About the GHC www.ghcoalition.org

Mission:

Facilitate policies and practices to advance the production and use of Green Hydrogen in all sectors where it will accelerate a carbon free energy future

Approach:

Prioritize Green Hydrogen project deployment at scale; leverage multisector opportunities to simultaneously scale supply and demand

*The GHC is a 501c3 Tax Exempt Non Profit Corporation

CALIFORNIA HYDROGEN BUSINESS COUNCIL

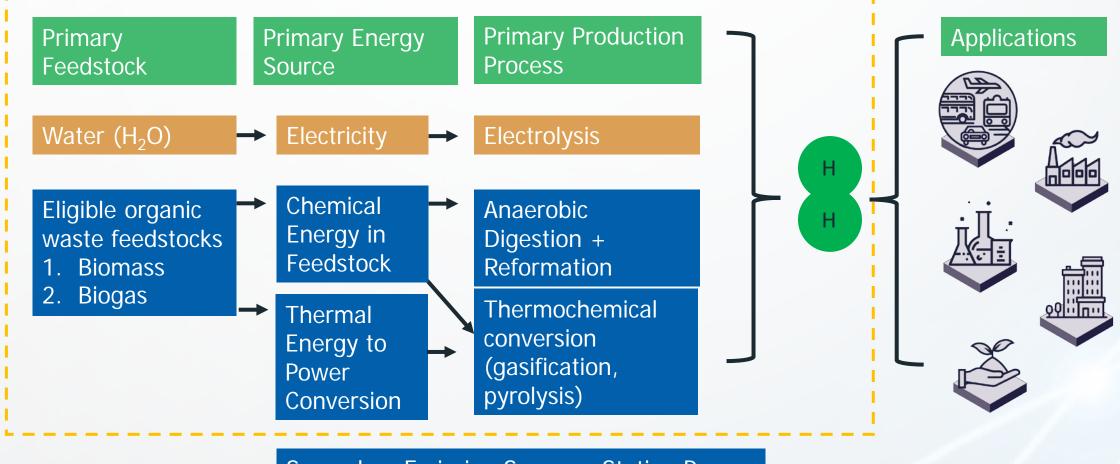
What is green hydrogen? The industry is aligned.

Green Hydrogen: hydrogen that is not produced from fossil fuel feedstocks

Fossil Fuel Feedstock s	Brown	Coal or lignite	Gasification & reformation				
	Gray	Natural gas	Gasification (SMR)	Fuel to			
	Blue	Brown or Gray plus CCS	Carbon Capture Sequestration during gasification	Hydrogen			
Renewabl e Feedstock s	Green	Biogas or Biomass	Gasification & reformation				
		Water	Electrolysis	Clean Electricity to Hydrogen			

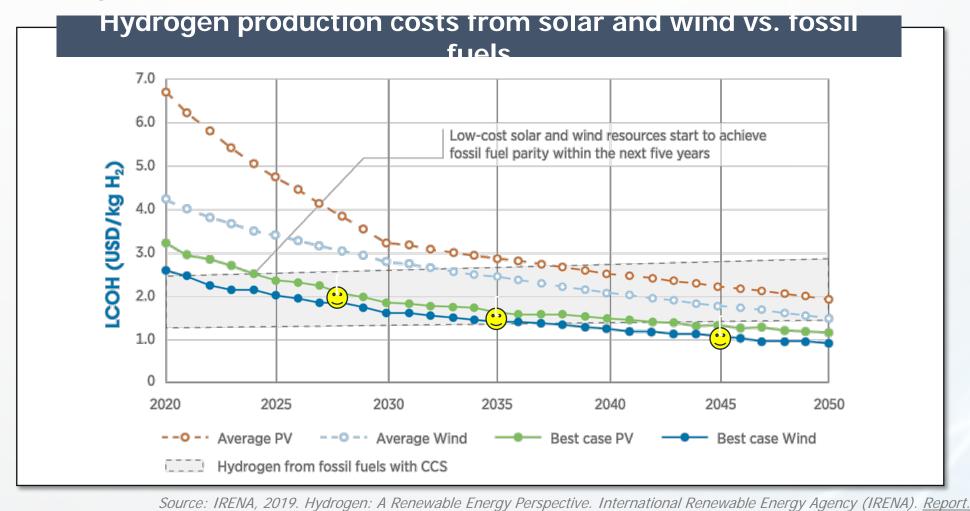
- 0.6 to 3.5

- 0
Carbon
impact
(kg CO₂/kg
H₂)



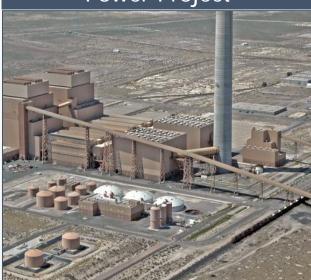
Source: GHC, 2020 – above conversion pathways commercially available pathways today – many more are under development

Green Hydrogen Definition Framework Focuses on the Production Pathway


Each production pathway (outlined below) and application pathway has different carbon and emissions implications that should be evaluated at the program level



Secondary Emission Sources: Station Power


Green hydrogen is commercially viable now and on trajectory for lowest cost

GHC Focus: Accelerating the green hydrogen economy

Initiative 1: Intermountain Power Project

hydrogen project that enables an affordable and responsible transition www.ghcoalition.org/green-hydrogen-at-scale

Initiative 2: Western Green Hydrogen Initiative

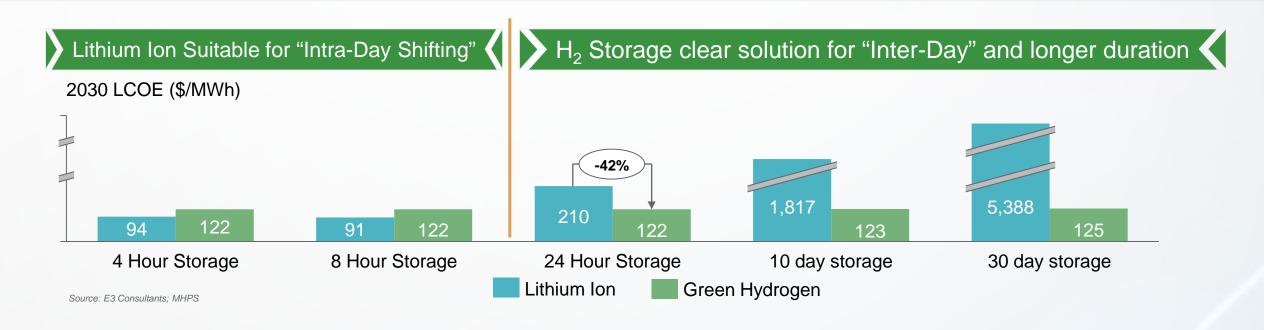
Achieve a comprehensive regulatory, policy and commercialization roadmap to advance projects at scale www.ghcoalition.org/wghi

Initiative 3: Regional Demand Aggregation

Enable green hydrogen demand aggregation and ecosystem development for industrial energy & chemical buyers in strategically targeted locations

Green Hydrogen can repurpose existing infrastructure & jobs

Source: DNV GL



Source: LADWP

Enabling an affordable & responsible transition

Renewable Energy Storage Alternatives

Intra-Day Shifting vs. Inter-Day and Seasonal Shifting

Assumptions

Battery roundtrip efficiency impacted as duration need extends beyond 1-day

MHPS 2019 electrolyzer and H₂ storage cost with learning curve + CCGT

Gas turbine capacity factor: 40%

LCOE includes solar cost

*source: Mitsubishi Power

With green H2, we can achieve 100% renewable energy affordably and reliably – at competitive costs with today's wholesale pricing

Group	Variable	Units	Cosso 1	Cosse 2	رميم	Cosse	Cosses	Cosse	
Assumptions	Hydrogen %	%	100%	100%	100%	100%	100%	100%	
	Capacity Factor ¹	%	65%	65%	65%	65%	65%	65%	
	Heat Rate ²	BTU/kWh	6400	6400	6400	6400	6400	6400	
	CC Units ³	\$/MWh	\$26	\$26	\$26	\$26	\$26	\$26	a
Greenhouse Gas (GHG)	GHG Cost	\$/metric tons	\$50	\$100	\$50	\$100	\$50	\$100	
Calculation ⁴	GHG Savings	\$/MWh	(\$17)	(\$34)	(\$17)	(\$34)	(\$17)	(\$34)	b
Hydrogen Calculation	Hydrogen Commodity Cost ⁵	\$/kg	\$1.00	\$1.00	\$1.50	\$1.50	\$2.00	\$2.00	
	Hydrogen Levelized Cost ⁶	\$/MWh	\$58	\$58	\$87	\$87	\$116	\$116	C
Renewable Energy ⁷	Blended Renewable Energy	\$/MWh	\$7	\$7	\$7	\$7	\$7	\$7	d

Dispatchable GH2 costs competitive with peak spot prices

BLENDED COST (\$/MWh)

25% x (a+b+c) +75% x (d)

\$22 \$18 \$29 \$25 \$36 \$32

Blended 100% renewable with dispatched GH2 competitive with today's average wholesale prices

Appendix

Is the hydrogen economy finally here?

GM and Honda partner to mass produce hydrogen fuel cells in Michigan

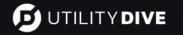
Toyota is pushing ahead with hydrogen-powered cars

Doubling down on its bet that fuel cells will help secure Toyota's future as the industry comes under enormous pressure to slash carbon

Air Products Plans \$5 Billion **Green Fuel Plant in Saudi Arabia**

Air Products signed an accord with Saudi-based ACWA Power International and the kingdom's planned futuristic city of Neom to develop a \$5 billion hydrogen-based ammonia plant powered by

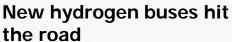
Coalition Aims for 25GW of Green Hydrogen by 2026


Seven firms join forces for fiftyfold scale-up of global hydrogen production capacity.

Hydrogen-powered flight

Is the time now ripe for planes to run on hydrogen?

Lancaster, CA Becomes the Hydrogen


Utility of the Year

renews.BIZ

Vestas backs world's first commercial green ammonia plant

Enel teams up on US green hydrogen project

2000

Three buses powered by H2 are to be introduced on routes in central London as part of a twoyear trial

The New Hork Times

Hydrogen cars join EV models in showrooms

Fuel Cells Power Up: Three Surprising Places Where Hydrogen Energy Is Working

Hydrogen may not be fueling many cars, but it is delivering clean power for warehouses, data centers, and Telcom towers.

European nations plan to use more hydrogen for energy needs

Energy officials from 25 countries pledged Tuesday to increase research into hydrogen technology and accelerate its everyday use to power factories, drive cars and heat homes.

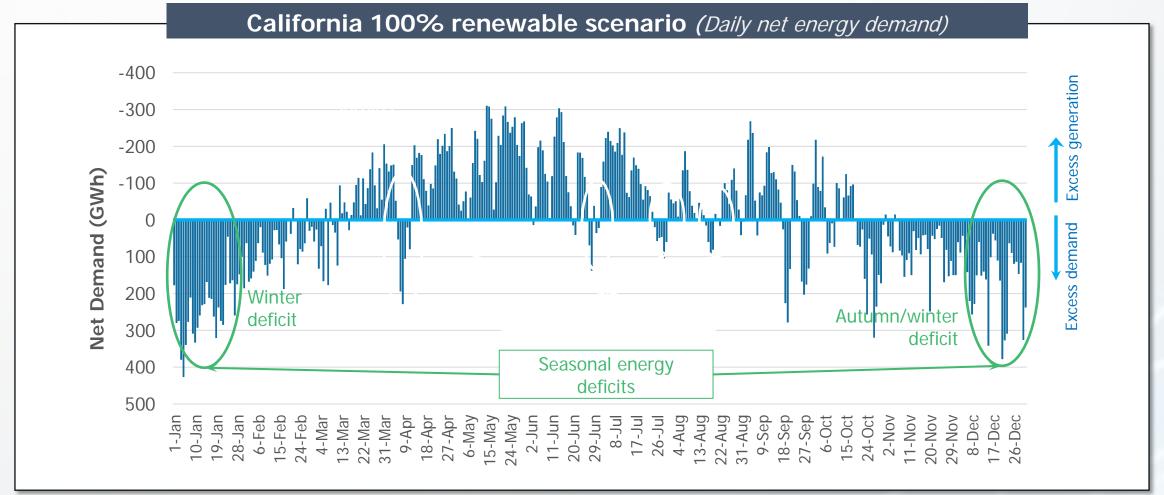
RTO Insider

Initiative Seeks to Fuel Use of Green Hydrogen in West

The push to develop green hydrogen got a boost with the announcement of a new program to hasten its development for use in the Western Interconnection

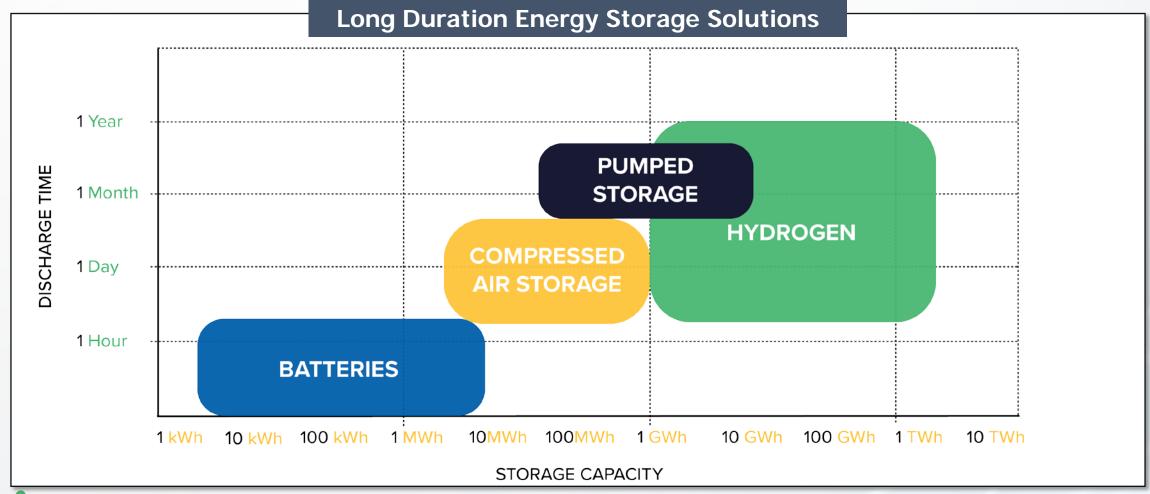
City in the US

NextEra Energy is investing in green hydrogen, solar energy and grid resilience,

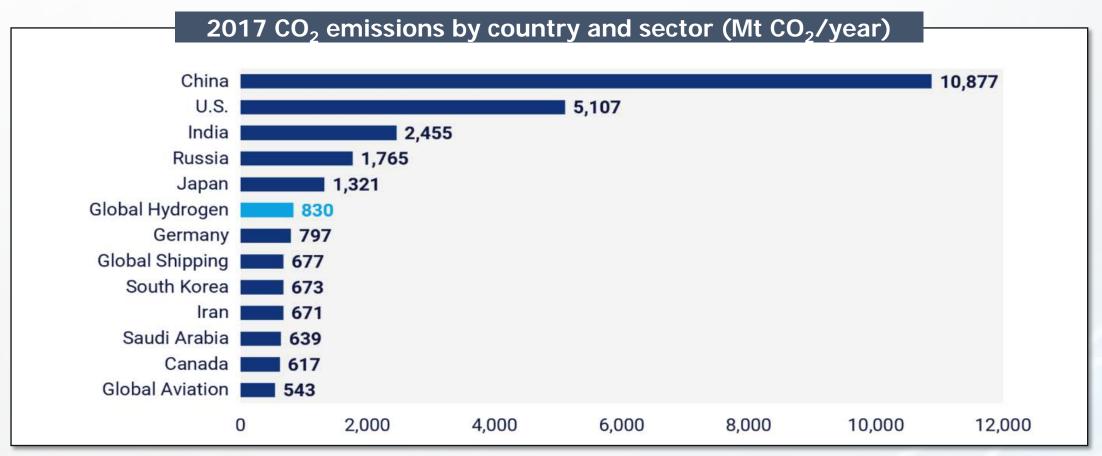


Hydrogen and fuel cells will future-proof shipping

Future Proof Shipping is taking a pioneering step by retrofitting a vessel to run on hydrogen fuel cell propulsion



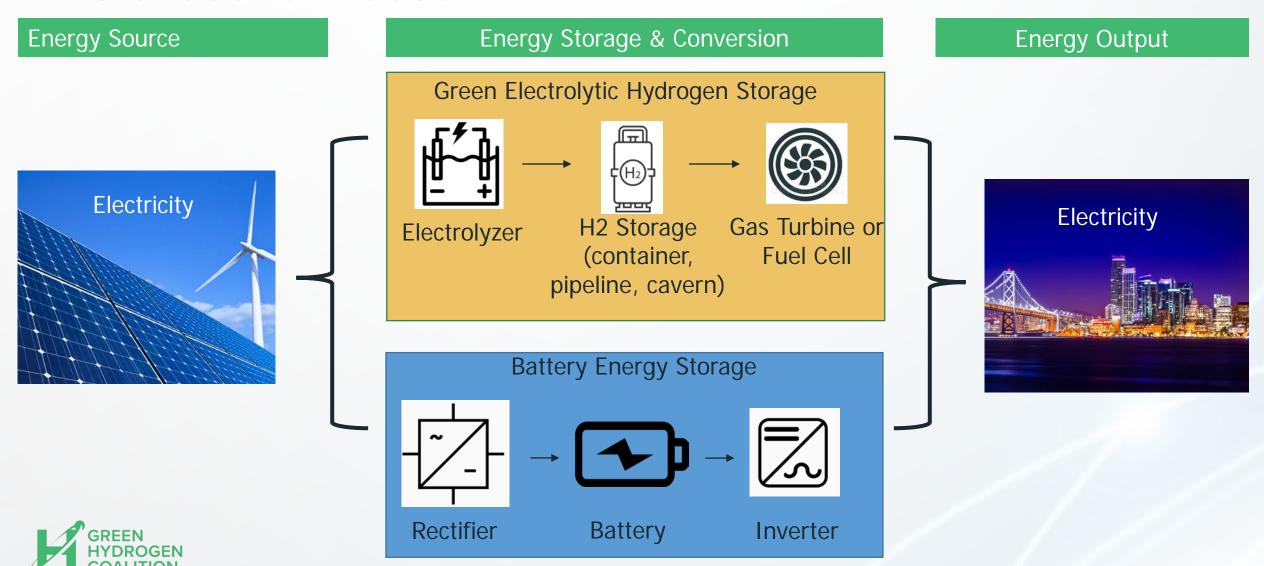
High intermittent and variable renewable penetration will require multi-day and seasonal energy storage



Green hydrogen is the only commercially viable seasonal storage solution available today

Global hydrogen production accounts for 832 Mt CO₂/year...more than the emissions of Germany

Source: Wood Mackenzie, 2019. "CO2 and other Greenhouse Gas Emissions


5% Green Hydrogen Blend in CA Natural Gas Pipeline is equivalent to removing 365,000 cars from the road each year!

2*10 ⁹ MMBtu	Annual natural gas use in CA
106 MMT	CO ₂ emissions from annual CA natural gas combustion
1.77 MMT	CO ₂ emission reduction from 5% by volume hydrogen blend
4.6 MT	Average annual emissions of one car
384,826 cars	Equivalent annual emissions

Green electrolytic hydrogen is an excellent storage medium... and unlike batteries can address multi day and seasonal needs

Roadmaps and plans for green hydrogen are developing worldwide

developing worldwide Source: 2020, Presentation: DOE Hydrogen and Fuel Cell Technologies Office and Global Perspectives, Dr. Sunita Satyapal, Director, Hydrogen and Fuel Cell technologies Office

H2 Ministerial Global Action Agenda Goals: "10, 10, 10"

10M systems, 10K stations, 10 years

78

2050

2015

Transportation

Industrial energy

Building heat and power

New feedstock (CCU, DRI)

Existing feedstock uses

Power generation.

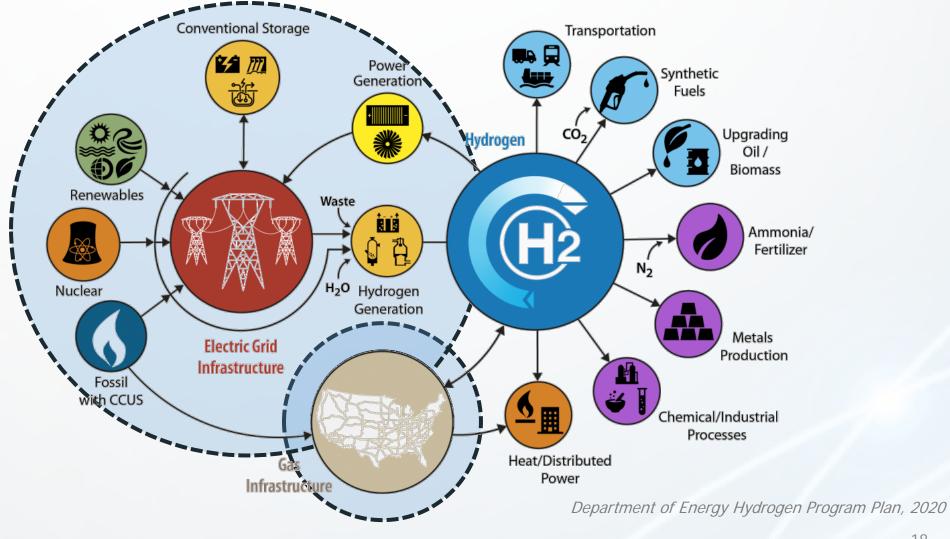
buffering

H2 Council Global Impact Potential by 2050

(hydrogen and

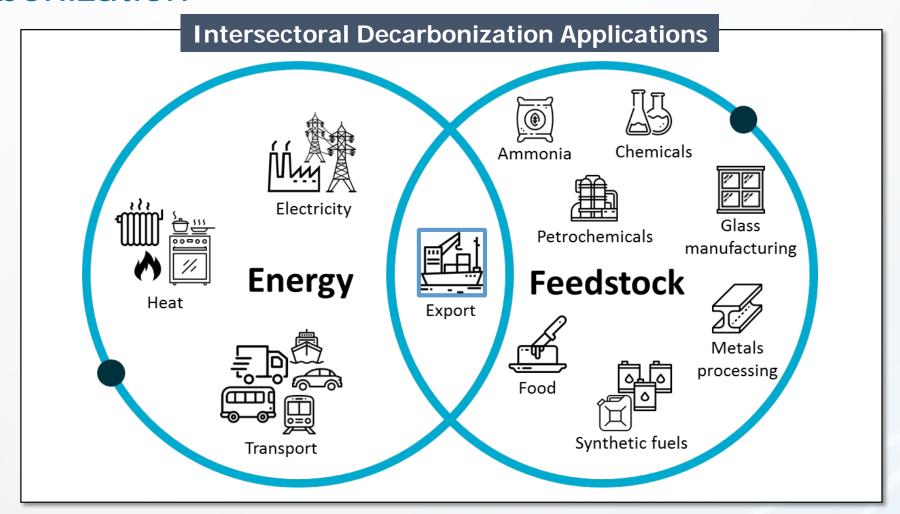
equipment)

18%


of final energy

demand

Global energy demand supplied with hydrogen, EJ


Regulatory reform of existing gas and electric infrastructure is key to accelerating the green hydrogen

economy

Green hydrogen can achieve multi-sectoral global decarbonization

California Greenprint for Action

California can lead the green hydrogen economy globally

- Establish technology agnostic legal and regulatory framework
- Integrate greenH2 into current gas and electric planning
- Establish targets, compensation mechanisms incl. new tariffs
- Think big don't miss out on economic development and CA export potential

Establish Broad,
Technology
Agnostic
Definition

2021

GREEN HYDROGEN CARB/CEC: Roadmapping, Intersectoral Strategic Vision, Update RPS Guidebook area long
duration
need, Augment
products for
reliability
CPUC: IRPs,
RA, Injection
Target, New

Early At-Scale
Deployments:
Convert Gas
Generators to
100% GH2,
Increase Pipeline
Injection and
Blending Targets

Capitalize on Cost-Competitive Green Hydrogen Opportunities – lower cost H2 fuel supply, target hard to abate applications in industry and agriculture. Ready CA ports for export

2030

Joint Agency Recommendations

Recommendations for CPUC

- Establish technology agnostic legal and regulatory framework
- Integrate greenH2 into current gas and electric planning
- Establish preference for 'green system RA'
- Establish 5% by volume injection/procurement target for gas pipeline
- Establish necessary new greenH2 injection tariff and electrolytic production tariff
- When upgrading gas pipelines, include modifications to allow higher % of greenH2
- Consider utility ownership of 100% greenH2 pipelines, leveraging existing pipeline right-of-ways

Recommendations for CAISO

- Inform CA planning decisions regarding long-duration energy needs (H2 combustion or electrolysis) in local areas
- Augment CAISO products to better reflect evolving reliability and renewables integration needs.

Recommendations for CEC

- Complete proposed "Role of GH2 in a Decarbonized California Study" consider opportunities for underserved communities
- Integrate greenH2 (procurement and targets) into current long-term gas and electric planning, including future load forecast (electrolytic)
- Update CEC RPS Guidebook to include green hydrogen
- Expand CEC authority to permit Green H2 power plants in CA (in partnership with AQMD)

Think big! Don't miss out on economic development and CA import and export potential

Plants make fuel from water and sun, and so can we

