Microgrid Overview SMUD Board Presentation

Jacqueline Baum, *Technical Lead, DER Integration and Microgrids* Dr. Arindam Maitra, *Senior Technical Executive, Energy Storage and Microgrids*

August 3, 2021

 Image: margin black
 Image: margin black

 www.epri.com
 © 2021 Electric Power Research Institute, Inc. All rights reserved.

Definition of Microgrid

EPRI's Definition of "Microgrid"

- A group of inter-connected loads and DER equipment and devices, within defined electrical boundaries.
- 2. Acting as a single controllable entity with respect to the grid.
- 3. Able to connect and disconnect from the grid, operating in both gridconnected or island-modes

www.epri.com

Types of Microgrids/Range of Objective

- Commercial/Industrial Microgrids: generally built with the goal of reducing demand and costs during normal operation, although the operation of critical functions during outages is also important, especially for data centers
- Community/Utility Microgrids: designed to improve reliability and to promote community participation
- Campus/Institutional Microgrids: many campuses already have DG resources, with microgrid technology linking them together. They are usually large and may be involved with selling excess power to the grid
- Military Microgrids: critical loads, cyber and physical security, both for fixed bases and forward operating bases.

Most microgrids will be grid-connected >99% of the time

Microgrid Technology, Components and Costs

Components

- DER (Generation and Storage)
 - Diesel, natural gas, combined heat and power (CHP), biofuel, solar photovoltaic (PV), wind, and fuel cell and energy storage
- Microgrid Controller
 - Primary, Secondary, Tertiary
- Additional Infrastructure
 - Distribution system infrastructure (switchgear, protection equipment), information technology communications upgrades, metering
- Soft costs
 - Engineering, construction, commissioning, regulatory

Costs

- Leverage existing DER
- Lowest average cost in Community and Utility microgrid markets

Туре	Typical Cost Range (\$M/MW)
Campus/Institutional	\$2.5 – \$4.9
Commercial/Industrial	\$3.4 – \$5.4
Community	\$1.4 - \$3.3
Utility	\$2.3 – \$3.2

Source: NREL "Phase I Microgrid Cost Study" 2018

RESEARCH INSTITUTE

Why Build a Microgrid? Understanding Microgrid Objectives

Objective

www.epri.com

Solutions...

EPPI ELECTRIC POWER RESEARCH INSTITUTE

Integrating more renewables (hosting capacity)	Infrastructure upgrade, smart inverters, energy storage
Reducing local emissions	Grid-tied renewables, CHP, building and transportation electrification
Defer / Avoid Utility Upgrade (non-wires alternative)	Smart inverters, energy storage, flexible load – coordinated by DERMS/ADMS/etc.
Enable building and transportation electrification	Aggregation of local controllers, flexible load management
Improve Local Resilience / Reliability	Infrastructure upgrade, backup generators, energy storage, microgrid

Microgrids as part of Resilience Strategies – Key Drivers

- Expanding T&D expensive and difficult
- Hardening of grid can be expensive
- Local resilience sources can be strategic

Hardening Measures

Higher Design & construction standards

www.epri.com

Recovery

Measures

Faster restoration management and damage assessment

Resilient technologies namely microgrids utilizing DER technologies for outage mitigation

Rising Expectations

www.epri.com

- The vision of grid interactive community resilient solutions is to leverage existing DER and create "community microgrids" to begin a more decentralized restoration from outages, and then connect these to the full electric grid
 - Reduces the likelihood and impact of power outages from major events;
 - Improves the restoration of grid power along with the capability of customers to receive that power; and
 - Strengthens the customer's and community's ability to address prolonged outages.

Grid, Customer, and Community Resilience

The Utility Challenge: Integration of Microgrids

Regulatory Challenges:

- Ownership of generation
- Administrative burden of regulation

Technical Challenges:

- Bi-directional power flows
- Fault current contribution
- Unit Level Volt/VAR support
- Islanded Operation

Economic Challenges:

- DER technologies still costly and with uncertain lifetimes
- Business model still undeveloped
- Utility rate structures in early implementation

Microgrids & Resilience Technology & Demonstration Landscape

www.epri.com

Together...Shaping the Future of Energy

Additional Material

www.epri.com

Enable Resiliency through Community Design

Microgrid as Part of a Traditional Utility System Source: EPRI, 2016

Integrate with and repurpose existing Infrastructure and DERs

www.epri.com

Enable independent communication systems for critical infrastructure

Demonstrations validate decarbonization and resilience co-benefits!

Improve restoration through community control, grid-forming inverters, & interconnection practices

Balancing decarbonization goals, energy affordability, equity considerations, and sustainability commitments

Clean, Affordable, Resilient, Equitable and Safe

Can Community Microgrids Enable Both These Goals?

EPRI Integrated Grid Demonstrations

Bronzeville Community Microgrid (SHINES)

<u>37 demo projects</u> https://techportal.epri.com/demonstrations/ig

Example Utility Reliability/Resilience Applications

Xcel Energy

PG&E Arcata Microgrid

Community Resiliency Initiative

Solar plus Storage based microgrids to support community resiliency

- Community partner defines "critical" infrastructure
- Xcel Energy brings battery storage and islanding capability
- · Solar and other generation provided by the site

Benefits:

- Improves resiliency
- Supports Xcel Energy's clean
 energy transition
- Provides grid benefits

Enabling Legislation:

• HB18-1270 (http://leg.colorado.gov/bills/hb18-1270)

