### Exhibit to Agenda Item #1

Provide the Board with external and internal presentations followed by a panel discussion on **Green Hydrogen and Biofuels programs.** 

Board Strategic Development Committee and Special SMUD Board of Directors Meeting Tuesday, June 7, 2022, scheduled to begin at 5:30 p.m. Virtual Meeting (online)



Powering forward. Together. Green hydrogen can play a unique role in replacing diesel and fossil fuels where there are no alternate solutions:







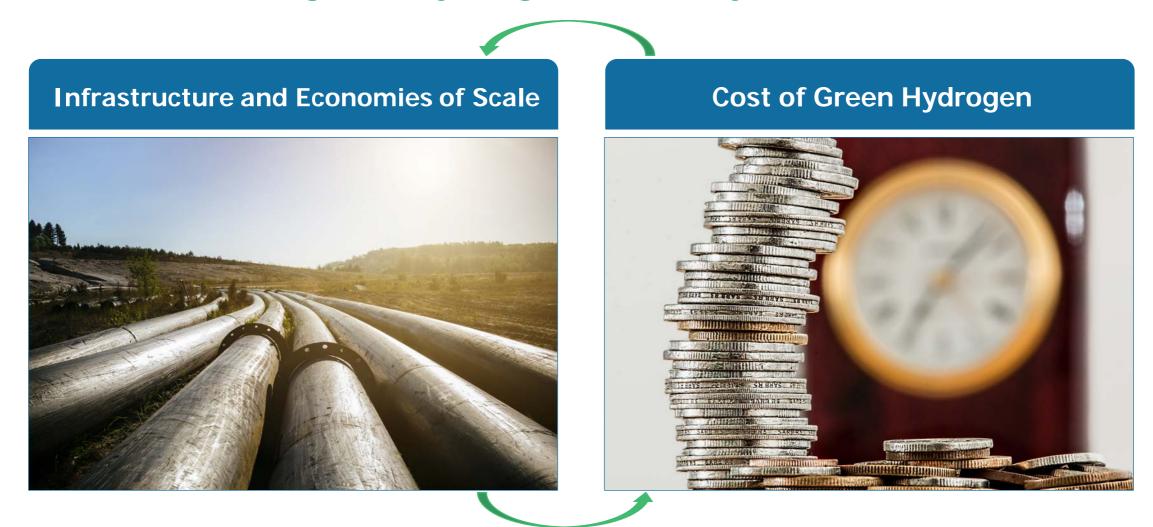


"Access to predictable, large volumes of green hydrogen at less than \$3/kg is a gamechanger. If this were the case, we could accelerate our transition from diesel to green hydrogen fuel cell-based equipment in under two years"

- Scott Schoenfeld, (former) General Manager Fenix Marine Services

About Fenix Marine Services:

- The #2 by volume terminal operator in the Ports of LA/LB
- Accounts for ~13% of activity in the ports and ~4% of all retail goods in the US
- Utilizes 175,000 gallons of diesel per month that can be displaced by green H2


June 7, 2022

3



Scale & infrastructure can accelerate the realization of this low-cost green hydrogen economy







#### It all starts with scaled, bankable offtakers



Example: HyDeal España, the world biggest green hydrogen hub, started with big hydrogen users in steel, ammonia, and other industrial sectors



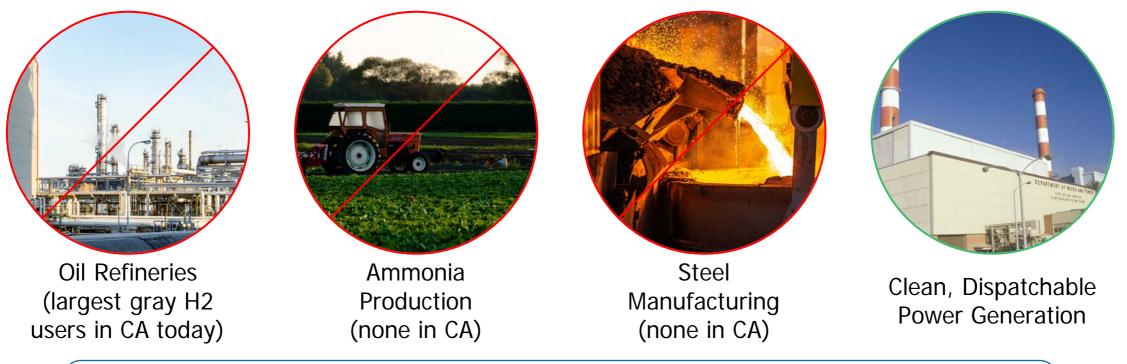
'Green hydrogen is now competitive with fossil fuels' | ArcelorMittal among offtakers at massive 7.4GW project in Spain



System details:

- Total installed capacity:
  - 9.5 GW of solar power
  - 7.4 GW of electrolysis by 2030
- Offtake: 6.6 million tons of green hydrogen over 20 years
- Application: Production of steel, ammonia, fertilizer, and other products
- Production Timeline: Starts in 2025

June 7, 2022

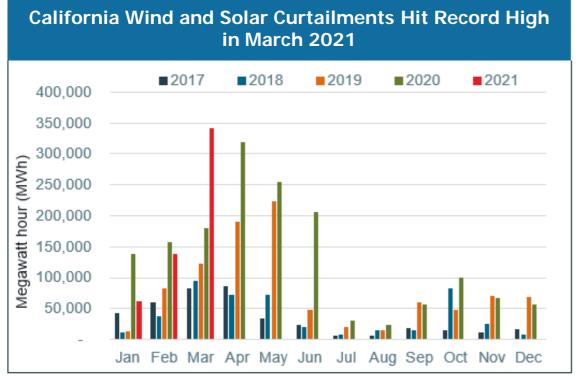

5



# To get started in CA, we need visibility into scaled offtakers

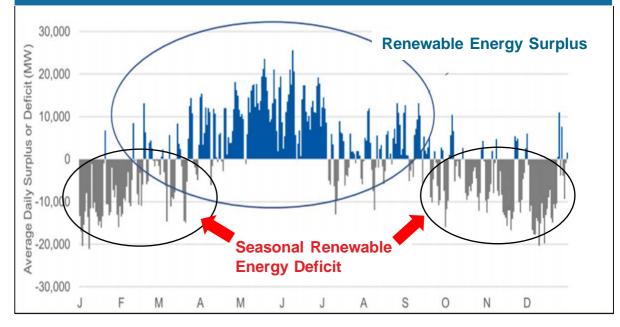


We evaluated 4 potential scaled green hydrogen market uses that could drive scale as the first offtakers, enabling adoption from other sectors:




The power sector can have an outsized impact in catalyzing the green hydrogen economy, all while addressing the need for a clean, dispatchable fuel.




#### Long-duration energy storage allows California to capture otherwise wasted solar and wind to fully displace of natural gas in the power sector





Data Source: California Independent System Operator (Compiled April 2021)

100% Renewable Energy Scenario in California Signals a Huge Need for Long Duration Energy Storage





## Studies show that to meet California's 100% renewable energy future reliably, the power sector will need clean, firm power



Finding the ways that work

Identified the need for 25-40 gigawatts of "clean firm power", or power that can replace the existing gas fleet

- Ran 3 different optimization models to quantify costs of many different future scenarios to accomplish SB100 by 2045
- Detailed models of the future of California's power system all show that California needs multi day and ultimately seasonal carbon-free electricity sources that don't depend on the weather.



The Los Angeles 100% Renewable Energy Study

Called out the need for firm capacity that can "come online within minutes, and can run for hours to days"

- Modeled 100 million ultra high-resolution simulations for Los Angeles to accomplish 100% renewable energy by 2035
- Called out green hydrogen as a viable, scalable, seasonal storage solution to address seasonal mismatches in supply and demand, and to replace various services currently provided by in-basin natural gas plants



# Non-combustion options to reaching 100% renewable electricity will be costly and inefficient



An alternate scenario with solely wind, solar, and batteries would require building out nearly 6x the power generating capacity.

| Issue                                                                                                                                 |                                                | With Clean Firm<br>Power   | Without Clean<br>Firm Power |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|-----------------------------|
| Cost for Generation and Transmission<br>California transmission and distribution costs are currently about 9 cents/kWh                |                                                | ~9 cents/kWh               | ~15 cents/kWh               |
| New Storage<br>Largest battery facility now being<br>built is 0.6 GW /2.4 GWh.<br>CA expects to have 2 GW battery<br>capacity in 2021 | New short-term battery power capacity          | 20 -100 GW                 | 160 GW                      |
|                                                                                                                                       | New short-term battery energy storage capacity | 100-800 GWh                | 1000 GWh                    |
| Solar and Wind Capacity<br>Entire U.S. electric generating capacity is ~1100 GW                                                       |                                                | 25 – 200 GW                | 470 GW                      |
| Land Use<br>CA land area is ~164,000 sq miles                                                                                         |                                                | 625- 2500 sq miles         | 6250 sq miles               |
| Transmission Infrastructure<br>CA currently has ~ 15 million MW-miles of transmission                                                 |                                                | 2 – 3 million MW-<br>Miles | ~9 million MW Miles         |



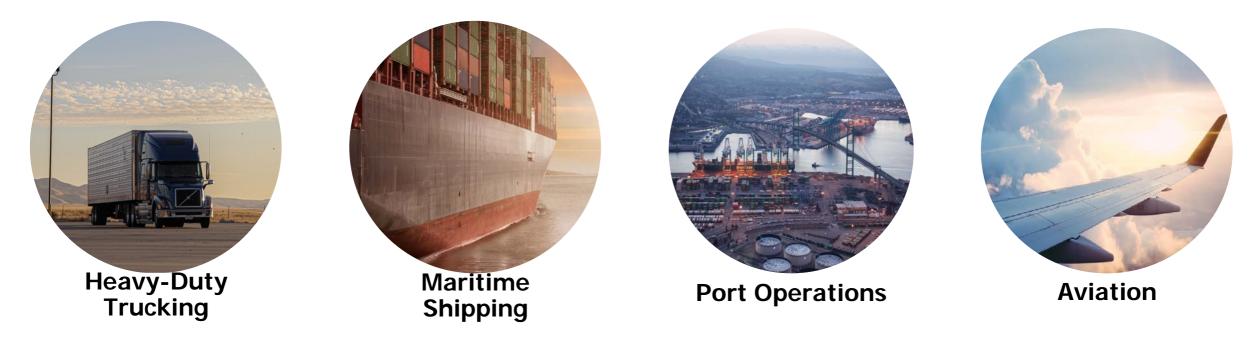
# Repurposing gas infrastructure, such as turbines, will make the clean energy transition more affordable







Existing turbines can already combust a hydrogen blend (5%-30%) without significant changes to equipment.


Major OEMs like GE, Mitsubishi, and Siemens are supporting these upgrades for blending and have announced roadmaps to 100% hydrogen capable turbines. This provides opportunities to retrain and transition the skilled energy workforce in California.

California is poised to become a global export leader in green hydrogen, driving further job and economic potential for the State.



# Power generation is not the end-game for green hydrogen...





...however, it can serve as a platform to help achieve near-term scale and cost reduction of green hydrogen, accelerating displacement of fossil fuels in California's top polluting sectors

June 7, 2022



### Update on our Green Hydrogen Hub Effort: HyDeal Los Angeles

An initiative to accelerate progress by bringing together... •key ecosystem stakeholders, starting with multi-sectoral offtakers •in strategically targeted locations, beginning in SoCal •to plan and develop the competitive, highvolume supply chain necessary to achieve <\$2/kg mass-</li> scale delivered green hydrogen for large offtakers

June 7, 2022

12



#### HyDeal LA Phase 1 Objective and Scope/Approach



Objective:

#### Scope



- 1. Identify multi-sectoral offtakers in the LA Basin, prioritizing areas with highest pollution near Port of LA and LB
- 2. Determine where mass-scale green hydrogen could be produced from water and renewable electricity (wind and solar) via electrolysis
- 3. Evaluate alternative transport and storage solutions for lowest cost alternative:
  - Pipeline infrastructure
  - Electric transmission infrastructure

#### Approach

Only commercially available technology/solutions were evaluated

System plan including cost assumptions and commercial terms leveraged work from HyDeal Ambition/Europe study



#### Phase 2 builds on our previous work to expand our vision and co-create the path forward on a foundation of environmental justice



| Community Impacts                                                                                                                                                                                                                                                                                 | Infrastructure and<br>Offtake                                                                                                                                                                                                                                                                               | Policy and Regulatory                                                                                                                                                                                                                                                              | Project Management                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Engage with key<br/>stakeholders to solicit input<br/>on areas of interest,<br/>opportunity, and concern</li> <li>Conduct Air Quality Analysis<br/>and develop strategies to<br/>ensure net AQ benefits</li> <li>Assess economic<br/>development and job<br/>creation impacts</li> </ul> | <ul> <li>Update regional hydrogen<br/>offtake potential to include<br/>mobility &amp; transport<br/>applications</li> <li>Explore water availability, use,<br/>consumption &amp; purification<br/>(grey water recovery) study</li> <li>Begin to create a "no regrets"<br/>infrastructure roadmap</li> </ul> | <ul> <li>Identify policy &amp; regulatory<br/>barriers, and funding<br/>opportunities</li> <li>Develop innovative<br/>policy/programs to value<br/>and compensate GH2</li> <li>Engage with local, state, and<br/>regional government (incl.<br/>coordination with WGHI)</li> </ul> | <ul> <li>Manage external<br/>stakeholder engagement,<br/>communications, and<br/>media</li> <li>Produce final report and<br/>take-aways</li> <li>Coordinate findings to<br/>support government<br/>funding applications</li> </ul> |



14

