Advanced Generation & Carbon Capture and Storage

Abhoyjit S. Bhown, Ph.D.

Program Manager

Advanced Generation & Carbon Capture and Storage Palo Alto, California

Sacramento Municipal Utility District Board of Directors Meeting September 7, 2021

via Webcast

About The Electric Power Research Institute

- Mission: Advancing safe, reliable, affordable and environmentally responsible electricity for society through global collaboration, thought leadership and science and technology innovation
- Established 1973 as independent, not-for-profit research center
- Major locations in Palo Alto, CA; Charlotte, NC; Knoxville, TN. ~1000 staff
- ~\$420 million/year revenue (25% international)
- 450+ participants in more than 30 countries
- EPRI members generate approximately 90% of the electricity in the United States

www.epri.com

Large-Scale CCS

Courtesy Sask Power

Boundary Dam Saskatchewan, Canada

Petra Nova Courtesy NRG Thompsons, Texas, USA

(Recently Announced Suspension due to low oil prices)

Options for CO₂ Capture in Fossil Power Systems

Post-Combustion CO₂ Capture

CO2 to Cleanup

Post-Combustion CCS

	Supercritical Coal Plant	Natural Gas Combined Cycle
CO ₂ Concentration	12-15%	3-4%
t CO ₂ /MWh (w/o CCS)	~ 0.86	~ 0.38
Efficiency Reduction with CCS, %	~22%	~11%
Breakeven CO ₂ Sales Price, \$/t CO ₂	~\$46	~\$80
LCOE increase	~77%	~72%

Source: NETL-PUB-226383 September 24, 2019

EPRI's R&D objective is to reduce cost of CCS and mitigate risk

Allam-Fetvedt Cycle Overview

- CO₂ as working fluid improves efficiency
- Heat provided by in-situ oxy-combustion
- CO₂ removed at pipeline pressure

50 MWth Pilot, Courtesy NET Power

- Oxy-gas combustor is novel, operating at pressures 10 times greater than a natural gas combustion turbine
- Reduced turbine size / cost and potentially improved flexibility
- CO₂ and other byproducts (Ar, H₂O, and N₂) generate revenue
- Projected efficiency with CCS for NG: up to 59% LHV*
- Projected low capital costs: \$900–1200/kW*

* Values provided by NET Power

NET Power is the developer of the natural gas version

