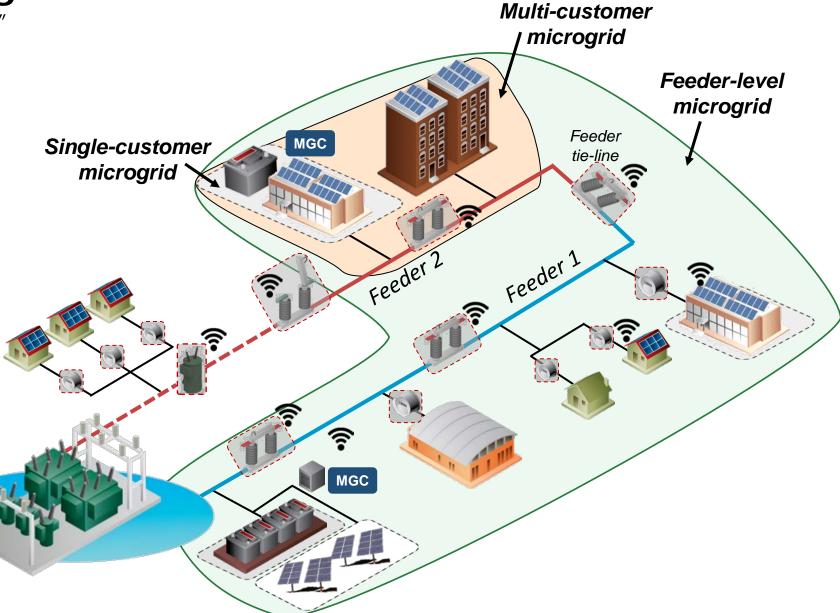
Microgrid Overview SMUD Board Presentation

Jacqueline Baum, *Technical Lead, DER Integration and Microgrids*Dr. Arindam Maitra, *Senior Technical Executive, Energy Storage and Microgrids*

August 3, 2021


Definition of Microgrid

EPRI's Definition of "Microgrid"

 A group of inter-connected loads and DER equipment and devices, within defined electrical boundaries.

Acting as a single controllable entity with respect to the grid.

 Able to connect and disconnect from the grid, operating in both gridconnected or island-modes

Types of Microgrids/Range of Objective

- Commercial/Industrial Microgrids: generally built with the goal of reducing demand and costs during normal operation, although the operation of critical functions during outages is also important, especially for data centers
- Community/Utility Microgrids: designed to improve reliability and to promote community participation
- Campus/Institutional Microgrids: many campuses already have DG resources, with microgrid technology linking them together. They are usually large and may be involved with selling excess power to the grid
- Military Microgrids: critical loads, cyber and physical security, both for fixed bases and forward operating bases.

Most microgrids will be grid-connected >99% of the time

Microgrid Technology, Components and Costs

Components

- DER (Generation and Storage)
 - Diesel, natural gas, combined heat and power (CHP), biofuel, solar photovoltaic (PV), wind, and fuel cell and energy storage
- Microgrid Controller
 - Primary, Secondary, Tertiary
- Additional Infrastructure
 - Distribution system infrastructure (switchgear, protection equipment), information technology communications upgrades, metering
- Soft costs
 - Engineering, construction, commissioning, regulatory

Costs

- Leverage existing DER
- Lowest average cost in Community and Utility microgrid markets

Туре	Typical Cost Range (\$M/MW)
Campus/Institutional	\$2.5 – \$4.9
Commercial/Industrial	\$3.4 – \$5.4
Community	\$1.4 – \$3.3
Utility	\$2.3 – \$3.2

Source: NREL "Phase I Microgrid Cost Study" 2018

Why Build a Microgrid? Understanding Microgrid Objectives

Objective

Solutions...

Integrating more renewables (hosting capacity)

Reducing local emissions

Defer / Avoid Utility Upgrade (non-wires alternative)

Enable building and transportation electrification

Improve Local Resilience / Reliability

Infrastructure upgrade, smart inverters, energy storage

Grid-tied renewables, CHP, building and transportation electrification

Smart inverters, energy storage, flexible load – coordinated by DERMS/ADMS/etc.

Aggregation of local controllers, flexible load management

Infrastructure upgrade, backup generators, energy storage, microgrid

Microgrids as part of Resilience Strategies - Key Drivers

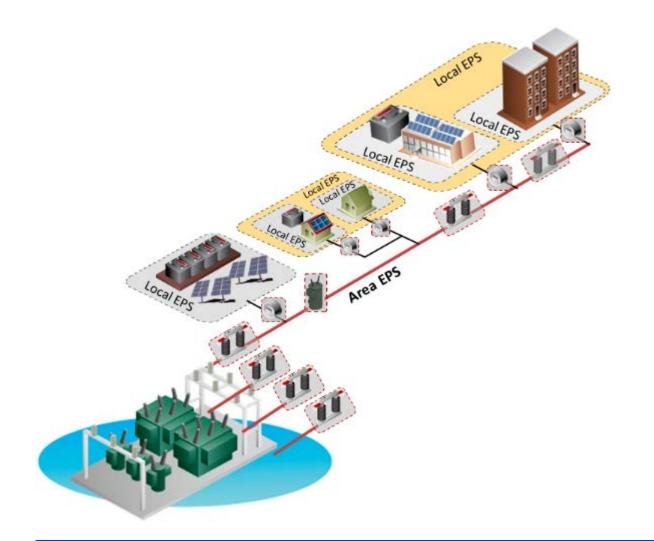
- Expanding T&D expensive and difficult
- Hardening of grid can be expensive
- Local resilience sources can be strategic

Hardening Measures

Higher Design & construction standards

www.epri.com

Recovery Measures


Faster restoration management and damage assessment

Resilient technologies namely microgrids utilizing DER technologies for outage mitigation

Rising Expectations

- The vision of grid interactive community resilient solutions is to leverage existing DER and create "community microgrids" to begin a more decentralized restoration from outages, and then connect these to the full electric grid
 - Reduces the likelihood and impact of power outages from major events;
 - Improves the restoration of grid power along with the capability of customers to receive that power; and
 - Strengthens the customer's and community's ability to address prolonged outages.

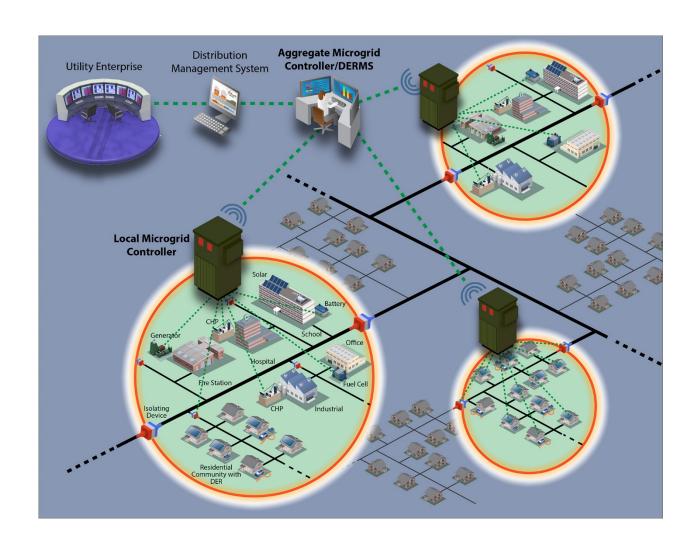
Grid, Customer, and Community Resilience

The Utility Challenge: Integration of Microgrids

Regulatory Challenges:

- Ownership of generation
- Administrative burden of regulation

Technical Challenges:


- Bi-directional power flows
- Fault current contribution
- Unit Level Volt/VAR support
- Islanded Operation

Economic Challenges:

 DER technologies still costly and with uncertain lifetimes

www.epri.com

- Business model still undeveloped
- Utility rate structures in early implementation

Microgrids & Resilience Technology & Demonstration Landscape



www.epri.com

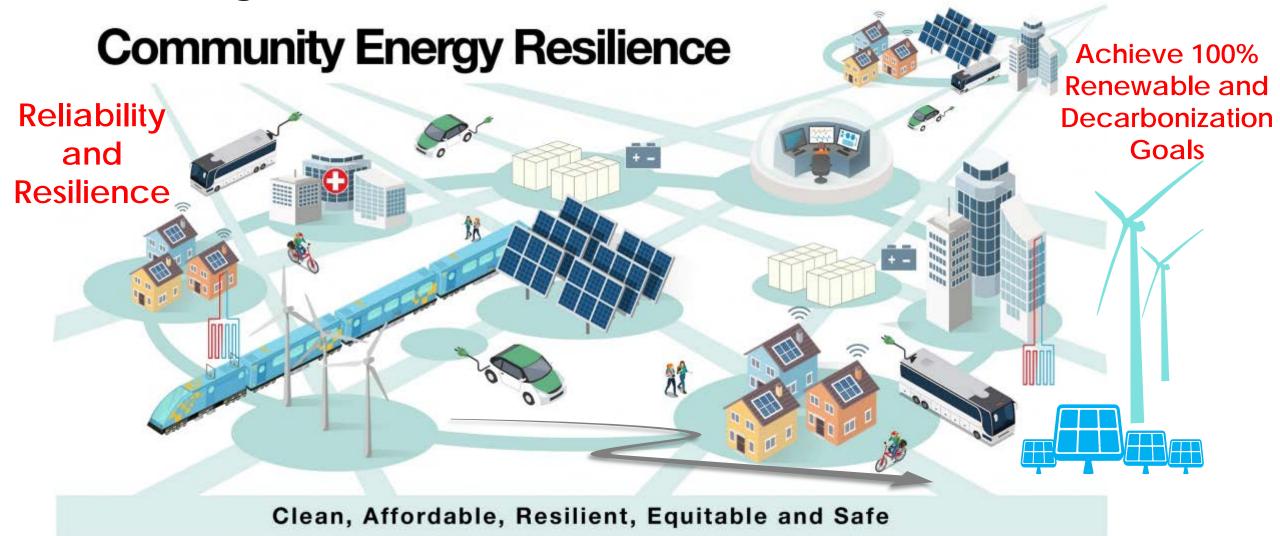
Additional Material

Enable Resiliency through Community Design

Microgrid as Part of a Traditional Utility System Source: EPRI. 2016

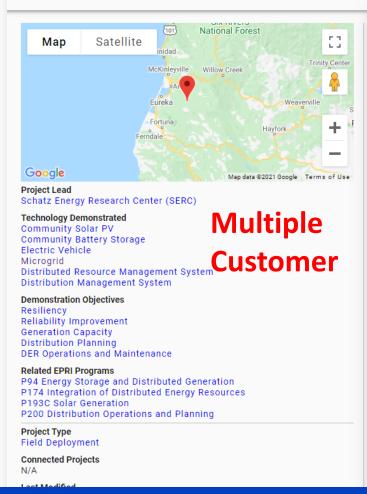
Integrate with and repurpose existing Infrastructure and DERs

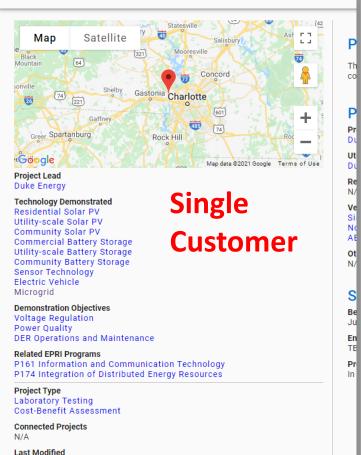
Improve restoration through community control, grid-forming inverters, & interconnection practices


Enable independent communication systems for critical infrastructure

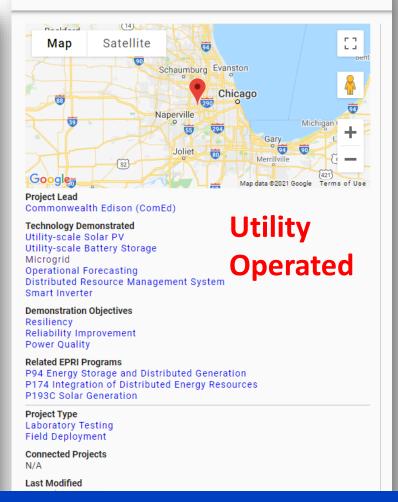
Demonstrations validate decarbonization and resilience co-benefits!

Balancing decarbonization goals, energy affordability, equity considerations, and sustainability commitments


Achieving Resilience and Carbon Reduction Goals


Can Community Microgrids Enable Both These Goals?

EPRI Integrated Grid Demonstrations


Blue Lake Rancheria & Humboldt County Airport Microgrids

Duke Energy Mount Holly Microgrid Test Facility

Bronzeville Community Microgrid (SHINES)

37 demo projects https://techportal.epri.com/demonstrations/ig

Example Utility Reliability/Resilience Applications

Xcel Energy

PG&E Arcata Microgrid

Community Resiliency Initiative

Solar plus Storage based microgrids to support community resiliency

- Community partner defines "critical" infrastructure
- · Xcel Energy brings battery storage and islanding capability
- · Solar and other generation provided by the site

Benefits:

- · Improves resiliency
- Supports Xcel Energy's clean energy transition
- Provides grid benefits

Enabling Legislation:

• HB18-1270 (http://leg.colorado.gov/bills/hb18-1270)

PG&E

Categories of Microgrid

(1) Single-customer facility

Description

- · Customer-side of the meter
- Military bases, prisons, commercial facilities, campuses, hospitals

Key Drivers

- Customer reliability & resilience
- Avoided customer outage costs

Example

(2) Remote

 Utility-sponsored projects, typically hybrid ownership (e.g., utility-owned distribution assets, customer-owned DG)

Key Driver

 Potential T&D alternative in remote locations

Exam

· Angel Island (planning)

(3) Multi-customer on-grid

Description

 Typically cities seeking to enable critical facilities to island in the event of broader grid outage and enhance local resilience

Key Driver

Community resilience

