed project would not provide any new housing that would generate new students in the community. Therefore, the proposed project would have no impact on school services and facilities.

Parks

No Impact. The proposed project would not provide any new housing that would generate new residents who would require new or expanded park facilities. Therefore, the proposed project would have no impact on parks.
Other Public Facilities

No Impact. No other public facilities exist in the project area that would be affected by implementation of the proposed project. Therefore, the proposed project would have *no impact* on other public facilities.
3.15 RECREATION

Would the project:

a) Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? ☐ ☐ ☐ ☒

b) Include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment? ☐ ☐ ☐ ☒

Environmental Setting

The project site is located within the city of Sacramento in Sacramento County. The project site, which includes the existing Headquarters Building and a 13.66-acre portion of the headquarters site, is bordered by 61st Street to the west, light rail tracks to the north, SMUD’s Customer Service Center to the east, and S Street to the south. The project also includes two temporary trailer location sites where SMUD employees would be located during project construction. The Sacramento 2030 General Plan designates the project site as Public/Quasi-Public, and the zoning classification for the project is Heavy Commercial Zone (C-4). The project site and surrounding uses are shown in Figure 2-1.

Regulatory Setting

Federal

No federal regulations related to recreation are applicable to the proposed project.

State

No state regulations related to recreation are applicable to the proposed project.

Local

No local regulations related to recreation are applicable to the proposed project.
Impacts and Mitigation Measures

a) Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

No Impact. The proposed project does not include any residential development that could increase the use of existing parks or recreational facilities. Therefore, the proposed project would have no impact related to increased use that would substantially deteriorate existing facilities.

b) Include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment?

No Impact. The proposed project does not include any residential development that would require new or expanded recreational facilities. Therefore, the proposed project would have no impact related to adverse physical effects caused by construction or expansion of recreational facilities.
3.16 TRANSPORTATION AND CIRCULATION

Would the project:

a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?

b) Conflict with an applicable congestion management program, including, but not limited to level-of-service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?

c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

e) Result in inadequate emergency access?

f) Conflict with adopted policies regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance of such facilities?

Environmental Setting

The project site is located along the U.S. 50 and RT Gold Line corridors in the East Sacramento area of the city of Sacramento.

Roadway Access

Primary regional roadway access to the site is provided by U.S. 50 (Lincoln Highway), which originates in the city of West Sacramento, passes south of downtown Sacramento, and continues east to Rancho Cordova, Folsom, and El Dorado County. In the immediate vicinity of the project site, U.S. 50 comprises four lanes in each direction, with a full-movement interchange located at 65th Street, just east of the project site. A partial interchange, comprising...
an on-ramp to westbound U.S. 50 and an off-ramp from eastbound U.S. 50, is also provided at the S Street/59th Street intersection, just west of the project site.

Major local roadways serving the project site include Folsom Boulevard, oriented east–west just north of the project site, and 65th Street/Elvas Avenue, oriented north–south just east of the project site. Both Folsom Boulevard and 65th Street/Elvas Avenue are four-lane semi-major arterial roadways (two lanes in each direction). On-street parking is generally limited on these streets, but is provided on some segments.

Local access directly into the SMUD Headquarters Building site (and the adjacent SMUD Customer Service Center) is provided primarily via S Street, which accommodates several access roads serving the surface parking lots surrounding the building. S Street features two travel lanes (one in each direction), with on-street parking on both sides of the street. Alternative access for these surface lots is provided to and from southbound 65th Street.

An additional access road north of the project site passes beneath the Gold Line embankment, connecting the site to SMUD facilities north of the light rail tracks.

Transit Access

The RT Gold Line borders the project site to the north, running in an exclusive right-of-way along the alignment of the former Sacramento Valley Railroad. The closest stops to the project site are the 59th Street Station (just east of 59th Street, west of the site) and the University/65th Street Station (just east of 65th Street, east of the site). Approximate hours of service on the Gold Line are between 5:00 a.m. and 11:00 p.m. on weekdays and Saturdays, and between 6:00 a.m. and 9:00 p.m. on Sundays and holidays. Headways are 15 minutes on weekdays (30 minutes on weekday evenings) and 30 minutes all day on Saturdays, Sundays, and holidays.

Supplementary transit service to the project site is provided by RT buses. A major bus transit center located at the University/65th Street Station serves the following routes:

- 26 Fulton
- 38 P/Q Streets
- 81 Florin–65th Street
- 82 Howe–65th Street
- 87 Howe

Bus stops at the Folsom Boulevard/65th Street intersection also serve three additional bus routes, two operated by RT and one by Amador Transit:

- 210 La Riviera Drive
- 211 College Greens
- Amador Transit Route 1
Bicycle Access

Class I facilities (off-street dedicated bicycle paths), Class II facilities (on-street dedicated bicycle lanes), and Class III facilities (on-street bicycle routes, usually comprising wide curb lanes with signage and sharrows, or shared lane markings) are provided along many streets near the project site. In the immediate vicinity of the site, major north–south bikeways include 58th Street/59th Street, Elvas Avenue/65th Street, and Redding Avenue. Folsom Boulevard and T Street comprise the main east–west bikeways. Bikeways in the vicinity of the project site are described in more detail below.

- **56th Street:** Between J Street and Folsom Boulevard
- **58th Street/59th Street:** Class III facilities between J Street and Folsom Boulevard, Class II facilities between Folsom Boulevard and the 59th Street Station, and Class III facilities between the 59th Street Station and Broadway
- **Elvas Avenue/65th Street:** Class II facilities between M Street and 65th Street, Class II facilities between Elvas Avenue and University/65th Street Station
- **Redding Avenue:** Class II facilities between Folsom Boulevard and 14th Avenue
- **Folsom Boulevard:** Class II facilities along the full length in the vicinity of the project site
- **T Street:** Class I facilities between 65th Street and Kroy Way and Class II facilities west of Kroy Way
- **4th Avenue:** Class II facilities between Redding Avenue and 65th Street
- **Broadway:** Class I facilities between Mae Fong Park and 65th Street

In addition to these facilities, a network of Class I facilities is provided on the CSUS campus, connecting into Elvas Avenue at 65th Street.

Pedestrian Access

Pedestrian facilities such as sidewalks, crosswalks, and curb ramps are somewhat limited near the project site. Sidewalks are occasionally discontinuous, such as along Folsom Boulevard and along the south side of S Street between 59th Street and 65th Street. At some intersections, particularly at ramp terminals such as S Street/59th Street and S Street/65th Street, crossings may not be accommodated on all legs, while at some curb cuts serving off-street parking facilities, marked crosswalks may not be provided across the driveway. Curb ramps are generally provided at all locations with marked crosswalks, although some locations lack tactile warning devices and therefore are not fully compliant with current Americans with Disabilities Act (ADA) regulations.

In general, however, a clear, relatively direct path of travel is available from both the 59th Street Station and the University/65th Street Station (and the adjacent transit center) to the project site.
Sidewalks are provided along all segments of these walking routes, although some curb cuts may not provide marked crosswalks.

Regulatory Setting

Federal

No federal regulations related to transportation and circulation are applicable to the proposed project. Federal regulations that apply to transportation and circulation are administered by Caltrans and local jurisdictions.

State

Caltrans is responsible for planning, designing, constructing, operating, and maintaining all state-owned roadways, including those in Sacramento County. Federal highway standards are implemented in California by Caltrans.

Caltrans policies related to traffic analyses are summarized in Caltrans’s *Guide for the Preparation of Traffic Impact Studies*. These guidelines identify circumstances under which Caltrans believes that a traffic impact study would be required, information that Caltrans believes should be included in the study, analysis scenarios, and guidance on acceptable analysis methodologies. Caltrans also issues transportation permits for the movement of oversize or excessive loads on State Highways and encroachment permits for work affecting State Highway Right-of-ways.

Local

Sacramento 2030 General Plan

The Mobility Element of the *Sacramento 2030 General Plan* (City of Sacramento 2009) establishes various transportation-related policies regarding the circulation system, walkable communities, public transit, roadways, bikeways, parking, goods movement, aviation, and transportation funding. The following goals and policies from the Mobility Element are applicable to the proposed project.

Goal M 1.1 Comprehensive Transportation System. Provide a transportation system that is effectively planned, managed, operated, and maintained.

- **Policy M 1.1.1 Right-of-Ways.** The City shall manage the use of transportation right-of-ways by all travel modes, consistent with the goal to provide Complete Streets, as described in Goal M 4.2.

- **Policy M 1.1.2 Travel System.** The City shall manage the travel system to ensure safe operating conditions.
• **Policy M 1.1.3 Emergency Services.** The City shall coordinate the development and maintenance of all transportation facilities with emergency service providers to ensure continued emergency service operation and service levels.

• **Policy M 1.1.4 Facilities and Infrastructure.** The City shall effectively operate and maintain transportation facilities and infrastructure to preserve the quality of the system.

Goal M 2.1 Integrated Pedestrian System. Design a universally accessible, safe, convenient, and integrated pedestrian system that promotes walking.

• **Policy M 2.1.7 Parking Facility Design.** The City shall ensure that new automobile parking facilities are designed to facilitate safe and convenient pedestrian access, including clearly defined corridors and walkways connecting parking areas with buildings.

Goal M 3.1 Safe, Comprehensive, and Integrated Transit System. Create and maintain a safe, comprehensive, and integrated transit system as an essential component of a vibrant transportation system.

• **Policy M 3.1.12 Direct Access to Stations.** The City shall ensure that projects located in the Central City and within ½ mile walking distance of existing and planned light rail stations provide direct pedestrian and bicycle access to the station area, to the extent feasible.

City of Sacramento Pedestrian Master Plan

The *City of Sacramento Pedestrian Master Plan* (City of Sacramento 2005) enumerates goals and objectives related to pedestrian awareness, walkability, and pedestrian safety. The master plan designates Folsom Boulevard as a “pedestrian corridor” and the area around Folsom Boulevard between approximately 48th Street and 59th Street, just northwest of the project site, as a “pedestrian node.”

Sacramento City/County Bikeway Master Plan

The *Sacramento City/County Bikeway Master Plan* (City of Sacramento and Sacramento County 2011) establishes goals and objectives for recreational and transportation-related bicycle use. The map of the Bikeway Master Plan with Amendments (2011) and the Existing and Proposed Bikeway Map (updated October 11, 2011) (City of Sacramento 2011a, 2011b) identify several proposed bikeways, including on-street facilities along 59th Street and 65th Street south of the RT Gold Line.

Impacts and Mitigation Measures

a) **Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to**
intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?

Less-than-Significant Impact. As described in Section 2.5.5, “Relocation of SMUD Employees,” the project would involve the temporary relocation of approximately 498 employees to various SMUD facilities in the vicinity of the Headquarters Building and the permanent relocation of approximately 65 employees to the EC-OC. In the long-term, the number of employees working on at the Headquarters Building is expected to be similar to current conditions.

The temporary relocation of 498 employees within the SMUD campus would slightly change circulation patterns for employees and visitors heading to and from the project site. For example, employees currently parking in the west and east parking lots may park at the Field Reporting Facility, along S Street, or at the former SMUD Corporate Yard at 59th Street. With the exception of the Field Reporting Facility, which would be accessible only from Folsom Boulevard during construction, these facilities are accessible from the same surface streets as the current parking areas. Therefore, circulation patterns by employees would not fundamentally change general transportation patterns in the vicinity of the project site. The proposed project, primarily comprising the rehabilitation of the Headquarters Building, would not increase the intensity of development or change the type of land use at the site. Therefore, the project would not fundamentally increase the magnitude of the site’s travel demand footprint (i.e., the traffic volumes, transit ridership, and pedestrian and bicycle use generated by uses on the site), including its effects on transportation facilities maintained by Caltrans, Sacramento County, or the City of Sacramento. Accordingly, any localized minor effects on travel patterns associated with the temporary relocation would be temporary and would not continue after completion of the project.

Although the permanent relocation of employees to the EC-OC would permanently increase the number of employees at the EC-OC, these employees would be accommodated in currently unused space in the EC-OC. The permanent relocation of these employees would not fundamentally increase the magnitude of the EC-OC’s travel demand footprint beyond the scope of what was analyzed in the environmental clearance conducted for the EC-OC, including the effects on transportation facilities maintained by Caltrans, Sacramento County, or the City of Sacramento.

The rehabilitation of the Headquarters Building and surrounding site would not fundamentally change access to and from the site for vehicular traffic, transit riders, pedestrians, or bicyclists. Although there would be slight changes to access routes within the site after completion of the project, as described under Section 2.5.2, “Headquarters Site Rehabilitation,” employees and visitors at the headquarters site would continue to be able to access the site as they currently do. In particular, these changes are designed to enhance ADA compliance and improve access to and from the site for transit users, pedestrians, and bicyclists.

There may be a slight increase in traffic to and from the site as a result of construction-related activities, but these effects would be temporary and would be partially offset by a reduced number of trips from employees reporting to the EC-OC as a result of project implementation. In addition, traffic generated by construction-related activities would generally be spread.
throughout the course of the day such that the effect during the peak hours of the transportation network would be minimal. Also, the current employee trips to the site would decrease during project construction activities because the relocation of some employees to the EC-OC and other off-site locations (discussed in Section 2.5.5, “Relocation of SMUD Employees”) would offset increases associated with construction traffic. Therefore, the rehabilitation of the Headquarters Building and surrounding site would not conflict with an applicable plan, ordinance, or policy establishing measures of effectiveness for the performance of the circulation system. This impact would be less than significant.

b) Conflict with an applicable congestion management program, including, but not limited to level-of-service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?

Less-than-Significant Impact. As stated above, the project would not result in an increase in the magnitude of the travel demand footprint of the headquarters site, while the permanent relocation of employees to the EC-OC would not increase the travel demand footprint at the EC-OC beyond the scope of what was analyzed in the EIR for the EC-OC (SMUD 2010a, 2010b).

As stated above, the effects of construction-related traffic would be temporary and spread throughout the course of the day, such that the effect during the peak hours of the transportation network would be minimal. Therefore, the rehabilitation of the Headquarters Building and surrounding site would not conflict with applicable congestion management programs. This impact would be less than significant.

c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

No Impact. The proposed project would not involve any components that could affect air traffic patterns; therefore, the project would have no impact related to a change in air traffic patterns.

d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

No Impact. As described in Section 2.5.2, “Headquarters Site Rehabilitation,” rehabilitation of the headquarters site would include improvements designed to enhance ADA compliance and improve access to and from the site for transit users, pedestrians, and bicyclists. Any such changes would be designed in accordance with applicable design guidelines and engineering standards.

The project would permanently relocate employees to the EC-OC but would not alter the design of the EC-OC site. Therefore, the rehabilitation of the Headquarters Building and surrounding site would not increase hazards due to a design feature or incompatible uses. The proposed project would have no impact related to an increase in such hazards.

e) Result in inadequate emergency access?
Less-than-Significant Impact with Mitigation Incorporated. Although the proposed rehabilitation would likely result in minor modifications to the circulation of emergency vehicles within the headquarters site, it would not preclude emergency vehicle access. As described in Section 2.5.2, “Headquarters Site Rehabilitation,” under “Access and Circulation,” the project includes relocation of entrances, gates, and modification to internal roadways to improve traffic circulation and reduce congestion on public streets caused by queueing. The project also would modify the access roads to facilitate improved fire department access to the Headquarters Building, which could also be used by other emergency vehicles. Therefore, emergency vehicles, including fire and medical response vehicles, would be able to better access the site. In addition, the project does not propose permanent changes to the public right-of-way (i.e., the public roadway network serving the site) and therefore would not adversely affect emergency response times to the site or other sites. The proposed project would include installation of a security fence, but the fence would be sited behind existing landscape berms where possible and would not adversely affect emergency response times. As part of project implementation, SMUD would coordinate with the City of Sacramento, including the fire and police departments, regarding the locations and specific design of the relocated vehicle gates to ensure that emergency access would not be adversely affected by the proposed project.

However, S Street could be affected intermittently during construction of proposed improvements to the 15-inch storm drain pipeline located within the S Street right-of-way. Because construction activities could result in temporary lane closures, increased truck traffic, and other roadway effects that could interfere with or slow down emergency vehicles and temporarily increase response times and impede existing services, this impact would be potentially significant.

Mitigation Measure TRA-1. Implement Mitigation Measure HAZ-3, “Prepare and Implement a Traffic Control Plan.”

SMUD and/or its construction contractors shall prepare and implement a traffic control plan for construction activities that may affect road rights-of-way, to facilitate travel of emergency vehicles on affected roadways. The traffic control plan shall follow applicable City of Sacramento standards and shall be approved and signed by a professional engineer. Measures typically used in traffic control plans include advertising of planned lane closures, warning signage, a flag person to direct traffic flows when needed, and methods to ensure continued access by emergency vehicles. During project construction, access to the existing surrounding land uses shall be maintained at all times, with detours used as necessary during road closures. The traffic control plan shall be submitted to the City of Sacramento Public Works Department for review and approval before the approval of improvement plans.

Implementation of Mitigation Measure TRA-1 would reduce the significant impact associated with decreased emergency response times during construction to a less-than-significant level by requiring preparation and implementation of a construction traffic control plan that would provide for adequate emergency access during construction activities.

f) Conflict with adopted policies regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance of such facilities?
No Impact. As stated above, the project would not result in an increase in the magnitude of the travel demand footprint of the headquarters site, while the permanent relocation of employees to the EC-OC would not increase the travel demand footprint at the EC-OC beyond the scope of what was analyzed in the environmental clearance conducted for the EC-OC.

The project would not conflict with adopted policies regarding public transit, bicycle, or pedestrian facilities or otherwise decrease the performance of these facilities. The proposed rehabilitation of the SMUD Headquarters Building would improve access and safety for pedestrians, bicyclists, and transit riders, in accordance with the Mobility Element of the Sacramento 2030 General Plan and the goals and objectives established in the City of Sacramento Pedestrian Master Plan and the Sacramento City/County Bikeway Master Plan. The proposed project would have no impact related to a conflict with policies regarding public transit, bicycle, or pedestrian facilities.
3.17 UTILITIES AND SERVICE SYSTEMS

Would the project:

a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board? ☐ ☐ ☒ ☐

b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental impacts? ☐ ☐ ☒ ☐

c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental impacts? ☐ ☐ ☒ ☐

d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed? ☐ ☐ ☒ ☐

e) Result in a determination by the wastewater treatment provider that serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments? ☐ ☐ ☒ ☐

f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs? ☐ ☐ ☒ ☐

g) Comply with federal, state, and local statutes and regulations related to solid waste? ☐ ☐ ☒ ☐

Environmental Setting

Water Supply

Water Availability and Demands

The City of Sacramento is the water purveyor for the proposed project. The City’s water supply is obtained from three sources:

- surface water from the American River,
- surface water from the Sacramento River, and
- groundwater from the North American and South American Subbasins.
Under its permits to divert water from the Sacramento River, the City may divert up to 225 cfs, or an annual limit of 81,800 acre-feet per year (afy) (City of Sacramento 2011c:4-3). In addition, the City has four water rights permits authorizing diversions of up to 589,000 afy of American River water. In 1957, the City entered into a water rights settlement agreement with the U.S. Bureau of Reclamation regarding diversions from the American River (City of Sacramento 2011c:4-4). Under the settlement agreement, the City agreed to limit its diversions from the American River and scale up to the maximum diversion of 245,000 afy by the year 2030 (City of Sacramento 2011c:4-5). Table 3.17-1 shows the settlement contract’s maximum diversion schedule from 2010 to 2035. The City had a total of 227,500 afy of potable water supplies in 2010; this total is anticipated to increase to 326,800 afy by 2035.

<table>
<thead>
<tr>
<th>Source</th>
<th>2010</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Diversion from the American River¹</td>
<td>170,500</td>
<td>189,000</td>
<td>208,500</td>
<td>228,000</td>
<td>245,000</td>
<td>245,000</td>
</tr>
<tr>
<td>Maximum Diversion from the Sacramento River²</td>
<td>81,800</td>
<td>81,800</td>
<td>81,800</td>
<td>81,800</td>
<td>81,800</td>
<td>81,800</td>
</tr>
<tr>
<td>Maximum Combined Diversion Total³</td>
<td>227,500</td>
<td>252,000</td>
<td>278,000</td>
<td>304,000</td>
<td>326,800</td>
<td>326,800</td>
</tr>
</tbody>
</table>

Note: afy = acre-feet per year

¹ The City may divert up to the maximum diversion from the American River as long as the total combined diversion from both the Sacramento and American Rivers does not exceed the maximum combined diversion total.

² The City may divert up to 81,800 afy from the Sacramento River as long as the total combined diversion from both the Sacramento and American Rivers does not exceed the maximum combined diversion total.

³ Represents the City’s total maximum combined diversion from both the American River and Sacramento River.

Source: City of Sacramento 2011c:4-6

Most of the water supplied to the city is surface water; the balance is obtained from groundwater extracted from the North American and South American Subbasins of the Sacramento Valley Groundwater Basin (see Section 3.9, “Hydrology and Water Quality,” for further discussion). The City operates 25 municipal supply wells and five irrigation supply wells north of the American River, and two municipal supply wells and nine irrigation supply wells south of the American River (City of Sacramento 2011c:4-8). Total well pumping capacity is 16,010 gallons per minute, or 23.1 million gallons per day (mgd) (City of Sacramento 2011c:4-10). Although the City maintains pumps in both the North American and South American Subbasins, approximately 95% of the amount pumped by the City is from the North American Subbasin (City of Sacramento 2011c:4-8). In 2010, the City pumped 17,772 afy from the North American Subbasin and 665 afy from the South American Subbasin (City of Sacramento 2011c:4-8). The annual amount projected to be pumped from both subbasins totals approximately 22,300 afy (City of Sacramento 2011c:4-16).

The City’s urban water management plan, which was adopted in October 2011, addresses water supply and demand issues, water supply reliability, water conservation, water shortage contingencies, and recycled-water usage for the locations within its service area. In accordance with Senate Bill x7-7 (see California Water Code Section 10608.12[b][1]), the City’s urban water
management plan’s estimated water demands are based on an estimated gallons-per-capita-per-day target chosen by the City (City of Sacramento 2011c:3-4).

Water Conveyance and Treatment Facilities

The City’s water distribution system is a pipeline network in which surface water and groundwater are mixed. The City Department of Utilities operates and maintains the City’s two water treatment plants. Water diverted from the Sacramento River is treated at the Sacramento River Water Treatment Plant (SRWTP), located along the Sacramento River just downstream of its confluence with the American River. The capacity of the SRWTP is 135 mgd; design is under way for a project to rehabilitate the older facilities at the SRWTP to bring the capacity back to 160 mgd by 2016 (City of Sacramento 2011c:2-4).

Water diverted from the American River is treated at the E. A. Fairbairn Water Treatment Plant (FWTP), located along the American River approximately 7 miles upstream of the confluence of the Sacramento and American Rivers. The design capacity of the FWTP is 200 mgd, but the current permitted capacity at the FWTP is 160 mgd and the City is restricted to diversions of up to 100 mgd under certain river flow conditions (City of Sacramento 2011c:2-4).

The City maintains 16 water storage facilities: 11 storage tanks located throughout the city and five clear wells located at the SRWTP and FWTP (City of Sacramento 2011c:2-6). The City’s transmission and distribution system includes more than 1,760 miles of system mains ranging in size from 4 to 60 inches in diameter (City of Sacramento 2011c:2-6).

Wastewater

Wastewater Collection and Conveyance Facilities

The City Department of Utilities provides wastewater collection services in Sacramento. The City originally used a combined sewer system that provided both sewage and drainage services to more than 24,000 parcels in downtown, midtown, Land Park, and East Sacramento. The system, established in the 1800s, collected sewage and stormwater in the same pipe. The Headquarters Building’s sewer system consists of an 8-inch dedicated sewer line with a connection to a manhole and a subsequent 30-inch sewer line along S Street at the southwest corner of the project site. The system becomes a combined sewer system south of U.S. 50 at Frontage Road and 59th Street.

Wastewater Treatment Facilities

Wastewater flows collected from Sacramento Regional County Sanitation District (SRCSD) interceptors are ultimately transported into the Sacramento Regional Wastewater Treatment Plant (SRWWTP). The SRWWTP is located in Elk Grove and is owned and managed by SRCSD. Currently, the SRWWTP has an NPDES permit issued by the Central Valley RWQCB for discharge of up to 181 mgd of treated effluent into the Sacramento River. As of 2013, the SRWTP receives and treats an average of 119 mgd and the SRWWTP discharge constituents are below permitted discharge limits specified in the NPDES permit (SRCSD 2013).
SRCSD is in the process of upgrading the SRWWTP. The upgrade, known as the EchoWater Project, must be built by 2021–2023 to meet new water quality requirements that were issued by the Central Valley RWQCB as part of SRCSD’s 2010 discharge permit. The requirements are designed primarily to help protect the Delta ecosystem downstream by removing most of the ammonia and nitrates and improving the removal of pathogens from wastewater discharge. The upgrade will include deployment of new treatment technologies and facilities, and will increase the quality of effluent discharged into the Sacramento River and ensure that the SRWWTP discharge constituents are below permitted discharge limits specified in the NPDES permit. The upgrade will not, however, result in a net increase in permitted capacity of the SRWWTP. (SRCSD 2013.)

Flows to the SRWWTP have decreased as a result of water conservation efforts over the last 10 years. It is anticipated that state legislation passed in 2009, which mandates further water conservation efforts, could substantially reduce the amount of wastewater in the future. In addition, SRCSD has prioritized its goals to increase water recycling in the region as an element to support the comprehensive effort to promote water supply reliability and Delta sustainability. Therefore, SRCSD has determined that the SRWWTP can provide capacity to future development beyond what was originally anticipated. If substantial population growth or new development occurs during the planning horizon of the SRWWTP’s 2020 Master Plan, SRCSD will reevaluate expansion needs and phase treatment plant expansion to provide for sufficient long-term capacity (SRCSD 2010).

Stormwater

The City Department of Utilities maintains the City’s storm drainage facilities. Stormwater for the project site is collected through a series of inlets in the parking lots and landscape areas and conveyed through 8-inch, 10-inch, and 12-inch pipes. Stormwater is conveyed southerly with three points of connection to the City of Sacramento’s storm drain system in a 15-inch pipe in S Street. Stormwater is then conveyed in the 15-inch pipe easterly to 65th Street, where it connects to a 60-inch pipe and flows northerly down 65th Street to pump station Sump 31 at Elvas Avenue, from which it is pumped through the CSUS campus to the American River. The project site is subject to localized flooding as a result of existing deficiencies in the storm drain pipe system.

Solid Waste

Solid Waste Collection

Solid waste collection services in Sacramento, including residential and a small portion of commercial garbage pickup, recycling, and yard waste hauling, are provided by the City’s Recycling and Solid Waste Division. In 2012, the City disposed of a total of 401,445 tons of solid waste (CalRecycle 2012).

Solid Waste Facilities

Most refuse collected by the City is transported to the Sacramento Recycling and Transfer Station and ultimately to the Lockwood Regional Landfill in Sparks, Nevada. The Sacramento
Recycling and Transfer Station, which is owned and operated by BLT Enterprises, is limited to accepting 2,500 tons per day (tpd) of solid waste (CalRecycle 2014a).

The Lockwood Regional Landfill is owned and operated by a private firm, Waste Management Inc., and is the primary location for the disposal of waste by the City. This landfill is permitted to accept municipal solid waste and construction and demolition debris and receives approximately 5,000 tpd of waste. The landfill has a total maximum permitted capacity of 302.5 million cubic yards and approximately 270 million cubic yards of available capacity (NDEP 2014). The anticipated closure date of the Lockwood Regional Landfill is approximately 2113 (Applied Soil Water Technologies 2011).

Waste is also processed at the North Area Recovery Station, which is owned and operated by Sacramento County and is limited to accepting 2,400 tpd (CalRecycle 2014b). Waste brought to this station is transported to the Kiefer Landfill. Sacramento County owns and operates the Kiefer Landfill, and the landfill is the primary solid waste disposal facility in the county. The Kiefer Landfill is classified as a Class III municipal solid waste landfill facility and is permitted to accept general residential, commercial, and industrial refuse for disposal, including municipal solid waste, construction and demolition debris, green materials, agricultural debris, and other nonhazardous designated debris. The landfill is permitted to accept a maximum of 10,800 tpd of solid waste and currently has a permitted capacity of approximately 117 million cubic yards. The closure date of the Kiefer Landfill is anticipated to be approximately 2064 (CalRecycle 2014c).

Construction and demolition waste, which is collected by both the City’s fleet and private companies, may also be disposed of at the Yolo County Landfill, Forward Landfill, and L and D Landfill. Private haulers can deliver waste to the landfill of their choice and base the decision on market conditions and capacity (City of Sacramento 2009:6.11-67).

Regulatory Setting

Federal

No federal regulations related to utilities and service systems are applicable to the proposed project.

State

2013 California Green Building Standards Code

The standards included in the 2013 California Green Building Standards Code (CALGreen Code) (CCR Title 24, Part 11) became effective on January 1, 2014. The CALGreen Code was developed to enhance the design and construction of buildings, and the use of sustainable construction practices, through planning and design, energy efficiency, water efficiency and conservation, material conservation and resource efficiency, and environmental air quality (California Building Standards Commission 2013).

Chapter 6 of the 2013 CALGreen Code describes measures to reduce indoor demand for potable water by 20% and to reduce landscape water usage by 50%. It also requires separate
water meters for nonresidential buildings’ indoor and outdoor water use, with a requirement for moisture-sensing irrigation systems for larger landscape projects.

Chapter 7, Section 708, of the 2013 CALGreen Code requires all construction contractors to reduce construction waste and demolition debris by 50%. Code requirements include preparing a construction waste management plan that identifies the materials to be diverted from disposal by efficient usage, recycling, reuse on the project, or salvage for future use or sale; determining whether materials will be sorted on-site or mixed; and identifying diversion facilities where the materials collected will be taken. The code also specifies that the amount of materials diverted should be calculated by weight or volume, but not by both. In addition, the 2013 CALGreen Code requires that 100% of trees, stumps, rocks, and associated vegetation and soils resulting primarily from land clearing be reused or recycled.

California Integrated Waste Management Act

The California Integrated Waste Management Act (CIWMA) of 1989 created the California Integrated Waste Management Board, now known as the California Department of Resources Recycling and Recovery (CalRecycle). CalRecycle is the agency designated to oversee, manage, and track California’s 92 million tons of waste generated each year. CalRecycle provides grants and loans to help cities, counties, businesses, and organizations meet the state’s waste reduction, reuse, and recycling goals. CalRecycle promotes a sustainable environment in which these resources are not wasted, but can be reused or recycled. In addition to many programs and incentives, CalRecycle promotes the use of new technologies to divert resources away from landfills. CalRecycle is responsible for ensuring that waste management programs are carried out primarily through local enforcement agencies.

The CIWMA is the result of two pieces of legislation, AB 939 and Senate Bill 1322. The CIWMA was intended to minimize the amount of solid waste that must be disposed of through transformation and land disposal by requiring all cities and counties to divert 25% of all solid waste from landfill facilities by January 1, 1995, and 50% by January 1, 2000.

The 50% diversion requirement is measured in terms of per-capita disposal expressed as pounds per day (lb/day) per resident and per employee. The per-capita disposal and goal measurement system uses an actual disposal measurement based on population and disposal rates reported by disposal facilities, and it evaluates program implementation efforts. According to the most recent regional diversion/disposal progress report for 2012, the target solid-waste generation rate for the city was 6.9 lb/day per resident and 10.8 lb/day per employee, and the actual measured generation rate was 4.7 lb/day per resident and 7.6 lb/day per employee (CalRecycle 2012). Therefore, the City’s actual generation rate was less than the 50% diversion rate requirement.

Local

Sacramento 2030 General Plan

The following goals and policies from the Utilities Element of the *Sacramento 2030 General Plan* (City of Sacramento 2009) are applicable to the proposed project.
Goal U 1.1 High-Quality Infrastructure and Services. Provide and maintain efficient, high-quality public infrastructure facilities and services throughout the city.

Goal U 3.1 Adequate and Reliable Sewer and Wastewater Facilities. Provide adequate and reliable sewer and wastewater facilities that collect, treat, and safely dispose of wastewater.

Goal U 4.1 Adequate Stormwater Drainage. Provide adequate stormwater drainage facilities and services that are environmentally-sensitive, accommodate growth, and protect residents and property.

 • Policy U 4.1.1 Adequate Drainage Facilities. The City shall ensure that all new drainage facilities are adequately sized and constructed to accommodate stormwater runoff in urbanized areas.

Goal U 5.1 Solid Waste Facilities. Provide adequate solid waste facilities, meet or exceed State law requirements, and utilize innovative strategies for economic and efficient collection, transfer, recycling, storage, and disposal of refuse.

 • Policy U 5.1.16 Recycling and Reuse of Construction Wastes. The City shall require recycling and reuse of construction wastes, including recycling materials generated by the demolition and remodeling of buildings, with the objective of diverting eighty-five percent to a certified recycling processor.

City of Sacramento Climate Action Plan

To implement sustainability goals and policies in the Sacramento 2030 General Plan, the City of Sacramento adopted a climate action plan in February 2012. Included in the CAP are several goals, expressed as quantified targets, related to City utilities. These include:

 • Achieve 75% diversion of solid waste by 2020, and work towards becoming a “zero waste” community by 2040.

 • Achieve a 20% reduction in per capita water consumption by the year 2020.

Sacramento Regional Solid Waste Authority Recycling Ordinance No. 20

The Sacramento Regional Solid Waste Authority (SWA) was formed in December 1992 to assume the responsibilities for the solid waste, recycling, and disposal needs of the Sacramento area. The SWA enforces its ordinances to regulate multifamily and commercial solid waste collection, permit franchised haulers, and promote recycling programs.

SWA Ordinance No. 20, Title IV, describes business and multifamily residential recycling requirements. The following requirements apply to all businesses and nonresidential properties that generate 4 cubic yards per week or more of garbage collection service per week:

 • Keep recyclable materials separated from garbage.
• Subscribe to a recycling service that collects recyclable materials.

• Enter into a written service agreement with a franchised hauler or authorized recycler, or complete and retain a self-hauling form on-site allowing for self-hauling of recyclable materials.

• Place recycling containers in employee maintenance or work areas where recyclable materials may be collected and/or stored.

• Prominently post signs in work areas where recyclable materials are collected and/or stored that instruct employees about what and how to recycle.

• Prominently place labeled containers and posting notices near garbage bins in customer service areas to collect recyclable materials from customers.

• Provide written instructions notifying employees about what and how to recycle.

• Ensure that recyclable materials generated on-site will be taken to a recycling facility, and not a landfill, for proper disposal.

• Retain on-site service agreements or other recycling documents.

Sacramento City Code

Water Efficient Landscape Ordinance

The Water Efficient Landscape Ordinance (Title 15, Chapter 15.92 of the City Code) outlines requirements for water-efficient landscapes that apply to public and private projects that include landscaped areas of at least 2,500 square feet and require a building or landscape permit, plan check, or design review. The City requires project applicants to submit a landscape documentation package for review and approval by the City. The landscape documentation package must contain project information, a water-efficient-landscape worksheet, a soil management report, a landscape design plan, an irrigation design plan, and a grading design plan.

Construction and Demolition Debris Recycling Ordinance

The City requires all contractors to comply with the Construction and Demolition Debris Recycling Ordinance (Title 8, Chapter 8.124 of the City Code) to reduce all project waste by weight from entering landfill facilities by 50% through recycling. The ordinance applies to all new construction valued at $250,000 or more. Covered projects must recycle five different types of debris and materials: scrap metal; inert materials (concrete, asphalt paving, bricks); corrugated cardboard; wood pallets; and clean wood waste. The City requires contractors to prepare a waste management plan before obtaining building permits. The waste management plan must identify the sources of recyclable materials, outline a recycling method (i.e., self-separation or mixed recovery), and identify a self-haul or franchise waste hauler. Contractors are required to document the quantities of building materials recycled, salvaged or reused, and/or disposed.
Impacts and Mitigation Measures

a, e) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board; result in a determination by the wastewater treatment provider that serves or may serve the project that it has adequate capacity to serve the project’s projected demand, in addition to the provider’s existing commitments?

Less-than-Significant Impact. Wastewater from the project site would continue to be conveyed to the SRWWTP located in Elk Grove. No increase in flow is anticipated from operation of the proposed project. The purpose of the proposed project includes the rehabilitation of the existing SMUD Headquarters Building with upgrades to building systems. Plumbing systems would be upgraded with new piping and low-flow fixtures. Approximately 65 employees would be permanently relocated to the EC-OC which also has adequate wastewater treatment capacity at full occupancy. Therefore, the proposed project would not exceed wastewater treatment requirements of the Central Valley RWQCB and the SRWWTP would have adequate capacity to serve the project’s demand in addition to existing commitments. This impact would be less than significant.

b, c) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental impacts; require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

Less-than-Significant Impact. As discussed under Question a), the proposed project is not anticipated to increase wastewater generated at the SMUD headquarters facility. Stormwater basin volume would be increased and outflow would be metered to the capacity of the downstream system. This would also mitigate existing deficiencies in the storm drain pipe system. Reconstruction of the pipe in S Street may be required and is part of the proposed project to address flooding issues on the SMUD campus. Therefore, the proposed project would not result in the construction of new water or wastewater treatment facilities or the expansion of existing facilities. This impact would be less than significant.

d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?

Less-than-Significant Impact. Available water resources and entitlements meet demand by existing SMUD Headquarters Building operation. Rehabilitation of the building would not cause an increase in demand of water resources and existing entitlements and resources would continue to be sufficient to serve the SMUD headquarters. No increase in the number of employees in the building would occur and upgrades to building plumbing systems and
landscape irrigation system would improve efficiency in use of water resources. New or expanded entitlements would not be needed. This impact would be less than significant.

f, g) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs; comply with federal, state, and local statutes and regulations related to solid waste?

Less-than-Significant Impact. The proposed project would cause a temporary increase in the generation of solid waste as a result of construction activities. Compliance with the 2013 CALGreen Code and the City Construction and Demolition Debris Recycling Ordinance would result in a reduction of construction waste and demolition debris and increase recycling. In addition, the construction contractor would comply with goals of the Sacramento 2030 General Plan also contains goals regarding solid waste generation and recycling.

The majority of landfilled waste would be delivered to the Lockwood Regional Landfill or Kiefer Landfill. Construction and demolition waste could also potentially be delivered to the L and D Landfill, Yolo County Central Landfill, or Forward Landfill. Combined, these landfills have a large volume of landfill capacity available to serve the proposed project during construction.

Operational impacts of the proposed project would not result in an increase over existing solid waste generation and disposal. Compliance with the CIWMA of 1989 and SWA Recycling Ordinance No. 20, Sacramento 2030 General Plan goals, and other City codes would ensure that sufficient solid waste disposal needs would continue to be available. This impact would be less than significant.
3.18 MANDATORY FINDINGS OF SIGNIFICANCE

Would the project:

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

Less-than-Significant Impact with Mitigation Incorporated.

b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)

Less-than-Significant Impact with Mitigation Incorporated.

All of the potentially significant impacts identified in this IS/MND have been mitigated to a less-than-significant level.

c) Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?

Impacts and Mitigation Measures

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

Less-than-Significant Impact with Mitigation Incorporated. As noted in the checklist sections for biological resources and cultural resources, the project could have potential impacts on nesting bird habitat, trees regulated by the City of Sacramento, and unidentified prehistoric, historic, or paleontological resources. Mitigation measures identified in this IS/MND would be implemented to reduce impacts on the sensitive resources to a less-than-significant level.

b) Does the project have impacts that are individually limited, but cumulatively considerable?

Less-than-Significant Impact with Mitigation Incorporated. All of the potentially significant impacts identified in this IS/MND have been mitigated to a less-than-significant level, and the
project would not result in impacts that would be individually limited but cumulatively considerable.

c) Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?

Less-than-Significant Impact with Mitigation Incorporated. Potential impacts identified in this IS/MND would be reduced to a *less-than-significant* level with the incorporation of mitigation measures discussed in each applicable section. Implementation of the mitigation measures would ensure that substantial adverse effects on humans, either directly or indirectly, would be less than significant.
4.0 LIST OF PREPARERS

4.1 Sacramento Municipal Utility District—Lead Agency

Rob Ferrera, Environmental Specialist—Project Manager

4.2 Environmental Consultants

AECOM

Petra Unger—Project Manager/Director

Steve Smith—Land Use and Planning, Population and Housing, Recreation

Lindsay Kantor—Aesthetics, Agriculture and Forestry Resources

George Lu—Air Quality, Greenhouse Gas Emissions

Mark Bowen—Cultural Resources

Wendy Copeland—Geology and Soils, Mineral Resources, Paleontological Resources

Jennifer King—Hazards and Hazardous Materials, Public Services

Kara Baker—Hydrology and Water Quality

Craig Anderson—Noise

Anthony Mangonon—Transportation/Traffic

Joseph Howell—Utilities and Service Systems

Kristine Olsen—Document Production

Phi Ngo—GIS

Julie Nichols—Technical Editor

Brian Perry—Graphics

Douglas Environmental

Doug Brown—Technical Review
5.0 REFERENCES

Applied Soil Water Technologies, LLC. 2011 (December). Permit Modification Application—Permit Number SW214R01, Lockwood Regional Landfill, Storey County, Nevada. Sparks, NV. Prepared for Waste Management Refuse, Inc., Sparks, NV.

ARB. See California Air Resources Board.

CAL FIRE. See California Department of Forestry and Fire Protection.

CalRecycle. See California Department of Resources Recycling and Recovery.

Caltrans. See California Department of Transportation.

Central Valley RWQCB. See Central Valley Regional Water Quality Control Board.

CGS. See California Geological Survey.

——. 2012 (February) *City of Sacramento Climate Action Plan.* Sacramento, CA.

CNDDDB. See California Natural Diversity Database.
CNPS. See California Native Plant Society.

DOC. See California Department of Conservation.

DWR. See California Department of Water Resources.

EPA. See U.S. Environmental Protection Agency.

FEMA. See Federal Emergency Management Agency.

FHWA. See Federal Highway Administration.

FTA. See Federal Transit Administration.

NDEP. See Nevada Division of Environmental Protection.

NRCS. See U.S. Natural Resources Conservation Service.

Sacramento Municipal Utility District. 1960. Memorandum to Paul Shaad regarding office building dates. SMUD Correspondence File, Box 4323.

SCWA et al. See Sacramento County Water Agency, the Central Sacramento County Groundwater Basin Stakeholders, and the Water Forum Successor Effort.

SFD. See Sacramento Fire Department.

SMAQMD. See Sacramento Metropolitan Air Quality Management District.

SMUD. See Sacramento Municipal Utility District.

SPD. See Sacramento Police Department.

SRCSD. See Sacramento Regional County Sanitation District.

SSQP. See Sacramento Stormwater Quality Partnership.

SVP. See Society of Vertebrate Paleontology.

SWRCB and EPA. See State Water Resources Control Board and U.S. Environmental Protection Agency.

UCMP. See University of California Museum of Paleontology.

USFWS. See U.S. Fish and Wildlife Service.

APPENDIX A:
NOTICE OF INTENT
Re: Sacramento Municipal Utility District Headquarters Building and Site Rehabilitation Project

To Whom It May Concern:

Sacramento Municipal Utility District (SMUD) has prepared a Draft Initial Study/Mitigated Negative Declaration (IS/MND) addressing the potential environmental effects of rehabilitating the SMUD Headquarters Building and site.

Sacramento Municipal Utility District Headquarters Building and Site Rehabilitation Project (Proposed Project) will be located at 6201 S Street, Sacramento, California. The Proposed Project would consist of rehabilitating the Headquarters Building and site. Key elements proposed include the expansion of the central core of the Headquarters building, the redesign of the main parking area, updated landscaping, and the development of increased physical security concepts (including fencing and cameras) surrounding employee parking areas. SMUD considers the Headquarters Building and site to be significant to their brand and image and desires to rehabilitate the Headquarters Building and 13.66-acre portion of the Headquarters site to support continued use for the foreseeable future. In doing so the building and grounds will be abated of hazardous materials, paths of travel will be updated to comply with ADA standards, traffic and circulation will be improved to provide better pedestrian safety as well as fire truck access and life safety systems will be upgraded to include full fire sprinklers. The Headquarters Building was listed in the National Register of Historic Places (NRHP) in 2010 as an excellent example of Modern International Style. The proposed project would maintain the building and site’s place on the historic register. The Proposed Project is anticipated to occur between April 2015 and September 2017.

As lead agency, in accordance with the California Environmental Quality Act (CEQA), SMUD is distributing the Draft Initial Study/Mitigated Negative Declaration to interested public and regulatory authorities for review and comment. SMUD will receive public/agency comments on the Draft Initial Study/Mitigated Negative Declaration for a 30-day period beginning Thursday January 15, 2015 and ending Monday February 16, 2015. The Draft Initial Study/Mitigated Negative Declaration is available on SMUD’s web page at https://www.smud.org/en/about-smud/company-information/document-library/CEQA-reports.htm and hard copies may be reviewed at the following locations:

- Sacramento Central Library, 828 I Street, Sacramento, CA 95814
- Sacramento Municipal Utility District Office, 6201 S Street, Sacramento, CA 95817
- State Clearinghouse, 1400 Tenth Street, Sacramento, CA 95814

To present the results of the Initial Study/Mitigated Negative Declaration evaluation and to answer questions regarding the Proposed Project, SMUD will hold a public meeting on Tuesday January 27, 2015 at 6:30 p.m. at the SMUD Headquarters Building, 6201 S Street, Sacramento, California. The public is invited to attend this meeting.

Written comments should be submitted to Rob Ferrera, SMUD, P.O. Box 15830, MS B203, Sacramento, CA, 95852-1830, Rob.Ferrera@smud.org, or fax (916) 732-6676 before
5 p.m., February 16, 2015. If you would like a copy or have questions, please contact Rob Ferrera at (916) 732-6676 or at Rob.Ferrera@smud.org.

The SMUD Board of Directors will consider adoption of the Initial Study/Mitigated Negative Declaration for this project at two meetings at which the public may make oral comments. Both public meetings will be held at the SMUD Headquarters Building, 6201 S Street, Sacramento, CA 95817. The Energy Resources and Customer Service Committee Meeting will be held on Wednesday April 1, 2015 at 5:00 p.m. in the Headquarters Conference Center (HCC). The Board will take no action at the Energy Resources and Customer Service Committee meeting. The regular Board of Directors meeting will be held on Thursday April 2, 2015 at 9:00 a.m. in the Auditorium.

We appreciate your time and effort to review the subject Draft Initial Study/Mitigated Negative Declaration. Your comments regarding this project will be considered as part of future decisions to be made by SMUD.

Date January 15, 2015

Rob Ferrera, Project Manager
Sacramento Municipal Utility District
APPENDIX B:
HISTORIC STRUCTURE REPORT
APPENDIX D:
AIR QUALITY MODELING DATA